at v3.8 71 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23#include <linux/pm_runtime.h> /* for runtime PM */ 24 25struct usb_device; 26struct usb_driver; 27struct wusb_dev; 28 29/*-------------------------------------------------------------------------*/ 30 31/* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47struct ep_device; 48 49/** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @urb_list: urbs queued to this endpoint; maintained by usbcore 54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 55 * with one or more transfer descriptors (TDs) per urb 56 * @ep_dev: ep_device for sysfs info 57 * @extra: descriptors following this endpoint in the configuration 58 * @extralen: how many bytes of "extra" are valid 59 * @enabled: URBs may be submitted to this endpoint 60 * 61 * USB requests are always queued to a given endpoint, identified by a 62 * descriptor within an active interface in a given USB configuration. 63 */ 64struct usb_host_endpoint { 65 struct usb_endpoint_descriptor desc; 66 struct usb_ss_ep_comp_descriptor ss_ep_comp; 67 struct list_head urb_list; 68 void *hcpriv; 69 struct ep_device *ep_dev; /* For sysfs info */ 70 71 unsigned char *extra; /* Extra descriptors */ 72 int extralen; 73 int enabled; 74}; 75 76/* host-side wrapper for one interface setting's parsed descriptors */ 77struct usb_host_interface { 78 struct usb_interface_descriptor desc; 79 80 int extralen; 81 unsigned char *extra; /* Extra descriptors */ 82 83 /* array of desc.bNumEndpoint endpoints associated with this 84 * interface setting. these will be in no particular order. 85 */ 86 struct usb_host_endpoint *endpoint; 87 88 char *string; /* iInterface string, if present */ 89}; 90 91enum usb_interface_condition { 92 USB_INTERFACE_UNBOUND = 0, 93 USB_INTERFACE_BINDING, 94 USB_INTERFACE_BOUND, 95 USB_INTERFACE_UNBINDING, 96}; 97 98/** 99 * struct usb_interface - what usb device drivers talk to 100 * @altsetting: array of interface structures, one for each alternate 101 * setting that may be selected. Each one includes a set of 102 * endpoint configurations. They will be in no particular order. 103 * @cur_altsetting: the current altsetting. 104 * @num_altsetting: number of altsettings defined. 105 * @intf_assoc: interface association descriptor 106 * @minor: the minor number assigned to this interface, if this 107 * interface is bound to a driver that uses the USB major number. 108 * If this interface does not use the USB major, this field should 109 * be unused. The driver should set this value in the probe() 110 * function of the driver, after it has been assigned a minor 111 * number from the USB core by calling usb_register_dev(). 112 * @condition: binding state of the interface: not bound, binding 113 * (in probe()), bound to a driver, or unbinding (in disconnect()) 114 * @sysfs_files_created: sysfs attributes exist 115 * @ep_devs_created: endpoint child pseudo-devices exist 116 * @unregistering: flag set when the interface is being unregistered 117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 118 * capability during autosuspend. 119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 120 * has been deferred. 121 * @needs_binding: flag set when the driver should be re-probed or unbound 122 * following a reset or suspend operation it doesn't support. 123 * @dev: driver model's view of this device 124 * @usb_dev: if an interface is bound to the USB major, this will point 125 * to the sysfs representation for that device. 126 * @pm_usage_cnt: PM usage counter for this interface 127 * @reset_ws: Used for scheduling resets from atomic context. 128 * @reset_running: set to 1 if the interface is currently running a 129 * queued reset so that usb_cancel_queued_reset() doesn't try to 130 * remove from the workqueue when running inside the worker 131 * thread. See __usb_queue_reset_device(). 132 * @resetting_device: USB core reset the device, so use alt setting 0 as 133 * current; needs bandwidth alloc after reset. 134 * 135 * USB device drivers attach to interfaces on a physical device. Each 136 * interface encapsulates a single high level function, such as feeding 137 * an audio stream to a speaker or reporting a change in a volume control. 138 * Many USB devices only have one interface. The protocol used to talk to 139 * an interface's endpoints can be defined in a usb "class" specification, 140 * or by a product's vendor. The (default) control endpoint is part of 141 * every interface, but is never listed among the interface's descriptors. 142 * 143 * The driver that is bound to the interface can use standard driver model 144 * calls such as dev_get_drvdata() on the dev member of this structure. 145 * 146 * Each interface may have alternate settings. The initial configuration 147 * of a device sets altsetting 0, but the device driver can change 148 * that setting using usb_set_interface(). Alternate settings are often 149 * used to control the use of periodic endpoints, such as by having 150 * different endpoints use different amounts of reserved USB bandwidth. 151 * All standards-conformant USB devices that use isochronous endpoints 152 * will use them in non-default settings. 153 * 154 * The USB specification says that alternate setting numbers must run from 155 * 0 to one less than the total number of alternate settings. But some 156 * devices manage to mess this up, and the structures aren't necessarily 157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 158 * look up an alternate setting in the altsetting array based on its number. 159 */ 160struct usb_interface { 161 /* array of alternate settings for this interface, 162 * stored in no particular order */ 163 struct usb_host_interface *altsetting; 164 165 struct usb_host_interface *cur_altsetting; /* the currently 166 * active alternate setting */ 167 unsigned num_altsetting; /* number of alternate settings */ 168 169 /* If there is an interface association descriptor then it will list 170 * the associated interfaces */ 171 struct usb_interface_assoc_descriptor *intf_assoc; 172 173 int minor; /* minor number this interface is 174 * bound to */ 175 enum usb_interface_condition condition; /* state of binding */ 176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 177 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 178 unsigned unregistering:1; /* unregistration is in progress */ 179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 181 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 182 unsigned reset_running:1; 183 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 184 185 struct device dev; /* interface specific device info */ 186 struct device *usb_dev; 187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 188 struct work_struct reset_ws; /* for resets in atomic context */ 189}; 190#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 191 192static inline void *usb_get_intfdata(struct usb_interface *intf) 193{ 194 return dev_get_drvdata(&intf->dev); 195} 196 197static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 198{ 199 dev_set_drvdata(&intf->dev, data); 200} 201 202struct usb_interface *usb_get_intf(struct usb_interface *intf); 203void usb_put_intf(struct usb_interface *intf); 204 205/* this maximum is arbitrary */ 206#define USB_MAXINTERFACES 32 207#define USB_MAXIADS (USB_MAXINTERFACES/2) 208 209/** 210 * struct usb_interface_cache - long-term representation of a device interface 211 * @num_altsetting: number of altsettings defined. 212 * @ref: reference counter. 213 * @altsetting: variable-length array of interface structures, one for 214 * each alternate setting that may be selected. Each one includes a 215 * set of endpoint configurations. They will be in no particular order. 216 * 217 * These structures persist for the lifetime of a usb_device, unlike 218 * struct usb_interface (which persists only as long as its configuration 219 * is installed). The altsetting arrays can be accessed through these 220 * structures at any time, permitting comparison of configurations and 221 * providing support for the /proc/bus/usb/devices pseudo-file. 222 */ 223struct usb_interface_cache { 224 unsigned num_altsetting; /* number of alternate settings */ 225 struct kref ref; /* reference counter */ 226 227 /* variable-length array of alternate settings for this interface, 228 * stored in no particular order */ 229 struct usb_host_interface altsetting[0]; 230}; 231#define ref_to_usb_interface_cache(r) \ 232 container_of(r, struct usb_interface_cache, ref) 233#define altsetting_to_usb_interface_cache(a) \ 234 container_of(a, struct usb_interface_cache, altsetting[0]) 235 236/** 237 * struct usb_host_config - representation of a device's configuration 238 * @desc: the device's configuration descriptor. 239 * @string: pointer to the cached version of the iConfiguration string, if 240 * present for this configuration. 241 * @intf_assoc: list of any interface association descriptors in this config 242 * @interface: array of pointers to usb_interface structures, one for each 243 * interface in the configuration. The number of interfaces is stored 244 * in desc.bNumInterfaces. These pointers are valid only while the 245 * the configuration is active. 