at v3.8 78 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23 24#include <linux/atomic.h> 25#include <asm/types.h> 26#include <linux/spinlock.h> 27#include <linux/net.h> 28#include <linux/textsearch.h> 29#include <net/checksum.h> 30#include <linux/rcupdate.h> 31#include <linux/dmaengine.h> 32#include <linux/hrtimer.h> 33#include <linux/dma-mapping.h> 34#include <linux/netdev_features.h> 35 36/* Don't change this without changing skb_csum_unnecessary! */ 37#define CHECKSUM_NONE 0 38#define CHECKSUM_UNNECESSARY 1 39#define CHECKSUM_COMPLETE 2 40#define CHECKSUM_PARTIAL 3 41 42#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 43 ~(SMP_CACHE_BYTES - 1)) 44#define SKB_WITH_OVERHEAD(X) \ 45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 46#define SKB_MAX_ORDER(X, ORDER) \ 47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 48#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 49#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 50 51/* return minimum truesize of one skb containing X bytes of data */ 52#define SKB_TRUESIZE(X) ((X) + \ 53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 55 56/* A. Checksumming of received packets by device. 57 * 58 * NONE: device failed to checksum this packet. 59 * skb->csum is undefined. 60 * 61 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 62 * skb->csum is undefined. 63 * It is bad option, but, unfortunately, many of vendors do this. 64 * Apparently with secret goal to sell you new device, when you 65 * will add new protocol to your host. F.e. IPv6. 8) 66 * 67 * COMPLETE: the most generic way. Device supplied checksum of _all_ 68 * the packet as seen by netif_rx in skb->csum. 69 * NOTE: Even if device supports only some protocols, but 70 * is able to produce some skb->csum, it MUST use COMPLETE, 71 * not UNNECESSARY. 72 * 73 * PARTIAL: identical to the case for output below. This may occur 74 * on a packet received directly from another Linux OS, e.g., 75 * a virtualised Linux kernel on the same host. The packet can 76 * be treated in the same way as UNNECESSARY except that on 77 * output (i.e., forwarding) the checksum must be filled in 78 * by the OS or the hardware. 79 * 80 * B. Checksumming on output. 81 * 82 * NONE: skb is checksummed by protocol or csum is not required. 83 * 84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 85 * from skb->csum_start to the end and to record the checksum 86 * at skb->csum_start + skb->csum_offset. 87 * 88 * Device must show its capabilities in dev->features, set 89 * at device setup time. 90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 91 * everything. 92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 93 * TCP/UDP over IPv4. Sigh. Vendors like this 94 * way by an unknown reason. Though, see comment above 95 * about CHECKSUM_UNNECESSARY. 8) 96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 97 * 98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers 99 * that do not want net to perform the checksum calculation should use 100 * this flag in their outgoing skbs. 101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC 102 * offload. Correspondingly, the FCoE protocol driver 103 * stack should use CHECKSUM_UNNECESSARY. 104 * 105 * Any questions? No questions, good. --ANK 106 */ 107 108struct net_device; 109struct scatterlist; 110struct pipe_inode_info; 111 112#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 113struct nf_conntrack { 114 atomic_t use; 115}; 116#endif 117 118#ifdef CONFIG_BRIDGE_NETFILTER 119struct nf_bridge_info { 120 atomic_t use; 121 unsigned int mask; 122 struct net_device *physindev; 123 struct net_device *physoutdev; 124 unsigned long data[32 / sizeof(unsigned long)]; 125}; 126#endif 127 128struct sk_buff_head { 129 /* These two members must be first. */ 130 struct sk_buff *next; 131 struct sk_buff *prev; 132 133 __u32 qlen; 134 spinlock_t lock; 135}; 136 137struct sk_buff; 138 139/* To allow 64K frame to be packed as single skb without frag_list we 140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 141 * buffers which do not start on a page boundary. 142 * 143 * Since GRO uses frags we allocate at least 16 regardless of page 144 * size. 145 */ 146#if (65536/PAGE_SIZE + 1) < 16 147#define MAX_SKB_FRAGS 16UL 148#else 149#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 150#endif 151 152typedef struct skb_frag_struct skb_frag_t; 153 154struct skb_frag_struct { 155 struct { 156 struct page *p; 157 } page; 158#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 159 __u32 page_offset; 160 __u32 size; 161#else 162 __u16 page_offset; 163 __u16 size; 164#endif 165}; 166 167static inline unsigned int skb_frag_size(const skb_frag_t *frag) 168{ 169 return frag->size; 170} 171 172static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 173{ 174 frag->size = size; 175} 176 177static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 178{ 179 frag->size += delta; 180} 181 182static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 183{ 184 frag->size -= delta; 185} 186 187#define HAVE_HW_TIME_STAMP 188 189/** 190 * struct skb_shared_hwtstamps - hardware time stamps 191 * @hwtstamp: hardware time stamp transformed into duration 192 * since arbitrary point in time 193 * @syststamp: hwtstamp transformed to system time base 194 * 195 * Software time stamps generated by ktime_get_real() are stored in 196 * skb->tstamp. The relation between the different kinds of time 197 * stamps is as follows: 198 * 199 * syststamp and tstamp can be compared against each other in 200 * arbitrary combinations. The accuracy of a 201 * syststamp/tstamp/"syststamp from other device" comparison is 202 * limited by the accuracy of the transformation into system time 203 * base. This depends on the device driver and its underlying 204 * hardware. 