Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/compiler.h>
26#include <linux/kernel.h>
27#include <linux/kmemcheck.h>
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
33#include <linux/ratelimit.h>
34#include <linux/oom.h>
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/stop_machine.h>
46#include <linux/sort.h>
47#include <linux/pfn.h>
48#include <linux/backing-dev.h>
49#include <linux/fault-inject.h>
50#include <linux/page-isolation.h>
51#include <linux/page_cgroup.h>
52#include <linux/debugobjects.h>
53#include <linux/kmemleak.h>
54#include <linux/compaction.h>
55#include <trace/events/kmem.h>
56#include <linux/ftrace_event.h>
57#include <linux/memcontrol.h>
58#include <linux/prefetch.h>
59#include <linux/migrate.h>
60#include <linux/page-debug-flags.h>
61
62#include <asm/tlbflush.h>
63#include <asm/div64.h>
64#include "internal.h"
65
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
82/*
83 * Array of node states.
84 */
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93#ifdef CONFIG_MOVABLE_NODE
94 [N_MEMORY] = { { [0] = 1UL } },
95#endif
96 [N_CPU] = { { [0] = 1UL } },
97#endif /* NUMA */
98};
99EXPORT_SYMBOL(node_states);
100
101unsigned long totalram_pages __read_mostly;
102unsigned long totalreserve_pages __read_mostly;
103/*
104 * When calculating the number of globally allowed dirty pages, there
105 * is a certain number of per-zone reserves that should not be
106 * considered dirtyable memory. This is the sum of those reserves
107 * over all existing zones that contribute dirtyable memory.
108 */
109unsigned long dirty_balance_reserve __read_mostly;
110
111int percpu_pagelist_fraction;
112gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
113
114#ifdef CONFIG_PM_SLEEP
115/*
116 * The following functions are used by the suspend/hibernate code to temporarily
117 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
118 * while devices are suspended. To avoid races with the suspend/hibernate code,
119 * they should always be called with pm_mutex held (gfp_allowed_mask also should
120 * only be modified with pm_mutex held, unless the suspend/hibernate code is
121 * guaranteed not to run in parallel with that modification).
122 */
123
124static gfp_t saved_gfp_mask;
125
126void pm_restore_gfp_mask(void)
127{
128 WARN_ON(!mutex_is_locked(&pm_mutex));
129 if (saved_gfp_mask) {
130 gfp_allowed_mask = saved_gfp_mask;
131 saved_gfp_mask = 0;
132 }
133}
134
135void pm_restrict_gfp_mask(void)
136{
137 WARN_ON(!mutex_is_locked(&pm_mutex));
138 WARN_ON(saved_gfp_mask);
139 saved_gfp_mask = gfp_allowed_mask;
140 gfp_allowed_mask &= ~GFP_IOFS;
141}
142
143bool pm_suspended_storage(void)
144{
145 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
146 return false;
147 return true;
148}
149#endif /* CONFIG_PM_SLEEP */
150
151#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
152int pageblock_order __read_mostly;
153#endif
154
155static void __free_pages_ok(struct page *page, unsigned int order);
156
157/*
158 * results with 256, 32 in the lowmem_reserve sysctl:
159 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
160 * 1G machine -> (16M dma, 784M normal, 224M high)
161 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
162 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
163 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
164 *
165 * TBD: should special case ZONE_DMA32 machines here - in those we normally
166 * don't need any ZONE_NORMAL reservation
167 */
168int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
169#ifdef CONFIG_ZONE_DMA
170 256,
171#endif
172#ifdef CONFIG_ZONE_DMA32
173 256,
174#endif
175#ifdef CONFIG_HIGHMEM
176 32,
177#endif
178 32,
179};
180
181EXPORT_SYMBOL(totalram_pages);
182
183static char * const zone_names[MAX_NR_ZONES] = {
184#ifdef CONFIG_ZONE_DMA
185 "DMA",
186#endif
187#ifdef CONFIG_ZONE_DMA32
188 "DMA32",
189#endif
190 "Normal",
191#ifdef CONFIG_HIGHMEM
192 "HighMem",
193#endif
194 "Movable",
195};
196
197int min_free_kbytes = 1024;
198
199static unsigned long __meminitdata nr_kernel_pages;
200static unsigned long __meminitdata nr_all_pages;
201static unsigned long __meminitdata dma_reserve;
202
203#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
204static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
205static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
206static unsigned long __initdata required_kernelcore;
207static unsigned long __initdata required_movablecore;
208static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
209
210/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
211int movable_zone;
212EXPORT_SYMBOL(movable_zone);
213#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
214
215#if MAX_NUMNODES > 1
216int nr_node_ids __read_mostly = MAX_NUMNODES;
217int nr_online_nodes __read_mostly = 1;
218EXPORT_SYMBOL(nr_node_ids);
219EXPORT_SYMBOL(nr_online_nodes);
220#endif
221
222int page_group_by_mobility_disabled __read_mostly;
223
224void set_pageblock_migratetype(struct page *page, int migratetype)
225{
226
227 if (unlikely(page_group_by_mobility_disabled))
228 migratetype = MIGRATE_UNMOVABLE;
229
230 set_pageblock_flags_group(page, (unsigned long)migratetype,
231 PB_migrate, PB_migrate_end);
232}
233
234bool oom_killer_disabled __read_mostly;
235
236#ifdef CONFIG_DEBUG_VM
237static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
238{
239 int ret = 0;
240 unsigned seq;
241 unsigned long pfn = page_to_pfn(page);
242
243 do {
244 seq = zone_span_seqbegin(zone);
245 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
246 ret = 1;
247 else if (pfn < zone->zone_start_pfn)
248 ret = 1;
249 } while (zone_span_seqretry(zone, seq));
250
251 return ret;
252}
253
254static int page_is_consistent(struct zone *zone, struct page *page)
255{
256 if (!pfn_valid_within(page_to_pfn(page)))
257 return 0;
258 if (zone != page_zone(page))
259 return 0;
260
261 return 1;
262}
263/*
264 * Temporary debugging check for pages not lying within a given zone.
265 */
266static int bad_range(struct zone *zone, struct page *page)
267{
268 if (page_outside_zone_boundaries(zone, page))
269 return 1;
270 if (!page_is_consistent(zone, page))
271 return 1;
272
273 return 0;
274}
275#else
276static inline int bad_range(struct zone *zone, struct page *page)
277{
278 return 0;
279}
280#endif
281
282static void bad_page(struct page *page)
283{
284 static unsigned long resume;
285 static unsigned long nr_shown;
286 static unsigned long nr_unshown;
287
288 /* Don't complain about poisoned pages */
289 if (PageHWPoison(page)) {
290 reset_page_mapcount(page); /* remove PageBuddy */
291 return;
292 }
293
294 /*
295 * Allow a burst of 60 reports, then keep quiet for that minute;
296 * or allow a steady drip of one report per second.
297 */
298 if (nr_shown == 60) {
299 if (time_before(jiffies, resume)) {
300 nr_unshown++;
301 goto out;
302 }
303 if (nr_unshown) {
304 printk(KERN_ALERT
305 "BUG: Bad page state: %lu messages suppressed\n",
306 nr_unshown);
307 nr_unshown = 0;
308 }
309 nr_shown = 0;
310 }
311 if (nr_shown++ == 0)
312 resume = jiffies + 60 * HZ;
313
314 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
315 current->comm, page_to_pfn(page));
316 dump_page(page);
317
318 print_modules();
319 dump_stack();
320out:
321 /* Leave bad fields for debug, except PageBuddy could make trouble */
322 reset_page_mapcount(page); /* remove PageBuddy */
323 add_taint(TAINT_BAD_PAGE);
324}
325
326/*
327 * Higher-order pages are called "compound pages". They are structured thusly:
328 *
329 * The first PAGE_SIZE page is called the "head page".
330 *
331 * The remaining PAGE_SIZE pages are called "tail pages".
332 *
333 * All pages have PG_compound set. All tail pages have their ->first_page
334 * pointing at the head page.
335 *
336 * The first tail page's ->lru.next holds the address of the compound page's
337 * put_page() function. Its ->lru.prev holds the order of allocation.
338 * This usage means that zero-order pages may not be compound.
339 */
340
341static void free_compound_page(struct page *page)
342{
343 __free_pages_ok(page, compound_order(page));
344}
345
346void prep_compound_page(struct page *page, unsigned long order)
347{
348 int i;
349 int nr_pages = 1 << order;
350
351 set_compound_page_dtor(page, free_compound_page);
352 set_compound_order(page, order);
353 __SetPageHead(page);
354 for (i = 1; i < nr_pages; i++) {
355 struct page *p = page + i;
356 __SetPageTail(p);
357 set_page_count(p, 0);
358 p->first_page = page;
359 }
360}
361
362/* update __split_huge_page_refcount if you change this function */
363static int destroy_compound_page(struct page *page, unsigned long order)
364{
365 int i;
366 int nr_pages = 1 << order;
367 int bad = 0;
368
369 if (unlikely(compound_order(page) != order)) {
370 bad_page(page);
371 bad++;
372 }
373
374 __ClearPageHead(page);
375
376 for (i = 1; i < nr_pages; i++) {
377 struct page *p = page + i;
378
379 if (unlikely(!PageTail(p) || (p->first_page != page))) {
380 bad_page(page);
381 bad++;
382 }
383 __ClearPageTail(p);
384 }
385
386 return bad;
387}
388
389static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
390{
391 int i;
392
393 /*
394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
395 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 */
397 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
398 for (i = 0; i < (1 << order); i++)
399 clear_highpage(page + i);
400}
401
402#ifdef CONFIG_DEBUG_PAGEALLOC
403unsigned int _debug_guardpage_minorder;
404
405static int __init debug_guardpage_minorder_setup(char *buf)
406{
407 unsigned long res;
408
409 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
410 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
411 return 0;
412 }
413 _debug_guardpage_minorder = res;
414 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
415 return 0;
416}
417__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
418
419static inline void set_page_guard_flag(struct page *page)
420{
421 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
422}
423
424static inline void clear_page_guard_flag(struct page *page)
425{
426 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427}
428#else
429static inline void set_page_guard_flag(struct page *page) { }
430static inline void clear_page_guard_flag(struct page *page) { }
431#endif
432
433static inline void set_page_order(struct page *page, int order)
434{
435 set_page_private(page, order);
436 __SetPageBuddy(page);
437}
438
439static inline void rmv_page_order(struct page *page)
440{
441 __ClearPageBuddy(page);
442 set_page_private(page, 0);
443}
444
445/*
446 * Locate the struct page for both the matching buddy in our
447 * pair (buddy1) and the combined O(n+1) page they form (page).
448 *
449 * 1) Any buddy B1 will have an order O twin B2 which satisfies
450 * the following equation:
451 * B2 = B1 ^ (1 << O)
452 * For example, if the starting buddy (buddy2) is #8 its order
453 * 1 buddy is #10:
454 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
455 *
456 * 2) Any buddy B will have an order O+1 parent P which
457 * satisfies the following equation:
458 * P = B & ~(1 << O)
459 *
460 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
461 */
462static inline unsigned long
463__find_buddy_index(unsigned long page_idx, unsigned int order)
464{
465 return page_idx ^ (1 << order);
466}
467
468/*
469 * This function checks whether a page is free && is the buddy
470 * we can do coalesce a page and its buddy if
471 * (a) the buddy is not in a hole &&
472 * (b) the buddy is in the buddy system &&
473 * (c) a page and its buddy have the same order &&
474 * (d) a page and its buddy are in the same zone.
475 *
476 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
477 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
478 *
479 * For recording page's order, we use page_private(page).
480 */
481static inline int page_is_buddy(struct page *page, struct page *buddy,
482 int order)
483{
484 if (!pfn_valid_within(page_to_pfn(buddy)))
485 return 0;
486
487 if (page_zone_id(page) != page_zone_id(buddy))
488 return 0;
489
490 if (page_is_guard(buddy) && page_order(buddy) == order) {
491 VM_BUG_ON(page_count(buddy) != 0);
492 return 1;
493 }
494
495 if (PageBuddy(buddy) && page_order(buddy) == order) {
496 VM_BUG_ON(page_count(buddy) != 0);
497 return 1;
498 }
499 return 0;
500}
501
502/*
503 * Freeing function for a buddy system allocator.
504 *
505 * The concept of a buddy system is to maintain direct-mapped table
506 * (containing bit values) for memory blocks of various "orders".
507 * The bottom level table contains the map for the smallest allocatable
508 * units of memory (here, pages), and each level above it describes
509 * pairs of units from the levels below, hence, "buddies".
510 * At a high level, all that happens here is marking the table entry
511 * at the bottom level available, and propagating the changes upward
512 * as necessary, plus some accounting needed to play nicely with other
513 * parts of the VM system.
514 * At each level, we keep a list of pages, which are heads of continuous
515 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
516 * order is recorded in page_private(page) field.
517 * So when we are allocating or freeing one, we can derive the state of the
518 * other. That is, if we allocate a small block, and both were
519 * free, the remainder of the region must be split into blocks.
520 * If a block is freed, and its buddy is also free, then this
521 * triggers coalescing into a block of larger size.
522 *
523 * -- nyc
524 */
525
526static inline void __free_one_page(struct page *page,
527 struct zone *zone, unsigned int order,
528 int migratetype)
529{
530 unsigned long page_idx;
531 unsigned long combined_idx;
532 unsigned long uninitialized_var(buddy_idx);
533 struct page *buddy;
534
535 if (unlikely(PageCompound(page)))
536 if (unlikely(destroy_compound_page(page, order)))
537 return;
538
539 VM_BUG_ON(migratetype == -1);
540
541 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
542
543 VM_BUG_ON(page_idx & ((1 << order) - 1));
544 VM_BUG_ON(bad_range(zone, page));
545
546 while (order < MAX_ORDER-1) {
547 buddy_idx = __find_buddy_index(page_idx, order);
548 buddy = page + (buddy_idx - page_idx);
549 if (!page_is_buddy(page, buddy, order))
550 break;
551 /*
552 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
553 * merge with it and move up one order.
554 */
555 if (page_is_guard(buddy)) {
556 clear_page_guard_flag(buddy);
557 set_page_private(page, 0);
558 __mod_zone_freepage_state(zone, 1 << order,
559 migratetype);
560 } else {
561 list_del(&buddy->lru);
562 zone->free_area[order].nr_free--;
563 rmv_page_order(buddy);
564 }
565 combined_idx = buddy_idx & page_idx;
566 page = page + (combined_idx - page_idx);
567 page_idx = combined_idx;
568 order++;
569 }
570 set_page_order(page, order);
571
572 /*
573 * If this is not the largest possible page, check if the buddy
574 * of the next-highest order is free. If it is, it's possible
575 * that pages are being freed that will coalesce soon. In case,
576 * that is happening, add the free page to the tail of the list
577 * so it's less likely to be used soon and more likely to be merged
578 * as a higher order page
579 */
580 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
581 struct page *higher_page, *higher_buddy;
582 combined_idx = buddy_idx & page_idx;
583 higher_page = page + (combined_idx - page_idx);
584 buddy_idx = __find_buddy_index(combined_idx, order + 1);
585 higher_buddy = higher_page + (buddy_idx - combined_idx);
586 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
587 list_add_tail(&page->lru,
588 &zone->free_area[order].free_list[migratetype]);
589 goto out;
590 }
591 }
592
593 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
594out:
595 zone->free_area[order].nr_free++;
596}
597
598static inline int free_pages_check(struct page *page)
599{
600 if (unlikely(page_mapcount(page) |
601 (page->mapping != NULL) |
602 (atomic_read(&page->_count) != 0) |
603 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
604 (mem_cgroup_bad_page_check(page)))) {
605 bad_page(page);
606 return 1;
607 }
608 reset_page_last_nid(page);
609 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
610 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
611 return 0;
612}
613
614/*
615 * Frees a number of pages from the PCP lists
616 * Assumes all pages on list are in same zone, and of same order.
617 * count is the number of pages to free.
618 *
619 * If the zone was previously in an "all pages pinned" state then look to
620 * see if this freeing clears that state.
621 *
622 * And clear the zone's pages_scanned counter, to hold off the "all pages are
623 * pinned" detection logic.
624 */
625static void free_pcppages_bulk(struct zone *zone, int count,
626 struct per_cpu_pages *pcp)
627{
628 int migratetype = 0;
629 int batch_free = 0;
630 int to_free = count;
631
632 spin_lock(&zone->lock);
633 zone->all_unreclaimable = 0;
634 zone->pages_scanned = 0;
635
636 while (to_free) {
637 struct page *page;
638 struct list_head *list;
639
640 /*
641 * Remove pages from lists in a round-robin fashion. A
642 * batch_free count is maintained that is incremented when an
643 * empty list is encountered. This is so more pages are freed
644 * off fuller lists instead of spinning excessively around empty
645 * lists
646 */
647 do {
648 batch_free++;
649 if (++migratetype == MIGRATE_PCPTYPES)
650 migratetype = 0;
651 list = &pcp->lists[migratetype];
652 } while (list_empty(list));
653
654 /* This is the only non-empty list. Free them all. */
655 if (batch_free == MIGRATE_PCPTYPES)
656 batch_free = to_free;
657
658 do {
659 int mt; /* migratetype of the to-be-freed page */
660
661 page = list_entry(list->prev, struct page, lru);
662 /* must delete as __free_one_page list manipulates */
663 list_del(&page->lru);
664 mt = get_freepage_migratetype(page);
665 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
666 __free_one_page(page, zone, 0, mt);
667 trace_mm_page_pcpu_drain(page, 0, mt);
668 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
669 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
672 }
673 } while (--to_free && --batch_free && !list_empty(list));
674 }
675 spin_unlock(&zone->lock);
676}
677
678static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
680{
681 spin_lock(&zone->lock);
682 zone->all_unreclaimable = 0;
683 zone->pages_scanned = 0;
684
685 __free_one_page(page, zone, order, migratetype);
686 if (unlikely(migratetype != MIGRATE_ISOLATE))
687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
688 spin_unlock(&zone->lock);
689}
690
691static bool free_pages_prepare(struct page *page, unsigned int order)
692{
693 int i;
694 int bad = 0;
695
696 trace_mm_page_free(page, order);
697 kmemcheck_free_shadow(page, order);
698
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
703 if (bad)
704 return false;
705
706 if (!PageHighMem(page)) {
707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
711 arch_free_page(page, order);
712 kernel_map_pages(page, 1 << order, 0);
713
714 return true;
715}
716
717static void __free_pages_ok(struct page *page, unsigned int order)
718{
719 unsigned long flags;
720 int migratetype;
721
722 if (!free_pages_prepare(page, order))
723 return;
724
725 local_irq_save(flags);
726 __count_vm_events(PGFREE, 1 << order);
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
730 local_irq_restore(flags);
731}
732
733/*
734 * Read access to zone->managed_pages is safe because it's unsigned long,
735 * but we still need to serialize writers. Currently all callers of
736 * __free_pages_bootmem() except put_page_bootmem() should only be used
737 * at boot time. So for shorter boot time, we shift the burden to
738 * put_page_bootmem() to serialize writers.
739 */
740void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
741{
742 unsigned int nr_pages = 1 << order;
743 unsigned int loop;
744
745 prefetchw(page);
746 for (loop = 0; loop < nr_pages; loop++) {
747 struct page *p = &page[loop];
748
749 if (loop + 1 < nr_pages)
750 prefetchw(p + 1);
751 __ClearPageReserved(p);
752 set_page_count(p, 0);
753 }
754
755 page_zone(page)->managed_pages += 1 << order;
756 set_page_refcounted(page);
757 __free_pages(page, order);
758}
759
760#ifdef CONFIG_CMA
761/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
762void __init init_cma_reserved_pageblock(struct page *page)
763{
764 unsigned i = pageblock_nr_pages;
765 struct page *p = page;
766
767 do {
768 __ClearPageReserved(p);
769 set_page_count(p, 0);
770 } while (++p, --i);
771
772 set_page_refcounted(page);
773 set_pageblock_migratetype(page, MIGRATE_CMA);
774 __free_pages(page, pageblock_order);
775 totalram_pages += pageblock_nr_pages;
776#ifdef CONFIG_HIGHMEM
777 if (PageHighMem(page))
778 totalhigh_pages += pageblock_nr_pages;
779#endif
780}
781#endif
782
783/*
784 * The order of subdivision here is critical for the IO subsystem.
785 * Please do not alter this order without good reasons and regression
786 * testing. Specifically, as large blocks of memory are subdivided,
787 * the order in which smaller blocks are delivered depends on the order
788 * they're subdivided in this function. This is the primary factor
789 * influencing the order in which pages are delivered to the IO
790 * subsystem according to empirical testing, and this is also justified
791 * by considering the behavior of a buddy system containing a single
792 * large block of memory acted on by a series of small allocations.
793 * This behavior is a critical factor in sglist merging's success.
794 *
795 * -- nyc
796 */
797static inline void expand(struct zone *zone, struct page *page,
798 int low, int high, struct free_area *area,
799 int migratetype)
800{
801 unsigned long size = 1 << high;
802
803 while (high > low) {
804 area--;
805 high--;
806 size >>= 1;
807 VM_BUG_ON(bad_range(zone, &page[size]));
808
809#ifdef CONFIG_DEBUG_PAGEALLOC
810 if (high < debug_guardpage_minorder()) {
811 /*
812 * Mark as guard pages (or page), that will allow to
813 * merge back to allocator when buddy will be freed.
814 * Corresponding page table entries will not be touched,
815 * pages will stay not present in virtual address space
816 */
817 INIT_LIST_HEAD(&page[size].lru);
818 set_page_guard_flag(&page[size]);
819 set_page_private(&page[size], high);
820 /* Guard pages are not available for any usage */
821 __mod_zone_freepage_state(zone, -(1 << high),
822 migratetype);
823 continue;
824 }
825#endif
826 list_add(&page[size].lru, &area->free_list[migratetype]);
827 area->nr_free++;
828 set_page_order(&page[size], high);
829 }
830}
831
832/*
833 * This page is about to be returned from the page allocator
834 */
835static inline int check_new_page(struct page *page)
836{
837 if (unlikely(page_mapcount(page) |
838 (page->mapping != NULL) |
839 (atomic_read(&page->_count) != 0) |
840 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
841 (mem_cgroup_bad_page_check(page)))) {
842 bad_page(page);
843 return 1;
844 }
845 return 0;
846}
847
848static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
849{
850 int i;
851
852 for (i = 0; i < (1 << order); i++) {
853 struct page *p = page + i;
854 if (unlikely(check_new_page(p)))
855 return 1;
856 }
857
858 set_page_private(page, 0);
859 set_page_refcounted(page);
860
861 arch_alloc_page(page, order);
862 kernel_map_pages(page, 1 << order, 1);
863
864 if (gfp_flags & __GFP_ZERO)
865 prep_zero_page(page, order, gfp_flags);
866
867 if (order && (gfp_flags & __GFP_COMP))
868 prep_compound_page(page, order);
869
870 return 0;
871}
872
873/*
874 * Go through the free lists for the given migratetype and remove
875 * the smallest available page from the freelists
876 */
877static inline
878struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
879 int migratetype)
880{
881 unsigned int current_order;
882 struct free_area * area;
883 struct page *page;
884
885 /* Find a page of the appropriate size in the preferred list */
886 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
887 area = &(zone->free_area[current_order]);
888 if (list_empty(&area->free_list[migratetype]))
889 continue;
890
891 page = list_entry(area->free_list[migratetype].next,
892 struct page, lru);
893 list_del(&page->lru);
894 rmv_page_order(page);
895 area->nr_free--;
896 expand(zone, page, order, current_order, area, migratetype);
897 return page;
898 }
899
900 return NULL;
901}
902
903
904/*
905 * This array describes the order lists are fallen back to when
906 * the free lists for the desirable migrate type are depleted
907 */
908static int fallbacks[MIGRATE_TYPES][4] = {
909 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
910 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
911#ifdef CONFIG_CMA
912 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
913 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
914#else
915 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
916#endif
917 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
918 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
919};
920
921/*
922 * Move the free pages in a range to the free lists of the requested type.