246 * @intf_cache: array of pointers to usb_interface_cache structures, one 247 * for each interface in the configuration. These structures exist 248 * for the entire life of the device. 249 * @extra: pointer to buffer containing all extra descriptors associated 250 * with this configuration (those preceding the first interface 251 * descriptor). 252 * @extralen: length of the extra descriptors buffer. 253 * 254 * USB devices may have multiple configurations, but only one can be active 255 * at any time. Each encapsulates a different operational environment; 256 * for example, a dual-speed device would have separate configurations for 257 * full-speed and high-speed operation. The number of configurations 258 * available is stored in the device descriptor as bNumConfigurations. 259 * 260 * A configuration can contain multiple interfaces. Each corresponds to 261 * a different function of the USB device, and all are available whenever 262 * the configuration is active. The USB standard says that interfaces 263 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 264 * of devices get this wrong. In addition, the interface array is not 265 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 266 * look up an interface entry based on its number. 267 * 268 * Device drivers should not attempt to activate configurations. The choice 269 * of which configuration to install is a policy decision based on such 270 * considerations as available power, functionality provided, and the user's 271 * desires (expressed through userspace tools). However, drivers can call 272 * usb_reset_configuration() to reinitialize the current configuration and 273 * all its interfaces. 274 */ 275struct usb_host_config { 276 struct usb_config_descriptor desc; 277 278 char *string; /* iConfiguration string, if present */ 279 280 /* List of any Interface Association Descriptors in this 281 * configuration. */ 282 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 283 284 /* the interfaces associated with this configuration, 285 * stored in no particular order */ 286 struct usb_interface *interface[USB_MAXINTERFACES]; 287 288 /* Interface information available even when this is not the 289 * active configuration */ 290 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 291 292 unsigned char *extra; /* Extra descriptors */ 293 int extralen; 294}; 295 296/* USB2.0 and USB3.0 device BOS descriptor set */ 297struct usb_host_bos { 298 struct usb_bos_descriptor *desc; 299 300 /* wireless cap descriptor is handled by wusb */ 301 struct usb_ext_cap_descriptor *ext_cap; 302 struct usb_ss_cap_descriptor *ss_cap; 303 struct usb_ss_container_id_descriptor *ss_id; 304}; 305 306int __usb_get_extra_descriptor(char *buffer, unsigned size, 307 unsigned char type, void **ptr); 308#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 309 __usb_get_extra_descriptor((ifpoint)->extra, \ 310 (ifpoint)->extralen, \ 311 type, (void **)ptr) 312 313/* ----------------------------------------------------------------------- */ 314 315/* USB device number allocation bitmap */ 316struct usb_devmap { 317 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 318}; 319 320/* 321 * Allocated per bus (tree of devices) we have: 322 */ 323struct usb_bus { 324 struct device *controller; /* host/master side hardware */ 325 int busnum; /* Bus number (in order of reg) */ 326 const char *bus_name; /* stable id (PCI slot_name etc) */ 327 u8 uses_dma; /* Does the host controller use DMA? */ 328 u8 uses_pio_for_control; /* 329 * Does the host controller use PIO 330 * for control transfers? 331 */ 332 u8 otg_port; /* 0, or number of OTG/HNP port */ 333 unsigned is_b_host:1; /* true during some HNP roleswitches */ 334 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 335 unsigned no_stop_on_short:1; /* 336 * Quirk: some controllers don't stop 337 * the ep queue on a short transfer 338 * with the URB_SHORT_NOT_OK flag set. 339 */ 340 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 341 342 int devnum_next; /* Next open device number in 343 * round-robin allocation */ 344 345 struct usb_devmap devmap; /* device address allocation map */ 346 struct usb_device *root_hub; /* Root hub */ 347 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 348 struct list_head bus_list; /* list of busses */ 349 350 int bandwidth_allocated; /* on this bus: how much of the time 351 * reserved for periodic (intr/iso) 352 * requests is used, on average? 353 * Units: microseconds/frame. 354 * Limits: Full/low speed reserve 90%, 355 * while high speed reserves 80%. 356 */ 357 int bandwidth_int_reqs; /* number of Interrupt requests */ 358 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 359 360 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 361 362#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 363 struct mon_bus *mon_bus; /* non-null when associated */ 364 int monitored; /* non-zero when monitored */ 365#endif 366}; 367 368/* ----------------------------------------------------------------------- */ 369 370/* This is arbitrary. 371 * From USB 2.0 spec Table 11-13, offset 7, a hub can 372 * have up to 255 ports. The most yet reported is 10. 373 * 374 * Current Wireless USB host hardware (Intel i1480 for example) allows 375 * up to 22 devices to connect. Upcoming hardware might raise that 376 * limit. Because the arrays need to add a bit for hub status data, we 377 * do 31, so plus one evens out to four bytes. 378 */ 379#define USB_MAXCHILDREN (31) 380 381struct usb_tt; 382 383enum usb_device_removable { 384 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 385 USB_DEVICE_REMOVABLE, 386 USB_DEVICE_FIXED, 387}; 388 389enum usb_port_connect_type { 390 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 391 USB_PORT_CONNECT_TYPE_HOT_PLUG, 392 USB_PORT_CONNECT_TYPE_HARD_WIRED, 393 USB_PORT_NOT_USED, 394}; 395 396/* 397 * USB 3.0 Link Power Management (LPM) parameters. 398 * 399 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 400 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 401 * All three are stored in nanoseconds. 402 */ 403struct usb3_lpm_parameters { 404 /* 405 * Maximum exit latency (MEL) for the host to send a packet to the 406 * device (either a Ping for isoc endpoints, or a data packet for 407 * interrupt endpoints), the hubs to decode the packet, and for all hubs 408 * in the path to transition the links to U0. 409 */ 410 unsigned int mel; 411 /* 412 * Maximum exit latency for a device-initiated LPM transition to bring 413 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 414 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 415 */ 416 unsigned int pel; 417 418 /* 419 * The System Exit Latency (SEL) includes PEL, and three other 420 * latencies. After a device initiates a U0 transition, it will take 421 * some time from when the device sends the ERDY to when it will finally 422 * receive the data packet. Basically, SEL should be the worse-case 423 * latency from when a device starts initiating a U0 transition to when 424 * it will get data. 425 */ 426 unsigned int sel; 427 /* 428 * The idle timeout value that is currently programmed into the parent 429 * hub for this device. When the timer counts to zero, the parent hub 430 * will initiate an LPM transition to either U1 or U2. 431 */ 432 int timeout; 433}; 434 435/** 436 * struct usb_device - kernel's representation of a USB device 437 * @devnum: device number; address on a USB bus 438 * @devpath: device ID string for use in messages (e.g., /port/...) 439 * @route: tree topology hex string for use with xHCI 440 * @state: device state: configured, not attached, etc. 441 * @speed: device speed: high/full/low (or error) 442 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 443 * @ttport: device port on that tt hub 444 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 445 * @parent: our hub, unless we're the root 446 * @bus: bus we're part of 447 * @ep0: endpoint 0 data (default control pipe) 448 * @dev: generic device interface 449 * @descriptor: USB device descriptor 450 * @bos: USB device BOS descriptor set 451 * @config: all of the device's configs 452 * @actconfig: the active configuration 453 * @ep_in: array of IN endpoints 454 * @ep_out: array of OUT endpoints 455 * @rawdescriptors: raw descriptors for each config 456 * @bus_mA: Current available from the bus 457 * @portnum: parent port number (origin 1) 458 * @level: number of USB hub ancestors 459 * @can_submit: URBs may be submitted 460 * @persist_enabled: USB_PERSIST enabled for this device 461 * @have_langid: whether string_langid is valid 462 * @authorized: policy has said we can use it; 463 * (user space) policy determines if we authorize this device to be 464 * used or not. By default, wired USB devices are authorized. 465 * WUSB devices are not, until we authorize them from user space. 