205 * 206 * hwtstamps can only be compared against other hwtstamps from 207 * the same device. 208 * 209 * This structure is attached to packets as part of the 210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 211 */ 212struct skb_shared_hwtstamps { 213 ktime_t hwtstamp; 214 ktime_t syststamp; 215}; 216 217/* Definitions for tx_flags in struct skb_shared_info */ 218enum { 219 /* generate hardware time stamp */ 220 SKBTX_HW_TSTAMP = 1 << 0, 221 222 /* generate software time stamp */ 223 SKBTX_SW_TSTAMP = 1 << 1, 224 225 /* device driver is going to provide hardware time stamp */ 226 SKBTX_IN_PROGRESS = 1 << 2, 227 228 /* device driver supports TX zero-copy buffers */ 229 SKBTX_DEV_ZEROCOPY = 1 << 3, 230 231 /* generate wifi status information (where possible) */ 232 SKBTX_WIFI_STATUS = 1 << 4, 233}; 234 235/* 236 * The callback notifies userspace to release buffers when skb DMA is done in 237 * lower device, the skb last reference should be 0 when calling this. 238 * The zerocopy_success argument is true if zero copy transmit occurred, 239 * false on data copy or out of memory error caused by data copy attempt. 240 * The ctx field is used to track device context. 241 * The desc field is used to track userspace buffer index. 242 */ 243struct ubuf_info { 244 void (*callback)(struct ubuf_info *, bool zerocopy_success); 245 void *ctx; 246 unsigned long desc; 247}; 248 249/* This data is invariant across clones and lives at 250 * the end of the header data, ie. at skb->end. 251 */ 252struct skb_shared_info { 253 unsigned char nr_frags; 254 __u8 tx_flags; 255 unsigned short gso_size; 256 /* Warning: this field is not always filled in (UFO)! */ 257 unsigned short gso_segs; 258 unsigned short gso_type; 259 struct sk_buff *frag_list; 260 struct skb_shared_hwtstamps hwtstamps; 261 __be32 ip6_frag_id; 262 263 /* 264 * Warning : all fields before dataref are cleared in __alloc_skb() 265 */ 266 atomic_t dataref; 267 268 /* Intermediate layers must ensure that destructor_arg 269 * remains valid until skb destructor */ 270 void * destructor_arg; 271 272 /* must be last field, see pskb_expand_head() */ 273 skb_frag_t frags[MAX_SKB_FRAGS]; 274}; 275 276/* We divide dataref into two halves. The higher 16 bits hold references 277 * to the payload part of skb->data. The lower 16 bits hold references to 278 * the entire skb->data. A clone of a headerless skb holds the length of 279 * the header in skb->hdr_len. 280 * 281 * All users must obey the rule that the skb->data reference count must be 282 * greater than or equal to the payload reference count. 283 * 284 * Holding a reference to the payload part means that the user does not 285 * care about modifications to the header part of skb->data. 286 */ 287#define SKB_DATAREF_SHIFT 16 288#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 289 290 291enum { 292 SKB_FCLONE_UNAVAILABLE, 293 SKB_FCLONE_ORIG, 294 SKB_FCLONE_CLONE, 295}; 296 297enum { 298 SKB_GSO_TCPV4 = 1 << 0, 299 SKB_GSO_UDP = 1 << 1, 300 301 /* This indicates the skb is from an untrusted source. */ 302 SKB_GSO_DODGY = 1 << 2, 303 304 /* This indicates the tcp segment has CWR set. */ 305 SKB_GSO_TCP_ECN = 1 << 3, 306 307 SKB_GSO_TCPV6 = 1 << 4, 308 309 SKB_GSO_FCOE = 1 << 5, 310}; 311 312#if BITS_PER_LONG > 32 313#define NET_SKBUFF_DATA_USES_OFFSET 1 314#endif 315 316#ifdef NET_SKBUFF_DATA_USES_OFFSET 317typedef unsigned int sk_buff_data_t; 318#else 319typedef unsigned char *sk_buff_data_t; 320#endif 321 322#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 323 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 324#define NET_SKBUFF_NF_DEFRAG_NEEDED 1 325#endif 326 327/** 328 * struct sk_buff - socket buffer 329 * @next: Next buffer in list 330 * @prev: Previous buffer in list 331 * @tstamp: Time we arrived 332 * @sk: Socket we are owned by 333 * @dev: Device we arrived on/are leaving by 334 * @cb: Control buffer. Free for use by every layer. Put private vars here 335 * @_skb_refdst: destination entry (with norefcount bit) 336 * @sp: the security path, used for xfrm 337 * @len: Length of actual data 338 * @data_len: Data length 339 * @mac_len: Length of link layer header 340 * @hdr_len: writable header length of cloned skb 341 * @csum: Checksum (must include start/offset pair) 342 * @csum_start: Offset from skb->head where checksumming should start 343 * @csum_offset: Offset from csum_start where checksum should be stored 344 * @priority: Packet queueing priority 345 * @local_df: allow local fragmentation 346 * @cloned: Head may be cloned (check refcnt to be sure) 347 * @ip_summed: Driver fed us an IP checksum 348 * @nohdr: Payload reference only, must not modify header 349 * @nfctinfo: Relationship of this skb to the connection 350 * @pkt_type: Packet class 351 * @fclone: skbuff clone status 352 * @ipvs_property: skbuff is owned by ipvs 353 * @peeked: this packet has been seen already, so stats have been 354 * done for it, don't do them again 355 * @nf_trace: netfilter packet trace flag 356 * @protocol: Packet protocol from driver 357 * @destructor: Destruct function 358 * @nfct: Associated connection, if any 359 * @nfct_reasm: netfilter conntrack re-assembly pointer 360 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 361 * @skb_iif: ifindex of device we arrived on 362 * @tc_index: Traffic control index 363 * @tc_verd: traffic control verdict 364 * @rxhash: the packet hash computed on receive 365 * @queue_mapping: Queue mapping for multiqueue devices 366 * @ndisc_nodetype: router type (from link layer) 367 * @ooo_okay: allow the mapping of a socket to a queue to be changed 368 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport 369 * ports. 