923 * Note that start_page and end_pages are not aligned on a pageblock
924 * boundary. If alignment is required, use move_freepages_block()
925 */
926int move_freepages(struct zone *zone,
927 struct page *start_page, struct page *end_page,
928 int migratetype)
929{
930 struct page *page;
931 unsigned long order;
932 int pages_moved = 0;
933
934#ifndef CONFIG_HOLES_IN_ZONE
935 /*
936 * page_zone is not safe to call in this context when
937 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
938 * anyway as we check zone boundaries in move_freepages_block().
939 * Remove at a later date when no bug reports exist related to
940 * grouping pages by mobility
941 */
942 BUG_ON(page_zone(start_page) != page_zone(end_page));
943#endif
944
945 for (page = start_page; page <= end_page;) {
946 /* Make sure we are not inadvertently changing nodes */
947 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
948
949 if (!pfn_valid_within(page_to_pfn(page))) {
950 page++;
951 continue;
952 }
953
954 if (!PageBuddy(page)) {
955 page++;
956 continue;
957 }
958
959 order = page_order(page);
960 list_move(&page->lru,
961 &zone->free_area[order].free_list[migratetype]);
962 set_freepage_migratetype(page, migratetype);
963 page += 1 << order;
964 pages_moved += 1 << order;
965 }
966
967 return pages_moved;
968}
969
970int move_freepages_block(struct zone *zone, struct page *page,
971 int migratetype)
972{
973 unsigned long start_pfn, end_pfn;
974 struct page *start_page, *end_page;
975
976 start_pfn = page_to_pfn(page);
977 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
978 start_page = pfn_to_page(start_pfn);
979 end_page = start_page + pageblock_nr_pages - 1;
980 end_pfn = start_pfn + pageblock_nr_pages - 1;
981
982 /* Do not cross zone boundaries */
983 if (start_pfn < zone->zone_start_pfn)
984 start_page = page;
985 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
986 return 0;
987
988 return move_freepages(zone, start_page, end_page, migratetype);
989}
990
991static void change_pageblock_range(struct page *pageblock_page,
992 int start_order, int migratetype)
993{
994 int nr_pageblocks = 1 << (start_order - pageblock_order);
995
996 while (nr_pageblocks--) {
997 set_pageblock_migratetype(pageblock_page, migratetype);
998 pageblock_page += pageblock_nr_pages;
999 }
1000}
1001
1002/* Remove an element from the buddy allocator from the fallback list */
1003static inline struct page *
1004__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1005{
1006 struct free_area * area;
1007 int current_order;
1008 struct page *page;
1009 int migratetype, i;
1010
1011 /* Find the largest possible block of pages in the other list */
1012 for (current_order = MAX_ORDER-1; current_order >= order;
1013 --current_order) {
1014 for (i = 0;; i++) {
1015 migratetype = fallbacks[start_migratetype][i];
1016
1017 /* MIGRATE_RESERVE handled later if necessary */
1018 if (migratetype == MIGRATE_RESERVE)
1019 break;
1020
1021 area = &(zone->free_area[current_order]);
1022 if (list_empty(&area->free_list[migratetype]))
1023 continue;
1024
1025 page = list_entry(area->free_list[migratetype].next,
1026 struct page, lru);
1027 area->nr_free--;
1028
1029 /*
1030 * If breaking a large block of pages, move all free
1031 * pages to the preferred allocation list. If falling
1032 * back for a reclaimable kernel allocation, be more
1033 * aggressive about taking ownership of free pages
1034 *
1035 * On the other hand, never change migration
1036 * type of MIGRATE_CMA pageblocks nor move CMA
1037 * pages on different free lists. We don't
1038 * want unmovable pages to be allocated from
1039 * MIGRATE_CMA areas.
1040 */
1041 if (!is_migrate_cma(migratetype) &&
1042 (unlikely(current_order >= pageblock_order / 2) ||
1043 start_migratetype == MIGRATE_RECLAIMABLE ||
1044 page_group_by_mobility_disabled)) {
1045 int pages;
1046 pages = move_freepages_block(zone, page,
1047 start_migratetype);
1048
1049 /* Claim the whole block if over half of it is free */
1050 if (pages >= (1 << (pageblock_order-1)) ||
1051 page_group_by_mobility_disabled)
1052 set_pageblock_migratetype(page,
1053 start_migratetype);
1054
1055 migratetype = start_migratetype;
1056 }
1057
1058 /* Remove the page from the freelists */
1059 list_del(&page->lru);
1060 rmv_page_order(page);
1061
1062 /* Take ownership for orders >= pageblock_order */
1063 if (current_order >= pageblock_order &&
1064 !is_migrate_cma(migratetype))
1065 change_pageblock_range(page, current_order,
1066 start_migratetype);
1067
1068 expand(zone, page, order, current_order, area,
1069 is_migrate_cma(migratetype)
1070 ? migratetype : start_migratetype);
1071
1072 trace_mm_page_alloc_extfrag(page, order, current_order,
1073 start_migratetype, migratetype);
1074
1075 return page;
1076 }
1077 }
1078
1079 return NULL;
1080}
1081
1082/*
1083 * Do the hard work of removing an element from the buddy allocator.
1084 * Call me with the zone->lock already held.
1085 */
1086static struct page *__rmqueue(struct zone *zone, unsigned int order,
1087 int migratetype)
1088{
1089 struct page *page;
1090
1091retry_reserve:
1092 page = __rmqueue_smallest(zone, order, migratetype);
1093
1094 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1095 page = __rmqueue_fallback(zone, order, migratetype);
1096
1097 /*
1098 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1099 * is used because __rmqueue_smallest is an inline function
1100 * and we want just one call site
1101 */
1102 if (!page) {
1103 migratetype = MIGRATE_RESERVE;
1104 goto retry_reserve;
1105 }
1106 }
1107
1108 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1109 return page;
1110}
1111
1112/*
1113 * Obtain a specified number of elements from the buddy allocator, all under
1114 * a single hold of the lock, for efficiency. Add them to the supplied list.
1115 * Returns the number of new pages which were placed at *list.
1116 */
1117static int rmqueue_bulk(struct zone *zone, unsigned int order,
1118 unsigned long count, struct list_head *list,
1119 int migratetype, int cold)
1120{
1121 int mt = migratetype, i;
1122
1123 spin_lock(&zone->lock);
1124 for (i = 0; i < count; ++i) {
1125 struct page *page = __rmqueue(zone, order, migratetype);
1126 if (unlikely(page == NULL))
1127 break;
1128
1129 /*
1130 * Split buddy pages returned by expand() are received here
1131 * in physical page order. The page is added to the callers and
1132 * list and the list head then moves forward. From the callers
1133 * perspective, the linked list is ordered by page number in
1134 * some conditions. This is useful for IO devices that can
1135 * merge IO requests if the physical pages are ordered
1136 * properly.
1137 */
1138 if (likely(cold == 0))
1139 list_add(&page->lru, list);
1140 else
1141 list_add_tail(&page->lru, list);
1142 if (IS_ENABLED(CONFIG_CMA)) {
1143 mt = get_pageblock_migratetype(page);
1144 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1145 mt = migratetype;
1146 }
1147 set_freepage_migratetype(page, mt);
1148 list = &page->lru;
1149 if (is_migrate_cma(mt))
1150 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1151 -(1 << order));
1152 }
1153 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1154 spin_unlock(&zone->lock);
1155 return i;
1156}
1157
1158#ifdef CONFIG_NUMA
1159/*
1160 * Called from the vmstat counter updater to drain pagesets of this
1161 * currently executing processor on remote nodes after they have
1162 * expired.
1163 *
1164 * Note that this function must be called with the thread pinned to
1165 * a single processor.
1166 */
1167void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1168{
1169 unsigned long flags;
1170 int to_drain;
1171
1172 local_irq_save(flags);
1173 if (pcp->count >= pcp->batch)
1174 to_drain = pcp->batch;
1175 else
1176 to_drain = pcp->count;
1177 if (to_drain > 0) {
1178 free_pcppages_bulk(zone, to_drain, pcp);
1179 pcp->count -= to_drain;
1180 }
1181 local_irq_restore(flags);
1182}
1183#endif
1184
1185/*
1186 * Drain pages of the indicated processor.
1187 *
1188 * The processor must either be the current processor and the
1189 * thread pinned to the current processor or a processor that
1190 * is not online.
1191 */
1192static void drain_pages(unsigned int cpu)
1193{
1194 unsigned long flags;
1195 struct zone *zone;
1196
1197 for_each_populated_zone(zone) {
1198 struct per_cpu_pageset *pset;
1199 struct per_cpu_pages *pcp;
1200
1201 local_irq_save(flags);
1202 pset = per_cpu_ptr(zone->pageset, cpu);
1203
1204 pcp = &pset->pcp;
1205 if (pcp->count) {
1206 free_pcppages_bulk(zone, pcp->count, pcp);
1207 pcp->count = 0;
1208 }
1209 local_irq_restore(flags);
1210 }
1211}
1212
1213/*
1214 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1215 */
1216void drain_local_pages(void *arg)
1217{
1218 drain_pages(smp_processor_id());
1219}
1220
1221/*
1222 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1223 *
1224 * Note that this code is protected against sending an IPI to an offline
1225 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1226 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1227 * nothing keeps CPUs from showing up after we populated the cpumask and
1228 * before the call to on_each_cpu_mask().
1229 */
1230void drain_all_pages(void)
1231{
1232 int cpu;
1233 struct per_cpu_pageset *pcp;
1234 struct zone *zone;
1235
1236 /*
1237 * Allocate in the BSS so we wont require allocation in
1238 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1239 */
1240 static cpumask_t cpus_with_pcps;
1241
1242 /*
1243 * We don't care about racing with CPU hotplug event
1244 * as offline notification will cause the notified
1245 * cpu to drain that CPU pcps and on_each_cpu_mask
1246 * disables preemption as part of its processing
1247 */
1248 for_each_online_cpu(cpu) {
1249 bool has_pcps = false;
1250 for_each_populated_zone(zone) {
1251 pcp = per_cpu_ptr(zone->pageset, cpu);
1252 if (pcp->pcp.count) {
1253 has_pcps = true;
1254 break;
1255 }
1256 }
1257 if (has_pcps)
1258 cpumask_set_cpu(cpu, &cpus_with_pcps);
1259 else
1260 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1261 }
1262 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1263}
1264
1265#ifdef CONFIG_HIBERNATION
1266
1267void mark_free_pages(struct zone *zone)
1268{
1269 unsigned long pfn, max_zone_pfn;
1270 unsigned long flags;
1271 int order, t;
1272 struct list_head *curr;
1273
1274 if (!zone->spanned_pages)
1275 return;
1276
1277 spin_lock_irqsave(&zone->lock, flags);
1278
1279 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1280 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1281 if (pfn_valid(pfn)) {
1282 struct page *page = pfn_to_page(pfn);
1283
1284 if (!swsusp_page_is_forbidden(page))
1285 swsusp_unset_page_free(page);
1286 }
1287
1288 for_each_migratetype_order(order, t) {
1289 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1290 unsigned long i;
1291
1292 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1293 for (i = 0; i < (1UL << order); i++)
1294 swsusp_set_page_free(pfn_to_page(pfn + i));
1295 }
1296 }
1297 spin_unlock_irqrestore(&zone->lock, flags);
1298}
1299#endif /* CONFIG_PM */
1300
1301/*
1302 * Free a 0-order page
1303 * cold == 1 ? free a cold page : free a hot page
1304 */
1305void free_hot_cold_page(struct page *page, int cold)
1306{
1307 struct zone *zone = page_zone(page);
1308 struct per_cpu_pages *pcp;
1309 unsigned long flags;
1310 int migratetype;
1311
1312 if (!free_pages_prepare(page, 0))
1313 return;
1314
1315 migratetype = get_pageblock_migratetype(page);
1316 set_freepage_migratetype(page, migratetype);
1317 local_irq_save(flags);
1318 __count_vm_event(PGFREE);
1319
1320 /*
1321 * We only track unmovable, reclaimable and movable on pcp lists.
1322 * Free ISOLATE pages back to the allocator because they are being
1323 * offlined but treat RESERVE as movable pages so we can get those
1324 * areas back if necessary. Otherwise, we may have to free
1325 * excessively into the page allocator
1326 */
1327 if (migratetype >= MIGRATE_PCPTYPES) {
1328 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1329 free_one_page(zone, page, 0, migratetype);
1330 goto out;
1331 }
1332 migratetype = MIGRATE_MOVABLE;
1333 }
1334
1335 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1336 if (cold)
1337 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1338 else
1339 list_add(&page->lru, &pcp->lists[migratetype]);
1340 pcp->count++;
1341 if (pcp->count >= pcp->high) {
1342 free_pcppages_bulk(zone, pcp->batch, pcp);
1343 pcp->count -= pcp->batch;
1344 }
1345
1346out:
1347 local_irq_restore(flags);
1348}
1349
1350/*
1351 * Free a list of 0-order pages
1352 */
1353void free_hot_cold_page_list(struct list_head *list, int cold)
1354{
1355 struct page *page, *next;
1356
1357 list_for_each_entry_safe(page, next, list, lru) {
1358 trace_mm_page_free_batched(page, cold);
1359 free_hot_cold_page(page, cold);
1360 }
1361}
1362
1363/*
1364 * split_page takes a non-compound higher-order page, and splits it into
1365 * n (1<<order) sub-pages: page[0..n]
1366 * Each sub-page must be freed individually.
1367 *
1368 * Note: this is probably too low level an operation for use in drivers.
1369 * Please consult with lkml before using this in your driver.
1370 */
1371void split_page(struct page *page, unsigned int order)
1372{
1373 int i;
1374
1375 VM_BUG_ON(PageCompound(page));
1376 VM_BUG_ON(!page_count(page));
1377
1378#ifdef CONFIG_KMEMCHECK
1379 /*
1380 * Split shadow pages too, because free(page[0]) would
1381 * otherwise free the whole shadow.
1382 */
1383 if (kmemcheck_page_is_tracked(page))
1384 split_page(virt_to_page(page[0].shadow), order);
1385#endif
1386
1387 for (i = 1; i < (1 << order); i++)
1388 set_page_refcounted(page + i);
1389}
1390
1391static int __isolate_free_page(struct page *page, unsigned int order)
1392{
1393 unsigned long watermark;
1394 struct zone *zone;
1395 int mt;
1396
1397 BUG_ON(!PageBuddy(page));
1398
1399 zone = page_zone(page);
1400 mt = get_pageblock_migratetype(page);
1401
1402 if (mt != MIGRATE_ISOLATE) {
1403 /* Obey watermarks as if the page was being allocated */
1404 watermark = low_wmark_pages(zone) + (1 << order);
1405 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1406 return 0;
1407
1408 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1409 }
1410
1411 /* Remove page from free list */
1412 list_del(&page->lru);
1413 zone->free_area[order].nr_free--;
1414 rmv_page_order(page);
1415
1416 /* Set the pageblock if the isolated page is at least a pageblock */
1417 if (order >= pageblock_order - 1) {
1418 struct page *endpage = page + (1 << order) - 1;
1419 for (; page < endpage; page += pageblock_nr_pages) {
1420 int mt = get_pageblock_migratetype(page);
1421 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1422 set_pageblock_migratetype(page,
1423 MIGRATE_MOVABLE);
1424 }
1425 }
1426
1427 return 1UL << order;
1428}
1429
1430/*
1431 * Similar to split_page except the page is already free. As this is only
1432 * being used for migration, the migratetype of the block also changes.
1433 * As this is called with interrupts disabled, the caller is responsible
1434 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1435 * are enabled.
1436 *
1437 * Note: this is probably too low level an operation for use in drivers.
1438 * Please consult with lkml before using this in your driver.
1439 */
1440int split_free_page(struct page *page)
1441{
1442 unsigned int order;
1443 int nr_pages;
1444
1445 order = page_order(page);
1446
1447 nr_pages = __isolate_free_page(page, order);
1448 if (!nr_pages)
1449 return 0;
1450
1451 /* Split into individual pages */
1452 set_page_refcounted(page);
1453 split_page(page, order);
1454 return nr_pages;
1455}
1456
1457/*
1458 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1459 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1460 * or two.
1461 */
1462static inline
1463struct page *buffered_rmqueue(struct zone *preferred_zone,
1464 struct zone *zone, int order, gfp_t gfp_flags,
1465 int migratetype)
1466{
1467 unsigned long flags;
1468 struct page *page;
1469 int cold = !!(gfp_flags & __GFP_COLD);
1470
1471again:
1472 if (likely(order == 0)) {
1473 struct per_cpu_pages *pcp;
1474 struct list_head *list;
1475
1476 local_irq_save(flags);
1477 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1478 list = &pcp->lists[migratetype];
1479 if (list_empty(list)) {
1480 pcp->count += rmqueue_bulk(zone, 0,
1481 pcp->batch, list,
1482 migratetype, cold);
1483 if (unlikely(list_empty(list)))
1484 goto failed;
1485 }
1486
1487 if (cold)
1488 page = list_entry(list->prev, struct page, lru);
1489 else
1490 page = list_entry(list->next, struct page, lru);
1491
1492 list_del(&page->lru);
1493 pcp->count--;
1494 } else {
1495 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1496 /*
1497 * __GFP_NOFAIL is not to be used in new code.
1498 *
1499 * All __GFP_NOFAIL callers should be fixed so that they
1500 * properly detect and handle allocation failures.
1501 *
1502 * We most definitely don't want callers attempting to
1503 * allocate greater than order-1 page units with
1504 * __GFP_NOFAIL.
1505 */
1506 WARN_ON_ONCE(order > 1);
1507 }
1508 spin_lock_irqsave(&zone->lock, flags);
1509 page = __rmqueue(zone, order, migratetype);
1510 spin_unlock(&zone->lock);
1511 if (!page)
1512 goto failed;
1513 __mod_zone_freepage_state(zone, -(1 << order),
1514 get_pageblock_migratetype(page));
1515 }
1516
1517 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1518 zone_statistics(preferred_zone, zone, gfp_flags);
1519 local_irq_restore(flags);
1520
1521 VM_BUG_ON(bad_range(zone, page));
1522 if (prep_new_page(page, order, gfp_flags))
1523 goto again;
1524 return page;
1525
1526failed:
1527 local_irq_restore(flags);
1528 return NULL;
1529}
1530
1531#ifdef CONFIG_FAIL_PAGE_ALLOC
1532
1533static struct {
1534 struct fault_attr attr;
1535
1536 u32 ignore_gfp_highmem;
1537 u32 ignore_gfp_wait;
1538 u32 min_order;
1539} fail_page_alloc = {
1540 .attr = FAULT_ATTR_INITIALIZER,
1541 .ignore_gfp_wait = 1,
1542 .ignore_gfp_highmem = 1,
1543 .min_order = 1,
1544};
1545
1546static int __init setup_fail_page_alloc(char *str)
1547{
1548 return setup_fault_attr(&fail_page_alloc.attr, str);
1549}
1550__setup("fail_page_alloc=", setup_fail_page_alloc);
1551
1552static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1553{
1554 if (order < fail_page_alloc.min_order)
1555 return false;
1556 if (gfp_mask & __GFP_NOFAIL)
1557 return false;
1558 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1559 return false;
1560 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1561 return false;
1562
1563 return should_fail(&fail_page_alloc.attr, 1 << order);
1564}
1565
1566#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1567
1568static int __init fail_page_alloc_debugfs(void)
1569{
1570 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1571 struct dentry *dir;
1572
1573 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1574 &fail_page_alloc.attr);
1575 if (IS_ERR(dir))
1576 return PTR_ERR(dir);
1577
1578 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1579 &fail_page_alloc.ignore_gfp_wait))
1580 goto fail;
1581 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1582 &fail_page_alloc.ignore_gfp_highmem))
1583 goto fail;
1584 if (!debugfs_create_u32("min-order", mode, dir,
1585 &fail_page_alloc.min_order))
1586 goto fail;
1587
1588 return 0;
1589fail:
1590 debugfs_remove_recursive(dir);
1591
1592 return -ENOMEM;
1593}
1594
1595late_initcall(fail_page_alloc_debugfs);
1596
1597#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1598
1599#else /* CONFIG_FAIL_PAGE_ALLOC */
1600
1601static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1602{
1603 return false;
1604}
1605
1606#endif /* CONFIG_FAIL_PAGE_ALLOC */
1607
1608/*
1609 * Return true if free pages are above 'mark'. This takes into account the order
1610 * of the allocation.
1611 */
1612static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1613 int classzone_idx, int alloc_flags, long free_pages)
1614{
1615 /* free_pages my go negative - that's OK */
1616 long min = mark;
1617 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1618 int o;
1619
1620 free_pages -= (1 << order) - 1;
1621 if (alloc_flags & ALLOC_HIGH)
1622 min -= min / 2;
1623 if (alloc_flags & ALLOC_HARDER)
1624 min -= min / 4;
1625#ifdef CONFIG_CMA
1626 /* If allocation can't use CMA areas don't use free CMA pages */
1627 if (!(alloc_flags & ALLOC_CMA))
1628 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1629#endif
1630 if (free_pages <= min + lowmem_reserve)
1631 return false;
1632 for (o = 0; o < order; o++) {
1633 /* At the next order, this order's pages become unavailable */
1634 free_pages -= z->free_area[o].nr_free << o;
1635
1636 /* Require fewer higher order pages to be free */
1637 min >>= 1;
1638
1639 if (free_pages <= min)
1640 return false;
1641 }
1642 return true;
1643}
1644
1645bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1646 int classzone_idx, int alloc_flags)
1647{
1648 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1649 zone_page_state(z, NR_FREE_PAGES));
1650}
1651
1652bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1653 int classzone_idx, int alloc_flags)
1654{
1655 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1656
1657 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1658 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1659
1660 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1661 free_pages);
1662}
1663
1664#ifdef CONFIG_NUMA
1665/*
1666 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1667 * skip over zones that are not allowed by the cpuset, or that have
1668 * been recently (in last second) found to be nearly full. See further
1669 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1670 * that have to skip over a lot of full or unallowed zones.