466 * FIXME -- complete doc 467 * @authenticated: Crypto authentication passed 468 * @wusb: device is Wireless USB 469 * @lpm_capable: device supports LPM 470 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 471 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled 472 * @string_langid: language ID for strings 473 * @product: iProduct string, if present (static) 474 * @manufacturer: iManufacturer string, if present (static) 475 * @serial: iSerialNumber string, if present (static) 476 * @filelist: usbfs files that are open to this device 477 * @usb_classdev: USB class device that was created for usbfs device 478 * access from userspace 479 * @usbfs_dentry: usbfs dentry entry for the device 480 * @maxchild: number of ports if hub 481 * @quirks: quirks of the whole device 482 * @urbnum: number of URBs submitted for the whole device 483 * @active_duration: total time device is not suspended 484 * @connect_time: time device was first connected 485 * @do_remote_wakeup: remote wakeup should be enabled 486 * @reset_resume: needs reset instead of resume 487 * @port_is_suspended: the upstream port is suspended (L2 or U3) 488 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 489 * specific data for the device. 490 * @slot_id: Slot ID assigned by xHCI 491 * @removable: Device can be physically removed from this port 492 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 493 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 494 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 495 * to keep track of the number of functions that require USB 3.0 Link Power 496 * Management to be disabled for this usb_device. This count should only 497 * be manipulated by those functions, with the bandwidth_mutex is held. 498 * 499 * Notes: 500 * Usbcore drivers should not set usbdev->state directly. Instead use 501 * usb_set_device_state(). 502 */ 503struct usb_device { 504 int devnum; 505 char devpath[16]; 506 u32 route; 507 enum usb_device_state state; 508 enum usb_device_speed speed; 509 510 struct usb_tt *tt; 511 int ttport; 512 513 unsigned int toggle[2]; 514 515 struct usb_device *parent; 516 struct usb_bus *bus; 517 struct usb_host_endpoint ep0; 518 519 struct device dev; 520 521 struct usb_device_descriptor descriptor; 522 struct usb_host_bos *bos; 523 struct usb_host_config *config; 524 525 struct usb_host_config *actconfig; 526 struct usb_host_endpoint *ep_in[16]; 527 struct usb_host_endpoint *ep_out[16]; 528 529 char **rawdescriptors; 530 531 unsigned short bus_mA; 532 u8 portnum; 533 u8 level; 534 535 unsigned can_submit:1; 536 unsigned persist_enabled:1; 537 unsigned have_langid:1; 538 unsigned authorized:1; 539 unsigned authenticated:1; 540 unsigned wusb:1; 541 unsigned lpm_capable:1; 542 unsigned usb2_hw_lpm_capable:1; 543 unsigned usb2_hw_lpm_enabled:1; 544 unsigned usb3_lpm_enabled:1; 545 int string_langid; 546 547 /* static strings from the device */ 548 char *product; 549 char *manufacturer; 550 char *serial; 551 552 struct list_head filelist; 553 554 int maxchild; 555 556 u32 quirks; 557 atomic_t urbnum; 558 559 unsigned long active_duration; 560 561#ifdef CONFIG_PM 562 unsigned long connect_time; 563 564 unsigned do_remote_wakeup:1; 565 unsigned reset_resume:1; 566 unsigned port_is_suspended:1; 567#endif 568 struct wusb_dev *wusb_dev; 569 int slot_id; 570 enum usb_device_removable removable; 571 struct usb3_lpm_parameters u1_params; 572 struct usb3_lpm_parameters u2_params; 573 unsigned lpm_disable_count; 574}; 575#define to_usb_device(d) container_of(d, struct usb_device, dev) 576 577static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 578{ 579 return to_usb_device(intf->dev.parent); 580} 581 582extern struct usb_device *usb_get_dev(struct usb_device *dev); 583extern void usb_put_dev(struct usb_device *dev); 584extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 585 int port1); 586 587/** 588 * usb_hub_for_each_child - iterate over all child devices on the hub 589 * @hdev: USB device belonging to the usb hub 590 * @port1: portnum associated with child device 591 * @child: child device pointer 592 */ 593#define usb_hub_for_each_child(hdev, port1, child) \ 594 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 595 port1 <= hdev->maxchild; \ 596 child = usb_hub_find_child(hdev, ++port1)) \ 597 if (!child) continue; else 598 599/* USB device locking */ 600#define usb_lock_device(udev) device_lock(&(udev)->dev) 601#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 602#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 603extern int usb_lock_device_for_reset(struct usb_device *udev, 604 const struct usb_interface *iface); 605 606/* USB port reset for device reinitialization */ 607extern int usb_reset_device(struct usb_device *dev); 608extern void usb_queue_reset_device(struct usb_interface *dev); 609 610#ifdef CONFIG_ACPI 611extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 612 bool enable); 613extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 614#else 615static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 616 bool enable) { return 0; } 617static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 618 { return true; } 619#endif 620 621/* USB autosuspend and autoresume */ 622#ifdef CONFIG_USB_SUSPEND 623extern void usb_enable_autosuspend(struct usb_device *udev); 624extern void usb_disable_autosuspend(struct usb_device *udev); 625 626extern int usb_autopm_get_interface(struct usb_interface *intf); 627extern void usb_autopm_put_interface(struct usb_interface *intf); 628extern int usb_autopm_get_interface_async(struct usb_interface *intf); 629extern void usb_autopm_put_interface_async(struct usb_interface *intf); 630extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 631extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 632 633static inline void usb_mark_last_busy(struct usb_device *udev) 634{ 635 pm_runtime_mark_last_busy(&udev->dev); 636} 637 638#else 639 640static inline int usb_enable_autosuspend(struct usb_device *udev) 641{ return 0; } 642static inline int usb_disable_autosuspend(struct usb_device *udev) 643{ return 0; } 644 645static inline int usb_autopm_get_interface(struct usb_interface *intf) 646{ return 0; } 647static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 648{ return 0; } 649 650static inline void usb_autopm_put_interface(struct usb_interface *intf) 651{ } 652static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 653{ } 654static inline void usb_autopm_get_interface_no_resume( 655 struct usb_interface *intf) 656{ } 657static inline void usb_autopm_put_interface_no_suspend( 658 struct usb_interface *intf) 659{ } 660static inline void usb_mark_last_busy(struct usb_device *udev) 661{ } 662#endif 663 664extern int usb_disable_lpm(struct usb_device *udev); 665extern void usb_enable_lpm(struct usb_device *udev); 666/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 667extern int usb_unlocked_disable_lpm(struct usb_device *udev); 668extern void usb_unlocked_enable_lpm(struct usb_device *udev); 669 670extern int usb_disable_ltm(struct usb_device *udev); 671extern void usb_enable_ltm(struct usb_device *udev); 672 673static inline bool usb_device_supports_ltm(struct usb_device *udev) 674{ 675 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 676 return false; 677 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 678} 679 680 681/*-------------------------------------------------------------------------*/ 682 683/* for drivers using iso endpoints */ 684extern int usb_get_current_frame_number(struct usb_device *usb_dev); 685 686/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 687extern int usb_alloc_streams(struct usb_interface *interface, 688 struct usb_host_endpoint **eps, unsigned int num_eps, 689 unsigned int num_streams, gfp_t mem_flags); 690 691/* Reverts a group of bulk endpoints back to not using stream IDs. */ 692extern void usb_free_streams(struct usb_interface *interface, 693 struct usb_host_endpoint **eps, unsigned int num_eps, 694 gfp_t mem_flags); 695 696/* used these for multi-interface device registration */ 697extern int usb_driver_claim_interface(struct usb_driver *driver, 698 struct usb_interface *iface, void *priv); 699 700/** 701 * usb_interface_claimed - returns true iff an interface is claimed 702 * @iface: the interface being checked 703 * 704 * Returns true (nonzero) iff the interface is claimed, else false (zero). 705 * Callers must own the driver model's usb bus readlock. So driver 706 * probe() entries don't need extra locking, but other call contexts 707 * may need to explicitly claim that lock. 708 * 709 */ 710static inline int usb_interface_claimed(struct usb_interface *iface) 711{ 712 return (iface->dev.driver != NULL); 713} 714 715extern void usb_driver_release_interface(struct usb_driver *driver, 716 struct usb_interface *iface); 717const struct usb_device_id *usb_match_id(struct usb_interface *interface, 718 const struct usb_device_id *id); 719extern int usb_match_one_id(struct usb_interface *interface, 720 const struct usb_device_id *id); 721 722extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 723 int minor); 724extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 725 unsigned ifnum); 726extern struct usb_host_interface *usb_altnum_to_altsetting( 727 const struct usb_interface *intf, unsigned int altnum); 728extern struct usb_host_interface *usb_find_alt_setting( 729 struct usb_host_config *config, 730 unsigned int iface_num, 731 unsigned int alt_num); 732 733 734/** 735 * usb_make_path - returns stable device path in the usb tree 736 * @dev: the device whose path is being constructed 737 * @buf: where to put the string 738 * @size: how big is "buf"? 