370 * @wifi_acked_valid: wifi_acked was set 371 * @wifi_acked: whether frame was acked on wifi or not 372 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 373 * @dma_cookie: a cookie to one of several possible DMA operations 374 * done by skb DMA functions 375 * @secmark: security marking 376 * @mark: Generic packet mark 377 * @dropcount: total number of sk_receive_queue overflows 378 * @vlan_tci: vlan tag control information 379 * @inner_transport_header: Inner transport layer header (encapsulation) 380 * @inner_network_header: Network layer header (encapsulation) 381 * @transport_header: Transport layer header 382 * @network_header: Network layer header 383 * @mac_header: Link layer header 384 * @tail: Tail pointer 385 * @end: End pointer 386 * @head: Head of buffer 387 * @data: Data head pointer 388 * @truesize: Buffer size 389 * @users: User count - see {datagram,tcp}.c 390 */ 391 392struct sk_buff { 393 /* These two members must be first. */ 394 struct sk_buff *next; 395 struct sk_buff *prev; 396 397 ktime_t tstamp; 398 399 struct sock *sk; 400 struct net_device *dev; 401 402 /* 403 * This is the control buffer. It is free to use for every 404 * layer. Please put your private variables there. If you 405 * want to keep them across layers you have to do a skb_clone() 406 * first. This is owned by whoever has the skb queued ATM. 407 */ 408 char cb[48] __aligned(8); 409 410 unsigned long _skb_refdst; 411#ifdef CONFIG_XFRM 412 struct sec_path *sp; 413#endif 414 unsigned int len, 415 data_len; 416 __u16 mac_len, 417 hdr_len; 418 union { 419 __wsum csum; 420 struct { 421 __u16 csum_start; 422 __u16 csum_offset; 423 }; 424 }; 425 __u32 priority; 426 kmemcheck_bitfield_begin(flags1); 427 __u8 local_df:1, 428 cloned:1, 429 ip_summed:2, 430 nohdr:1, 431 nfctinfo:3; 432 __u8 pkt_type:3, 433 fclone:2, 434 ipvs_property:1, 435 peeked:1, 436 nf_trace:1; 437 kmemcheck_bitfield_end(flags1); 438 __be16 protocol; 439 440 void (*destructor)(struct sk_buff *skb); 441#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 442 struct nf_conntrack *nfct; 443#endif 444#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 445 struct sk_buff *nfct_reasm; 446#endif 447#ifdef CONFIG_BRIDGE_NETFILTER 448 struct nf_bridge_info *nf_bridge; 449#endif 450 451 int skb_iif; 452 453 __u32 rxhash; 454 455 __u16 vlan_tci; 456 457#ifdef CONFIG_NET_SCHED 458 __u16 tc_index; /* traffic control index */ 459#ifdef CONFIG_NET_CLS_ACT 460 __u16 tc_verd; /* traffic control verdict */ 461#endif 462#endif 463 464 __u16 queue_mapping; 465 kmemcheck_bitfield_begin(flags2); 466#ifdef CONFIG_IPV6_NDISC_NODETYPE 467 __u8 ndisc_nodetype:2; 468#endif 469 __u8 pfmemalloc:1; 470 __u8 ooo_okay:1; 471 __u8 l4_rxhash:1; 472 __u8 wifi_acked_valid:1; 473 __u8 wifi_acked:1; 474 __u8 no_fcs:1; 475 __u8 head_frag:1; 476 /* Encapsulation protocol and NIC drivers should use 477 * this flag to indicate to each other if the skb contains 478 * encapsulated packet or not and maybe use the inner packet 479 * headers if needed 480 */ 481 __u8 encapsulation:1; 482 /* 7/9 bit hole (depending on ndisc_nodetype presence) */ 483 kmemcheck_bitfield_end(flags2); 484 485#ifdef CONFIG_NET_DMA 486 dma_cookie_t dma_cookie; 487#endif 488#ifdef CONFIG_NETWORK_SECMARK 489 __u32 secmark; 490#endif 491 union { 492 __u32 mark; 493 __u32 dropcount; 494 __u32 avail_size; 495 }; 496 497 sk_buff_data_t inner_transport_header; 498 sk_buff_data_t inner_network_header; 499 sk_buff_data_t transport_header; 500 sk_buff_data_t network_header; 501 sk_buff_data_t mac_header; 502 /* These elements must be at the end, see alloc_skb() for details. */ 503 sk_buff_data_t tail; 504 sk_buff_data_t end; 505 unsigned char *head, 506 *data; 507 unsigned int truesize; 508 atomic_t users; 509}; 510 511#ifdef __KERNEL__ 512/* 513 * Handling routines are only of interest to the kernel 514 */ 515#include <linux/slab.h> 516 517 518#define SKB_ALLOC_FCLONE 0x01 519#define SKB_ALLOC_RX 0x02 520 521/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 522static inline bool skb_pfmemalloc(const struct sk_buff *skb) 523{ 524 return unlikely(skb->pfmemalloc); 525} 526 527/* 528 * skb might have a dst pointer attached, refcounted or not. 529 * _skb_refdst low order bit is set if refcount was _not_ taken 530 */ 531#define SKB_DST_NOREF 1UL 532#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 533 534/** 535 * skb_dst - returns skb dst_entry 536 * @skb: buffer 537 * 538 * Returns skb dst_entry, regardless of reference taken or not. 539 */ 540static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 541{ 542 /* If refdst was not refcounted, check we still are in a 543 * rcu_read_lock section 544 */ 545 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 546 !rcu_read_lock_held() && 547 !rcu_read_lock_bh_held()); 548 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 549} 550 551/** 552 * skb_dst_set - sets skb dst 553 * @skb: buffer 554 * @dst: dst entry 555 * 556 * Sets skb dst, assuming a reference was taken on dst and should 557 * be released by skb_dst_drop() 558 */ 559static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 560{ 561 skb->_skb_refdst = (unsigned long)dst; 