1671 *
1672 * If the zonelist cache is present in the passed in zonelist, then
1673 * returns a pointer to the allowed node mask (either the current
1674 * tasks mems_allowed, or node_states[N_MEMORY].)
1675 *
1676 * If the zonelist cache is not available for this zonelist, does
1677 * nothing and returns NULL.
1678 *
1679 * If the fullzones BITMAP in the zonelist cache is stale (more than
1680 * a second since last zap'd) then we zap it out (clear its bits.)
1681 *
1682 * We hold off even calling zlc_setup, until after we've checked the
1683 * first zone in the zonelist, on the theory that most allocations will
1684 * be satisfied from that first zone, so best to examine that zone as
1685 * quickly as we can.
1686 */
1687static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1688{
1689 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1690 nodemask_t *allowednodes; /* zonelist_cache approximation */
1691
1692 zlc = zonelist->zlcache_ptr;
1693 if (!zlc)
1694 return NULL;
1695
1696 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1697 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1698 zlc->last_full_zap = jiffies;
1699 }
1700
1701 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1702 &cpuset_current_mems_allowed :
1703 &node_states[N_MEMORY];
1704 return allowednodes;
1705}
1706
1707/*
1708 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1709 * if it is worth looking at further for free memory:
1710 * 1) Check that the zone isn't thought to be full (doesn't have its
1711 * bit set in the zonelist_cache fullzones BITMAP).
1712 * 2) Check that the zones node (obtained from the zonelist_cache
1713 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1714 * Return true (non-zero) if zone is worth looking at further, or
1715 * else return false (zero) if it is not.
1716 *
1717 * This check -ignores- the distinction between various watermarks,
1718 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1719 * found to be full for any variation of these watermarks, it will
1720 * be considered full for up to one second by all requests, unless
1721 * we are so low on memory on all allowed nodes that we are forced
1722 * into the second scan of the zonelist.
1723 *
1724 * In the second scan we ignore this zonelist cache and exactly
1725 * apply the watermarks to all zones, even it is slower to do so.
1726 * We are low on memory in the second scan, and should leave no stone
1727 * unturned looking for a free page.
1728 */
1729static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1730 nodemask_t *allowednodes)
1731{
1732 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1733 int i; /* index of *z in zonelist zones */
1734 int n; /* node that zone *z is on */
1735
1736 zlc = zonelist->zlcache_ptr;
1737 if (!zlc)
1738 return 1;
1739
1740 i = z - zonelist->_zonerefs;
1741 n = zlc->z_to_n[i];
1742
1743 /* This zone is worth trying if it is allowed but not full */
1744 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1745}
1746
1747/*
1748 * Given 'z' scanning a zonelist, set the corresponding bit in
1749 * zlc->fullzones, so that subsequent attempts to allocate a page
1750 * from that zone don't waste time re-examining it.
1751 */
1752static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1753{
1754 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1755 int i; /* index of *z in zonelist zones */
1756
1757 zlc = zonelist->zlcache_ptr;
1758 if (!zlc)
1759 return;
1760
1761 i = z - zonelist->_zonerefs;
1762
1763 set_bit(i, zlc->fullzones);
1764}
1765
1766/*
1767 * clear all zones full, called after direct reclaim makes progress so that
1768 * a zone that was recently full is not skipped over for up to a second
1769 */
1770static void zlc_clear_zones_full(struct zonelist *zonelist)
1771{
1772 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1773
1774 zlc = zonelist->zlcache_ptr;
1775 if (!zlc)
1776 return;
1777
1778 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1779}
1780
1781static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1782{
1783 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1784}
1785
1786static void __paginginit init_zone_allows_reclaim(int nid)
1787{
1788 int i;
1789
1790 for_each_online_node(i)
1791 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1792 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1793 else
1794 zone_reclaim_mode = 1;
1795}
1796
1797#else /* CONFIG_NUMA */
1798
1799static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1800{
1801 return NULL;
1802}
1803
1804static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1805 nodemask_t *allowednodes)
1806{
1807 return 1;
1808}
1809
1810static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1811{
1812}
1813
1814static void zlc_clear_zones_full(struct zonelist *zonelist)
1815{
1816}
1817
1818static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1819{
1820 return true;
1821}
1822
1823static inline void init_zone_allows_reclaim(int nid)
1824{
1825}
1826#endif /* CONFIG_NUMA */
1827
1828/*
1829 * get_page_from_freelist goes through the zonelist trying to allocate
1830 * a page.
1831 */
1832static struct page *
1833get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1834 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1835 struct zone *preferred_zone, int migratetype)
1836{
1837 struct zoneref *z;
1838 struct page *page = NULL;
1839 int classzone_idx;
1840 struct zone *zone;
1841 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1842 int zlc_active = 0; /* set if using zonelist_cache */
1843 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1844
1845 classzone_idx = zone_idx(preferred_zone);
1846zonelist_scan:
1847 /*
1848 * Scan zonelist, looking for a zone with enough free.
1849 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1850 */
1851 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1852 high_zoneidx, nodemask) {
1853 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1854 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1855 continue;
1856 if ((alloc_flags & ALLOC_CPUSET) &&
1857 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1858 continue;
1859 /*
1860 * When allocating a page cache page for writing, we
1861 * want to get it from a zone that is within its dirty
1862 * limit, such that no single zone holds more than its
1863 * proportional share of globally allowed dirty pages.
1864 * The dirty limits take into account the zone's
1865 * lowmem reserves and high watermark so that kswapd
1866 * should be able to balance it without having to
1867 * write pages from its LRU list.
1868 *
1869 * This may look like it could increase pressure on
1870 * lower zones by failing allocations in higher zones
1871 * before they are full. But the pages that do spill
1872 * over are limited as the lower zones are protected
1873 * by this very same mechanism. It should not become
1874 * a practical burden to them.
1875 *
1876 * XXX: For now, allow allocations to potentially
1877 * exceed the per-zone dirty limit in the slowpath
1878 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1879 * which is important when on a NUMA setup the allowed
1880 * zones are together not big enough to reach the
1881 * global limit. The proper fix for these situations
1882 * will require awareness of zones in the
1883 * dirty-throttling and the flusher threads.
1884 */
1885 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1886 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1887 goto this_zone_full;
1888
1889 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1890 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1891 unsigned long mark;
1892 int ret;
1893
1894 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1895 if (zone_watermark_ok(zone, order, mark,
1896 classzone_idx, alloc_flags))
1897 goto try_this_zone;
1898
1899 if (IS_ENABLED(CONFIG_NUMA) &&
1900 !did_zlc_setup && nr_online_nodes > 1) {
1901 /*
1902 * we do zlc_setup if there are multiple nodes
1903 * and before considering the first zone allowed
1904 * by the cpuset.
1905 */
1906 allowednodes = zlc_setup(zonelist, alloc_flags);
1907 zlc_active = 1;
1908 did_zlc_setup = 1;
1909 }
1910
1911 if (zone_reclaim_mode == 0 ||
1912 !zone_allows_reclaim(preferred_zone, zone))
1913 goto this_zone_full;
1914
1915 /*
1916 * As we may have just activated ZLC, check if the first
1917 * eligible zone has failed zone_reclaim recently.
1918 */
1919 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1920 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1921 continue;
1922
1923 ret = zone_reclaim(zone, gfp_mask, order);
1924 switch (ret) {
1925 case ZONE_RECLAIM_NOSCAN:
1926 /* did not scan */
1927 continue;
1928 case ZONE_RECLAIM_FULL:
1929 /* scanned but unreclaimable */
1930 continue;
1931 default:
1932 /* did we reclaim enough */
1933 if (!zone_watermark_ok(zone, order, mark,
1934 classzone_idx, alloc_flags))
1935 goto this_zone_full;
1936 }
1937 }
1938
1939try_this_zone:
1940 page = buffered_rmqueue(preferred_zone, zone, order,
1941 gfp_mask, migratetype);
1942 if (page)
1943 break;
1944this_zone_full:
1945 if (IS_ENABLED(CONFIG_NUMA))
1946 zlc_mark_zone_full(zonelist, z);
1947 }
1948
1949 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1950 /* Disable zlc cache for second zonelist scan */
1951 zlc_active = 0;
1952 goto zonelist_scan;
1953 }
1954
1955 if (page)
1956 /*
1957 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1958 * necessary to allocate the page. The expectation is
1959 * that the caller is taking steps that will free more
1960 * memory. The caller should avoid the page being used
1961 * for !PFMEMALLOC purposes.
1962 */
1963 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1964
1965 return page;
1966}
1967
1968/*
1969 * Large machines with many possible nodes should not always dump per-node
1970 * meminfo in irq context.
1971 */
1972static inline bool should_suppress_show_mem(void)
1973{
1974 bool ret = false;
1975
1976#if NODES_SHIFT > 8
1977 ret = in_interrupt();
1978#endif
1979 return ret;
1980}
1981
1982static DEFINE_RATELIMIT_STATE(nopage_rs,
1983 DEFAULT_RATELIMIT_INTERVAL,
1984 DEFAULT_RATELIMIT_BURST);
1985
1986void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1987{
1988 unsigned int filter = SHOW_MEM_FILTER_NODES;
1989
1990 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1991 debug_guardpage_minorder() > 0)
1992 return;
1993
1994 /*
1995 * This documents exceptions given to allocations in certain
1996 * contexts that are allowed to allocate outside current's set
1997 * of allowed nodes.
1998 */
1999 if (!(gfp_mask & __GFP_NOMEMALLOC))
2000 if (test_thread_flag(TIF_MEMDIE) ||
2001 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2002 filter &= ~SHOW_MEM_FILTER_NODES;
2003 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2004 filter &= ~SHOW_MEM_FILTER_NODES;
2005
2006 if (fmt) {
2007 struct va_format vaf;
2008 va_list args;
2009
2010 va_start(args, fmt);
2011
2012 vaf.fmt = fmt;
2013 vaf.va = &args;
2014
2015 pr_warn("%pV", &vaf);
2016
2017 va_end(args);
2018 }
2019
2020 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2021 current->comm, order, gfp_mask);
2022
2023 dump_stack();
2024 if (!should_suppress_show_mem())
2025 show_mem(filter);
2026}
2027
2028static inline int
2029should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2030 unsigned long did_some_progress,
2031 unsigned long pages_reclaimed)
2032{
2033 /* Do not loop if specifically requested */
2034 if (gfp_mask & __GFP_NORETRY)
2035 return 0;
2036
2037 /* Always retry if specifically requested */
2038 if (gfp_mask & __GFP_NOFAIL)
2039 return 1;
2040
2041 /*
2042 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2043 * making forward progress without invoking OOM. Suspend also disables
2044 * storage devices so kswapd will not help. Bail if we are suspending.
2045 */
2046 if (!did_some_progress && pm_suspended_storage())
2047 return 0;
2048
2049 /*
2050 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2051 * means __GFP_NOFAIL, but that may not be true in other
2052 * implementations.
2053 */
2054 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2055 return 1;
2056
2057 /*
2058 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2059 * specified, then we retry until we no longer reclaim any pages
2060 * (above), or we've reclaimed an order of pages at least as
2061 * large as the allocation's order. In both cases, if the
2062 * allocation still fails, we stop retrying.
2063 */
2064 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2065 return 1;
2066
2067 return 0;
2068}
2069
2070static inline struct page *
2071__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2072 struct zonelist *zonelist, enum zone_type high_zoneidx,
2073 nodemask_t *nodemask, struct zone *preferred_zone,
2074 int migratetype)
2075{
2076 struct page *page;
2077
2078 /* Acquire the OOM killer lock for the zones in zonelist */
2079 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2080 schedule_timeout_uninterruptible(1);
2081 return NULL;
2082 }
2083
2084 /*
2085 * Go through the zonelist yet one more time, keep very high watermark
2086 * here, this is only to catch a parallel oom killing, we must fail if
2087 * we're still under heavy pressure.
2088 */
2089 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2090 order, zonelist, high_zoneidx,
2091 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2092 preferred_zone, migratetype);
2093 if (page)
2094 goto out;
2095
2096 if (!(gfp_mask & __GFP_NOFAIL)) {
2097 /* The OOM killer will not help higher order allocs */
2098 if (order > PAGE_ALLOC_COSTLY_ORDER)
2099 goto out;
2100 /* The OOM killer does not needlessly kill tasks for lowmem */
2101 if (high_zoneidx < ZONE_NORMAL)
2102 goto out;
2103 /*
2104 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2105 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2106 * The caller should handle page allocation failure by itself if
2107 * it specifies __GFP_THISNODE.
2108 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2109 */
2110 if (gfp_mask & __GFP_THISNODE)
2111 goto out;
2112 }
2113 /* Exhausted what can be done so it's blamo time */
2114 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2115
2116out:
2117 clear_zonelist_oom(zonelist, gfp_mask);
2118 return page;
2119}
2120
2121#ifdef CONFIG_COMPACTION
2122/* Try memory compaction for high-order allocations before reclaim */
2123static struct page *
2124__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2125 struct zonelist *zonelist, enum zone_type high_zoneidx,
2126 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2127 int migratetype, bool sync_migration,
2128 bool *contended_compaction, bool *deferred_compaction,
2129 unsigned long *did_some_progress)
2130{
2131 if (!order)
2132 return NULL;
2133
2134 if (compaction_deferred(preferred_zone, order)) {
2135 *deferred_compaction = true;
2136 return NULL;
2137 }
2138
2139 current->flags |= PF_MEMALLOC;
2140 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2141 nodemask, sync_migration,
2142 contended_compaction);
2143 current->flags &= ~PF_MEMALLOC;
2144
2145 if (*did_some_progress != COMPACT_SKIPPED) {
2146 struct page *page;
2147
2148 /* Page migration frees to the PCP lists but we want merging */
2149 drain_pages(get_cpu());
2150 put_cpu();
2151
2152 page = get_page_from_freelist(gfp_mask, nodemask,
2153 order, zonelist, high_zoneidx,
2154 alloc_flags & ~ALLOC_NO_WATERMARKS,
2155 preferred_zone, migratetype);
2156 if (page) {
2157 preferred_zone->compact_blockskip_flush = false;
2158 preferred_zone->compact_considered = 0;
2159 preferred_zone->compact_defer_shift = 0;
2160 if (order >= preferred_zone->compact_order_failed)
2161 preferred_zone->compact_order_failed = order + 1;
2162 count_vm_event(COMPACTSUCCESS);
2163 return page;
2164 }
2165
2166 /*
2167 * It's bad if compaction run occurs and fails.
2168 * The most likely reason is that pages exist,
2169 * but not enough to satisfy watermarks.
2170 */
2171 count_vm_event(COMPACTFAIL);
2172
2173 /*
2174 * As async compaction considers a subset of pageblocks, only
2175 * defer if the failure was a sync compaction failure.
2176 */
2177 if (sync_migration)
2178 defer_compaction(preferred_zone, order);
2179
2180 cond_resched();
2181 }
2182
2183 return NULL;
2184}
2185#else
2186static inline struct page *
2187__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2188 struct zonelist *zonelist, enum zone_type high_zoneidx,
2189 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2190 int migratetype, bool sync_migration,
2191 bool *contended_compaction, bool *deferred_compaction,
2192 unsigned long *did_some_progress)
2193{
2194 return NULL;
2195}
2196#endif /* CONFIG_COMPACTION */
2197
2198/* Perform direct synchronous page reclaim */
2199static int
2200__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2201 nodemask_t *nodemask)
2202{
2203 struct reclaim_state reclaim_state;
2204 int progress;
2205
2206 cond_resched();
2207
2208 /* We now go into synchronous reclaim */
2209 cpuset_memory_pressure_bump();
2210 current->flags |= PF_MEMALLOC;
2211 lockdep_set_current_reclaim_state(gfp_mask);
2212 reclaim_state.reclaimed_slab = 0;
2213 current->reclaim_state = &reclaim_state;
2214
2215 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2216
2217 current->reclaim_state = NULL;
2218 lockdep_clear_current_reclaim_state();
2219 current->flags &= ~PF_MEMALLOC;
2220
2221 cond_resched();
2222
2223 return progress;
2224}
2225
2226/* The really slow allocator path where we enter direct reclaim */
2227static inline struct page *
2228__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2229 struct zonelist *zonelist, enum zone_type high_zoneidx,
2230 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2231 int migratetype, unsigned long *did_some_progress)
2232{
2233 struct page *page = NULL;
2234 bool drained = false;
2235
2236 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2237 nodemask);
2238 if (unlikely(!(*did_some_progress)))
2239 return NULL;
2240
2241 /* After successful reclaim, reconsider all zones for allocation */
2242 if (IS_ENABLED(CONFIG_NUMA))
2243 zlc_clear_zones_full(zonelist);
2244
2245retry:
2246 page = get_page_from_freelist(gfp_mask, nodemask, order,
2247 zonelist, high_zoneidx,
2248 alloc_flags & ~ALLOC_NO_WATERMARKS,
2249 preferred_zone, migratetype);
2250
2251 /*
2252 * If an allocation failed after direct reclaim, it could be because
2253 * pages are pinned on the per-cpu lists. Drain them and try again
2254 */
2255 if (!page && !drained) {
2256 drain_all_pages();
2257 drained = true;
2258 goto retry;
2259 }
2260
2261 return page;
2262}
2263
2264/*
2265 * This is called in the allocator slow-path if the allocation request is of
2266 * sufficient urgency to ignore watermarks and take other desperate measures
2267 */
2268static inline struct page *
2269__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2270 struct zonelist *zonelist, enum zone_type high_zoneidx,
2271 nodemask_t *nodemask, struct zone *preferred_zone,
2272 int migratetype)
2273{
2274 struct page *page;
2275
2276 do {
2277 page = get_page_from_freelist(gfp_mask, nodemask, order,
2278 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2279 preferred_zone, migratetype);
2280
2281 if (!page && gfp_mask & __GFP_NOFAIL)
2282 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2283 } while (!page && (gfp_mask & __GFP_NOFAIL));
2284
2285 return page;
2286}
2287
2288static inline
2289void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2290 enum zone_type high_zoneidx,
2291 enum zone_type classzone_idx)
2292{
2293 struct zoneref *z;
2294 struct zone *zone;
2295
2296 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2297 wakeup_kswapd(zone, order, classzone_idx);
2298}
2299
2300static inline int
2301gfp_to_alloc_flags(gfp_t gfp_mask)
2302{
2303 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2304 const gfp_t wait = gfp_mask & __GFP_WAIT;
2305
2306 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2307 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2308
2309 /*
2310 * The caller may dip into page reserves a bit more if the caller
2311 * cannot run direct reclaim, or if the caller has realtime scheduling
2312 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2313 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2314 */
2315 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2316
2317 if (!wait) {
2318 /*
2319 * Not worth trying to allocate harder for
2320 * __GFP_NOMEMALLOC even if it can't schedule.
2321 */
2322 if (!(gfp_mask & __GFP_NOMEMALLOC))
2323 alloc_flags |= ALLOC_HARDER;
2324 /*
2325 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2326 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2327 */
2328 alloc_flags &= ~ALLOC_CPUSET;
2329 } else if (unlikely(rt_task(current)) && !in_interrupt())
2330 alloc_flags |= ALLOC_HARDER;
2331
2332 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2333 if (gfp_mask & __GFP_MEMALLOC)
2334 alloc_flags |= ALLOC_NO_WATERMARKS;
2335 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2336 alloc_flags |= ALLOC_NO_WATERMARKS;
2337 else if (!in_interrupt() &&
2338 ((current->flags & PF_MEMALLOC) ||
2339 unlikely(test_thread_flag(TIF_MEMDIE))))
2340 alloc_flags |= ALLOC_NO_WATERMARKS;
2341 }
2342#ifdef CONFIG_CMA
2343 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2344 alloc_flags |= ALLOC_CMA;
2345#endif
2346 return alloc_flags;
2347}
2348
2349bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2350{
2351 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2352}
2353
2354static inline struct page *
2355__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2356 struct zonelist *zonelist, enum zone_type high_zoneidx,
2357 nodemask_t *nodemask, struct zone *preferred_zone,
2358 int migratetype)
2359{
2360 const gfp_t wait = gfp_mask & __GFP_WAIT;
2361 struct page *page = NULL;
2362 int alloc_flags;
2363 unsigned long pages_reclaimed = 0;
2364 unsigned long did_some_progress;
2365 bool sync_migration = false;
2366 bool deferred_compaction = false;
2367 bool contended_compaction = false;
2368
2369 /*
2370 * In the slowpath, we sanity check order to avoid ever trying to
2371 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2372 * be using allocators in order of preference for an area that is
2373 * too large.
2374 */
2375 if (order >= MAX_ORDER) {
2376 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2377 return NULL;
2378 }
2379
2380 /*
2381 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2382 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2383 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2384 * using a larger set of nodes after it has established that the
2385 * allowed per node queues are empty and that nodes are
2386 * over allocated.
2387 */
2388 if (IS_ENABLED(CONFIG_NUMA) &&
2389 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2390 goto nopage;
2391
2392restart:
2393 if (!(gfp_mask & __GFP_NO_KSWAPD))
2394 wake_all_kswapd(order, zonelist, high_zoneidx,
2395 zone_idx(preferred_zone));
2396
2397 /*
2398 * OK, we're below the kswapd watermark and have kicked background
2399 * reclaim. Now things get more complex, so set up alloc_flags according
2400 * to how we want to proceed.
2401 */
2402 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2403
2404 /*
2405 * Find the true preferred zone if the allocation is unconstrained by
2406 * cpusets.
2407 */
2408 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2409 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2410 &preferred_zone);
2411
2412rebalance:
2413 /* This is the last chance, in general, before the goto nopage. */
2414 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2415 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2416 preferred_zone, migratetype);
2417 if (page)
2418 goto got_pg;
2419
2420 /* Allocate without watermarks if the context allows */
2421 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2422 /*
2423 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2424 * the allocation is high priority and these type of
2425 * allocations are system rather than user orientated
2426 */
2427 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2428
2429 page = __alloc_pages_high_priority(gfp_mask, order,
2430 zonelist, high_zoneidx, nodemask,
2431 preferred_zone, migratetype);
2432 if (page) {
2433 goto got_pg;
2434 }
2435 }
2436
2437 /* Atomic allocations - we can't balance anything */
2438 if (!wait)
2439 goto nopage;
2440
2441 /* Avoid recursion of direct reclaim */
2442 if (current->flags & PF_MEMALLOC)
2443 goto nopage;
2444
2445 /* Avoid allocations with no watermarks from looping endlessly */
2446 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2447 goto nopage;
2448
2449 /*
2450 * Try direct compaction. The first pass is asynchronous. Subsequent
2451 * attempts after direct reclaim are synchronous
2452 */
2453 page = __alloc_pages_direct_compact(gfp_mask, order,
2454 zonelist, high_zoneidx,
2455 nodemask,
2456 alloc_flags, preferred_zone,
2457 migratetype, sync_migration,
2458 &contended_compaction,
2459 &deferred_compaction,
2460 &did_some_progress);
2461 if (page)
2462 goto got_pg;
2463 sync_migration = true;
2464
2465 /*
2466 * If compaction is deferred for high-order allocations, it is because
2467 * sync compaction recently failed. In this is the case and the caller
2468 * requested a movable allocation that does not heavily disrupt the
2469 * system then fail the allocation instead of entering direct reclaim.