739 * 740 * Returns length of the string (> 0) or negative if size was too small. 741 * 742 * This identifier is intended to be "stable", reflecting physical paths in 743 * hardware such as physical bus addresses for host controllers or ports on 744 * USB hubs. That makes it stay the same until systems are physically 745 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 746 * controllers. Adding and removing devices, including virtual root hubs 747 * in host controller driver modules, does not change these path identifiers; 748 * neither does rebooting or re-enumerating. These are more useful identifiers 749 * than changeable ("unstable") ones like bus numbers or device addresses. 750 * 751 * With a partial exception for devices connected to USB 2.0 root hubs, these 752 * identifiers are also predictable. So long as the device tree isn't changed, 753 * plugging any USB device into a given hub port always gives it the same path. 754 * Because of the use of "companion" controllers, devices connected to ports on 755 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 756 * high speed, and a different one if they are full or low speed. 757 */ 758static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 759{ 760 int actual; 761 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 762 dev->devpath); 763 return (actual >= (int)size) ? -1 : actual; 764} 765 766/*-------------------------------------------------------------------------*/ 767 768#define USB_DEVICE_ID_MATCH_DEVICE \ 769 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 770#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 771 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 772#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 773 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 774#define USB_DEVICE_ID_MATCH_DEV_INFO \ 775 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 776 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 777 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 778#define USB_DEVICE_ID_MATCH_INT_INFO \ 779 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 780 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 781 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 782 783/** 784 * USB_DEVICE - macro used to describe a specific usb device 785 * @vend: the 16 bit USB Vendor ID 786 * @prod: the 16 bit USB Product ID 787 * 788 * This macro is used to create a struct usb_device_id that matches a 789 * specific device. 790 */ 791#define USB_DEVICE(vend, prod) \ 792 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 793 .idVendor = (vend), \ 794 .idProduct = (prod) 795/** 796 * USB_DEVICE_VER - describe a specific usb device with a version range 797 * @vend: the 16 bit USB Vendor ID 798 * @prod: the 16 bit USB Product ID 799 * @lo: the bcdDevice_lo value 800 * @hi: the bcdDevice_hi value 801 * 802 * This macro is used to create a struct usb_device_id that matches a 803 * specific device, with a version range. 804 */ 805#define USB_DEVICE_VER(vend, prod, lo, hi) \ 806 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 807 .idVendor = (vend), \ 808 .idProduct = (prod), \ 809 .bcdDevice_lo = (lo), \ 810 .bcdDevice_hi = (hi) 811 812/** 813 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 814 * @vend: the 16 bit USB Vendor ID 815 * @prod: the 16 bit USB Product ID 816 * @cl: bInterfaceClass value 817 * 818 * This macro is used to create a struct usb_device_id that matches a 819 * specific interface class of devices. 820 */ 821#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 822 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 823 USB_DEVICE_ID_MATCH_INT_CLASS, \ 824 .idVendor = (vend), \ 825 .idProduct = (prod), \ 826 .bInterfaceClass = (cl) 827 828/** 829 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 830 * @vend: the 16 bit USB Vendor ID 831 * @prod: the 16 bit USB Product ID 832 * @pr: bInterfaceProtocol value 833 * 834 * This macro is used to create a struct usb_device_id that matches a 835 * specific interface protocol of devices. 836 */ 837#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 838 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 839 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 840 .idVendor = (vend), \ 841 .idProduct = (prod), \ 842 .bInterfaceProtocol = (pr) 843 844/** 845 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 846 * @vend: the 16 bit USB Vendor ID 847 * @prod: the 16 bit USB Product ID 848 * @num: bInterfaceNumber value 849 * 850 * This macro is used to create a struct usb_device_id that matches a 851 * specific interface number of devices. 852 */ 853#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 854 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 855 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 856 .idVendor = (vend), \ 857 .idProduct = (prod), \ 858 .bInterfaceNumber = (num) 859 860/** 861 * USB_DEVICE_INFO - macro used to describe a class of usb devices 862 * @cl: bDeviceClass value 863 * @sc: bDeviceSubClass value 864 * @pr: bDeviceProtocol value 865 * 866 * This macro is used to create a struct usb_device_id that matches a 867 * specific class of devices. 868 */ 869#define USB_DEVICE_INFO(cl, sc, pr) \ 870 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 871 .bDeviceClass = (cl), \ 872 .bDeviceSubClass = (sc), \ 873 .bDeviceProtocol = (pr) 874 875/** 876 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 877 * @cl: bInterfaceClass value 878 * @sc: bInterfaceSubClass value 879 * @pr: bInterfaceProtocol value 880 * 881 * This macro is used to create a struct usb_device_id that matches a 882 * specific class of interfaces. 883 */ 884#define USB_INTERFACE_INFO(cl, sc, pr) \ 885 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 886 .bInterfaceClass = (cl), \ 887 .bInterfaceSubClass = (sc), \ 888 .bInterfaceProtocol = (pr) 889 890/** 891 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 892 * @vend: the 16 bit USB Vendor ID 893 * @prod: the 16 bit USB Product ID 894 * @cl: bInterfaceClass value 895 * @sc: bInterfaceSubClass value 896 * @pr: bInterfaceProtocol value 897 * 898 * This macro is used to create a struct usb_device_id that matches a 899 * specific device with a specific class of interfaces. 900 * 901 * This is especially useful when explicitly matching devices that have 902 * vendor specific bDeviceClass values, but standards-compliant interfaces. 903 */ 904#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 905 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 906 | USB_DEVICE_ID_MATCH_DEVICE, \ 907 .idVendor = (vend), \ 908 .idProduct = (prod), \ 909 .bInterfaceClass = (cl), \ 910 .bInterfaceSubClass = (sc), \ 911 .bInterfaceProtocol = (pr) 912 913/** 914 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 915 * @vend: the 16 bit USB Vendor ID 916 * @cl: bInterfaceClass value 917 * @sc: bInterfaceSubClass value 918 * @pr: bInterfaceProtocol value 919 * 920 * This macro is used to create a struct usb_device_id that matches a 921 * specific vendor with a specific class of interfaces. 922 * 923 * This is especially useful when explicitly matching devices that have 924 * vendor specific bDeviceClass values, but standards-compliant interfaces. 925 */ 926#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 927 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 928 | USB_DEVICE_ID_MATCH_VENDOR, \ 929 .idVendor = (vend), \ 930 .bInterfaceClass = (cl), \ 931 .bInterfaceSubClass = (sc), \ 932 .bInterfaceProtocol = (pr) 933 934/* ----------------------------------------------------------------------- */ 935 936/* Stuff for dynamic usb ids */ 937struct usb_dynids { 938 spinlock_t lock; 939 struct list_head list; 940}; 941 942struct usb_dynid { 943 struct list_head node; 944 struct usb_device_id id; 945}; 946 947extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 948 struct device_driver *driver, 949 const char *buf, size_t count); 950 951extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 952 953/** 954 * struct usbdrv_wrap - wrapper for driver-model structure 955 * @driver: The driver-model core driver structure. 