562} 563 564extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); 565 566/** 567 * skb_dst_is_noref - Test if skb dst isn't refcounted 568 * @skb: buffer 569 */ 570static inline bool skb_dst_is_noref(const struct sk_buff *skb) 571{ 572 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 573} 574 575static inline struct rtable *skb_rtable(const struct sk_buff *skb) 576{ 577 return (struct rtable *)skb_dst(skb); 578} 579 580extern void kfree_skb(struct sk_buff *skb); 581extern void skb_tx_error(struct sk_buff *skb); 582extern void consume_skb(struct sk_buff *skb); 583extern void __kfree_skb(struct sk_buff *skb); 584extern struct kmem_cache *skbuff_head_cache; 585 586extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 587extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 588 bool *fragstolen, int *delta_truesize); 589 590extern struct sk_buff *__alloc_skb(unsigned int size, 591 gfp_t priority, int flags, int node); 592extern struct sk_buff *build_skb(void *data, unsigned int frag_size); 593static inline struct sk_buff *alloc_skb(unsigned int size, 594 gfp_t priority) 595{ 596 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 597} 598 599static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 600 gfp_t priority) 601{ 602 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 603} 604 605extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 606extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 607extern struct sk_buff *skb_clone(struct sk_buff *skb, 608 gfp_t priority); 609extern struct sk_buff *skb_copy(const struct sk_buff *skb, 610 gfp_t priority); 611extern struct sk_buff *__pskb_copy(struct sk_buff *skb, 612 int headroom, gfp_t gfp_mask); 613 614extern int pskb_expand_head(struct sk_buff *skb, 615 int nhead, int ntail, 616 gfp_t gfp_mask); 617extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 618 unsigned int headroom); 619extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 620 int newheadroom, int newtailroom, 621 gfp_t priority); 622extern int skb_to_sgvec(struct sk_buff *skb, 623 struct scatterlist *sg, int offset, 624 int len); 625extern int skb_cow_data(struct sk_buff *skb, int tailbits, 626 struct sk_buff **trailer); 627extern int skb_pad(struct sk_buff *skb, int pad); 628#define dev_kfree_skb(a) consume_skb(a) 629 630extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 631 int getfrag(void *from, char *to, int offset, 632 int len,int odd, struct sk_buff *skb), 633 void *from, int length); 634 635struct skb_seq_state { 636 __u32 lower_offset; 637 __u32 upper_offset; 638 __u32 frag_idx; 639 __u32 stepped_offset; 640 struct sk_buff *root_skb; 641 struct sk_buff *cur_skb; 642 __u8 *frag_data; 643}; 644 645extern void skb_prepare_seq_read(struct sk_buff *skb, 646 unsigned int from, unsigned int to, 647 struct skb_seq_state *st); 648extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 649 struct skb_seq_state *st); 650extern void skb_abort_seq_read(struct skb_seq_state *st); 651 652extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 653 unsigned int to, struct ts_config *config, 654 struct ts_state *state); 655 656extern void __skb_get_rxhash(struct sk_buff *skb); 657static inline __u32 skb_get_rxhash(struct sk_buff *skb) 658{ 659 if (!skb->l4_rxhash) 660 __skb_get_rxhash(skb); 661 662 return skb->rxhash; 663} 664 665#ifdef NET_SKBUFF_DATA_USES_OFFSET 666static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 667{ 668 return skb->head + skb->end; 669} 670 671static inline unsigned int skb_end_offset(const struct sk_buff *skb) 672{ 673 return skb->end; 674} 675#else 676static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 677{ 678 return skb->end; 679} 680 681static inline unsigned int skb_end_offset(const struct sk_buff *skb) 682{ 683 return skb->end - skb->head; 684} 685#endif 686 687/* Internal */ 688#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 689 690static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 691{ 692 return &skb_shinfo(skb)->hwtstamps; 693} 694 695/** 696 * skb_queue_empty - check if a queue is empty 697 * @list: queue head 698 * 699 * Returns true if the queue is empty, false otherwise. 700 */ 701static inline int skb_queue_empty(const struct sk_buff_head *list) 702{ 703 return list->next == (struct sk_buff *)list; 704} 705 706/** 707 * skb_queue_is_last - check if skb is the last entry in the queue 708 * @list: queue head 709 * @skb: buffer 710 * 711 * Returns true if @skb is the last buffer on the list. 712 */ 713static inline bool skb_queue_is_last(const struct sk_buff_head *list, 714 const struct sk_buff *skb) 715{ 716 return skb->next == (struct sk_buff *)list; 717} 718 719/** 720 * skb_queue_is_first - check if skb is the first entry in the queue 721 * @list: queue head 722 * @skb: buffer 723 * 724 * Returns true if @skb is the first buffer on the list. 725 */ 726static inline bool skb_queue_is_first(const struct sk_buff_head *list, 727 const struct sk_buff *skb) 728{ 729 return skb->prev == (struct sk_buff *)list; 730} 731 732/** 733 * skb_queue_next - return the next packet in the queue 734 * @list: queue head 735 * @skb: current buffer 736 * 737 * Return the next packet in @list after @skb. It is only valid to 738 * call this if skb_queue_is_last() evaluates to false. 739 */ 740static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 741 const struct sk_buff *skb) 742{ 743 /* This BUG_ON may seem severe, but if we just return then we 744 * are going to dereference garbage. 