2470 */
2471 if ((deferred_compaction || contended_compaction) &&
2472 (gfp_mask & __GFP_NO_KSWAPD))
2473 goto nopage;
2474
2475 /* Try direct reclaim and then allocating */
2476 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2477 zonelist, high_zoneidx,
2478 nodemask,
2479 alloc_flags, preferred_zone,
2480 migratetype, &did_some_progress);
2481 if (page)
2482 goto got_pg;
2483
2484 /*
2485 * If we failed to make any progress reclaiming, then we are
2486 * running out of options and have to consider going OOM
2487 */
2488 if (!did_some_progress) {
2489 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2490 if (oom_killer_disabled)
2491 goto nopage;
2492 /* Coredumps can quickly deplete all memory reserves */
2493 if ((current->flags & PF_DUMPCORE) &&
2494 !(gfp_mask & __GFP_NOFAIL))
2495 goto nopage;
2496 page = __alloc_pages_may_oom(gfp_mask, order,
2497 zonelist, high_zoneidx,
2498 nodemask, preferred_zone,
2499 migratetype);
2500 if (page)
2501 goto got_pg;
2502
2503 if (!(gfp_mask & __GFP_NOFAIL)) {
2504 /*
2505 * The oom killer is not called for high-order
2506 * allocations that may fail, so if no progress
2507 * is being made, there are no other options and
2508 * retrying is unlikely to help.
2509 */
2510 if (order > PAGE_ALLOC_COSTLY_ORDER)
2511 goto nopage;
2512 /*
2513 * The oom killer is not called for lowmem
2514 * allocations to prevent needlessly killing
2515 * innocent tasks.
2516 */
2517 if (high_zoneidx < ZONE_NORMAL)
2518 goto nopage;
2519 }
2520
2521 goto restart;
2522 }
2523 }
2524
2525 /* Check if we should retry the allocation */
2526 pages_reclaimed += did_some_progress;
2527 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2528 pages_reclaimed)) {
2529 /* Wait for some write requests to complete then retry */
2530 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2531 goto rebalance;
2532 } else {
2533 /*
2534 * High-order allocations do not necessarily loop after
2535 * direct reclaim and reclaim/compaction depends on compaction
2536 * being called after reclaim so call directly if necessary
2537 */
2538 page = __alloc_pages_direct_compact(gfp_mask, order,
2539 zonelist, high_zoneidx,
2540 nodemask,
2541 alloc_flags, preferred_zone,
2542 migratetype, sync_migration,
2543 &contended_compaction,
2544 &deferred_compaction,
2545 &did_some_progress);
2546 if (page)
2547 goto got_pg;
2548 }
2549
2550nopage:
2551 warn_alloc_failed(gfp_mask, order, NULL);
2552 return page;
2553got_pg:
2554 if (kmemcheck_enabled)
2555 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2556
2557 return page;
2558}
2559
2560/*
2561 * This is the 'heart' of the zoned buddy allocator.
2562 */
2563struct page *
2564__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2565 struct zonelist *zonelist, nodemask_t *nodemask)
2566{
2567 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2568 struct zone *preferred_zone;
2569 struct page *page = NULL;
2570 int migratetype = allocflags_to_migratetype(gfp_mask);
2571 unsigned int cpuset_mems_cookie;
2572 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2573 struct mem_cgroup *memcg = NULL;
2574
2575 gfp_mask &= gfp_allowed_mask;
2576
2577 lockdep_trace_alloc(gfp_mask);
2578
2579 might_sleep_if(gfp_mask & __GFP_WAIT);
2580
2581 if (should_fail_alloc_page(gfp_mask, order))
2582 return NULL;
2583
2584 /*
2585 * Check the zones suitable for the gfp_mask contain at least one
2586 * valid zone. It's possible to have an empty zonelist as a result
2587 * of GFP_THISNODE and a memoryless node
2588 */
2589 if (unlikely(!zonelist->_zonerefs->zone))
2590 return NULL;
2591
2592 /*
2593 * Will only have any effect when __GFP_KMEMCG is set. This is
2594 * verified in the (always inline) callee
2595 */
2596 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2597 return NULL;
2598
2599retry_cpuset:
2600 cpuset_mems_cookie = get_mems_allowed();
2601
2602 /* The preferred zone is used for statistics later */
2603 first_zones_zonelist(zonelist, high_zoneidx,
2604 nodemask ? : &cpuset_current_mems_allowed,
2605 &preferred_zone);
2606 if (!preferred_zone)
2607 goto out;
2608
2609#ifdef CONFIG_CMA
2610 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2611 alloc_flags |= ALLOC_CMA;
2612#endif
2613 /* First allocation attempt */
2614 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2615 zonelist, high_zoneidx, alloc_flags,
2616 preferred_zone, migratetype);
2617 if (unlikely(!page))
2618 page = __alloc_pages_slowpath(gfp_mask, order,
2619 zonelist, high_zoneidx, nodemask,
2620 preferred_zone, migratetype);
2621
2622 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2623
2624out:
2625 /*
2626 * When updating a task's mems_allowed, it is possible to race with
2627 * parallel threads in such a way that an allocation can fail while
2628 * the mask is being updated. If a page allocation is about to fail,
2629 * check if the cpuset changed during allocation and if so, retry.
2630 */
2631 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2632 goto retry_cpuset;
2633
2634 memcg_kmem_commit_charge(page, memcg, order);
2635
2636 return page;
2637}
2638EXPORT_SYMBOL(__alloc_pages_nodemask);
2639
2640/*
2641 * Common helper functions.
2642 */
2643unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2644{
2645 struct page *page;
2646
2647 /*
2648 * __get_free_pages() returns a 32-bit address, which cannot represent
2649 * a highmem page
2650 */
2651 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2652
2653 page = alloc_pages(gfp_mask, order);
2654 if (!page)
2655 return 0;
2656 return (unsigned long) page_address(page);
2657}
2658EXPORT_SYMBOL(__get_free_pages);
2659
2660unsigned long get_zeroed_page(gfp_t gfp_mask)
2661{
2662 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2663}
2664EXPORT_SYMBOL(get_zeroed_page);
2665
2666void __free_pages(struct page *page, unsigned int order)
2667{
2668 if (put_page_testzero(page)) {
2669 if (order == 0)
2670 free_hot_cold_page(page, 0);
2671 else
2672 __free_pages_ok(page, order);
2673 }
2674}
2675
2676EXPORT_SYMBOL(__free_pages);
2677
2678void free_pages(unsigned long addr, unsigned int order)
2679{
2680 if (addr != 0) {
2681 VM_BUG_ON(!virt_addr_valid((void *)addr));
2682 __free_pages(virt_to_page((void *)addr), order);
2683 }
2684}
2685
2686EXPORT_SYMBOL(free_pages);
2687
2688/*
2689 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2690 * pages allocated with __GFP_KMEMCG.
2691 *
2692 * Those pages are accounted to a particular memcg, embedded in the
2693 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2694 * for that information only to find out that it is NULL for users who have no
2695 * interest in that whatsoever, we provide these functions.
2696 *
2697 * The caller knows better which flags it relies on.
2698 */
2699void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2700{
2701 memcg_kmem_uncharge_pages(page, order);
2702 __free_pages(page, order);
2703}
2704
2705void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2706{
2707 if (addr != 0) {
2708 VM_BUG_ON(!virt_addr_valid((void *)addr));
2709 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2710 }
2711}
2712
2713static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2714{
2715 if (addr) {
2716 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2717 unsigned long used = addr + PAGE_ALIGN(size);
2718
2719 split_page(virt_to_page((void *)addr), order);
2720 while (used < alloc_end) {
2721 free_page(used);
2722 used += PAGE_SIZE;
2723 }
2724 }
2725 return (void *)addr;
2726}
2727
2728/**
2729 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2730 * @size: the number of bytes to allocate
2731 * @gfp_mask: GFP flags for the allocation
2732 *
2733 * This function is similar to alloc_pages(), except that it allocates the
2734 * minimum number of pages to satisfy the request. alloc_pages() can only
2735 * allocate memory in power-of-two pages.
2736 *
2737 * This function is also limited by MAX_ORDER.
2738 *
2739 * Memory allocated by this function must be released by free_pages_exact().
2740 */
2741void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2742{
2743 unsigned int order = get_order(size);
2744 unsigned long addr;
2745
2746 addr = __get_free_pages(gfp_mask, order);
2747 return make_alloc_exact(addr, order, size);
2748}
2749EXPORT_SYMBOL(alloc_pages_exact);
2750
2751/**
2752 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2753 * pages on a node.
2754 * @nid: the preferred node ID where memory should be allocated
2755 * @size: the number of bytes to allocate
2756 * @gfp_mask: GFP flags for the allocation
2757 *
2758 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2759 * back.
2760 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2761 * but is not exact.
2762 */
2763void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2764{
2765 unsigned order = get_order(size);
2766 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2767 if (!p)
2768 return NULL;
2769 return make_alloc_exact((unsigned long)page_address(p), order, size);
2770}
2771EXPORT_SYMBOL(alloc_pages_exact_nid);
2772
2773/**
2774 * free_pages_exact - release memory allocated via alloc_pages_exact()
2775 * @virt: the value returned by alloc_pages_exact.
2776 * @size: size of allocation, same value as passed to alloc_pages_exact().
2777 *
2778 * Release the memory allocated by a previous call to alloc_pages_exact.
2779 */
2780void free_pages_exact(void *virt, size_t size)
2781{
2782 unsigned long addr = (unsigned long)virt;
2783 unsigned long end = addr + PAGE_ALIGN(size);
2784
2785 while (addr < end) {
2786 free_page(addr);
2787 addr += PAGE_SIZE;
2788 }
2789}
2790EXPORT_SYMBOL(free_pages_exact);
2791
2792static unsigned int nr_free_zone_pages(int offset)
2793{
2794 struct zoneref *z;
2795 struct zone *zone;
2796
2797 /* Just pick one node, since fallback list is circular */
2798 unsigned int sum = 0;
2799
2800 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2801
2802 for_each_zone_zonelist(zone, z, zonelist, offset) {
2803 unsigned long size = zone->present_pages;
2804 unsigned long high = high_wmark_pages(zone);
2805 if (size > high)
2806 sum += size - high;
2807 }
2808
2809 return sum;
2810}
2811
2812/*
2813 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2814 */
2815unsigned int nr_free_buffer_pages(void)
2816{
2817 return nr_free_zone_pages(gfp_zone(GFP_USER));
2818}
2819EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2820
2821/*
2822 * Amount of free RAM allocatable within all zones
2823 */
2824unsigned int nr_free_pagecache_pages(void)
2825{
2826 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2827}
2828
2829static inline void show_node(struct zone *zone)
2830{
2831 if (IS_ENABLED(CONFIG_NUMA))
2832 printk("Node %d ", zone_to_nid(zone));
2833}
2834
2835void si_meminfo(struct sysinfo *val)
2836{
2837 val->totalram = totalram_pages;
2838 val->sharedram = 0;
2839 val->freeram = global_page_state(NR_FREE_PAGES);
2840 val->bufferram = nr_blockdev_pages();
2841 val->totalhigh = totalhigh_pages;
2842 val->freehigh = nr_free_highpages();
2843 val->mem_unit = PAGE_SIZE;
2844}
2845
2846EXPORT_SYMBOL(si_meminfo);
2847
2848#ifdef CONFIG_NUMA
2849void si_meminfo_node(struct sysinfo *val, int nid)
2850{
2851 pg_data_t *pgdat = NODE_DATA(nid);
2852
2853 val->totalram = pgdat->node_present_pages;
2854 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2855#ifdef CONFIG_HIGHMEM
2856 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2857 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2858 NR_FREE_PAGES);
2859#else
2860 val->totalhigh = 0;
2861 val->freehigh = 0;
2862#endif
2863 val->mem_unit = PAGE_SIZE;
2864}
2865#endif
2866
2867/*
2868 * Determine whether the node should be displayed or not, depending on whether
2869 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2870 */
2871bool skip_free_areas_node(unsigned int flags, int nid)
2872{
2873 bool ret = false;
2874 unsigned int cpuset_mems_cookie;
2875
2876 if (!(flags & SHOW_MEM_FILTER_NODES))
2877 goto out;
2878
2879 do {
2880 cpuset_mems_cookie = get_mems_allowed();
2881 ret = !node_isset(nid, cpuset_current_mems_allowed);
2882 } while (!put_mems_allowed(cpuset_mems_cookie));
2883out:
2884 return ret;
2885}
2886
2887#define K(x) ((x) << (PAGE_SHIFT-10))
2888
2889static void show_migration_types(unsigned char type)
2890{
2891 static const char types[MIGRATE_TYPES] = {
2892 [MIGRATE_UNMOVABLE] = 'U',
2893 [MIGRATE_RECLAIMABLE] = 'E',
2894 [MIGRATE_MOVABLE] = 'M',
2895 [MIGRATE_RESERVE] = 'R',
2896#ifdef CONFIG_CMA
2897 [MIGRATE_CMA] = 'C',
2898#endif
2899 [MIGRATE_ISOLATE] = 'I',
2900 };
2901 char tmp[MIGRATE_TYPES + 1];
2902 char *p = tmp;
2903 int i;
2904
2905 for (i = 0; i < MIGRATE_TYPES; i++) {
2906 if (type & (1 << i))
2907 *p++ = types[i];
2908 }
2909
2910 *p = '\0';
2911 printk("(%s) ", tmp);
2912}
2913
2914/*
2915 * Show free area list (used inside shift_scroll-lock stuff)
2916 * We also calculate the percentage fragmentation. We do this by counting the
2917 * memory on each free list with the exception of the first item on the list.
2918 * Suppresses nodes that are not allowed by current's cpuset if
2919 * SHOW_MEM_FILTER_NODES is passed.
2920 */
2921void show_free_areas(unsigned int filter)
2922{
2923 int cpu;
2924 struct zone *zone;
2925
2926 for_each_populated_zone(zone) {
2927 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2928 continue;
2929 show_node(zone);
2930 printk("%s per-cpu:\n", zone->name);
2931
2932 for_each_online_cpu(cpu) {
2933 struct per_cpu_pageset *pageset;
2934
2935 pageset = per_cpu_ptr(zone->pageset, cpu);
2936
2937 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2938 cpu, pageset->pcp.high,
2939 pageset->pcp.batch, pageset->pcp.count);
2940 }
2941 }
2942
2943 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2944 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2945 " unevictable:%lu"
2946 " dirty:%lu writeback:%lu unstable:%lu\n"
2947 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2948 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2949 " free_cma:%lu\n",
2950 global_page_state(NR_ACTIVE_ANON),
2951 global_page_state(NR_INACTIVE_ANON),
2952 global_page_state(NR_ISOLATED_ANON),
2953 global_page_state(NR_ACTIVE_FILE),
2954 global_page_state(NR_INACTIVE_FILE),
2955 global_page_state(NR_ISOLATED_FILE),
2956 global_page_state(NR_UNEVICTABLE),
2957 global_page_state(NR_FILE_DIRTY),
2958 global_page_state(NR_WRITEBACK),
2959 global_page_state(NR_UNSTABLE_NFS),
2960 global_page_state(NR_FREE_PAGES),
2961 global_page_state(NR_SLAB_RECLAIMABLE),
2962 global_page_state(NR_SLAB_UNRECLAIMABLE),
2963 global_page_state(NR_FILE_MAPPED),
2964 global_page_state(NR_SHMEM),
2965 global_page_state(NR_PAGETABLE),
2966 global_page_state(NR_BOUNCE),
2967 global_page_state(NR_FREE_CMA_PAGES));
2968
2969 for_each_populated_zone(zone) {
2970 int i;
2971
2972 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2973 continue;
2974 show_node(zone);
2975 printk("%s"
2976 " free:%lukB"
2977 " min:%lukB"
2978 " low:%lukB"
2979 " high:%lukB"
2980 " active_anon:%lukB"
2981 " inactive_anon:%lukB"
2982 " active_file:%lukB"
2983 " inactive_file:%lukB"
2984 " unevictable:%lukB"
2985 " isolated(anon):%lukB"
2986 " isolated(file):%lukB"
2987 " present:%lukB"
2988 " managed:%lukB"
2989 " mlocked:%lukB"
2990 " dirty:%lukB"
2991 " writeback:%lukB"
2992 " mapped:%lukB"
2993 " shmem:%lukB"
2994 " slab_reclaimable:%lukB"
2995 " slab_unreclaimable:%lukB"
2996 " kernel_stack:%lukB"
2997 " pagetables:%lukB"
2998 " unstable:%lukB"
2999 " bounce:%lukB"
3000 " free_cma:%lukB"
3001 " writeback_tmp:%lukB"
3002 " pages_scanned:%lu"
3003 " all_unreclaimable? %s"
3004 "\n",
3005 zone->name,
3006 K(zone_page_state(zone, NR_FREE_PAGES)),
3007 K(min_wmark_pages(zone)),
3008 K(low_wmark_pages(zone)),
3009 K(high_wmark_pages(zone)),
3010 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3011 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3012 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3013 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3014 K(zone_page_state(zone, NR_UNEVICTABLE)),
3015 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3016 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3017 K(zone->present_pages),
3018 K(zone->managed_pages),
3019 K(zone_page_state(zone, NR_MLOCK)),
3020 K(zone_page_state(zone, NR_FILE_DIRTY)),
3021 K(zone_page_state(zone, NR_WRITEBACK)),
3022 K(zone_page_state(zone, NR_FILE_MAPPED)),
3023 K(zone_page_state(zone, NR_SHMEM)),
3024 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3025 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3026 zone_page_state(zone, NR_KERNEL_STACK) *
3027 THREAD_SIZE / 1024,
3028 K(zone_page_state(zone, NR_PAGETABLE)),
3029 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3030 K(zone_page_state(zone, NR_BOUNCE)),
3031 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3032 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3033 zone->pages_scanned,
3034 (zone->all_unreclaimable ? "yes" : "no")
3035 );
3036 printk("lowmem_reserve[]:");
3037 for (i = 0; i < MAX_NR_ZONES; i++)
3038 printk(" %lu", zone->lowmem_reserve[i]);
3039 printk("\n");
3040 }
3041
3042 for_each_populated_zone(zone) {
3043 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3044 unsigned char types[MAX_ORDER];
3045
3046 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3047 continue;
3048 show_node(zone);
3049 printk("%s: ", zone->name);
3050
3051 spin_lock_irqsave(&zone->lock, flags);
3052 for (order = 0; order < MAX_ORDER; order++) {
3053 struct free_area *area = &zone->free_area[order];
3054 int type;
3055
3056 nr[order] = area->nr_free;
3057 total += nr[order] << order;
3058
3059 types[order] = 0;
3060 for (type = 0; type < MIGRATE_TYPES; type++) {
3061 if (!list_empty(&area->free_list[type]))
3062 types[order] |= 1 << type;
3063 }
3064 }
3065 spin_unlock_irqrestore(&zone->lock, flags);
3066 for (order = 0; order < MAX_ORDER; order++) {
3067 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3068 if (nr[order])
3069 show_migration_types(types[order]);
3070 }
3071 printk("= %lukB\n", K(total));
3072 }
3073
3074 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3075
3076 show_swap_cache_info();
3077}
3078
3079static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3080{
3081 zoneref->zone = zone;
3082 zoneref->zone_idx = zone_idx(zone);
3083}
3084
3085/*
3086 * Builds allocation fallback zone lists.
3087 *
3088 * Add all populated zones of a node to the zonelist.
3089 */
3090static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3091 int nr_zones, enum zone_type zone_type)
3092{
3093 struct zone *zone;
3094
3095 BUG_ON(zone_type >= MAX_NR_ZONES);
3096 zone_type++;
3097
3098 do {
3099 zone_type--;
3100 zone = pgdat->node_zones + zone_type;
3101 if (populated_zone(zone)) {
3102 zoneref_set_zone(zone,
3103 &zonelist->_zonerefs[nr_zones++]);
3104 check_highest_zone(zone_type);
3105 }
3106
3107 } while (zone_type);
3108 return nr_zones;
3109}
3110
3111
3112/*
3113 * zonelist_order:
3114 * 0 = automatic detection of better ordering.
3115 * 1 = order by ([node] distance, -zonetype)
3116 * 2 = order by (-zonetype, [node] distance)
3117 *
3118 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3119 * the same zonelist. So only NUMA can configure this param.
3120 */
3121#define ZONELIST_ORDER_DEFAULT 0
3122#define ZONELIST_ORDER_NODE 1
3123#define ZONELIST_ORDER_ZONE 2
3124
3125/* zonelist order in the kernel.
3126 * set_zonelist_order() will set this to NODE or ZONE.
3127 */
3128static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3129static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3130
3131
3132#ifdef CONFIG_NUMA
3133/* The value user specified ....changed by config */
3134static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3135/* string for sysctl */
3136#define NUMA_ZONELIST_ORDER_LEN 16
3137char numa_zonelist_order[16] = "default";
3138
3139/*
3140 * interface for configure zonelist ordering.
3141 * command line option "numa_zonelist_order"
3142 * = "[dD]efault - default, automatic configuration.
3143 * = "[nN]ode - order by node locality, then by zone within node
3144 * = "[zZ]one - order by zone, then by locality within zone
3145 */
3146
3147static int __parse_numa_zonelist_order(char *s)
3148{
3149 if (*s == 'd' || *s == 'D') {
3150 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3151 } else if (*s == 'n' || *s == 'N') {
3152 user_zonelist_order = ZONELIST_ORDER_NODE;
3153 } else if (*s == 'z' || *s == 'Z') {
3154 user_zonelist_order = ZONELIST_ORDER_ZONE;
3155 } else {
3156 printk(KERN_WARNING
3157 "Ignoring invalid numa_zonelist_order value: "
3158 "%s\n", s);
3159 return -EINVAL;
3160 }
3161 return 0;
3162}
3163
3164static __init int setup_numa_zonelist_order(char *s)
3165{
3166 int ret;
3167
3168 if (!s)
3169 return 0;
3170
3171 ret = __parse_numa_zonelist_order(s);
3172 if (ret == 0)
3173 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3174
3175 return ret;
3176}
3177early_param("numa_zonelist_order", setup_numa_zonelist_order);
3178
3179/*
3180 * sysctl handler for numa_zonelist_order
3181 */
3182int numa_zonelist_order_handler(ctl_table *table, int write,
3183 void __user *buffer, size_t *length,
3184 loff_t *ppos)
3185{
3186 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3187 int ret;
3188 static DEFINE_MUTEX(zl_order_mutex);
3189
3190 mutex_lock(&zl_order_mutex);
3191 if (write)
3192 strcpy(saved_string, (char*)table->data);
3193 ret = proc_dostring(table, write, buffer, length, ppos);
3194 if (ret)
3195 goto out;
3196 if (write) {
3197 int oldval = user_zonelist_order;
3198 if (__parse_numa_zonelist_order((char*)table->data)) {
3199 /*
3200 * bogus value. restore saved string
3201 */
3202 strncpy((char*)table->data, saved_string,
3203 NUMA_ZONELIST_ORDER_LEN);
3204 user_zonelist_order = oldval;
3205 } else if (oldval != user_zonelist_order) {
3206 mutex_lock(&zonelists_mutex);
3207 build_all_zonelists(NULL, NULL);
3208 mutex_unlock(&zonelists_mutex);
3209 }
3210 }
3211out:
3212 mutex_unlock(&zl_order_mutex);
3213 return ret;
3214}
3215
3216
3217#define MAX_NODE_LOAD (nr_online_nodes)
3218static int node_load[MAX_NUMNODES];
3219
3220/**
3221 * find_next_best_node - find the next node that should appear in a given node's fallback list
3222 * @node: node whose fallback list we're appending
3223 * @used_node_mask: nodemask_t of already used nodes
3224 *
3225 * We use a number of factors to determine which is the next node that should
3226 * appear on a given node's fallback list. The node should not have appeared
3227 * already in @node's fallback list, and it should be the next closest node
3228 * according to the distance array (which contains arbitrary distance values
3229 * from each node to each node in the system), and should also prefer nodes
3230 * with no CPUs, since presumably they'll have very little allocation pressure
3231 * on them otherwise.