956 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 957 */ 958struct usbdrv_wrap { 959 struct device_driver driver; 960 int for_devices; 961}; 962 963/** 964 * struct usb_driver - identifies USB interface driver to usbcore 965 * @name: The driver name should be unique among USB drivers, 966 * and should normally be the same as the module name. 967 * @probe: Called to see if the driver is willing to manage a particular 968 * interface on a device. If it is, probe returns zero and uses 969 * usb_set_intfdata() to associate driver-specific data with the 970 * interface. It may also use usb_set_interface() to specify the 971 * appropriate altsetting. If unwilling to manage the interface, 972 * return -ENODEV, if genuine IO errors occurred, an appropriate 973 * negative errno value. 974 * @disconnect: Called when the interface is no longer accessible, usually 975 * because its device has been (or is being) disconnected or the 976 * driver module is being unloaded. 977 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 978 * the "usbfs" filesystem. This lets devices provide ways to 979 * expose information to user space regardless of where they 980 * do (or don't) show up otherwise in the filesystem. 981 * @suspend: Called when the device is going to be suspended by the system. 982 * @resume: Called when the device is being resumed by the system. 983 * @reset_resume: Called when the suspended device has been reset instead 984 * of being resumed. 985 * @pre_reset: Called by usb_reset_device() when the device is about to be 986 * reset. This routine must not return until the driver has no active 987 * URBs for the device, and no more URBs may be submitted until the 988 * post_reset method is called. 989 * @post_reset: Called by usb_reset_device() after the device 990 * has been reset 991 * @id_table: USB drivers use ID table to support hotplugging. 992 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 993 * or your driver's probe function will never get called. 994 * @dynids: used internally to hold the list of dynamically added device 995 * ids for this driver. 996 * @drvwrap: Driver-model core structure wrapper. 997 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 998 * added to this driver by preventing the sysfs file from being created. 999 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1000 * for interfaces bound to this driver. 1001 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1002 * endpoints before calling the driver's disconnect method. 1003 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs 1004 * to initiate lower power link state transitions when an idle timeout 1005 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1006 * 1007 * USB interface drivers must provide a name, probe() and disconnect() 1008 * methods, and an id_table. Other driver fields are optional. 1009 * 1010 * The id_table is used in hotplugging. It holds a set of descriptors, 1011 * and specialized data may be associated with each entry. That table 1012 * is used by both user and kernel mode hotplugging support. 1013 * 1014 * The probe() and disconnect() methods are called in a context where 1015 * they can sleep, but they should avoid abusing the privilege. Most 1016 * work to connect to a device should be done when the device is opened, 1017 * and undone at the last close. The disconnect code needs to address 1018 * concurrency issues with respect to open() and close() methods, as 1019 * well as forcing all pending I/O requests to complete (by unlinking 1020 * them as necessary, and blocking until the unlinks complete). 1021 */ 1022struct usb_driver { 1023 const char *name; 1024 1025 int (*probe) (struct usb_interface *intf, 1026 const struct usb_device_id *id); 1027 1028 void (*disconnect) (struct usb_interface *intf); 1029 1030 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1031 void *buf); 1032 1033 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1034 int (*resume) (struct usb_interface *intf); 1035 int (*reset_resume)(struct usb_interface *intf); 1036 1037 int (*pre_reset)(struct usb_interface *intf); 1038 int (*post_reset)(struct usb_interface *intf); 1039 1040 const struct usb_device_id *id_table; 1041 1042 struct usb_dynids dynids; 1043 struct usbdrv_wrap drvwrap; 1044 unsigned int no_dynamic_id:1; 1045 unsigned int supports_autosuspend:1; 1046 unsigned int disable_hub_initiated_lpm:1; 1047 unsigned int soft_unbind:1; 1048}; 1049#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1050 1051/** 1052 * struct usb_device_driver - identifies USB device driver to usbcore 1053 * @name: The driver name should be unique among USB drivers, 1054 * and should normally be the same as the module name. 1055 * @probe: Called to see if the driver is willing to manage a particular 1056 * device. If it is, probe returns zero and uses dev_set_drvdata() 1057 * to associate driver-specific data with the device. If unwilling 1058 * to manage the device, return a negative errno value. 1059 * @disconnect: Called when the device is no longer accessible, usually 1060 * because it has been (or is being) disconnected or the driver's 1061 * module is being unloaded. 1062 * @suspend: Called when the device is going to be suspended by the system. 1063 * @resume: Called when the device is being resumed by the system. 1064 * @drvwrap: Driver-model core structure wrapper. 1065 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1066 * for devices bound to this driver. 1067 * 1068 * USB drivers must provide all the fields listed above except drvwrap. 1069 */ 1070struct usb_device_driver { 1071 const char *name; 1072 1073 int (*probe) (struct usb_device *udev); 1074 void (*disconnect) (struct usb_device *udev); 1075 1076 int (*suspend) (struct usb_device *udev, pm_message_t message); 1077 int (*resume) (struct usb_device *udev, pm_message_t message); 1078 struct usbdrv_wrap drvwrap; 1079 unsigned int supports_autosuspend:1; 1080}; 1081#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1082 drvwrap.driver) 1083 1084extern struct bus_type usb_bus_type; 1085 1086/** 1087 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1088 * @name: the usb class device name for this driver. Will show up in sysfs. 1089 * @devnode: Callback to provide a naming hint for a possible 1090 * device node to create. 1091 * @fops: pointer to the struct file_operations of this driver. 1092 * @minor_base: the start of the minor range for this driver. 1093 * 1094 * This structure is used for the usb_register_dev() and 1095 * usb_unregister_dev() functions, to consolidate a number of the 1096 * parameters used for them. 1097 */ 1098struct usb_class_driver { 1099 char *name; 1100 char *(*devnode)(struct device *dev, umode_t *mode); 1101 const struct file_operations *fops; 1102 int minor_base; 1103}; 1104 1105/* 1106 * use these in module_init()/module_exit() 1107 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1108 */ 1109extern int usb_register_driver(struct usb_driver *, struct module *, 1110 const char *); 1111 1112/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1113#define usb_register(driver) \ 1114 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1115 1116extern void usb_deregister(struct usb_driver *); 1117 1118/** 1119 * module_usb_driver() - Helper macro for registering a USB driver 1120 * @__usb_driver: usb_driver struct 1121 * 1122 * Helper macro for USB drivers which do not do anything special in module 1123 * init/exit. This eliminates a lot of boilerplate. Each module may only 1124 * use this macro once, and calling it replaces module_init() and module_exit() 1125 */ 1126#define module_usb_driver(__usb_driver) \ 1127 module_driver(__usb_driver, usb_register, \ 1128 usb_deregister) 1129 1130extern int usb_register_device_driver(struct usb_device_driver *, 1131 struct module *); 1132extern void usb_deregister_device_driver(struct usb_device_driver *); 1133 1134extern int usb_register_dev(struct usb_interface *intf, 1135 struct usb_class_driver *class_driver); 1136extern void usb_deregister_dev(struct usb_interface *intf, 1137 struct usb_class_driver *class_driver); 1138 1139extern int usb_disabled(void); 1140 1141/* ----------------------------------------------------------------------- */ 1142 1143/* 1144 * URB support, for asynchronous request completions 1145 */ 1146 1147/* 1148 * urb->transfer_flags: 1149 * 1150 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1151 */ 1152#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1153#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1154 * slot in the schedule */ 1155#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1156#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1157#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1158#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1159 * needed */ 1160#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1161 1162/* The following flags are used internally by usbcore and HCDs */ 1163#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1164#define URB_DIR_OUT 0 1165#define URB_DIR_MASK URB_DIR_IN 1166 1167#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1168#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1169#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1170#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1171#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1172#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1173#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1174#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1175 