745 */ 746 BUG_ON(skb_queue_is_last(list, skb)); 747 return skb->next; 748} 749 750/** 751 * skb_queue_prev - return the prev packet in the queue 752 * @list: queue head 753 * @skb: current buffer 754 * 755 * Return the prev packet in @list before @skb. It is only valid to 756 * call this if skb_queue_is_first() evaluates to false. 757 */ 758static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 759 const struct sk_buff *skb) 760{ 761 /* This BUG_ON may seem severe, but if we just return then we 762 * are going to dereference garbage. 763 */ 764 BUG_ON(skb_queue_is_first(list, skb)); 765 return skb->prev; 766} 767 768/** 769 * skb_get - reference buffer 770 * @skb: buffer to reference 771 * 772 * Makes another reference to a socket buffer and returns a pointer 773 * to the buffer. 774 */ 775static inline struct sk_buff *skb_get(struct sk_buff *skb) 776{ 777 atomic_inc(&skb->users); 778 return skb; 779} 780 781/* 782 * If users == 1, we are the only owner and are can avoid redundant 783 * atomic change. 784 */ 785 786/** 787 * skb_cloned - is the buffer a clone 788 * @skb: buffer to check 789 * 790 * Returns true if the buffer was generated with skb_clone() and is 791 * one of multiple shared copies of the buffer. Cloned buffers are 792 * shared data so must not be written to under normal circumstances. 793 */ 794static inline int skb_cloned(const struct sk_buff *skb) 795{ 796 return skb->cloned && 797 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 798} 799 800/** 801 * skb_header_cloned - is the header a clone 802 * @skb: buffer to check 803 * 804 * Returns true if modifying the header part of the buffer requires 805 * the data to be copied. 806 */ 807static inline int skb_header_cloned(const struct sk_buff *skb) 808{ 809 int dataref; 810 811 if (!skb->cloned) 812 return 0; 813 814 dataref = atomic_read(&skb_shinfo(skb)->dataref); 815 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 816 return dataref != 1; 817} 818 819/** 820 * skb_header_release - release reference to header 821 * @skb: buffer to operate on 822 * 823 * Drop a reference to the header part of the buffer. This is done 824 * by acquiring a payload reference. You must not read from the header 825 * part of skb->data after this. 826 */ 827static inline void skb_header_release(struct sk_buff *skb) 828{ 829 BUG_ON(skb->nohdr); 830 skb->nohdr = 1; 831 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 832} 833 834/** 835 * skb_shared - is the buffer shared 836 * @skb: buffer to check 837 * 838 * Returns true if more than one person has a reference to this 839 * buffer. 840 */ 841static inline int skb_shared(const struct sk_buff *skb) 842{ 843 return atomic_read(&skb->users) != 1; 844} 845 846/** 847 * skb_share_check - check if buffer is shared and if so clone it 848 * @skb: buffer to check 849 * @pri: priority for memory allocation 850 * 851 * If the buffer is shared the buffer is cloned and the old copy 852 * drops a reference. A new clone with a single reference is returned. 853 * If the buffer is not shared the original buffer is returned. When 854 * being called from interrupt status or with spinlocks held pri must 855 * be GFP_ATOMIC. 856 * 857 * NULL is returned on a memory allocation failure. 858 */ 859static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 860{ 861 might_sleep_if(pri & __GFP_WAIT); 862 if (skb_shared(skb)) { 863 struct sk_buff *nskb = skb_clone(skb, pri); 864 865 if (likely(nskb)) 866 consume_skb(skb); 867 else 868 kfree_skb(skb); 869 skb = nskb; 870 } 871 return skb; 872} 873 874/* 875 * Copy shared buffers into a new sk_buff. We effectively do COW on 876 * packets to handle cases where we have a local reader and forward 877 * and a couple of other messy ones. The normal one is tcpdumping 878 * a packet thats being forwarded. 879 */ 880 881/** 882 * skb_unshare - make a copy of a shared buffer 883 * @skb: buffer to check 884 * @pri: priority for memory allocation 885 * 886 * If the socket buffer is a clone then this function creates a new 887 * copy of the data, drops a reference count on the old copy and returns 888 * the new copy with the reference count at 1. If the buffer is not a clone 889 * the original buffer is returned. When called with a spinlock held or 890 * from interrupt state @pri must be %GFP_ATOMIC 891 * 892 * %NULL is returned on a memory allocation failure. 893 */ 894static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 895 gfp_t pri) 896{ 897 might_sleep_if(pri & __GFP_WAIT); 898 if (skb_cloned(skb)) { 899 struct sk_buff *nskb = skb_copy(skb, pri); 900 kfree_skb(skb); /* Free our shared copy */ 901 skb = nskb; 902 } 903 return skb; 904} 905 906/** 907 * skb_peek - peek at the head of an &sk_buff_head 908 * @list_: list to peek at 909 * 910 * Peek an &sk_buff. Unlike most other operations you _MUST_ 911 * be careful with this one. A peek leaves the buffer on the 912 * list and someone else may run off with it. You must hold 913 * the appropriate locks or have a private queue to do this. 914 * 915 * Returns %NULL for an empty list or a pointer to the head element. 916 * The reference count is not incremented and the reference is therefore 917 * volatile. Use with caution. 918 */ 919static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 920{ 921 struct sk_buff *skb = list_->next; 922 923 if (skb == (struct sk_buff *)list_) 924 skb = NULL; 925 return skb; 926} 927 928/** 929 * skb_peek_next - peek skb following the given one from a queue 930 * @skb: skb to start from 931 * @list_: list to peek at 932 * 933 * Returns %NULL when the end of the list is met or a pointer to the 934 * next element. The reference count is not incremented and the 935 * reference is therefore volatile. Use with caution. 