3232 * It returns -1 if no node is found.
3233 */
3234static int find_next_best_node(int node, nodemask_t *used_node_mask)
3235{
3236 int n, val;
3237 int min_val = INT_MAX;
3238 int best_node = -1;
3239 const struct cpumask *tmp = cpumask_of_node(0);
3240
3241 /* Use the local node if we haven't already */
3242 if (!node_isset(node, *used_node_mask)) {
3243 node_set(node, *used_node_mask);
3244 return node;
3245 }
3246
3247 for_each_node_state(n, N_MEMORY) {
3248
3249 /* Don't want a node to appear more than once */
3250 if (node_isset(n, *used_node_mask))
3251 continue;
3252
3253 /* Use the distance array to find the distance */
3254 val = node_distance(node, n);
3255
3256 /* Penalize nodes under us ("prefer the next node") */
3257 val += (n < node);
3258
3259 /* Give preference to headless and unused nodes */
3260 tmp = cpumask_of_node(n);
3261 if (!cpumask_empty(tmp))
3262 val += PENALTY_FOR_NODE_WITH_CPUS;
3263
3264 /* Slight preference for less loaded node */
3265 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3266 val += node_load[n];
3267
3268 if (val < min_val) {
3269 min_val = val;
3270 best_node = n;
3271 }
3272 }
3273
3274 if (best_node >= 0)
3275 node_set(best_node, *used_node_mask);
3276
3277 return best_node;
3278}
3279
3280
3281/*
3282 * Build zonelists ordered by node and zones within node.
3283 * This results in maximum locality--normal zone overflows into local
3284 * DMA zone, if any--but risks exhausting DMA zone.
3285 */
3286static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3287{
3288 int j;
3289 struct zonelist *zonelist;
3290
3291 zonelist = &pgdat->node_zonelists[0];
3292 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3293 ;
3294 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3295 MAX_NR_ZONES - 1);
3296 zonelist->_zonerefs[j].zone = NULL;
3297 zonelist->_zonerefs[j].zone_idx = 0;
3298}
3299
3300/*
3301 * Build gfp_thisnode zonelists
3302 */
3303static void build_thisnode_zonelists(pg_data_t *pgdat)
3304{
3305 int j;
3306 struct zonelist *zonelist;
3307
3308 zonelist = &pgdat->node_zonelists[1];
3309 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3310 zonelist->_zonerefs[j].zone = NULL;
3311 zonelist->_zonerefs[j].zone_idx = 0;
3312}
3313
3314/*
3315 * Build zonelists ordered by zone and nodes within zones.
3316 * This results in conserving DMA zone[s] until all Normal memory is
3317 * exhausted, but results in overflowing to remote node while memory
3318 * may still exist in local DMA zone.
3319 */
3320static int node_order[MAX_NUMNODES];
3321
3322static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3323{
3324 int pos, j, node;
3325 int zone_type; /* needs to be signed */
3326 struct zone *z;
3327 struct zonelist *zonelist;
3328
3329 zonelist = &pgdat->node_zonelists[0];
3330 pos = 0;
3331 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3332 for (j = 0; j < nr_nodes; j++) {
3333 node = node_order[j];
3334 z = &NODE_DATA(node)->node_zones[zone_type];
3335 if (populated_zone(z)) {
3336 zoneref_set_zone(z,
3337 &zonelist->_zonerefs[pos++]);
3338 check_highest_zone(zone_type);
3339 }
3340 }
3341 }
3342 zonelist->_zonerefs[pos].zone = NULL;
3343 zonelist->_zonerefs[pos].zone_idx = 0;
3344}
3345
3346static int default_zonelist_order(void)
3347{
3348 int nid, zone_type;
3349 unsigned long low_kmem_size,total_size;
3350 struct zone *z;
3351 int average_size;
3352 /*
3353 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3354 * If they are really small and used heavily, the system can fall
3355 * into OOM very easily.
3356 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3357 */
3358 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3359 low_kmem_size = 0;
3360 total_size = 0;
3361 for_each_online_node(nid) {
3362 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3363 z = &NODE_DATA(nid)->node_zones[zone_type];
3364 if (populated_zone(z)) {
3365 if (zone_type < ZONE_NORMAL)
3366 low_kmem_size += z->present_pages;
3367 total_size += z->present_pages;
3368 } else if (zone_type == ZONE_NORMAL) {
3369 /*
3370 * If any node has only lowmem, then node order
3371 * is preferred to allow kernel allocations
3372 * locally; otherwise, they can easily infringe
3373 * on other nodes when there is an abundance of
3374 * lowmem available to allocate from.
3375 */
3376 return ZONELIST_ORDER_NODE;
3377 }
3378 }
3379 }
3380 if (!low_kmem_size || /* there are no DMA area. */
3381 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3382 return ZONELIST_ORDER_NODE;
3383 /*
3384 * look into each node's config.
3385 * If there is a node whose DMA/DMA32 memory is very big area on
3386 * local memory, NODE_ORDER may be suitable.
3387 */
3388 average_size = total_size /
3389 (nodes_weight(node_states[N_MEMORY]) + 1);
3390 for_each_online_node(nid) {
3391 low_kmem_size = 0;
3392 total_size = 0;
3393 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3394 z = &NODE_DATA(nid)->node_zones[zone_type];
3395 if (populated_zone(z)) {
3396 if (zone_type < ZONE_NORMAL)
3397 low_kmem_size += z->present_pages;
3398 total_size += z->present_pages;
3399 }
3400 }
3401 if (low_kmem_size &&
3402 total_size > average_size && /* ignore small node */
3403 low_kmem_size > total_size * 70/100)
3404 return ZONELIST_ORDER_NODE;
3405 }
3406 return ZONELIST_ORDER_ZONE;
3407}
3408
3409static void set_zonelist_order(void)
3410{
3411 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3412 current_zonelist_order = default_zonelist_order();
3413 else
3414 current_zonelist_order = user_zonelist_order;
3415}
3416
3417static void build_zonelists(pg_data_t *pgdat)
3418{
3419 int j, node, load;
3420 enum zone_type i;
3421 nodemask_t used_mask;
3422 int local_node, prev_node;
3423 struct zonelist *zonelist;
3424 int order = current_zonelist_order;
3425
3426 /* initialize zonelists */
3427 for (i = 0; i < MAX_ZONELISTS; i++) {
3428 zonelist = pgdat->node_zonelists + i;
3429 zonelist->_zonerefs[0].zone = NULL;
3430 zonelist->_zonerefs[0].zone_idx = 0;
3431 }
3432
3433 /* NUMA-aware ordering of nodes */
3434 local_node = pgdat->node_id;
3435 load = nr_online_nodes;
3436 prev_node = local_node;
3437 nodes_clear(used_mask);
3438
3439 memset(node_order, 0, sizeof(node_order));
3440 j = 0;
3441
3442 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3443 /*
3444 * We don't want to pressure a particular node.
3445 * So adding penalty to the first node in same
3446 * distance group to make it round-robin.
3447 */
3448 if (node_distance(local_node, node) !=
3449 node_distance(local_node, prev_node))
3450 node_load[node] = load;
3451
3452 prev_node = node;
3453 load--;
3454 if (order == ZONELIST_ORDER_NODE)
3455 build_zonelists_in_node_order(pgdat, node);
3456 else
3457 node_order[j++] = node; /* remember order */
3458 }
3459
3460 if (order == ZONELIST_ORDER_ZONE) {
3461 /* calculate node order -- i.e., DMA last! */
3462 build_zonelists_in_zone_order(pgdat, j);
3463 }
3464
3465 build_thisnode_zonelists(pgdat);
3466}
3467
3468/* Construct the zonelist performance cache - see further mmzone.h */
3469static void build_zonelist_cache(pg_data_t *pgdat)
3470{
3471 struct zonelist *zonelist;
3472 struct zonelist_cache *zlc;
3473 struct zoneref *z;
3474
3475 zonelist = &pgdat->node_zonelists[0];
3476 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3477 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3478 for (z = zonelist->_zonerefs; z->zone; z++)
3479 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3480}
3481
3482#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3483/*
3484 * Return node id of node used for "local" allocations.
3485 * I.e., first node id of first zone in arg node's generic zonelist.
3486 * Used for initializing percpu 'numa_mem', which is used primarily
3487 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3488 */
3489int local_memory_node(int node)
3490{
3491 struct zone *zone;
3492
3493 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3494 gfp_zone(GFP_KERNEL),
3495 NULL,
3496 &zone);
3497 return zone->node;
3498}
3499#endif
3500
3501#else /* CONFIG_NUMA */
3502
3503static void set_zonelist_order(void)
3504{
3505 current_zonelist_order = ZONELIST_ORDER_ZONE;
3506}
3507
3508static void build_zonelists(pg_data_t *pgdat)
3509{
3510 int node, local_node;
3511 enum zone_type j;
3512 struct zonelist *zonelist;
3513
3514 local_node = pgdat->node_id;
3515
3516 zonelist = &pgdat->node_zonelists[0];
3517 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3518
3519 /*
3520 * Now we build the zonelist so that it contains the zones
3521 * of all the other nodes.
3522 * We don't want to pressure a particular node, so when
3523 * building the zones for node N, we make sure that the
3524 * zones coming right after the local ones are those from
3525 * node N+1 (modulo N)
3526 */
3527 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3528 if (!node_online(node))
3529 continue;
3530 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3531 MAX_NR_ZONES - 1);
3532 }
3533 for (node = 0; node < local_node; node++) {
3534 if (!node_online(node))
3535 continue;
3536 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3537 MAX_NR_ZONES - 1);
3538 }
3539
3540 zonelist->_zonerefs[j].zone = NULL;
3541 zonelist->_zonerefs[j].zone_idx = 0;
3542}
3543
3544/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3545static void build_zonelist_cache(pg_data_t *pgdat)
3546{
3547 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3548}
3549
3550#endif /* CONFIG_NUMA */
3551
3552/*
3553 * Boot pageset table. One per cpu which is going to be used for all
3554 * zones and all nodes. The parameters will be set in such a way
3555 * that an item put on a list will immediately be handed over to
3556 * the buddy list. This is safe since pageset manipulation is done
3557 * with interrupts disabled.
3558 *
3559 * The boot_pagesets must be kept even after bootup is complete for
3560 * unused processors and/or zones. They do play a role for bootstrapping
3561 * hotplugged processors.
3562 *
3563 * zoneinfo_show() and maybe other functions do
3564 * not check if the processor is online before following the pageset pointer.
3565 * Other parts of the kernel may not check if the zone is available.
3566 */
3567static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3568static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3569static void setup_zone_pageset(struct zone *zone);
3570
3571/*
3572 * Global mutex to protect against size modification of zonelists
3573 * as well as to serialize pageset setup for the new populated zone.
3574 */
3575DEFINE_MUTEX(zonelists_mutex);
3576
3577/* return values int ....just for stop_machine() */
3578static int __build_all_zonelists(void *data)
3579{
3580 int nid;
3581 int cpu;
3582 pg_data_t *self = data;
3583
3584#ifdef CONFIG_NUMA
3585 memset(node_load, 0, sizeof(node_load));
3586#endif
3587
3588 if (self && !node_online(self->node_id)) {
3589 build_zonelists(self);
3590 build_zonelist_cache(self);
3591 }
3592
3593 for_each_online_node(nid) {
3594 pg_data_t *pgdat = NODE_DATA(nid);
3595
3596 build_zonelists(pgdat);
3597 build_zonelist_cache(pgdat);
3598 }
3599
3600 /*
3601 * Initialize the boot_pagesets that are going to be used
3602 * for bootstrapping processors. The real pagesets for
3603 * each zone will be allocated later when the per cpu
3604 * allocator is available.
3605 *
3606 * boot_pagesets are used also for bootstrapping offline
3607 * cpus if the system is already booted because the pagesets
3608 * are needed to initialize allocators on a specific cpu too.
3609 * F.e. the percpu allocator needs the page allocator which
3610 * needs the percpu allocator in order to allocate its pagesets
3611 * (a chicken-egg dilemma).
3612 */
3613 for_each_possible_cpu(cpu) {
3614 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3615
3616#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3617 /*
3618 * We now know the "local memory node" for each node--
3619 * i.e., the node of the first zone in the generic zonelist.
3620 * Set up numa_mem percpu variable for on-line cpus. During
3621 * boot, only the boot cpu should be on-line; we'll init the
3622 * secondary cpus' numa_mem as they come on-line. During
3623 * node/memory hotplug, we'll fixup all on-line cpus.
3624 */
3625 if (cpu_online(cpu))
3626 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3627#endif
3628 }
3629
3630 return 0;
3631}
3632
3633/*
3634 * Called with zonelists_mutex held always
3635 * unless system_state == SYSTEM_BOOTING.
3636 */
3637void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3638{
3639 set_zonelist_order();
3640
3641 if (system_state == SYSTEM_BOOTING) {
3642 __build_all_zonelists(NULL);
3643 mminit_verify_zonelist();
3644 cpuset_init_current_mems_allowed();
3645 } else {
3646 /* we have to stop all cpus to guarantee there is no user
3647 of zonelist */
3648#ifdef CONFIG_MEMORY_HOTPLUG
3649 if (zone)
3650 setup_zone_pageset(zone);
3651#endif
3652 stop_machine(__build_all_zonelists, pgdat, NULL);
3653 /* cpuset refresh routine should be here */
3654 }
3655 vm_total_pages = nr_free_pagecache_pages();
3656 /*
3657 * Disable grouping by mobility if the number of pages in the
3658 * system is too low to allow the mechanism to work. It would be
3659 * more accurate, but expensive to check per-zone. This check is
3660 * made on memory-hotadd so a system can start with mobility
3661 * disabled and enable it later
3662 */
3663 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3664 page_group_by_mobility_disabled = 1;
3665 else
3666 page_group_by_mobility_disabled = 0;
3667
3668 printk("Built %i zonelists in %s order, mobility grouping %s. "
3669 "Total pages: %ld\n",
3670 nr_online_nodes,
3671 zonelist_order_name[current_zonelist_order],
3672 page_group_by_mobility_disabled ? "off" : "on",
3673 vm_total_pages);
3674#ifdef CONFIG_NUMA
3675 printk("Policy zone: %s\n", zone_names[policy_zone]);
3676#endif
3677}
3678
3679/*
3680 * Helper functions to size the waitqueue hash table.
3681 * Essentially these want to choose hash table sizes sufficiently
3682 * large so that collisions trying to wait on pages are rare.
3683 * But in fact, the number of active page waitqueues on typical
3684 * systems is ridiculously low, less than 200. So this is even
3685 * conservative, even though it seems large.
3686 *
3687 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3688 * waitqueues, i.e. the size of the waitq table given the number of pages.
3689 */
3690#define PAGES_PER_WAITQUEUE 256
3691
3692#ifndef CONFIG_MEMORY_HOTPLUG
3693static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3694{
3695 unsigned long size = 1;
3696
3697 pages /= PAGES_PER_WAITQUEUE;
3698
3699 while (size < pages)
3700 size <<= 1;
3701
3702 /*
3703 * Once we have dozens or even hundreds of threads sleeping
3704 * on IO we've got bigger problems than wait queue collision.
3705 * Limit the size of the wait table to a reasonable size.
3706 */
3707 size = min(size, 4096UL);
3708
3709 return max(size, 4UL);
3710}
3711#else
3712/*
3713 * A zone's size might be changed by hot-add, so it is not possible to determine
3714 * a suitable size for its wait_table. So we use the maximum size now.
3715 *
3716 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3717 *
3718 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3719 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3720 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3721 *
3722 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3723 * or more by the traditional way. (See above). It equals:
3724 *
3725 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3726 * ia64(16K page size) : = ( 8G + 4M)byte.
3727 * powerpc (64K page size) : = (32G +16M)byte.
3728 */
3729static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3730{
3731 return 4096UL;
3732}
3733#endif
3734
3735/*
3736 * This is an integer logarithm so that shifts can be used later
3737 * to extract the more random high bits from the multiplicative
3738 * hash function before the remainder is taken.
3739 */
3740static inline unsigned long wait_table_bits(unsigned long size)
3741{
3742 return ffz(~size);
3743}
3744
3745#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3746
3747/*
3748 * Check if a pageblock contains reserved pages
3749 */
3750static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3751{
3752 unsigned long pfn;
3753
3754 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3755 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3756 return 1;
3757 }
3758 return 0;
3759}
3760
3761/*
3762 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3763 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3764 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3765 * higher will lead to a bigger reserve which will get freed as contiguous
3766 * blocks as reclaim kicks in
3767 */
3768static void setup_zone_migrate_reserve(struct zone *zone)
3769{
3770 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3771 struct page *page;
3772 unsigned long block_migratetype;
3773 int reserve;
3774
3775 /*
3776 * Get the start pfn, end pfn and the number of blocks to reserve
3777 * We have to be careful to be aligned to pageblock_nr_pages to
3778 * make sure that we always check pfn_valid for the first page in
3779 * the block.
3780 */
3781 start_pfn = zone->zone_start_pfn;
3782 end_pfn = start_pfn + zone->spanned_pages;
3783 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3784 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3785 pageblock_order;
3786
3787 /*
3788 * Reserve blocks are generally in place to help high-order atomic
3789 * allocations that are short-lived. A min_free_kbytes value that
3790 * would result in more than 2 reserve blocks for atomic allocations
3791 * is assumed to be in place to help anti-fragmentation for the
3792 * future allocation of hugepages at runtime.
3793 */
3794 reserve = min(2, reserve);
3795
3796 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3797 if (!pfn_valid(pfn))
3798 continue;
3799 page = pfn_to_page(pfn);
3800
3801 /* Watch out for overlapping nodes */
3802 if (page_to_nid(page) != zone_to_nid(zone))
3803 continue;
3804
3805 block_migratetype = get_pageblock_migratetype(page);
3806
3807 /* Only test what is necessary when the reserves are not met */
3808 if (reserve > 0) {
3809 /*
3810 * Blocks with reserved pages will never free, skip
3811 * them.
3812 */
3813 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3814 if (pageblock_is_reserved(pfn, block_end_pfn))
3815 continue;
3816
3817 /* If this block is reserved, account for it */
3818 if (block_migratetype == MIGRATE_RESERVE) {
3819 reserve--;
3820 continue;
3821 }
3822
3823 /* Suitable for reserving if this block is movable */
3824 if (block_migratetype == MIGRATE_MOVABLE) {
3825 set_pageblock_migratetype(page,
3826 MIGRATE_RESERVE);
3827 move_freepages_block(zone, page,
3828 MIGRATE_RESERVE);
3829 reserve--;
3830 continue;
3831 }
3832 }
3833
3834 /*
3835 * If the reserve is met and this is a previous reserved block,
3836 * take it back
3837 */
3838 if (block_migratetype == MIGRATE_RESERVE) {
3839 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3840 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3841 }
3842 }
3843}
3844
3845/*
3846 * Initially all pages are reserved - free ones are freed
3847 * up by free_all_bootmem() once the early boot process is
3848 * done. Non-atomic initialization, single-pass.
3849 */
3850void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3851 unsigned long start_pfn, enum memmap_context context)
3852{
3853 struct page *page;
3854 unsigned long end_pfn = start_pfn + size;
3855 unsigned long pfn;
3856 struct zone *z;
3857
3858 if (highest_memmap_pfn < end_pfn - 1)
3859 highest_memmap_pfn = end_pfn - 1;
3860
3861 z = &NODE_DATA(nid)->node_zones[zone];
3862 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3863 /*
3864 * There can be holes in boot-time mem_map[]s
3865 * handed to this function. They do not
3866 * exist on hotplugged memory.
3867 */
3868 if (context == MEMMAP_EARLY) {
3869 if (!early_pfn_valid(pfn))
3870 continue;
3871 if (!early_pfn_in_nid(pfn, nid))
3872 continue;
3873 }
3874 page = pfn_to_page(pfn);
3875 set_page_links(page, zone, nid, pfn);
3876 mminit_verify_page_links(page, zone, nid, pfn);
3877 init_page_count(page);
3878 reset_page_mapcount(page);
3879 reset_page_last_nid(page);
3880 SetPageReserved(page);
3881 /*
3882 * Mark the block movable so that blocks are reserved for
3883 * movable at startup. This will force kernel allocations
3884 * to reserve their blocks rather than leaking throughout
3885 * the address space during boot when many long-lived
3886 * kernel allocations are made. Later some blocks near
3887 * the start are marked MIGRATE_RESERVE by
3888 * setup_zone_migrate_reserve()
3889 *
3890 * bitmap is created for zone's valid pfn range. but memmap
3891 * can be created for invalid pages (for alignment)
3892 * check here not to call set_pageblock_migratetype() against
3893 * pfn out of zone.
3894 */
3895 if ((z->zone_start_pfn <= pfn)
3896 && (pfn < z->zone_start_pfn + z->spanned_pages)
3897 && !(pfn & (pageblock_nr_pages - 1)))
3898 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3899
3900 INIT_LIST_HEAD(&page->lru);
3901#ifdef WANT_PAGE_VIRTUAL
3902 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3903 if (!is_highmem_idx(zone))
3904 set_page_address(page, __va(pfn << PAGE_SHIFT));
3905#endif
3906 }
3907}
3908
3909static void __meminit zone_init_free_lists(struct zone *zone)
3910{
3911 int order, t;
3912 for_each_migratetype_order(order, t) {
3913 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3914 zone->free_area[order].nr_free = 0;
3915 }
3916}
3917
3918#ifndef __HAVE_ARCH_MEMMAP_INIT
3919#define memmap_init(size, nid, zone, start_pfn) \
3920 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3921#endif
3922
3923static int __meminit zone_batchsize(struct zone *zone)
3924{
3925#ifdef CONFIG_MMU
3926 int batch;
3927
3928 /*
3929 * The per-cpu-pages pools are set to around 1000th of the
3930 * size of the zone. But no more than 1/2 of a meg.
