at v3.8 325 lines 9.5 kB view raw
1#ifndef _LINUX_SLUB_DEF_H 2#define _LINUX_SLUB_DEF_H 3 4/* 5 * SLUB : A Slab allocator without object queues. 6 * 7 * (C) 2007 SGI, Christoph Lameter 8 */ 9#include <linux/types.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/workqueue.h> 13#include <linux/kobject.h> 14 15#include <linux/kmemleak.h> 16 17enum stat_item { 18 ALLOC_FASTPATH, /* Allocation from cpu slab */ 19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 20 FREE_FASTPATH, /* Free to cpu slub */ 21 FREE_SLOWPATH, /* Freeing not to cpu slab */ 22 FREE_FROZEN, /* Freeing to frozen slab */ 23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 28 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 29 FREE_SLAB, /* Slab freed to the page allocator */ 30 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 31 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 32 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 33 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 34 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 35 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 36 DEACTIVATE_BYPASS, /* Implicit deactivation */ 37 ORDER_FALLBACK, /* Number of times fallback was necessary */ 38 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */ 39 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */ 40 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 41 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 42 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 43 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 44 NR_SLUB_STAT_ITEMS }; 45 46struct kmem_cache_cpu { 47 void **freelist; /* Pointer to next available object */ 48 unsigned long tid; /* Globally unique transaction id */ 49 struct page *page; /* The slab from which we are allocating */ 50 struct page *partial; /* Partially allocated frozen slabs */ 51#ifdef CONFIG_SLUB_STATS 52 unsigned stat[NR_SLUB_STAT_ITEMS]; 53#endif 54}; 55 56struct kmem_cache_node { 57 spinlock_t list_lock; /* Protect partial list and nr_partial */ 58 unsigned long nr_partial; 59 struct list_head partial; 60#ifdef CONFIG_SLUB_DEBUG 61 atomic_long_t nr_slabs; 62 atomic_long_t total_objects; 63 struct list_head full; 64#endif 65}; 66 67/* 68 * Word size structure that can be atomically updated or read and that 69 * contains both the order and the number of objects that a slab of the 70 * given order would contain. 71 */ 72struct kmem_cache_order_objects { 73 unsigned long x; 74}; 75 76/* 77 * Slab cache management. 78 */ 79struct kmem_cache { 80 struct kmem_cache_cpu __percpu *cpu_slab; 81 /* Used for retriving partial slabs etc */ 82 unsigned long flags; 83 unsigned long min_partial; 84 int size; /* The size of an object including meta data */ 85 int object_size; /* The size of an object without meta data */ 86 int offset; /* Free pointer offset. */ 87 int cpu_partial; /* Number of per cpu partial objects to keep around */ 88 struct kmem_cache_order_objects oo; 89 90 /* Allocation and freeing of slabs */ 91 struct kmem_cache_order_objects max; 92 struct kmem_cache_order_objects min; 93 gfp_t allocflags; /* gfp flags to use on each alloc */ 94 int refcount; /* Refcount for slab cache destroy */ 95 void (*ctor)(void *); 96 int inuse; /* Offset to metadata */ 97 int align; /* Alignment */ 98 int reserved; /* Reserved bytes at the end of slabs */ 99 const char *name; /* Name (only for display!) */ 100 struct list_head list; /* List of slab caches */ 101#ifdef CONFIG_SYSFS 102 struct kobject kobj; /* For sysfs */ 103#endif 104#ifdef CONFIG_MEMCG_KMEM 105 struct memcg_cache_params *memcg_params; 106 int max_attr_size; /* for propagation, maximum size of a stored attr */ 107#endif 108 109#ifdef CONFIG_NUMA 110 /* 111 * Defragmentation by allocating from a remote node. 112 */ 113 int remote_node_defrag_ratio; 114#endif 115 struct kmem_cache_node *node[MAX_NUMNODES]; 116}; 117 118/* 119 * Kmalloc subsystem. 120 */ 121#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 122#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 123#else 124#define KMALLOC_MIN_SIZE 8 125#endif 126 127#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 128 129/* 130 * Maximum kmalloc object size handled by SLUB. Larger object allocations 131 * are passed through to the page allocator. The page allocator "fastpath" 132 * is relatively slow so we need this value sufficiently high so that 133 * performance critical objects are allocated through the SLUB fastpath. 134 * 135 * This should be dropped to PAGE_SIZE / 2 once the page allocator 136 * "fastpath" becomes competitive with the slab allocator fastpaths. 137 */ 138#define SLUB_MAX_SIZE (2 * PAGE_SIZE) 139 140#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2) 141 142#ifdef CONFIG_ZONE_DMA 143#define SLUB_DMA __GFP_DMA 144#else 145/* Disable DMA functionality */ 146#define SLUB_DMA (__force gfp_t)0 147#endif 148 149/* 150 * We keep the general caches in an array of slab caches that are used for 151 * 2^x bytes of allocations. 