936 */ 937static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 938 const struct sk_buff_head *list_) 939{ 940 struct sk_buff *next = skb->next; 941 942 if (next == (struct sk_buff *)list_) 943 next = NULL; 944 return next; 945} 946 947/** 948 * skb_peek_tail - peek at the tail of an &sk_buff_head 949 * @list_: list to peek at 950 * 951 * Peek an &sk_buff. Unlike most other operations you _MUST_ 952 * be careful with this one. A peek leaves the buffer on the 953 * list and someone else may run off with it. You must hold 954 * the appropriate locks or have a private queue to do this. 955 * 956 * Returns %NULL for an empty list or a pointer to the tail element. 957 * The reference count is not incremented and the reference is therefore 958 * volatile. Use with caution. 959 */ 960static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 961{ 962 struct sk_buff *skb = list_->prev; 963 964 if (skb == (struct sk_buff *)list_) 965 skb = NULL; 966 return skb; 967 968} 969 970/** 971 * skb_queue_len - get queue length 972 * @list_: list to measure 973 * 974 * Return the length of an &sk_buff queue. 975 */ 976static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 977{ 978 return list_->qlen; 979} 980 981/** 982 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 983 * @list: queue to initialize 984 * 985 * This initializes only the list and queue length aspects of 986 * an sk_buff_head object. This allows to initialize the list 987 * aspects of an sk_buff_head without reinitializing things like 988 * the spinlock. It can also be used for on-stack sk_buff_head 989 * objects where the spinlock is known to not be used. 990 */ 991static inline void __skb_queue_head_init(struct sk_buff_head *list) 992{ 993 list->prev = list->next = (struct sk_buff *)list; 994 list->qlen = 0; 995} 996 997/* 998 * This function creates a split out lock class for each invocation; 999 * this is needed for now since a whole lot of users of the skb-queue 1000 * infrastructure in drivers have different locking usage (in hardirq) 1001 * than the networking core (in softirq only). In the long run either the 1002 * network layer or drivers should need annotation to consolidate the 1003 * main types of usage into 3 classes. 1004 */ 1005static inline void skb_queue_head_init(struct sk_buff_head *list) 1006{ 1007 spin_lock_init(&list->lock); 1008 __skb_queue_head_init(list); 1009} 1010 1011static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1012 struct lock_class_key *class) 1013{ 1014 skb_queue_head_init(list); 1015 lockdep_set_class(&list->lock, class); 1016} 1017 1018/* 1019 * Insert an sk_buff on a list. 1020 * 1021 * The "__skb_xxxx()" functions are the non-atomic ones that 1022 * can only be called with interrupts disabled. 1023 */ 1024extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 1025static inline void __skb_insert(struct sk_buff *newsk, 1026 struct sk_buff *prev, struct sk_buff *next, 1027 struct sk_buff_head *list) 1028{ 1029 newsk->next = next; 1030 newsk->prev = prev; 1031 next->prev = prev->next = newsk; 1032 list->qlen++; 1033} 1034 1035static inline void __skb_queue_splice(const struct sk_buff_head *list, 1036 struct sk_buff *prev, 1037 struct sk_buff *next) 1038{ 1039 struct sk_buff *first = list->next; 1040 struct sk_buff *last = list->prev; 1041 1042 first->prev = prev; 1043 prev->next = first; 1044 1045 last->next = next; 1046 next->prev = last; 1047} 1048 1049/** 1050 * skb_queue_splice - join two skb lists, this is designed for stacks 1051 * @list: the new list to add 1052 * @head: the place to add it in the first list 1053 */ 1054static inline void skb_queue_splice(const struct sk_buff_head *list, 1055 struct sk_buff_head *head) 1056{ 1057 if (!skb_queue_empty(list)) { 1058 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1059 head->qlen += list->qlen; 1060 } 1061} 1062 1063/** 1064 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1065 * @list: the new list to add 1066 * @head: the place to add it in the first list 1067 * 1068 * The list at @list is reinitialised 1069 */ 1070static inline void skb_queue_splice_init(struct sk_buff_head *list, 1071 struct sk_buff_head *head) 1072{ 1073 if (!skb_queue_empty(list)) { 1074 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1075 head->qlen += list->qlen; 1076 __skb_queue_head_init(list); 1077 } 1078} 1079 1080/** 1081 * skb_queue_splice_tail - join two skb lists, each list being a queue 1082 * @list: the new list to add 1083 * @head: the place to add it in the first list 1084 */ 1085static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1086 struct sk_buff_head *head) 1087{ 1088 if (!skb_queue_empty(list)) { 1089 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1090 head->qlen += list->qlen; 1091 } 1092} 1093 1094/** 1095 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1096 * @list: the new list to add 1097 * @head: the place to add it in the first list 1098 * 1099 * Each of the lists is a queue. 