3931 *
3932 * OK, so we don't know how big the cache is. So guess.
3933 */
3934 batch = zone->present_pages / 1024;
3935 if (batch * PAGE_SIZE > 512 * 1024)
3936 batch = (512 * 1024) / PAGE_SIZE;
3937 batch /= 4; /* We effectively *= 4 below */
3938 if (batch < 1)
3939 batch = 1;
3940
3941 /*
3942 * Clamp the batch to a 2^n - 1 value. Having a power
3943 * of 2 value was found to be more likely to have
3944 * suboptimal cache aliasing properties in some cases.
3945 *
3946 * For example if 2 tasks are alternately allocating
3947 * batches of pages, one task can end up with a lot
3948 * of pages of one half of the possible page colors
3949 * and the other with pages of the other colors.
3950 */
3951 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3952
3953 return batch;
3954
3955#else
3956 /* The deferral and batching of frees should be suppressed under NOMMU
3957 * conditions.
3958 *
3959 * The problem is that NOMMU needs to be able to allocate large chunks
3960 * of contiguous memory as there's no hardware page translation to
3961 * assemble apparent contiguous memory from discontiguous pages.
3962 *
3963 * Queueing large contiguous runs of pages for batching, however,
3964 * causes the pages to actually be freed in smaller chunks. As there
3965 * can be a significant delay between the individual batches being
3966 * recycled, this leads to the once large chunks of space being
3967 * fragmented and becoming unavailable for high-order allocations.
3968 */
3969 return 0;
3970#endif
3971}
3972
3973static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3974{
3975 struct per_cpu_pages *pcp;
3976 int migratetype;
3977
3978 memset(p, 0, sizeof(*p));
3979
3980 pcp = &p->pcp;
3981 pcp->count = 0;
3982 pcp->high = 6 * batch;
3983 pcp->batch = max(1UL, 1 * batch);
3984 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3985 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3986}
3987
3988/*
3989 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3990 * to the value high for the pageset p.
3991 */
3992
3993static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3994 unsigned long high)
3995{
3996 struct per_cpu_pages *pcp;
3997
3998 pcp = &p->pcp;
3999 pcp->high = high;
4000 pcp->batch = max(1UL, high/4);
4001 if ((high/4) > (PAGE_SHIFT * 8))
4002 pcp->batch = PAGE_SHIFT * 8;
4003}
4004
4005static void __meminit setup_zone_pageset(struct zone *zone)
4006{
4007 int cpu;
4008
4009 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4010
4011 for_each_possible_cpu(cpu) {
4012 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4013
4014 setup_pageset(pcp, zone_batchsize(zone));
4015
4016 if (percpu_pagelist_fraction)
4017 setup_pagelist_highmark(pcp,
4018 (zone->present_pages /
4019 percpu_pagelist_fraction));
4020 }
4021}
4022
4023/*
4024 * Allocate per cpu pagesets and initialize them.
4025 * Before this call only boot pagesets were available.
4026 */
4027void __init setup_per_cpu_pageset(void)
4028{
4029 struct zone *zone;
4030
4031 for_each_populated_zone(zone)
4032 setup_zone_pageset(zone);
4033}
4034
4035static noinline __init_refok
4036int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4037{
4038 int i;
4039 struct pglist_data *pgdat = zone->zone_pgdat;
4040 size_t alloc_size;
4041
4042 /*
4043 * The per-page waitqueue mechanism uses hashed waitqueues
4044 * per zone.
4045 */
4046 zone->wait_table_hash_nr_entries =
4047 wait_table_hash_nr_entries(zone_size_pages);
4048 zone->wait_table_bits =
4049 wait_table_bits(zone->wait_table_hash_nr_entries);
4050 alloc_size = zone->wait_table_hash_nr_entries
4051 * sizeof(wait_queue_head_t);
4052
4053 if (!slab_is_available()) {
4054 zone->wait_table = (wait_queue_head_t *)
4055 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4056 } else {
4057 /*
4058 * This case means that a zone whose size was 0 gets new memory
4059 * via memory hot-add.
4060 * But it may be the case that a new node was hot-added. In
4061 * this case vmalloc() will not be able to use this new node's
4062 * memory - this wait_table must be initialized to use this new
4063 * node itself as well.
4064 * To use this new node's memory, further consideration will be
4065 * necessary.
4066 */
4067 zone->wait_table = vmalloc(alloc_size);
4068 }
4069 if (!zone->wait_table)
4070 return -ENOMEM;
4071
4072 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4073 init_waitqueue_head(zone->wait_table + i);
4074
4075 return 0;
4076}
4077
4078static __meminit void zone_pcp_init(struct zone *zone)
4079{
4080 /*
4081 * per cpu subsystem is not up at this point. The following code
4082 * relies on the ability of the linker to provide the
4083 * offset of a (static) per cpu variable into the per cpu area.
4084 */
4085 zone->pageset = &boot_pageset;
4086
4087 if (zone->present_pages)
4088 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4089 zone->name, zone->present_pages,
4090 zone_batchsize(zone));
4091}
4092
4093int __meminit init_currently_empty_zone(struct zone *zone,
4094 unsigned long zone_start_pfn,
4095 unsigned long size,
4096 enum memmap_context context)
4097{
4098 struct pglist_data *pgdat = zone->zone_pgdat;
4099 int ret;
4100 ret = zone_wait_table_init(zone, size);
4101 if (ret)
4102 return ret;
4103 pgdat->nr_zones = zone_idx(zone) + 1;
4104
4105 zone->zone_start_pfn = zone_start_pfn;
4106
4107 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4108 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4109 pgdat->node_id,
4110 (unsigned long)zone_idx(zone),
4111 zone_start_pfn, (zone_start_pfn + size));
4112
4113 zone_init_free_lists(zone);
4114
4115 return 0;
4116}
4117
4118#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4119#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4120/*
4121 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4122 * Architectures may implement their own version but if add_active_range()
4123 * was used and there are no special requirements, this is a convenient
4124 * alternative
4125 */
4126int __meminit __early_pfn_to_nid(unsigned long pfn)
4127{
4128 unsigned long start_pfn, end_pfn;
4129 int i, nid;
4130
4131 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4132 if (start_pfn <= pfn && pfn < end_pfn)
4133 return nid;
4134 /* This is a memory hole */
4135 return -1;
4136}
4137#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4138
4139int __meminit early_pfn_to_nid(unsigned long pfn)
4140{
4141 int nid;
4142
4143 nid = __early_pfn_to_nid(pfn);
4144 if (nid >= 0)
4145 return nid;
4146 /* just returns 0 */
4147 return 0;
4148}
4149
4150#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4151bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4152{
4153 int nid;
4154
4155 nid = __early_pfn_to_nid(pfn);
4156 if (nid >= 0 && nid != node)
4157 return false;
4158 return true;
4159}
4160#endif
4161
4162/**
4163 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4164 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4165 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4166 *
4167 * If an architecture guarantees that all ranges registered with
4168 * add_active_ranges() contain no holes and may be freed, this
4169 * this function may be used instead of calling free_bootmem() manually.
4170 */
4171void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4172{
4173 unsigned long start_pfn, end_pfn;
4174 int i, this_nid;
4175
4176 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4177 start_pfn = min(start_pfn, max_low_pfn);
4178 end_pfn = min(end_pfn, max_low_pfn);
4179
4180 if (start_pfn < end_pfn)
4181 free_bootmem_node(NODE_DATA(this_nid),
4182 PFN_PHYS(start_pfn),
4183 (end_pfn - start_pfn) << PAGE_SHIFT);
4184 }
4185}
4186
4187/**
4188 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4189 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4190 *
4191 * If an architecture guarantees that all ranges registered with
4192 * add_active_ranges() contain no holes and may be freed, this
4193 * function may be used instead of calling memory_present() manually.
4194 */
4195void __init sparse_memory_present_with_active_regions(int nid)
4196{
4197 unsigned long start_pfn, end_pfn;
4198 int i, this_nid;
4199
4200 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4201 memory_present(this_nid, start_pfn, end_pfn);
4202}
4203
4204/**
4205 * get_pfn_range_for_nid - Return the start and end page frames for a node
4206 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4207 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4208 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4209 *
4210 * It returns the start and end page frame of a node based on information
4211 * provided by an arch calling add_active_range(). If called for a node
4212 * with no available memory, a warning is printed and the start and end
4213 * PFNs will be 0.
4214 */
4215void __meminit get_pfn_range_for_nid(unsigned int nid,
4216 unsigned long *start_pfn, unsigned long *end_pfn)
4217{
4218 unsigned long this_start_pfn, this_end_pfn;
4219 int i;
4220
4221 *start_pfn = -1UL;
4222 *end_pfn = 0;
4223
4224 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4225 *start_pfn = min(*start_pfn, this_start_pfn);
4226 *end_pfn = max(*end_pfn, this_end_pfn);
4227 }
4228
4229 if (*start_pfn == -1UL)
4230 *start_pfn = 0;
4231}
4232
4233/*
4234 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4235 * assumption is made that zones within a node are ordered in monotonic
4236 * increasing memory addresses so that the "highest" populated zone is used
4237 */
4238static void __init find_usable_zone_for_movable(void)
4239{
4240 int zone_index;
4241 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4242 if (zone_index == ZONE_MOVABLE)
4243 continue;
4244
4245 if (arch_zone_highest_possible_pfn[zone_index] >
4246 arch_zone_lowest_possible_pfn[zone_index])
4247 break;
4248 }
4249
4250 VM_BUG_ON(zone_index == -1);
4251 movable_zone = zone_index;
4252}
4253
4254/*
4255 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4256 * because it is sized independent of architecture. Unlike the other zones,
4257 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4258 * in each node depending on the size of each node and how evenly kernelcore
4259 * is distributed. This helper function adjusts the zone ranges
4260 * provided by the architecture for a given node by using the end of the
4261 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4262 * zones within a node are in order of monotonic increases memory addresses
4263 */
4264static void __meminit adjust_zone_range_for_zone_movable(int nid,
4265 unsigned long zone_type,
4266 unsigned long node_start_pfn,
4267 unsigned long node_end_pfn,
4268 unsigned long *zone_start_pfn,
4269 unsigned long *zone_end_pfn)
4270{
4271 /* Only adjust if ZONE_MOVABLE is on this node */
4272 if (zone_movable_pfn[nid]) {
4273 /* Size ZONE_MOVABLE */
4274 if (zone_type == ZONE_MOVABLE) {
4275 *zone_start_pfn = zone_movable_pfn[nid];
4276 *zone_end_pfn = min(node_end_pfn,
4277 arch_zone_highest_possible_pfn[movable_zone]);
4278
4279 /* Adjust for ZONE_MOVABLE starting within this range */
4280 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4281 *zone_end_pfn > zone_movable_pfn[nid]) {
4282 *zone_end_pfn = zone_movable_pfn[nid];
4283
4284 /* Check if this whole range is within ZONE_MOVABLE */
4285 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4286 *zone_start_pfn = *zone_end_pfn;
4287 }
4288}
4289
4290/*
4291 * Return the number of pages a zone spans in a node, including holes
4292 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4293 */
4294static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4295 unsigned long zone_type,
4296 unsigned long *ignored)
4297{
4298 unsigned long node_start_pfn, node_end_pfn;
4299 unsigned long zone_start_pfn, zone_end_pfn;
4300
4301 /* Get the start and end of the node and zone */
4302 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4303 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4304 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4305 adjust_zone_range_for_zone_movable(nid, zone_type,
4306 node_start_pfn, node_end_pfn,
4307 &zone_start_pfn, &zone_end_pfn);
4308
4309 /* Check that this node has pages within the zone's required range */
4310 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4311 return 0;
4312
4313 /* Move the zone boundaries inside the node if necessary */
4314 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4315 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4316
4317 /* Return the spanned pages */
4318 return zone_end_pfn - zone_start_pfn;
4319}
4320
4321/*
4322 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4323 * then all holes in the requested range will be accounted for.
4324 */
4325unsigned long __meminit __absent_pages_in_range(int nid,
4326 unsigned long range_start_pfn,
4327 unsigned long range_end_pfn)
4328{
4329 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4330 unsigned long start_pfn, end_pfn;
4331 int i;
4332
4333 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4334 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4335 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4336 nr_absent -= end_pfn - start_pfn;
4337 }
4338 return nr_absent;
4339}
4340
4341/**
4342 * absent_pages_in_range - Return number of page frames in holes within a range
4343 * @start_pfn: The start PFN to start searching for holes
4344 * @end_pfn: The end PFN to stop searching for holes
4345 *
4346 * It returns the number of pages frames in memory holes within a range.
4347 */
4348unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4349 unsigned long end_pfn)
4350{
4351 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4352}
4353
4354/* Return the number of page frames in holes in a zone on a node */
4355static unsigned long __meminit zone_absent_pages_in_node(int nid,
4356 unsigned long zone_type,
4357 unsigned long *ignored)
4358{
4359 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4360 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4361 unsigned long node_start_pfn, node_end_pfn;
4362 unsigned long zone_start_pfn, zone_end_pfn;
4363
4364 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4365 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4366 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4367
4368 adjust_zone_range_for_zone_movable(nid, zone_type,
4369 node_start_pfn, node_end_pfn,
4370 &zone_start_pfn, &zone_end_pfn);
4371 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4372}
4373
4374#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4375static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4376 unsigned long zone_type,
4377 unsigned long *zones_size)
4378{
4379 return zones_size[zone_type];
4380}
4381
4382static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4383 unsigned long zone_type,
4384 unsigned long *zholes_size)
4385{
4386 if (!zholes_size)
4387 return 0;
4388
4389 return zholes_size[zone_type];
4390}
4391
4392#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4393
4394static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4395 unsigned long *zones_size, unsigned long *zholes_size)
4396{
4397 unsigned long realtotalpages, totalpages = 0;
4398 enum zone_type i;
4399
4400 for (i = 0; i < MAX_NR_ZONES; i++)
4401 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4402 zones_size);
4403 pgdat->node_spanned_pages = totalpages;
4404
4405 realtotalpages = totalpages;
4406 for (i = 0; i < MAX_NR_ZONES; i++)
4407 realtotalpages -=
4408 zone_absent_pages_in_node(pgdat->node_id, i,
4409 zholes_size);
4410 pgdat->node_present_pages = realtotalpages;
4411 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4412 realtotalpages);
4413}
4414
4415#ifndef CONFIG_SPARSEMEM
4416/*
4417 * Calculate the size of the zone->blockflags rounded to an unsigned long
4418 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4419 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4420 * round what is now in bits to nearest long in bits, then return it in
4421 * bytes.
4422 */
4423static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4424{
4425 unsigned long usemapsize;
4426
4427 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4428 usemapsize = roundup(zonesize, pageblock_nr_pages);
4429 usemapsize = usemapsize >> pageblock_order;
4430 usemapsize *= NR_PAGEBLOCK_BITS;
4431 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4432
4433 return usemapsize / 8;
4434}
4435
4436static void __init setup_usemap(struct pglist_data *pgdat,
4437 struct zone *zone,
4438 unsigned long zone_start_pfn,
4439 unsigned long zonesize)
4440{
4441 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4442 zone->pageblock_flags = NULL;
4443 if (usemapsize)
4444 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4445 usemapsize);
4446}
4447#else
4448static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4449 unsigned long zone_start_pfn, unsigned long zonesize) {}
4450#endif /* CONFIG_SPARSEMEM */
4451
4452#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4453
4454/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4455void __init set_pageblock_order(void)
4456{
4457 unsigned int order;
4458
4459 /* Check that pageblock_nr_pages has not already been setup */
4460 if (pageblock_order)
4461 return;
4462
4463 if (HPAGE_SHIFT > PAGE_SHIFT)
4464 order = HUGETLB_PAGE_ORDER;
4465 else
4466 order = MAX_ORDER - 1;
4467
4468 /*
4469 * Assume the largest contiguous order of interest is a huge page.
4470 * This value may be variable depending on boot parameters on IA64 and
4471 * powerpc.
4472 */
4473 pageblock_order = order;
4474}
4475#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4476
4477/*
4478 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4479 * is unused as pageblock_order is set at compile-time. See
4480 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4481 * the kernel config
4482 */
4483void __init set_pageblock_order(void)
4484{
4485}
4486
4487#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4488
4489static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4490 unsigned long present_pages)
4491{
4492 unsigned long pages = spanned_pages;
4493
4494 /*
4495 * Provide a more accurate estimation if there are holes within
4496 * the zone and SPARSEMEM is in use. If there are holes within the
4497 * zone, each populated memory region may cost us one or two extra
4498 * memmap pages due to alignment because memmap pages for each
4499 * populated regions may not naturally algined on page boundary.
4500 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4501 */
4502 if (spanned_pages > present_pages + (present_pages >> 4) &&
4503 IS_ENABLED(CONFIG_SPARSEMEM))
4504 pages = present_pages;
4505
4506 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4507}
4508
4509/*
4510 * Set up the zone data structures:
4511 * - mark all pages reserved
4512 * - mark all memory queues empty
4513 * - clear the memory bitmaps
4514 *
4515 * NOTE: pgdat should get zeroed by caller.
4516 */
4517static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4518 unsigned long *zones_size, unsigned long *zholes_size)
4519{
4520 enum zone_type j;
4521 int nid = pgdat->node_id;
4522 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4523 int ret;
4524
4525 pgdat_resize_init(pgdat);
4526#ifdef CONFIG_NUMA_BALANCING
4527 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4528 pgdat->numabalancing_migrate_nr_pages = 0;
4529 pgdat->numabalancing_migrate_next_window = jiffies;
4530#endif
4531 init_waitqueue_head(&pgdat->kswapd_wait);
4532 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4533 pgdat_page_cgroup_init(pgdat);
4534
4535 for (j = 0; j < MAX_NR_ZONES; j++) {
4536 struct zone *zone = pgdat->node_zones + j;
4537 unsigned long size, realsize, freesize, memmap_pages;
4538
4539 size = zone_spanned_pages_in_node(nid, j, zones_size);
4540 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4541 zholes_size);
4542
4543 /*
4544 * Adjust freesize so that it accounts for how much memory
4545 * is used by this zone for memmap. This affects the watermark
4546 * and per-cpu initialisations
4547 */
4548 memmap_pages = calc_memmap_size(size, realsize);
4549 if (freesize >= memmap_pages) {
4550 freesize -= memmap_pages;
4551 if (memmap_pages)
4552 printk(KERN_DEBUG
4553 " %s zone: %lu pages used for memmap\n",
4554 zone_names[j], memmap_pages);
4555 } else
4556 printk(KERN_WARNING
4557 " %s zone: %lu pages exceeds freesize %lu\n",
4558 zone_names[j], memmap_pages, freesize);
4559
4560 /* Account for reserved pages */
4561 if (j == 0 && freesize > dma_reserve) {
4562 freesize -= dma_reserve;
4563 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4564 zone_names[0], dma_reserve);
4565 }
4566
4567 if (!is_highmem_idx(j))
4568 nr_kernel_pages += freesize;
4569 /* Charge for highmem memmap if there are enough kernel pages */
4570 else if (nr_kernel_pages > memmap_pages * 2)
4571 nr_kernel_pages -= memmap_pages;
4572 nr_all_pages += freesize;
4573
4574 zone->spanned_pages = size;
4575 zone->present_pages = freesize;
4576 /*
4577 * Set an approximate value for lowmem here, it will be adjusted
4578 * when the bootmem allocator frees pages into the buddy system.
4579 * And all highmem pages will be managed by the buddy system.
4580 */
4581 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4582#ifdef CONFIG_NUMA
4583 zone->node = nid;
4584 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4585 / 100;
4586 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4587#endif
4588 zone->name = zone_names[j];
4589 spin_lock_init(&zone->lock);
4590 spin_lock_init(&zone->lru_lock);
4591 zone_seqlock_init(zone);
4592 zone->zone_pgdat = pgdat;
4593
4594 zone_pcp_init(zone);
4595 lruvec_init(&zone->lruvec);
4596 if (!size)
4597 continue;
4598
4599 set_pageblock_order();
4600 setup_usemap(pgdat, zone, zone_start_pfn, size);
4601 ret = init_currently_empty_zone(zone, zone_start_pfn,
4602 size, MEMMAP_EARLY);
4603 BUG_ON(ret);
4604 memmap_init(size, nid, j, zone_start_pfn);
4605 zone_start_pfn += size;
4606 }
4607}
4608
4609static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4610{
4611 /* Skip empty nodes */
4612 if (!pgdat->node_spanned_pages)
4613 return;
4614
4615#ifdef CONFIG_FLAT_NODE_MEM_MAP
4616 /* ia64 gets its own node_mem_map, before this, without bootmem */
4617 if (!pgdat->node_mem_map) {
4618 unsigned long size, start, end;
4619 struct page *map;
4620
4621 /*
4622 * The zone's endpoints aren't required to be MAX_ORDER
4623 * aligned but the node_mem_map endpoints must be in order
4624 * for the buddy allocator to function correctly.
4625 */
4626 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4627 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4628 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4629 size = (end - start) * sizeof(struct page);
4630 map = alloc_remap(pgdat->node_id, size);
4631 if (!map)
4632 map = alloc_bootmem_node_nopanic(pgdat, size);
4633 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4634 }
4635#ifndef CONFIG_NEED_MULTIPLE_NODES
4636 /*
4637 * With no DISCONTIG, the global mem_map is just set as node 0's
4638 */
4639 if (pgdat == NODE_DATA(0)) {
4640 mem_map = NODE_DATA(0)->node_mem_map;
4641#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4642 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4643 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4644#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4645 }
4646#endif
4647#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4648}
4649
4650void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4651 unsigned long node_start_pfn, unsigned long *zholes_size)
4652{
4653 pg_data_t *pgdat = NODE_DATA(nid);
4654
4655 /* pg_data_t should be reset to zero when it's allocated */
4656 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4657
4658 pgdat->node_id = nid;
4659 pgdat->node_start_pfn = node_start_pfn;
4660 init_zone_allows_reclaim(nid);
4661 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4662
4663 alloc_node_mem_map(pgdat);
4664#ifdef CONFIG_FLAT_NODE_MEM_MAP
4665 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4666 nid, (unsigned long)pgdat,
4667 (unsigned long)pgdat->node_mem_map);
4668#endif
4669
4670 free_area_init_core(pgdat, zones_size, zholes_size);
4671}
4672
4673#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4674
4675#if MAX_NUMNODES > 1
4676/*
4677 * Figure out the number of possible node ids.
4678 */
4679static void __init setup_nr_node_ids(void)
4680{
4681 unsigned int node;
4682 unsigned int highest = 0;
4683
4684 for_each_node_mask(node, node_possible_map)
4685 highest = node;
4686 nr_node_ids = highest + 1;
4687}
4688#else
4689static inline void setup_nr_node_ids(void)
4690{
4691}
4692#endif
4693
4694/**
4695 * node_map_pfn_alignment - determine the maximum internode alignment
4696 *
4697 * This function should be called after node map is populated and sorted.