152 */ 153extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 154 155/* 156 * Sorry that the following has to be that ugly but some versions of GCC 157 * have trouble with constant propagation and loops. 158 */ 159static __always_inline int kmalloc_index(size_t size) 160{ 161 if (!size) 162 return 0; 163 164 if (size <= KMALLOC_MIN_SIZE) 165 return KMALLOC_SHIFT_LOW; 166 167 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 168 return 1; 169 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 170 return 2; 171 if (size <= 8) return 3; 172 if (size <= 16) return 4; 173 if (size <= 32) return 5; 174 if (size <= 64) return 6; 175 if (size <= 128) return 7; 176 if (size <= 256) return 8; 177 if (size <= 512) return 9; 178 if (size <= 1024) return 10; 179 if (size <= 2 * 1024) return 11; 180 if (size <= 4 * 1024) return 12; 181/* 182 * The following is only needed to support architectures with a larger page 183 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page 184 * size we would have to go up to 128k. 185 */ 186 if (size <= 8 * 1024) return 13; 187 if (size <= 16 * 1024) return 14; 188 if (size <= 32 * 1024) return 15; 189 if (size <= 64 * 1024) return 16; 190 if (size <= 128 * 1024) return 17; 191 if (size <= 256 * 1024) return 18; 192 if (size <= 512 * 1024) return 19; 193 if (size <= 1024 * 1024) return 20; 194 if (size <= 2 * 1024 * 1024) return 21; 195 BUG(); 196 return -1; /* Will never be reached */ 197 198/* 199 * What we really wanted to do and cannot do because of compiler issues is: 200 * int i; 201 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) 202 * if (size <= (1 << i)) 203 * return i; 204 */ 205} 206 207/* 208 * Find the slab cache for a given combination of allocation flags and size. 209 * 210 * This ought to end up with a global pointer to the right cache 211 * in kmalloc_caches. 212 */ 213static __always_inline struct kmem_cache *kmalloc_slab(size_t size) 214{ 215 int index = kmalloc_index(size); 216 217 if (index == 0) 218 return NULL; 219 220 return kmalloc_caches[index]; 221} 222 223void *kmem_cache_alloc(struct kmem_cache *, gfp_t); 224void *__kmalloc(size_t size, gfp_t flags); 225 226static __always_inline void * 227kmalloc_order(size_t size, gfp_t flags, unsigned int order) 228{ 229 void *ret; 230 231 flags |= (__GFP_COMP | __GFP_KMEMCG); 232 ret = (void *) __get_free_pages(flags, order); 233 kmemleak_alloc(ret, size, 1, flags); 234 return ret; 235} 236 237/** 238 * Calling this on allocated memory will check that the memory 239 * is expected to be in use, and print warnings if not. 240 */ 241#ifdef CONFIG_SLUB_DEBUG 242extern bool verify_mem_not_deleted(const void *x); 243#else 244static inline bool verify_mem_not_deleted(const void *x) 245{ 246 return true; 247} 248#endif 249 250#ifdef CONFIG_TRACING 251extern void * 252kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size); 253extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); 254#else 255static __always_inline void * 256kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 257{ 258 return kmem_cache_alloc(s, gfpflags); 259} 260 261static __always_inline void * 262kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 263{ 264 return kmalloc_order(size, flags, order); 265} 266#endif 267 268static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 269{ 270 unsigned int order = get_order(size); 271 return kmalloc_order_trace(size, flags, order); 272} 273 274static __always_inline void *kmalloc(size_t size, gfp_t flags) 275{ 276 if (__builtin_constant_p(size)) { 277 if (size > SLUB_MAX_SIZE) 278 return kmalloc_large(size, flags); 279 280 if (!(flags & SLUB_DMA)) { 281 struct kmem_cache *s = kmalloc_slab(size); 282 283 if (!s) 284 return ZERO_SIZE_PTR; 285 286 return kmem_cache_alloc_trace(s, flags, size); 287 } 288 } 289 return __kmalloc(size, flags); 290} 291 292#ifdef CONFIG_NUMA 293void *__kmalloc_node(size_t size, gfp_t flags, int node); 294void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); 295 296#ifdef CONFIG_TRACING 297extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 298 gfp_t gfpflags, 299 int node, size_t size); 300#else 301static __always_inline void * 302kmem_cache_alloc_node_trace(struct kmem_cache *s, 303 gfp_t gfpflags, 304 int node, size_t size) 305{ 306 return kmem_cache_alloc_node(s, gfpflags, node); 307} 308#endif 309 310static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 311{ 312 if (__builtin_constant_p(size) && 313 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) { 314 struct kmem_cache *s = kmalloc_slab(size); 315 316 if (!s) 317 return ZERO_SIZE_PTR; 318 319 return kmem_cache_alloc_node_trace(s, flags, node, size); 320 } 321 return __kmalloc_node(size, flags, node); 322} 323#endif 324 325#endif /* _LINUX_SLUB_DEF_H */