1100 * The list at @list is reinitialised 1101 */ 1102static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1103 struct sk_buff_head *head) 1104{ 1105 if (!skb_queue_empty(list)) { 1106 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1107 head->qlen += list->qlen; 1108 __skb_queue_head_init(list); 1109 } 1110} 1111 1112/** 1113 * __skb_queue_after - queue a buffer at the list head 1114 * @list: list to use 1115 * @prev: place after this buffer 1116 * @newsk: buffer to queue 1117 * 1118 * Queue a buffer int the middle of a list. This function takes no locks 1119 * and you must therefore hold required locks before calling it. 1120 * 1121 * A buffer cannot be placed on two lists at the same time. 1122 */ 1123static inline void __skb_queue_after(struct sk_buff_head *list, 1124 struct sk_buff *prev, 1125 struct sk_buff *newsk) 1126{ 1127 __skb_insert(newsk, prev, prev->next, list); 1128} 1129 1130extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1131 struct sk_buff_head *list); 1132 1133static inline void __skb_queue_before(struct sk_buff_head *list, 1134 struct sk_buff *next, 1135 struct sk_buff *newsk) 1136{ 1137 __skb_insert(newsk, next->prev, next, list); 1138} 1139 1140/** 1141 * __skb_queue_head - queue a buffer at the list head 1142 * @list: list to use 1143 * @newsk: buffer to queue 1144 * 1145 * Queue a buffer at the start of a list. This function takes no locks 1146 * and you must therefore hold required locks before calling it. 1147 * 1148 * A buffer cannot be placed on two lists at the same time. 1149 */ 1150extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1151static inline void __skb_queue_head(struct sk_buff_head *list, 1152 struct sk_buff *newsk) 1153{ 1154 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1155} 1156 1157/** 1158 * __skb_queue_tail - queue a buffer at the list tail 1159 * @list: list to use 1160 * @newsk: buffer to queue 1161 * 1162 * Queue a buffer at the end of a list. This function takes no locks 1163 * and you must therefore hold required locks before calling it. 1164 * 1165 * A buffer cannot be placed on two lists at the same time. 1166 */ 1167extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1168static inline void __skb_queue_tail(struct sk_buff_head *list, 1169 struct sk_buff *newsk) 1170{ 1171 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1172} 1173 1174/* 1175 * remove sk_buff from list. _Must_ be called atomically, and with 1176 * the list known.. 1177 */ 1178extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1179static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1180{ 1181 struct sk_buff *next, *prev; 1182 1183 list->qlen--; 1184 next = skb->next; 1185 prev = skb->prev; 1186 skb->next = skb->prev = NULL; 1187 next->prev = prev; 1188 prev->next = next; 1189} 1190 1191/** 1192 * __skb_dequeue - remove from the head of the queue 1193 * @list: list to dequeue from 1194 * 1195 * Remove the head of the list. This function does not take any locks 1196 * so must be used with appropriate locks held only. The head item is 1197 * returned or %NULL if the list is empty. 1198 */ 1199extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1200static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1201{ 1202 struct sk_buff *skb = skb_peek(list); 1203 if (skb) 1204 __skb_unlink(skb, list); 1205 return skb; 1206} 1207 1208/** 1209 * __skb_dequeue_tail - remove from the tail of the queue 1210 * @list: list to dequeue from 1211 * 1212 * Remove the tail of the list. This function does not take any locks 1213 * so must be used with appropriate locks held only. The tail item is 1214 * returned or %NULL if the list is empty. 1215 */ 1216extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1217static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1218{ 1219 struct sk_buff *skb = skb_peek_tail(list); 1220 if (skb) 1221 __skb_unlink(skb, list); 1222 return skb; 1223} 1224 1225 1226static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1227{ 1228 return skb->data_len; 1229} 1230 1231static inline unsigned int skb_headlen(const struct sk_buff *skb) 1232{ 1233 return skb->len - skb->data_len; 1234} 1235 1236static inline int skb_pagelen(const struct sk_buff *skb) 1237{ 1238 int i, len = 0; 1239 1240 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1241 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1242 return len + skb_headlen(skb); 1243} 1244 1245/** 1246 * __skb_fill_page_desc - initialise a paged fragment in an skb 1247 * @skb: buffer containing fragment to be initialised 1248 * @i: paged fragment index to initialise 1249 * @page: the page to use for this fragment 1250 * @off: the offset to the data with @page 1251 * @size: the length of the data 1252 * 1253 * Initialises the @i'th fragment of @skb to point to &size bytes at 1254 * offset @off within @page. 1255 * 1256 * Does not take any additional reference on the fragment. 1257 */ 1258static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1259 struct page *page, int off, int size) 1260{ 1261 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1262 1263 /* 1264 * Propagate page->pfmemalloc to the skb if we can. The problem is 1265 * that not all callers have unique ownership of the page. If 1266 * pfmemalloc is set, we check the mapping as a mapping implies 1267 * page->index is set (index and pfmemalloc share space). 1268 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1269 * do not lose pfmemalloc information as the pages would not be 1270 * allocated using __GFP_MEMALLOC. 1271 */ 1272 if (page->pfmemalloc && !page->mapping) 1273 skb->pfmemalloc = true; 1274 frag->page.p = page; 1275 frag->page_offset = off; 1276 skb_frag_size_set(frag, size); 1277} 1278 1279/** 1280 * skb_fill_page_desc - initialise a paged fragment in an skb 1281 * @skb: buffer containing fragment to be initialised 1282 * @i: paged fragment index to initialise 1283 * @page: the page to use for this fragment 1284 * @off: the offset to the data with @page 1285 * @size: the length of the data 1286 * 1287 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1288 * @skb to point to &size bytes at offset @off within @page. In 1289 * addition updates @skb such that @i is the last fragment. 