4698 * It calculates the maximum power of two alignment which can distinguish
4699 * all the nodes.
4700 *
4701 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4702 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4703 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4704 * shifted, 1GiB is enough and this function will indicate so.
4705 *
4706 * This is used to test whether pfn -> nid mapping of the chosen memory
4707 * model has fine enough granularity to avoid incorrect mapping for the
4708 * populated node map.
4709 *
4710 * Returns the determined alignment in pfn's. 0 if there is no alignment
4711 * requirement (single node).
4712 */
4713unsigned long __init node_map_pfn_alignment(void)
4714{
4715 unsigned long accl_mask = 0, last_end = 0;
4716 unsigned long start, end, mask;
4717 int last_nid = -1;
4718 int i, nid;
4719
4720 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4721 if (!start || last_nid < 0 || last_nid == nid) {
4722 last_nid = nid;
4723 last_end = end;
4724 continue;
4725 }
4726
4727 /*
4728 * Start with a mask granular enough to pin-point to the
4729 * start pfn and tick off bits one-by-one until it becomes
4730 * too coarse to separate the current node from the last.
4731 */
4732 mask = ~((1 << __ffs(start)) - 1);
4733 while (mask && last_end <= (start & (mask << 1)))
4734 mask <<= 1;
4735
4736 /* accumulate all internode masks */
4737 accl_mask |= mask;
4738 }
4739
4740 /* convert mask to number of pages */
4741 return ~accl_mask + 1;
4742}
4743
4744/* Find the lowest pfn for a node */
4745static unsigned long __init find_min_pfn_for_node(int nid)
4746{
4747 unsigned long min_pfn = ULONG_MAX;
4748 unsigned long start_pfn;
4749 int i;
4750
4751 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4752 min_pfn = min(min_pfn, start_pfn);
4753
4754 if (min_pfn == ULONG_MAX) {
4755 printk(KERN_WARNING
4756 "Could not find start_pfn for node %d\n", nid);
4757 return 0;
4758 }
4759
4760 return min_pfn;
4761}
4762
4763/**
4764 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4765 *
4766 * It returns the minimum PFN based on information provided via
4767 * add_active_range().
4768 */
4769unsigned long __init find_min_pfn_with_active_regions(void)
4770{
4771 return find_min_pfn_for_node(MAX_NUMNODES);
4772}
4773
4774/*
4775 * early_calculate_totalpages()
4776 * Sum pages in active regions for movable zone.
4777 * Populate N_MEMORY for calculating usable_nodes.
4778 */
4779static unsigned long __init early_calculate_totalpages(void)
4780{
4781 unsigned long totalpages = 0;
4782 unsigned long start_pfn, end_pfn;
4783 int i, nid;
4784
4785 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4786 unsigned long pages = end_pfn - start_pfn;
4787
4788 totalpages += pages;
4789 if (pages)
4790 node_set_state(nid, N_MEMORY);
4791 }
4792 return totalpages;
4793}
4794
4795/*
4796 * Find the PFN the Movable zone begins in each node. Kernel memory
4797 * is spread evenly between nodes as long as the nodes have enough
4798 * memory. When they don't, some nodes will have more kernelcore than
4799 * others
4800 */
4801static void __init find_zone_movable_pfns_for_nodes(void)
4802{
4803 int i, nid;
4804 unsigned long usable_startpfn;
4805 unsigned long kernelcore_node, kernelcore_remaining;
4806 /* save the state before borrow the nodemask */
4807 nodemask_t saved_node_state = node_states[N_MEMORY];
4808 unsigned long totalpages = early_calculate_totalpages();
4809 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4810
4811 /*
4812 * If movablecore was specified, calculate what size of
4813 * kernelcore that corresponds so that memory usable for
4814 * any allocation type is evenly spread. If both kernelcore
4815 * and movablecore are specified, then the value of kernelcore
4816 * will be used for required_kernelcore if it's greater than
4817 * what movablecore would have allowed.
4818 */
4819 if (required_movablecore) {
4820 unsigned long corepages;
4821
4822 /*
4823 * Round-up so that ZONE_MOVABLE is at least as large as what
4824 * was requested by the user
4825 */
4826 required_movablecore =
4827 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4828 corepages = totalpages - required_movablecore;
4829
4830 required_kernelcore = max(required_kernelcore, corepages);
4831 }
4832
4833 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4834 if (!required_kernelcore)
4835 goto out;
4836
4837 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4838 find_usable_zone_for_movable();
4839 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4840
4841restart:
4842 /* Spread kernelcore memory as evenly as possible throughout nodes */
4843 kernelcore_node = required_kernelcore / usable_nodes;
4844 for_each_node_state(nid, N_MEMORY) {
4845 unsigned long start_pfn, end_pfn;
4846
4847 /*
4848 * Recalculate kernelcore_node if the division per node
4849 * now exceeds what is necessary to satisfy the requested
4850 * amount of memory for the kernel
4851 */
4852 if (required_kernelcore < kernelcore_node)
4853 kernelcore_node = required_kernelcore / usable_nodes;
4854
4855 /*
4856 * As the map is walked, we track how much memory is usable
4857 * by the kernel using kernelcore_remaining. When it is
4858 * 0, the rest of the node is usable by ZONE_MOVABLE
4859 */
4860 kernelcore_remaining = kernelcore_node;
4861
4862 /* Go through each range of PFNs within this node */
4863 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4864 unsigned long size_pages;
4865
4866 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4867 if (start_pfn >= end_pfn)
4868 continue;
4869
4870 /* Account for what is only usable for kernelcore */
4871 if (start_pfn < usable_startpfn) {
4872 unsigned long kernel_pages;
4873 kernel_pages = min(end_pfn, usable_startpfn)
4874 - start_pfn;
4875
4876 kernelcore_remaining -= min(kernel_pages,
4877 kernelcore_remaining);
4878 required_kernelcore -= min(kernel_pages,
4879 required_kernelcore);
4880
4881 /* Continue if range is now fully accounted */
4882 if (end_pfn <= usable_startpfn) {
4883
4884 /*
4885 * Push zone_movable_pfn to the end so
4886 * that if we have to rebalance
4887 * kernelcore across nodes, we will
4888 * not double account here
4889 */
4890 zone_movable_pfn[nid] = end_pfn;
4891 continue;
4892 }
4893 start_pfn = usable_startpfn;
4894 }
4895
4896 /*
4897 * The usable PFN range for ZONE_MOVABLE is from
4898 * start_pfn->end_pfn. Calculate size_pages as the
4899 * number of pages used as kernelcore
4900 */
4901 size_pages = end_pfn - start_pfn;
4902 if (size_pages > kernelcore_remaining)
4903 size_pages = kernelcore_remaining;
4904 zone_movable_pfn[nid] = start_pfn + size_pages;
4905
4906 /*
4907 * Some kernelcore has been met, update counts and
4908 * break if the kernelcore for this node has been
4909 * satisified
4910 */
4911 required_kernelcore -= min(required_kernelcore,
4912 size_pages);
4913 kernelcore_remaining -= size_pages;
4914 if (!kernelcore_remaining)
4915 break;
4916 }
4917 }
4918
4919 /*
4920 * If there is still required_kernelcore, we do another pass with one
4921 * less node in the count. This will push zone_movable_pfn[nid] further
4922 * along on the nodes that still have memory until kernelcore is
4923 * satisified
4924 */
4925 usable_nodes--;
4926 if (usable_nodes && required_kernelcore > usable_nodes)
4927 goto restart;
4928
4929 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4930 for (nid = 0; nid < MAX_NUMNODES; nid++)
4931 zone_movable_pfn[nid] =
4932 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4933
4934out:
4935 /* restore the node_state */
4936 node_states[N_MEMORY] = saved_node_state;
4937}
4938
4939/* Any regular or high memory on that node ? */
4940static void check_for_memory(pg_data_t *pgdat, int nid)
4941{
4942 enum zone_type zone_type;
4943
4944 if (N_MEMORY == N_NORMAL_MEMORY)
4945 return;
4946
4947 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4948 struct zone *zone = &pgdat->node_zones[zone_type];
4949 if (zone->present_pages) {
4950 node_set_state(nid, N_HIGH_MEMORY);
4951 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4952 zone_type <= ZONE_NORMAL)
4953 node_set_state(nid, N_NORMAL_MEMORY);
4954 break;
4955 }
4956 }
4957}
4958
4959/**
4960 * free_area_init_nodes - Initialise all pg_data_t and zone data
4961 * @max_zone_pfn: an array of max PFNs for each zone
4962 *
4963 * This will call free_area_init_node() for each active node in the system.
4964 * Using the page ranges provided by add_active_range(), the size of each
4965 * zone in each node and their holes is calculated. If the maximum PFN
4966 * between two adjacent zones match, it is assumed that the zone is empty.
4967 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4968 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4969 * starts where the previous one ended. For example, ZONE_DMA32 starts
4970 * at arch_max_dma_pfn.
4971 */
4972void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4973{
4974 unsigned long start_pfn, end_pfn;
4975 int i, nid;
4976
4977 /* Record where the zone boundaries are */
4978 memset(arch_zone_lowest_possible_pfn, 0,
4979 sizeof(arch_zone_lowest_possible_pfn));
4980 memset(arch_zone_highest_possible_pfn, 0,
4981 sizeof(arch_zone_highest_possible_pfn));
4982 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4983 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4984 for (i = 1; i < MAX_NR_ZONES; i++) {
4985 if (i == ZONE_MOVABLE)
4986 continue;
4987 arch_zone_lowest_possible_pfn[i] =
4988 arch_zone_highest_possible_pfn[i-1];
4989 arch_zone_highest_possible_pfn[i] =
4990 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4991 }
4992 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4993 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4994
4995 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4996 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4997 find_zone_movable_pfns_for_nodes();
4998
4999 /* Print out the zone ranges */
5000 printk("Zone ranges:\n");
5001 for (i = 0; i < MAX_NR_ZONES; i++) {
5002 if (i == ZONE_MOVABLE)
5003 continue;
5004 printk(KERN_CONT " %-8s ", zone_names[i]);
5005 if (arch_zone_lowest_possible_pfn[i] ==
5006 arch_zone_highest_possible_pfn[i])
5007 printk(KERN_CONT "empty\n");
5008 else
5009 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5010 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5011 (arch_zone_highest_possible_pfn[i]
5012 << PAGE_SHIFT) - 1);
5013 }
5014
5015 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5016 printk("Movable zone start for each node\n");
5017 for (i = 0; i < MAX_NUMNODES; i++) {
5018 if (zone_movable_pfn[i])
5019 printk(" Node %d: %#010lx\n", i,
5020 zone_movable_pfn[i] << PAGE_SHIFT);
5021 }
5022
5023 /* Print out the early node map */
5024 printk("Early memory node ranges\n");
5025 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5026 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5027 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5028
5029 /* Initialise every node */
5030 mminit_verify_pageflags_layout();
5031 setup_nr_node_ids();
5032 for_each_online_node(nid) {
5033 pg_data_t *pgdat = NODE_DATA(nid);
5034 free_area_init_node(nid, NULL,
5035 find_min_pfn_for_node(nid), NULL);
5036
5037 /* Any memory on that node */
5038 if (pgdat->node_present_pages)
5039 node_set_state(nid, N_MEMORY);
5040 check_for_memory(pgdat, nid);
5041 }
5042}
5043
5044static int __init cmdline_parse_core(char *p, unsigned long *core)
5045{
5046 unsigned long long coremem;
5047 if (!p)
5048 return -EINVAL;
5049
5050 coremem = memparse(p, &p);
5051 *core = coremem >> PAGE_SHIFT;
5052
5053 /* Paranoid check that UL is enough for the coremem value */
5054 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5055
5056 return 0;
5057}
5058
5059/*
5060 * kernelcore=size sets the amount of memory for use for allocations that
5061 * cannot be reclaimed or migrated.
5062 */
5063static int __init cmdline_parse_kernelcore(char *p)
5064{
5065 return cmdline_parse_core(p, &required_kernelcore);
5066}
5067
5068/*
5069 * movablecore=size sets the amount of memory for use for allocations that
5070 * can be reclaimed or migrated.
5071 */
5072static int __init cmdline_parse_movablecore(char *p)
5073{
5074 return cmdline_parse_core(p, &required_movablecore);
5075}
5076
5077early_param("kernelcore", cmdline_parse_kernelcore);
5078early_param("movablecore", cmdline_parse_movablecore);
5079
5080#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5081
5082/**
5083 * set_dma_reserve - set the specified number of pages reserved in the first zone
5084 * @new_dma_reserve: The number of pages to mark reserved
5085 *
5086 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5087 * In the DMA zone, a significant percentage may be consumed by kernel image
5088 * and other unfreeable allocations which can skew the watermarks badly. This
5089 * function may optionally be used to account for unfreeable pages in the
5090 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5091 * smaller per-cpu batchsize.
5092 */
5093void __init set_dma_reserve(unsigned long new_dma_reserve)
5094{
5095 dma_reserve = new_dma_reserve;
5096}
5097
5098void __init free_area_init(unsigned long *zones_size)
5099{
5100 free_area_init_node(0, zones_size,
5101 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5102}
5103
5104static int page_alloc_cpu_notify(struct notifier_block *self,
5105 unsigned long action, void *hcpu)
5106{
5107 int cpu = (unsigned long)hcpu;
5108
5109 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5110 lru_add_drain_cpu(cpu);
5111 drain_pages(cpu);
5112
5113 /*
5114 * Spill the event counters of the dead processor
5115 * into the current processors event counters.
5116 * This artificially elevates the count of the current
5117 * processor.
5118 */
5119 vm_events_fold_cpu(cpu);
5120
5121 /*
5122 * Zero the differential counters of the dead processor
5123 * so that the vm statistics are consistent.
5124 *
5125 * This is only okay since the processor is dead and cannot
5126 * race with what we are doing.
5127 */
5128 refresh_cpu_vm_stats(cpu);
5129 }
5130 return NOTIFY_OK;
5131}
5132
5133void __init page_alloc_init(void)
5134{
5135 hotcpu_notifier(page_alloc_cpu_notify, 0);
5136}
5137
5138/*
5139 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5140 * or min_free_kbytes changes.
5141 */
5142static void calculate_totalreserve_pages(void)
5143{
5144 struct pglist_data *pgdat;
5145 unsigned long reserve_pages = 0;
5146 enum zone_type i, j;
5147
5148 for_each_online_pgdat(pgdat) {
5149 for (i = 0; i < MAX_NR_ZONES; i++) {
5150 struct zone *zone = pgdat->node_zones + i;
5151 unsigned long max = 0;
5152
5153 /* Find valid and maximum lowmem_reserve in the zone */
5154 for (j = i; j < MAX_NR_ZONES; j++) {
5155 if (zone->lowmem_reserve[j] > max)
5156 max = zone->lowmem_reserve[j];
5157 }
5158
5159 /* we treat the high watermark as reserved pages. */
5160 max += high_wmark_pages(zone);
5161
5162 if (max > zone->present_pages)
5163 max = zone->present_pages;
5164 reserve_pages += max;
5165 /*
5166 * Lowmem reserves are not available to
5167 * GFP_HIGHUSER page cache allocations and
5168 * kswapd tries to balance zones to their high
5169 * watermark. As a result, neither should be
5170 * regarded as dirtyable memory, to prevent a
5171 * situation where reclaim has to clean pages
5172 * in order to balance the zones.
5173 */
5174 zone->dirty_balance_reserve = max;
5175 }
5176 }
5177 dirty_balance_reserve = reserve_pages;
5178 totalreserve_pages = reserve_pages;
5179}
5180
5181/*
5182 * setup_per_zone_lowmem_reserve - called whenever
5183 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5184 * has a correct pages reserved value, so an adequate number of
5185 * pages are left in the zone after a successful __alloc_pages().
5186 */
5187static void setup_per_zone_lowmem_reserve(void)
5188{
5189 struct pglist_data *pgdat;
5190 enum zone_type j, idx;
5191
5192 for_each_online_pgdat(pgdat) {
5193 for (j = 0; j < MAX_NR_ZONES; j++) {
5194 struct zone *zone = pgdat->node_zones + j;
5195 unsigned long present_pages = zone->present_pages;
5196
5197 zone->lowmem_reserve[j] = 0;
5198
5199 idx = j;
5200 while (idx) {
5201 struct zone *lower_zone;
5202
5203 idx--;
5204
5205 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5206 sysctl_lowmem_reserve_ratio[idx] = 1;
5207
5208 lower_zone = pgdat->node_zones + idx;
5209 lower_zone->lowmem_reserve[j] = present_pages /
5210 sysctl_lowmem_reserve_ratio[idx];
5211 present_pages += lower_zone->present_pages;
5212 }
5213 }
5214 }
5215
5216 /* update totalreserve_pages */
5217 calculate_totalreserve_pages();
5218}
5219
5220static void __setup_per_zone_wmarks(void)
5221{
5222 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5223 unsigned long lowmem_pages = 0;
5224 struct zone *zone;
5225 unsigned long flags;
5226
5227 /* Calculate total number of !ZONE_HIGHMEM pages */
5228 for_each_zone(zone) {
5229 if (!is_highmem(zone))
5230 lowmem_pages += zone->present_pages;
5231 }
5232
5233 for_each_zone(zone) {
5234 u64 tmp;
5235
5236 spin_lock_irqsave(&zone->lock, flags);
5237 tmp = (u64)pages_min * zone->present_pages;
5238 do_div(tmp, lowmem_pages);
5239 if (is_highmem(zone)) {
5240 /*
5241 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5242 * need highmem pages, so cap pages_min to a small
5243 * value here.
5244 *
5245 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5246 * deltas controls asynch page reclaim, and so should
5247 * not be capped for highmem.
5248 */
5249 int min_pages;
5250
5251 min_pages = zone->present_pages / 1024;
5252 if (min_pages < SWAP_CLUSTER_MAX)
5253 min_pages = SWAP_CLUSTER_MAX;
5254 if (min_pages > 128)
5255 min_pages = 128;
5256 zone->watermark[WMARK_MIN] = min_pages;
5257 } else {
5258 /*
5259 * If it's a lowmem zone, reserve a number of pages
5260 * proportionate to the zone's size.
5261 */
5262 zone->watermark[WMARK_MIN] = tmp;
5263 }
5264
5265 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5266 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5267
5268 setup_zone_migrate_reserve(zone);
5269 spin_unlock_irqrestore(&zone->lock, flags);
5270 }
5271
5272 /* update totalreserve_pages */
5273 calculate_totalreserve_pages();
5274}
5275
5276/**
5277 * setup_per_zone_wmarks - called when min_free_kbytes changes
5278 * or when memory is hot-{added|removed}
5279 *
5280 * Ensures that the watermark[min,low,high] values for each zone are set
5281 * correctly with respect to min_free_kbytes.
5282 */
5283void setup_per_zone_wmarks(void)
5284{
5285 mutex_lock(&zonelists_mutex);
5286 __setup_per_zone_wmarks();
5287 mutex_unlock(&zonelists_mutex);
5288}
5289
5290/*
5291 * The inactive anon list should be small enough that the VM never has to
5292 * do too much work, but large enough that each inactive page has a chance
5293 * to be referenced again before it is swapped out.
5294 *
5295 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5296 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5297 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5298 * the anonymous pages are kept on the inactive list.
5299 *
5300 * total target max
5301 * memory ratio inactive anon
5302 * -------------------------------------
5303 * 10MB 1 5MB
5304 * 100MB 1 50MB
5305 * 1GB 3 250MB
5306 * 10GB 10 0.9GB
5307 * 100GB 31 3GB
5308 * 1TB 101 10GB
5309 * 10TB 320 32GB
5310 */
5311static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5312{
5313 unsigned int gb, ratio;
5314
5315 /* Zone size in gigabytes */
5316 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5317 if (gb)
5318 ratio = int_sqrt(10 * gb);
5319 else
5320 ratio = 1;
5321
5322 zone->inactive_ratio = ratio;
5323}
5324
5325static void __meminit setup_per_zone_inactive_ratio(void)
5326{
5327 struct zone *zone;
5328
5329 for_each_zone(zone)
5330 calculate_zone_inactive_ratio(zone);
5331}
5332
5333/*
5334 * Initialise min_free_kbytes.
5335 *
5336 * For small machines we want it small (128k min). For large machines
5337 * we want it large (64MB max). But it is not linear, because network
5338 * bandwidth does not increase linearly with machine size. We use
5339 *
5340 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5341 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5342 *
5343 * which yields
5344 *
5345 * 16MB: 512k
5346 * 32MB: 724k
5347 * 64MB: 1024k
5348 * 128MB: 1448k
5349 * 256MB: 2048k
5350 * 512MB: 2896k
5351 * 1024MB: 4096k
5352 * 2048MB: 5792k
5353 * 4096MB: 8192k
5354 * 8192MB: 11584k
5355 * 16384MB: 16384k
5356 */
5357int __meminit init_per_zone_wmark_min(void)
5358{
5359 unsigned long lowmem_kbytes;
5360
5361 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5362
5363 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5364 if (min_free_kbytes < 128)
5365 min_free_kbytes = 128;
5366 if (min_free_kbytes > 65536)
5367 min_free_kbytes = 65536;
5368 setup_per_zone_wmarks();
5369 refresh_zone_stat_thresholds();
5370 setup_per_zone_lowmem_reserve();
5371 setup_per_zone_inactive_ratio();
5372 return 0;
5373}
5374module_init(init_per_zone_wmark_min)
5375
5376/*
5377 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5378 * that we can call two helper functions whenever min_free_kbytes
5379 * changes.
5380 */
5381int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5382 void __user *buffer, size_t *length, loff_t *ppos)
5383{
5384 proc_dointvec(table, write, buffer, length, ppos);
5385 if (write)
5386 setup_per_zone_wmarks();
5387 return 0;
5388}
5389
5390#ifdef CONFIG_NUMA
5391int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5392 void __user *buffer, size_t *length, loff_t *ppos)
5393{
5394 struct zone *zone;
5395 int rc;
5396
5397 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5398 if (rc)
5399 return rc;
5400
5401 for_each_zone(zone)
5402 zone->min_unmapped_pages = (zone->present_pages *
5403 sysctl_min_unmapped_ratio) / 100;
5404 return 0;
5405}
5406
5407int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5408 void __user *buffer, size_t *length, loff_t *ppos)
5409{
5410 struct zone *zone;
5411 int rc;
5412
5413 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5414 if (rc)
5415 return rc;
5416
5417 for_each_zone(zone)
5418 zone->min_slab_pages = (zone->present_pages *
5419 sysctl_min_slab_ratio) / 100;
5420 return 0;
5421}
5422#endif
5423
5424/*
5425 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5426 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5427 * whenever sysctl_lowmem_reserve_ratio changes.
5428 *
5429 * The reserve ratio obviously has absolutely no relation with the
5430 * minimum watermarks. The lowmem reserve ratio can only make sense
5431 * if in function of the boot time zone sizes.