1176struct usb_iso_packet_descriptor { 1177 unsigned int offset; 1178 unsigned int length; /* expected length */ 1179 unsigned int actual_length; 1180 int status; 1181}; 1182 1183struct urb; 1184 1185struct usb_anchor { 1186 struct list_head urb_list; 1187 wait_queue_head_t wait; 1188 spinlock_t lock; 1189 unsigned int poisoned:1; 1190}; 1191 1192static inline void init_usb_anchor(struct usb_anchor *anchor) 1193{ 1194 INIT_LIST_HEAD(&anchor->urb_list); 1195 init_waitqueue_head(&anchor->wait); 1196 spin_lock_init(&anchor->lock); 1197} 1198 1199typedef void (*usb_complete_t)(struct urb *); 1200 1201/** 1202 * struct urb - USB Request Block 1203 * @urb_list: For use by current owner of the URB. 1204 * @anchor_list: membership in the list of an anchor 1205 * @anchor: to anchor URBs to a common mooring 1206 * @ep: Points to the endpoint's data structure. Will eventually 1207 * replace @pipe. 1208 * @pipe: Holds endpoint number, direction, type, and more. 1209 * Create these values with the eight macros available; 1210 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1211 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1212 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1213 * numbers range from zero to fifteen. Note that "in" endpoint two 1214 * is a different endpoint (and pipe) from "out" endpoint two. 1215 * The current configuration controls the existence, type, and 1216 * maximum packet size of any given endpoint. 1217 * @stream_id: the endpoint's stream ID for bulk streams 1218 * @dev: Identifies the USB device to perform the request. 1219 * @status: This is read in non-iso completion functions to get the 1220 * status of the particular request. ISO requests only use it 1221 * to tell whether the URB was unlinked; detailed status for 1222 * each frame is in the fields of the iso_frame-desc. 1223 * @transfer_flags: A variety of flags may be used to affect how URB 1224 * submission, unlinking, or operation are handled. Different 1225 * kinds of URB can use different flags. 1226 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1227 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1228 * (however, do not leave garbage in transfer_buffer even then). 1229 * This buffer must be suitable for DMA; allocate it with 1230 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1231 * of this buffer will be modified. This buffer is used for the data 1232 * stage of control transfers. 1233 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1234 * the device driver is saying that it provided this DMA address, 1235 * which the host controller driver should use in preference to the 1236 * transfer_buffer. 1237 * @sg: scatter gather buffer list 1238 * @num_mapped_sgs: (internal) number of mapped sg entries 1239 * @num_sgs: number of entries in the sg list 1240 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1241 * be broken up into chunks according to the current maximum packet 1242 * size for the endpoint, which is a function of the configuration 1243 * and is encoded in the pipe. When the length is zero, neither 1244 * transfer_buffer nor transfer_dma is used. 1245 * @actual_length: This is read in non-iso completion functions, and 1246 * it tells how many bytes (out of transfer_buffer_length) were 1247 * transferred. It will normally be the same as requested, unless 1248 * either an error was reported or a short read was performed. 1249 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1250 * short reads be reported as errors. 1251 * @setup_packet: Only used for control transfers, this points to eight bytes 1252 * of setup data. Control transfers always start by sending this data 1253 * to the device. Then transfer_buffer is read or written, if needed. 1254 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1255 * this field; setup_packet must point to a valid buffer. 1256 * @start_frame: Returns the initial frame for isochronous transfers. 1257 * @number_of_packets: Lists the number of ISO transfer buffers. 1258 * @interval: Specifies the polling interval for interrupt or isochronous 1259 * transfers. The units are frames (milliseconds) for full and low 1260 * speed devices, and microframes (1/8 millisecond) for highspeed 1261 * and SuperSpeed devices. 1262 * @error_count: Returns the number of ISO transfers that reported errors. 1263 * @context: For use in completion functions. This normally points to 1264 * request-specific driver context. 1265 * @complete: Completion handler. This URB is passed as the parameter to the 1266 * completion function. The completion function may then do what 1267 * it likes with the URB, including resubmitting or freeing it. 1268 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1269 * collect the transfer status for each buffer. 1270 * 1271 * This structure identifies USB transfer requests. URBs must be allocated by 1272 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1273 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1274 * are submitted using usb_submit_urb(), and pending requests may be canceled 1275 * using usb_unlink_urb() or usb_kill_urb(). 1276 * 1277 * Data Transfer Buffers: 1278 * 1279 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1280 * taken from the general page pool. That is provided by transfer_buffer 1281 * (control requests also use setup_packet), and host controller drivers 1282 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1283 * mapping operations can be expensive on some platforms (perhaps using a dma 1284 * bounce buffer or talking to an IOMMU), 1285 * although they're cheap on commodity x86 and ppc hardware. 1286 * 1287 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1288 * which tells the host controller driver that no such mapping is needed for 1289 * the transfer_buffer since 1290 * the device driver is DMA-aware. For example, a device driver might 1291 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1292 * When this transfer flag is provided, host controller drivers will 1293 * attempt to use the dma address found in the transfer_dma 1294 * field rather than determining a dma address themselves. 1295 * 1296 * Note that transfer_buffer must still be set if the controller 1297 * does not support DMA (as indicated by bus.uses_dma) and when talking 1298 * to root hub. If you have to trasfer between highmem zone and the device 1299 * on such controller, create a bounce buffer or bail out with an error. 1300 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1301 * capable, assign NULL to it, so that usbmon knows not to use the value. 1302 * The setup_packet must always be set, so it cannot be located in highmem. 1303 * 1304 * Initialization: 1305 * 1306 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1307 * zero), and complete fields. All URBs must also initialize 1308 * transfer_buffer and transfer_buffer_length. They may provide the 1309 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1310 * to be treated as errors; that flag is invalid for write requests. 1311 * 1312 * Bulk URBs may 1313 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1314 * should always terminate with a short packet, even if it means adding an 1315 * extra zero length packet. 1316 * 1317 * Control URBs must provide a valid pointer in the setup_packet field. 1318 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1319 * beforehand. 1320 * 1321 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1322 * or, for highspeed devices, 125 microsecond units) 1323 * to poll for transfers. After the URB has been submitted, the interval 1324 * field reflects how the transfer was actually scheduled. 1325 * The polling interval may be more frequent than requested. 1326 * For example, some controllers have a maximum interval of 32 milliseconds, 1327 * while others support intervals of up to 1024 milliseconds. 1328 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1329 * endpoints, as well as high speed interrupt endpoints, the encoding of 1330 * the transfer interval in the endpoint descriptor is logarithmic. 1331 * Device drivers must convert that value to linear units themselves.) 1332 * 1333 * If an isochronous endpoint queue isn't already running, the host 1334 * controller will schedule a new URB to start as soon as bandwidth 1335 * utilization allows. If the queue is running then a new URB will be 1336 * scheduled to start in the first transfer slot following the end of the 1337 * preceding URB, if that slot has not already expired. If the slot has 1338 * expired (which can happen when IRQ delivery is delayed for a long time), 1339 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1340 * is clear then the URB will be scheduled to start in the expired slot, 1341 * implying that some of its packets will not be transferred; if the flag 1342 * is set then the URB will be scheduled in the first unexpired slot, 1343 * breaking the queue's synchronization. Upon URB completion, the 1344 * start_frame field will be set to the (micro)frame number in which the 1345 * transfer was scheduled. Ranges for frame counter values are HC-specific 1346 * and can go from as low as 256 to as high as 65536 frames. 