5432 */
5433int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5434 void __user *buffer, size_t *length, loff_t *ppos)
5435{
5436 proc_dointvec_minmax(table, write, buffer, length, ppos);
5437 setup_per_zone_lowmem_reserve();
5438 return 0;
5439}
5440
5441/*
5442 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5443 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5444 * can have before it gets flushed back to buddy allocator.
5445 */
5446
5447int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5448 void __user *buffer, size_t *length, loff_t *ppos)
5449{
5450 struct zone *zone;
5451 unsigned int cpu;
5452 int ret;
5453
5454 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5455 if (!write || (ret < 0))
5456 return ret;
5457 for_each_populated_zone(zone) {
5458 for_each_possible_cpu(cpu) {
5459 unsigned long high;
5460 high = zone->present_pages / percpu_pagelist_fraction;
5461 setup_pagelist_highmark(
5462 per_cpu_ptr(zone->pageset, cpu), high);
5463 }
5464 }
5465 return 0;
5466}
5467
5468int hashdist = HASHDIST_DEFAULT;
5469
5470#ifdef CONFIG_NUMA
5471static int __init set_hashdist(char *str)
5472{
5473 if (!str)
5474 return 0;
5475 hashdist = simple_strtoul(str, &str, 0);
5476 return 1;
5477}
5478__setup("hashdist=", set_hashdist);
5479#endif
5480
5481/*
5482 * allocate a large system hash table from bootmem
5483 * - it is assumed that the hash table must contain an exact power-of-2
5484 * quantity of entries
5485 * - limit is the number of hash buckets, not the total allocation size
5486 */
5487void *__init alloc_large_system_hash(const char *tablename,
5488 unsigned long bucketsize,
5489 unsigned long numentries,
5490 int scale,
5491 int flags,
5492 unsigned int *_hash_shift,
5493 unsigned int *_hash_mask,
5494 unsigned long low_limit,
5495 unsigned long high_limit)
5496{
5497 unsigned long long max = high_limit;
5498 unsigned long log2qty, size;
5499 void *table = NULL;
5500
5501 /* allow the kernel cmdline to have a say */
5502 if (!numentries) {
5503 /* round applicable memory size up to nearest megabyte */
5504 numentries = nr_kernel_pages;
5505 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5506 numentries >>= 20 - PAGE_SHIFT;
5507 numentries <<= 20 - PAGE_SHIFT;
5508
5509 /* limit to 1 bucket per 2^scale bytes of low memory */
5510 if (scale > PAGE_SHIFT)
5511 numentries >>= (scale - PAGE_SHIFT);
5512 else
5513 numentries <<= (PAGE_SHIFT - scale);
5514
5515 /* Make sure we've got at least a 0-order allocation.. */
5516 if (unlikely(flags & HASH_SMALL)) {
5517 /* Makes no sense without HASH_EARLY */
5518 WARN_ON(!(flags & HASH_EARLY));
5519 if (!(numentries >> *_hash_shift)) {
5520 numentries = 1UL << *_hash_shift;
5521 BUG_ON(!numentries);
5522 }
5523 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5524 numentries = PAGE_SIZE / bucketsize;
5525 }
5526 numentries = roundup_pow_of_two(numentries);
5527
5528 /* limit allocation size to 1/16 total memory by default */
5529 if (max == 0) {
5530 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5531 do_div(max, bucketsize);
5532 }
5533 max = min(max, 0x80000000ULL);
5534
5535 if (numentries < low_limit)
5536 numentries = low_limit;
5537 if (numentries > max)
5538 numentries = max;
5539
5540 log2qty = ilog2(numentries);
5541
5542 do {
5543 size = bucketsize << log2qty;
5544 if (flags & HASH_EARLY)
5545 table = alloc_bootmem_nopanic(size);
5546 else if (hashdist)
5547 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5548 else {
5549 /*
5550 * If bucketsize is not a power-of-two, we may free
5551 * some pages at the end of hash table which
5552 * alloc_pages_exact() automatically does
5553 */
5554 if (get_order(size) < MAX_ORDER) {
5555 table = alloc_pages_exact(size, GFP_ATOMIC);
5556 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5557 }
5558 }
5559 } while (!table && size > PAGE_SIZE && --log2qty);
5560
5561 if (!table)
5562 panic("Failed to allocate %s hash table\n", tablename);
5563
5564 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5565 tablename,
5566 (1UL << log2qty),
5567 ilog2(size) - PAGE_SHIFT,
5568 size);
5569
5570 if (_hash_shift)
5571 *_hash_shift = log2qty;
5572 if (_hash_mask)
5573 *_hash_mask = (1 << log2qty) - 1;
5574
5575 return table;
5576}
5577
5578/* Return a pointer to the bitmap storing bits affecting a block of pages */
5579static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5580 unsigned long pfn)
5581{
5582#ifdef CONFIG_SPARSEMEM
5583 return __pfn_to_section(pfn)->pageblock_flags;
5584#else
5585 return zone->pageblock_flags;
5586#endif /* CONFIG_SPARSEMEM */
5587}
5588
5589static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5590{
5591#ifdef CONFIG_SPARSEMEM
5592 pfn &= (PAGES_PER_SECTION-1);
5593 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5594#else
5595 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5596 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5597#endif /* CONFIG_SPARSEMEM */
5598}
5599
5600/**
5601 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5602 * @page: The page within the block of interest
5603 * @start_bitidx: The first bit of interest to retrieve
5604 * @end_bitidx: The last bit of interest
5605 * returns pageblock_bits flags
5606 */
5607unsigned long get_pageblock_flags_group(struct page *page,
5608 int start_bitidx, int end_bitidx)
5609{
5610 struct zone *zone;
5611 unsigned long *bitmap;
5612 unsigned long pfn, bitidx;
5613 unsigned long flags = 0;
5614 unsigned long value = 1;
5615
5616 zone = page_zone(page);
5617 pfn = page_to_pfn(page);
5618 bitmap = get_pageblock_bitmap(zone, pfn);
5619 bitidx = pfn_to_bitidx(zone, pfn);
5620
5621 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5622 if (test_bit(bitidx + start_bitidx, bitmap))
5623 flags |= value;
5624
5625 return flags;
5626}
5627
5628/**
5629 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5630 * @page: The page within the block of interest
5631 * @start_bitidx: The first bit of interest
5632 * @end_bitidx: The last bit of interest
5633 * @flags: The flags to set
5634 */
5635void set_pageblock_flags_group(struct page *page, unsigned long flags,
5636 int start_bitidx, int end_bitidx)
5637{
5638 struct zone *zone;
5639 unsigned long *bitmap;
5640 unsigned long pfn, bitidx;
5641 unsigned long value = 1;
5642
5643 zone = page_zone(page);
5644 pfn = page_to_pfn(page);
5645 bitmap = get_pageblock_bitmap(zone, pfn);
5646 bitidx = pfn_to_bitidx(zone, pfn);
5647 VM_BUG_ON(pfn < zone->zone_start_pfn);
5648 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5649
5650 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5651 if (flags & value)
5652 __set_bit(bitidx + start_bitidx, bitmap);
5653 else
5654 __clear_bit(bitidx + start_bitidx, bitmap);
5655}
5656
5657/*
5658 * This function checks whether pageblock includes unmovable pages or not.
5659 * If @count is not zero, it is okay to include less @count unmovable pages
5660 *
5661 * PageLRU check wihtout isolation or lru_lock could race so that
5662 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5663 * expect this function should be exact.
5664 */
5665bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5666 bool skip_hwpoisoned_pages)
5667{
5668 unsigned long pfn, iter, found;
5669 int mt;
5670
5671 /*
5672 * For avoiding noise data, lru_add_drain_all() should be called
5673 * If ZONE_MOVABLE, the zone never contains unmovable pages
5674 */
5675 if (zone_idx(zone) == ZONE_MOVABLE)
5676 return false;
5677 mt = get_pageblock_migratetype(page);
5678 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5679 return false;
5680
5681 pfn = page_to_pfn(page);
5682 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5683 unsigned long check = pfn + iter;
5684
5685 if (!pfn_valid_within(check))
5686 continue;
5687
5688 page = pfn_to_page(check);
5689 /*
5690 * We can't use page_count without pin a page
5691 * because another CPU can free compound page.
5692 * This check already skips compound tails of THP
5693 * because their page->_count is zero at all time.
5694 */
5695 if (!atomic_read(&page->_count)) {
5696 if (PageBuddy(page))
5697 iter += (1 << page_order(page)) - 1;
5698 continue;
5699 }
5700
5701 /*
5702 * The HWPoisoned page may be not in buddy system, and
5703 * page_count() is not 0.
5704 */
5705 if (skip_hwpoisoned_pages && PageHWPoison(page))
5706 continue;
5707
5708 if (!PageLRU(page))
5709 found++;
5710 /*
5711 * If there are RECLAIMABLE pages, we need to check it.
5712 * But now, memory offline itself doesn't call shrink_slab()
5713 * and it still to be fixed.
5714 */
5715 /*
5716 * If the page is not RAM, page_count()should be 0.
5717 * we don't need more check. This is an _used_ not-movable page.
5718 *
5719 * The problematic thing here is PG_reserved pages. PG_reserved
5720 * is set to both of a memory hole page and a _used_ kernel
5721 * page at boot.
5722 */
5723 if (found > count)
5724 return true;
5725 }
5726 return false;
5727}
5728
5729bool is_pageblock_removable_nolock(struct page *page)
5730{
5731 struct zone *zone;
5732 unsigned long pfn;
5733
5734 /*
5735 * We have to be careful here because we are iterating over memory
5736 * sections which are not zone aware so we might end up outside of
5737 * the zone but still within the section.
5738 * We have to take care about the node as well. If the node is offline
5739 * its NODE_DATA will be NULL - see page_zone.
5740 */
5741 if (!node_online(page_to_nid(page)))
5742 return false;
5743
5744 zone = page_zone(page);
5745 pfn = page_to_pfn(page);
5746 if (zone->zone_start_pfn > pfn ||
5747 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5748 return false;
5749
5750 return !has_unmovable_pages(zone, page, 0, true);
5751}
5752
5753#ifdef CONFIG_CMA
5754
5755static unsigned long pfn_max_align_down(unsigned long pfn)
5756{
5757 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5758 pageblock_nr_pages) - 1);
5759}
5760
5761static unsigned long pfn_max_align_up(unsigned long pfn)
5762{
5763 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5764 pageblock_nr_pages));
5765}
5766
5767/* [start, end) must belong to a single zone. */
5768static int __alloc_contig_migrate_range(struct compact_control *cc,
5769 unsigned long start, unsigned long end)
5770{
5771 /* This function is based on compact_zone() from compaction.c. */
5772 unsigned long nr_reclaimed;
5773 unsigned long pfn = start;
5774 unsigned int tries = 0;
5775 int ret = 0;
5776
5777 migrate_prep();
5778
5779 while (pfn < end || !list_empty(&cc->migratepages)) {
5780 if (fatal_signal_pending(current)) {
5781 ret = -EINTR;
5782 break;
5783 }
5784
5785 if (list_empty(&cc->migratepages)) {
5786 cc->nr_migratepages = 0;
5787 pfn = isolate_migratepages_range(cc->zone, cc,
5788 pfn, end, true);
5789 if (!pfn) {
5790 ret = -EINTR;
5791 break;
5792 }
5793 tries = 0;
5794 } else if (++tries == 5) {
5795 ret = ret < 0 ? ret : -EBUSY;
5796 break;
5797 }
5798
5799 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5800 &cc->migratepages);
5801 cc->nr_migratepages -= nr_reclaimed;
5802
5803 ret = migrate_pages(&cc->migratepages,
5804 alloc_migrate_target,
5805 0, false, MIGRATE_SYNC,
5806 MR_CMA);
5807 }
5808
5809 putback_movable_pages(&cc->migratepages);
5810 return ret > 0 ? 0 : ret;
5811}
5812
5813/**
5814 * alloc_contig_range() -- tries to allocate given range of pages
5815 * @start: start PFN to allocate
5816 * @end: one-past-the-last PFN to allocate
5817 * @migratetype: migratetype of the underlaying pageblocks (either
5818 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5819 * in range must have the same migratetype and it must
5820 * be either of the two.
5821 *
5822 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5823 * aligned, however it's the caller's responsibility to guarantee that
5824 * we are the only thread that changes migrate type of pageblocks the
5825 * pages fall in.
5826 *
5827 * The PFN range must belong to a single zone.
5828 *
5829 * Returns zero on success or negative error code. On success all
5830 * pages which PFN is in [start, end) are allocated for the caller and
5831 * need to be freed with free_contig_range().
5832 */
5833int alloc_contig_range(unsigned long start, unsigned long end,
5834 unsigned migratetype)
5835{
5836 unsigned long outer_start, outer_end;
5837 int ret = 0, order;
5838
5839 struct compact_control cc = {
5840 .nr_migratepages = 0,
5841 .order = -1,
5842 .zone = page_zone(pfn_to_page(start)),
5843 .sync = true,
5844 .ignore_skip_hint = true,
5845 };
5846 INIT_LIST_HEAD(&cc.migratepages);
5847
5848 /*
5849 * What we do here is we mark all pageblocks in range as
5850 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5851 * have different sizes, and due to the way page allocator
5852 * work, we align the range to biggest of the two pages so
5853 * that page allocator won't try to merge buddies from
5854 * different pageblocks and change MIGRATE_ISOLATE to some
5855 * other migration type.
5856 *
5857 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5858 * migrate the pages from an unaligned range (ie. pages that
5859 * we are interested in). This will put all the pages in
5860 * range back to page allocator as MIGRATE_ISOLATE.
5861 *
5862 * When this is done, we take the pages in range from page
5863 * allocator removing them from the buddy system. This way
5864 * page allocator will never consider using them.
5865 *
5866 * This lets us mark the pageblocks back as
5867 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5868 * aligned range but not in the unaligned, original range are
5869 * put back to page allocator so that buddy can use them.
5870 */
5871
5872 ret = start_isolate_page_range(pfn_max_align_down(start),
5873 pfn_max_align_up(end), migratetype,
5874 false);
5875 if (ret)
5876 return ret;
5877
5878 ret = __alloc_contig_migrate_range(&cc, start, end);
5879 if (ret)
5880 goto done;
5881
5882 /*
5883 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5884 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5885 * more, all pages in [start, end) are free in page allocator.
5886 * What we are going to do is to allocate all pages from
5887 * [start, end) (that is remove them from page allocator).
5888 *
5889 * The only problem is that pages at the beginning and at the
5890 * end of interesting range may be not aligned with pages that
5891 * page allocator holds, ie. they can be part of higher order
5892 * pages. Because of this, we reserve the bigger range and
5893 * once this is done free the pages we are not interested in.
5894 *
5895 * We don't have to hold zone->lock here because the pages are
5896 * isolated thus they won't get removed from buddy.
5897 */
5898
5899 lru_add_drain_all();
5900 drain_all_pages();
5901
5902 order = 0;
5903 outer_start = start;
5904 while (!PageBuddy(pfn_to_page(outer_start))) {
5905 if (++order >= MAX_ORDER) {
5906 ret = -EBUSY;
5907 goto done;
5908 }
5909 outer_start &= ~0UL << order;
5910 }
5911
5912 /* Make sure the range is really isolated. */
5913 if (test_pages_isolated(outer_start, end, false)) {
5914 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5915 outer_start, end);
5916 ret = -EBUSY;
5917 goto done;
5918 }
5919
5920
5921 /* Grab isolated pages from freelists. */
5922 outer_end = isolate_freepages_range(&cc, outer_start, end);
5923 if (!outer_end) {
5924 ret = -EBUSY;
5925 goto done;
5926 }
5927
5928 /* Free head and tail (if any) */
5929 if (start != outer_start)
5930 free_contig_range(outer_start, start - outer_start);
5931 if (end != outer_end)
5932 free_contig_range(end, outer_end - end);
5933
5934done:
5935 undo_isolate_page_range(pfn_max_align_down(start),
5936 pfn_max_align_up(end), migratetype);
5937 return ret;
5938}
5939
5940void free_contig_range(unsigned long pfn, unsigned nr_pages)
5941{
5942 unsigned int count = 0;
5943
5944 for (; nr_pages--; pfn++) {
5945 struct page *page = pfn_to_page(pfn);
5946
5947 count += page_count(page) != 1;
5948 __free_page(page);
5949 }
5950 WARN(count != 0, "%d pages are still in use!\n", count);
5951}
5952#endif
5953
5954#ifdef CONFIG_MEMORY_HOTPLUG
5955static int __meminit __zone_pcp_update(void *data)
5956{
5957 struct zone *zone = data;
5958 int cpu;
5959 unsigned long batch = zone_batchsize(zone), flags;
5960
5961 for_each_possible_cpu(cpu) {
5962 struct per_cpu_pageset *pset;
5963 struct per_cpu_pages *pcp;
5964
5965 pset = per_cpu_ptr(zone->pageset, cpu);
5966 pcp = &pset->pcp;
5967
5968 local_irq_save(flags);
5969 if (pcp->count > 0)
5970 free_pcppages_bulk(zone, pcp->count, pcp);
5971 drain_zonestat(zone, pset);
5972 setup_pageset(pset, batch);
5973 local_irq_restore(flags);
5974 }
5975 return 0;
5976}
5977
5978void __meminit zone_pcp_update(struct zone *zone)
5979{
5980 stop_machine(__zone_pcp_update, zone, NULL);
5981}
5982#endif
5983
5984void zone_pcp_reset(struct zone *zone)
5985{
5986 unsigned long flags;
5987 int cpu;
5988 struct per_cpu_pageset *pset;
5989
5990 /* avoid races with drain_pages() */
5991 local_irq_save(flags);
5992 if (zone->pageset != &boot_pageset) {
5993 for_each_online_cpu(cpu) {
5994 pset = per_cpu_ptr(zone->pageset, cpu);
5995 drain_zonestat(zone, pset);
5996 }
5997 free_percpu(zone->pageset);
5998 zone->pageset = &boot_pageset;
5999 }
6000 local_irq_restore(flags);
6001}
6002
6003#ifdef CONFIG_MEMORY_HOTREMOVE
6004/*
6005 * All pages in the range must be isolated before calling this.
6006 */
6007void
6008__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6009{
6010 struct page *page;
6011 struct zone *zone;
6012 int order, i;
6013 unsigned long pfn;
6014 unsigned long flags;
6015 /* find the first valid pfn */
6016 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6017 if (pfn_valid(pfn))
6018 break;
6019 if (pfn == end_pfn)
6020 return;
6021 zone = page_zone(pfn_to_page(pfn));
6022 spin_lock_irqsave(&zone->lock, flags);
6023 pfn = start_pfn;
6024 while (pfn < end_pfn) {
6025 if (!pfn_valid(pfn)) {
6026 pfn++;
6027 continue;
6028 }
6029 page = pfn_to_page(pfn);
6030 /*
6031 * The HWPoisoned page may be not in buddy system, and
6032 * page_count() is not 0.
6033 */
6034 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6035 pfn++;
6036 SetPageReserved(page);
6037 continue;
6038 }
6039
6040 BUG_ON(page_count(page));
6041 BUG_ON(!PageBuddy(page));
6042 order = page_order(page);
6043#ifdef CONFIG_DEBUG_VM
6044 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6045 pfn, 1 << order, end_pfn);
6046#endif
6047 list_del(&page->lru);
6048 rmv_page_order(page);
6049 zone->free_area[order].nr_free--;
6050 for (i = 0; i < (1 << order); i++)
6051 SetPageReserved((page+i));
6052 pfn += (1 << order);
6053 }
6054 spin_unlock_irqrestore(&zone->lock, flags);
6055}
6056#endif
6057
6058#ifdef CONFIG_MEMORY_FAILURE
6059bool is_free_buddy_page(struct page *page)
6060{
6061 struct zone *zone = page_zone(page);
6062 unsigned long pfn = page_to_pfn(page);
6063 unsigned long flags;
6064 int order;
6065
6066 spin_lock_irqsave(&zone->lock, flags);
6067 for (order = 0; order < MAX_ORDER; order++) {
6068 struct page *page_head = page - (pfn & ((1 << order) - 1));
6069
6070 if (PageBuddy(page_head) && page_order(page_head) >= order)
6071 break;
6072 }
6073 spin_unlock_irqrestore(&zone->lock, flags);
6074
6075 return order < MAX_ORDER;
6076}
6077#endif
6078
6079static const struct trace_print_flags pageflag_names[] = {
6080 {1UL << PG_locked, "locked" },
6081 {1UL << PG_error, "error" },
6082 {1UL << PG_referenced, "referenced" },
6083 {1UL << PG_uptodate, "uptodate" },
6084 {1UL << PG_dirty, "dirty" },
6085 {1UL << PG_lru, "lru" },
6086 {1UL << PG_active, "active" },
6087 {1UL << PG_slab, "slab" },
6088 {1UL << PG_owner_priv_1, "owner_priv_1" },
6089 {1UL << PG_arch_1, "arch_1" },
6090 {1UL << PG_reserved, "reserved" },
6091 {1UL << PG_private, "private" },
6092 {1UL << PG_private_2, "private_2" },
6093 {1UL << PG_writeback, "writeback" },
6094#ifdef CONFIG_PAGEFLAGS_EXTENDED
6095 {1UL << PG_head, "head" },
6096 {1UL << PG_tail, "tail" },
6097#else
6098 {1UL << PG_compound, "compound" },
6099#endif
6100 {1UL << PG_swapcache, "swapcache" },
6101 {1UL << PG_mappedtodisk, "mappedtodisk" },
6102 {1UL << PG_reclaim, "reclaim" },
6103 {1UL << PG_swapbacked, "swapbacked" },
6104 {1UL << PG_unevictable, "unevictable" },
6105#ifdef CONFIG_MMU
6106 {1UL << PG_mlocked, "mlocked" },
6107#endif
6108#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6109 {1UL << PG_uncached, "uncached" },
6110#endif
6111#ifdef CONFIG_MEMORY_FAILURE
6112 {1UL << PG_hwpoison, "hwpoison" },
6113#endif
6114#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6115 {1UL << PG_compound_lock, "compound_lock" },
6116#endif
6117};
6118
6119static void dump_page_flags(unsigned long flags)
6120{
6121 const char *delim = "";
6122 unsigned long mask;
6123 int i;
6124
6125 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6126
6127 printk(KERN_ALERT "page flags: %#lx(", flags);
6128
6129 /* remove zone id */
6130 flags &= (1UL << NR_PAGEFLAGS) - 1;
6131
6132 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6133
6134 mask = pageflag_names[i].mask;
6135 if ((flags & mask) != mask)
6136 continue;
6137
6138 flags &= ~mask;
6139 printk("%s%s", delim, pageflag_names[i].name);
6140 delim = "|";
6141 }
6142
6143 /* check for left over flags */
6144 if (flags)
6145 printk("%s%#lx", delim, flags);
6146
6147 printk(")\n");
6148}
6149
6150void dump_page(struct page *page)
6151{
6152 printk(KERN_ALERT
6153 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6154 page, atomic_read(&page->_count), page_mapcount(page),
6155 page->mapping, page->index);
6156 dump_page_flags(page->flags);
6157 mem_cgroup_print_bad_page(page);
6158}