1347 * 1348 * Isochronous URBs have a different data transfer model, in part because 1349 * the quality of service is only "best effort". Callers provide specially 1350 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1351 * at the end. Each such packet is an individual ISO transfer. Isochronous 1352 * URBs are normally queued, submitted by drivers to arrange that 1353 * transfers are at least double buffered, and then explicitly resubmitted 1354 * in completion handlers, so 1355 * that data (such as audio or video) streams at as constant a rate as the 1356 * host controller scheduler can support. 1357 * 1358 * Completion Callbacks: 1359 * 1360 * The completion callback is made in_interrupt(), and one of the first 1361 * things that a completion handler should do is check the status field. 1362 * The status field is provided for all URBs. It is used to report 1363 * unlinked URBs, and status for all non-ISO transfers. It should not 1364 * be examined before the URB is returned to the completion handler. 1365 * 1366 * The context field is normally used to link URBs back to the relevant 1367 * driver or request state. 1368 * 1369 * When the completion callback is invoked for non-isochronous URBs, the 1370 * actual_length field tells how many bytes were transferred. This field 1371 * is updated even when the URB terminated with an error or was unlinked. 1372 * 1373 * ISO transfer status is reported in the status and actual_length fields 1374 * of the iso_frame_desc array, and the number of errors is reported in 1375 * error_count. Completion callbacks for ISO transfers will normally 1376 * (re)submit URBs to ensure a constant transfer rate. 1377 * 1378 * Note that even fields marked "public" should not be touched by the driver 1379 * when the urb is owned by the hcd, that is, since the call to 1380 * usb_submit_urb() till the entry into the completion routine. 1381 */ 1382struct urb { 1383 /* private: usb core and host controller only fields in the urb */ 1384 struct kref kref; /* reference count of the URB */ 1385 void *hcpriv; /* private data for host controller */ 1386 atomic_t use_count; /* concurrent submissions counter */ 1387 atomic_t reject; /* submissions will fail */ 1388 int unlinked; /* unlink error code */ 1389 1390 /* public: documented fields in the urb that can be used by drivers */ 1391 struct list_head urb_list; /* list head for use by the urb's 1392 * current owner */ 1393 struct list_head anchor_list; /* the URB may be anchored */ 1394 struct usb_anchor *anchor; 1395 struct usb_device *dev; /* (in) pointer to associated device */ 1396 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1397 unsigned int pipe; /* (in) pipe information */ 1398 unsigned int stream_id; /* (in) stream ID */ 1399 int status; /* (return) non-ISO status */ 1400 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1401 void *transfer_buffer; /* (in) associated data buffer */ 1402 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1403 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1404 int num_mapped_sgs; /* (internal) mapped sg entries */ 1405 int num_sgs; /* (in) number of entries in the sg list */ 1406 u32 transfer_buffer_length; /* (in) data buffer length */ 1407 u32 actual_length; /* (return) actual transfer length */ 1408 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1409 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1410 int start_frame; /* (modify) start frame (ISO) */ 1411 int number_of_packets; /* (in) number of ISO packets */ 1412 int interval; /* (modify) transfer interval 1413 * (INT/ISO) */ 1414 int error_count; /* (return) number of ISO errors */ 1415 void *context; /* (in) context for completion */ 1416 usb_complete_t complete; /* (in) completion routine */ 1417 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1418 /* (in) ISO ONLY */ 1419}; 1420 1421/* ----------------------------------------------------------------------- */ 1422 1423/** 1424 * usb_fill_control_urb - initializes a control urb 1425 * @urb: pointer to the urb to initialize. 1426 * @dev: pointer to the struct usb_device for this urb. 1427 * @pipe: the endpoint pipe 1428 * @setup_packet: pointer to the setup_packet buffer 1429 * @transfer_buffer: pointer to the transfer buffer 1430 * @buffer_length: length of the transfer buffer 1431 * @complete_fn: pointer to the usb_complete_t function 1432 * @context: what to set the urb context to. 1433 * 1434 * Initializes a control urb with the proper information needed to submit 1435 * it to a device. 1436 */ 1437static inline void usb_fill_control_urb(struct urb *urb, 1438 struct usb_device *dev, 1439 unsigned int pipe, 1440 unsigned char *setup_packet, 1441 void *transfer_buffer, 1442 int buffer_length, 1443 usb_complete_t complete_fn, 1444 void *context) 1445{ 1446 urb->dev = dev; 1447 urb->pipe = pipe; 1448 urb->setup_packet = setup_packet; 1449 urb->transfer_buffer = transfer_buffer; 1450 urb->transfer_buffer_length = buffer_length; 1451 urb->complete = complete_fn; 1452 urb->context = context; 1453} 1454 1455/** 1456 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1457 * @urb: pointer to the urb to initialize. 1458 * @dev: pointer to the struct usb_device for this urb. 1459 * @pipe: the endpoint pipe 1460 * @transfer_buffer: pointer to the transfer buffer 1461 * @buffer_length: length of the transfer buffer 1462 * @complete_fn: pointer to the usb_complete_t function 1463 * @context: what to set the urb context to. 1464 * 1465 * Initializes a bulk urb with the proper information needed to submit it 1466 * to a device. 1467 */ 1468static inline void usb_fill_bulk_urb(struct urb *urb, 1469 struct usb_device *dev, 1470 unsigned int pipe, 1471 void *transfer_buffer, 1472 int buffer_length, 1473 usb_complete_t complete_fn, 1474 void *context) 1475{ 1476 urb->dev = dev; 1477 urb->pipe = pipe; 1478 urb->transfer_buffer = transfer_buffer; 1479 urb->transfer_buffer_length = buffer_length; 1480 urb->complete = complete_fn; 1481 urb->context = context; 1482} 1483 1484/** 1485 * usb_fill_int_urb - macro to help initialize a interrupt urb 1486 * @urb: pointer to the urb to initialize. 1487 * @dev: pointer to the struct usb_device for this urb. 1488 * @pipe: the endpoint pipe 1489 * @transfer_buffer: pointer to the transfer buffer 1490 * @buffer_length: length of the transfer buffer 1491 * @complete_fn: pointer to the usb_complete_t function 1492 * @context: what to set the urb context to. 1493 * @interval: what to set the urb interval to, encoded like 1494 * the endpoint descriptor's bInterval value. 1495 * 1496 * Initializes a interrupt urb with the proper information needed to submit 1497 * it to a device. 1498 * 1499 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1500 * encoding of the endpoint interval, and express polling intervals in 1501 * microframes (eight per millisecond) rather than in frames (one per 1502 * millisecond). 1503 * 1504 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1505 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1506 * through to the host controller, rather than being translated into microframe 1507 * units. 1508 */ 1509static inline void usb_fill_int_urb(struct urb *urb, 1510 struct usb_device *dev, 1511 unsigned int pipe, 1512 void *transfer_buffer, 1513 int buffer_length, 1514 usb_complete_t complete_fn, 1515 void *context, 1516 int interval) 1517{ 1518 urb->dev = dev; 1519 urb->pipe = pipe; 1520 urb->transfer_buffer = transfer_buffer; 1521 urb->transfer_buffer_length = buffer_length; 1522 urb->complete = complete_fn; 1523 urb->context = context; 1524 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) 1525 urb->interval = 1 << (interval - 1); 1526 else 1527 urb->interval = interval; 1528 urb->start_frame = -1; 1529} 1530 1531extern void usb_init_urb(struct urb *urb); 1532extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1533extern void usb_free_urb(struct urb *urb); 1534#define usb_put_urb usb_free_urb 1535extern struct urb *usb_get_urb(struct urb *urb); 1536extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1537extern int usb_unlink_urb(struct urb *urb); 1538extern void usb_kill_urb(struct urb *urb); 1539extern void usb_poison_urb(struct urb *urb); 1540extern void usb_unpoison_urb(struct urb *urb); 1541extern void usb_block_urb(struct urb *urb); 1542extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1543extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1544extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1545extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1546extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1547extern void usb_unanchor_urb(struct urb *urb); 1548extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1549 unsigned int timeout); 1550extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1551extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1552extern int usb_anchor_empty(struct usb_anchor *anchor); 1553 1554#define usb_unblock_urb usb_unpoison_urb 1555 1556/** 1557 * usb_urb_dir_in - check if an URB describes an IN transfer 1558 * @urb: URB to be checked 1559 * 1560 * Returns 1 if @urb describes an IN transfer (device-to-host), 1561 * otherwise 0. 1562 */ 1563static inline int usb_urb_dir_in(struct urb *urb) 1564{ 1565 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1566} 1567 1568/** 1569 * usb_urb_dir_out - check if an URB describes an OUT transfer 1570 * @urb: URB to be checked 1571 * 1572 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1573 * otherwise 0. 1574 */ 1575static inline int usb_urb_dir_out(struct urb *urb) 1576{ 1577 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1578} 1579 1580void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1581 gfp_t mem_flags, dma_addr_t *dma); 1582void usb_free_coherent(struct usb_device *dev, size_t size, 1583 void *addr, dma_addr_t dma); 1584 1585#if 0 1586struct urb *usb_buffer_map(struct urb *urb); 1587void usb_buffer_dmasync(struct urb *urb); 1588void usb_buffer_unmap(struct urb *urb); 1589#endif 1590 1591struct scatterlist; 1592int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1593 struct scatterlist *sg, int nents); 1594#if 0 1595void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1596 struct scatterlist *sg, int n_hw_ents); 1597#endif 1598void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1599 struct scatterlist *sg, int n_hw_ents); 1600 1601/*-------------------------------------------------------------------* 1602 * SYNCHRONOUS CALL SUPPORT * 1603 *-------------------------------------------------------------------*/ 1604 1605extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1606 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1607 void *data, __u16 size, int timeout); 1608extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1609 void *data, int len, int *actual_length, int timeout); 1610extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1611 void *data, int len, int *actual_length, 1612 int timeout); 1613 1614/* wrappers around usb_control_msg() for the most common standard requests */ 1615extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1616 unsigned char descindex, void *buf, int size); 1617extern int usb_get_status(struct usb_device *dev, 1618 int type, int target, void *data); 1619extern int usb_string(struct usb_device *dev, int index, 1620 char *buf, size_t size); 1621 1622/* wrappers that also update important state inside usbcore */ 1623extern int usb_clear_halt(struct usb_device *dev, int pipe); 1624extern int usb_reset_configuration(struct usb_device *dev); 1625extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1626extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1627 1628/* this request isn't really synchronous, but it belongs with the others */ 1629extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1630 1631/* 1632 * timeouts, in milliseconds, used for sending/receiving control messages 1633 * they typically complete within a few frames (msec) after they're issued 1634 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1635 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1636 */ 1637#define USB_CTRL_GET_TIMEOUT 5000 1638#define USB_CTRL_SET_TIMEOUT 5000 1639 1640 1641/** 1642 * struct usb_sg_request - support for scatter/gather I/O 1643 * @status: zero indicates success, else negative errno 1644 * @bytes: counts bytes transferred. 1645 * 1646 * These requests are initialized using usb_sg_init(), and then are used 1647 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1648 * members of the request object aren't for driver access. 1649 * 1650 * The status and bytecount values are valid only after usb_sg_wait() 1651 * returns. If the status is zero, then the bytecount matches the total 1652 * from the request. 1653 * 1654 * After an error completion, drivers may need to clear a halt condition 1655 * on the endpoint. 1656 */ 1657struct usb_sg_request { 1658 int status; 1659 size_t bytes; 1660 1661 /* private: 1662 * members below are private to usbcore, 1663 * and are not provided for driver access! 1664 */ 1665 spinlock_t lock; 1666 1667 struct usb_device *dev; 1668 int pipe; 1669 1670 int entries; 1671 struct urb **urbs; 1672 1673 int count; 1674 struct completion complete; 1675}; 1676 1677int usb_sg_init( 1678 struct usb_sg_request *io, 1679 struct usb_device *dev, 1680 unsigned pipe, 1681 unsigned period, 1682 struct scatterlist *sg, 1683 int nents, 1684 size_t length, 1685 gfp_t mem_flags 1686); 1687void usb_sg_cancel(struct usb_sg_request *io); 1688void usb_sg_wait(struct usb_sg_request *io); 1689 1690 1691/* ----------------------------------------------------------------------- */ 1692 1693/* 1694 * For various legacy reasons, Linux has a small cookie that's paired with 1695 * a struct usb_device to identify an endpoint queue. Queue characteristics 1696 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1697 * an unsigned int encoded as: 1698 * 1699 * - direction: bit 7 (0 = Host-to-Device [Out], 1700 * 1 = Device-to-Host [In] ... 1701 * like endpoint bEndpointAddress) 1702 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1703 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1704 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1705 * 10 = control, 11 = bulk) 1706 * 1707 * Given the device address and endpoint descriptor, pipes are redundant. 1708 */ 1709 1710/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1711/* (yet ... they're the values used by usbfs) */ 1712#define PIPE_ISOCHRONOUS 0 1713#define PIPE_INTERRUPT 1 1714#define PIPE_CONTROL 2 1715#define PIPE_BULK 3 1716 1717#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1718#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1719 1720#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1721#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1722 1723#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1724#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1725#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1726#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1727#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1728 1729static inline unsigned int __create_pipe(struct usb_device *dev, 1730 unsigned int endpoint) 1731{ 1732 return (dev->devnum << 8) | (endpoint << 15); 1733} 1734 1735/* Create various pipes... */ 1736#define usb_sndctrlpipe(dev, endpoint) \ 1737 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1738#define usb_rcvctrlpipe(dev, endpoint) \ 1739 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1740#define usb_sndisocpipe(dev, endpoint) \ 1741 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1742#define usb_rcvisocpipe(dev, endpoint) \ 1743 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1744#define usb_sndbulkpipe(dev, endpoint) \ 1745 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1746#define usb_rcvbulkpipe(dev, endpoint) \ 1747 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1748#define usb_sndintpipe(dev, endpoint) \ 1749 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1750#define usb_rcvintpipe(dev, endpoint) \ 1751 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1752 1753static inline struct usb_host_endpoint * 1754usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1755{ 1756 struct usb_host_endpoint **eps; 1757 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1758 return eps[usb_pipeendpoint(pipe)]; 1759} 1760 1761/*-------------------------------------------------------------------------*/ 1762 1763static inline __u16 1764usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1765{ 1766 struct usb_host_endpoint *ep; 1767 unsigned epnum = usb_pipeendpoint(pipe); 1768 1769 if (is_out) { 1770 WARN_ON(usb_pipein(pipe)); 1771 ep = udev->ep_out[epnum]; 1772 } else { 1773 WARN_ON(usb_pipeout(pipe)); 1774 ep = udev->ep_in[epnum]; 1775 } 1776 if (!ep) 1777 return 0; 1778 1779 /* NOTE: only 0x07ff bits are for packet size... */ 1780 return usb_endpoint_maxp(&ep->desc); 1781} 1782 1783/* ----------------------------------------------------------------------- */ 1784 1785/* translate USB error codes to codes user space understands */ 1786static inline int usb_translate_errors(int error_code) 1787{ 1788 switch (error_code) { 1789 case 0: 1790 case -ENOMEM: 1791 case -ENODEV: 1792 case -EOPNOTSUPP: 1793 return error_code; 1794 default: 1795 return -EIO; 1796 } 1797} 1798 1799/* Events from the usb core */ 1800#define USB_DEVICE_ADD 0x0001 1801#define USB_DEVICE_REMOVE 0x0002 1802#define USB_BUS_ADD 0x0003 1803#define USB_BUS_REMOVE 0x0004 1804extern void usb_register_notify(struct notifier_block *nb); 1805extern void usb_unregister_notify(struct notifier_block *nb); 1806 1807/* debugfs stuff */ 1808extern struct dentry *usb_debug_root; 1809 1810#endif /* __KERNEL__ */ 1811 1812#endif