1290 * 1291 * Does not take any additional reference on the fragment. 1292 */ 1293static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1294 struct page *page, int off, int size) 1295{ 1296 __skb_fill_page_desc(skb, i, page, off, size); 1297 skb_shinfo(skb)->nr_frags = i + 1; 1298} 1299 1300extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1301 int off, int size, unsigned int truesize); 1302 1303#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1304#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1305#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1306 1307#ifdef NET_SKBUFF_DATA_USES_OFFSET 1308static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1309{ 1310 return skb->head + skb->tail; 1311} 1312 1313static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1314{ 1315 skb->tail = skb->data - skb->head; 1316} 1317 1318static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1319{ 1320 skb_reset_tail_pointer(skb); 1321 skb->tail += offset; 1322} 1323#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1324static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1325{ 1326 return skb->tail; 1327} 1328 1329static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1330{ 1331 skb->tail = skb->data; 1332} 1333 1334static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1335{ 1336 skb->tail = skb->data + offset; 1337} 1338 1339#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1340 1341/* 1342 * Add data to an sk_buff 1343 */ 1344extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1345static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1346{ 1347 unsigned char *tmp = skb_tail_pointer(skb); 1348 SKB_LINEAR_ASSERT(skb); 1349 skb->tail += len; 1350 skb->len += len; 1351 return tmp; 1352} 1353 1354extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1355static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1356{ 1357 skb->data -= len; 1358 skb->len += len; 1359 return skb->data; 1360} 1361 1362extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1363static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1364{ 1365 skb->len -= len; 1366 BUG_ON(skb->len < skb->data_len); 1367 return skb->data += len; 1368} 1369 1370static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1371{ 1372 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1373} 1374 1375extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1376 1377static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1378{ 1379 if (len > skb_headlen(skb) && 1380 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1381 return NULL; 1382 skb->len -= len; 1383 return skb->data += len; 1384} 1385 1386static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1387{ 1388 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1389} 1390 1391static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1392{ 1393 if (likely(len <= skb_headlen(skb))) 1394 return 1; 1395 if (unlikely(len > skb->len)) 1396 return 0; 1397 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1398} 1399 1400/** 1401 * skb_headroom - bytes at buffer head 1402 * @skb: buffer to check 1403 * 1404 * Return the number of bytes of free space at the head of an &sk_buff. 1405 */ 1406static inline unsigned int skb_headroom(const struct sk_buff *skb) 1407{ 1408 return skb->data - skb->head; 1409} 1410 1411/** 1412 * skb_tailroom - bytes at buffer end 1413 * @skb: buffer to check 1414 * 1415 * Return the number of bytes of free space at the tail of an sk_buff 1416 */ 1417static inline int skb_tailroom(const struct sk_buff *skb) 1418{ 1419 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1420} 1421 1422/** 1423 * skb_availroom - bytes at buffer end 1424 * @skb: buffer to check 1425 * 1426 * Return the number of bytes of free space at the tail of an sk_buff 1427 * allocated by sk_stream_alloc() 1428 */ 1429static inline int skb_availroom(const struct sk_buff *skb) 1430{ 1431 return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len; 1432} 1433 1434/** 1435 * skb_reserve - adjust headroom 1436 * @skb: buffer to alter 1437 * @len: bytes to move 1438 * 1439 * Increase the headroom of an empty &sk_buff by reducing the tail 1440 * room. This is only allowed for an empty buffer. 1441 */ 1442static inline void skb_reserve(struct sk_buff *skb, int len) 1443{ 1444 skb->data += len; 1445 skb->tail += len; 1446} 1447 1448static inline void skb_reset_inner_headers(struct sk_buff *skb) 1449{ 1450 skb->inner_network_header = skb->network_header; 1451 skb->inner_transport_header = skb->transport_header; 1452} 1453 1454static inline void skb_reset_mac_len(struct sk_buff *skb) 1455{ 1456 skb->mac_len = skb->network_header - skb->mac_header; 1457} 1458 1459#ifdef NET_SKBUFF_DATA_USES_OFFSET 1460static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1461 *skb) 1462{ 1463 return skb->head + skb->inner_transport_header; 1464} 1465 1466static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1467{ 1468 skb->inner_transport_header = skb->data - skb->head; 1469} 1470 1471static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1472 const int offset) 1473{ 1474 skb_reset_inner_transport_header(skb); 1475 skb->inner_transport_header += offset; 1476} 1477 1478static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1479{ 1480 return skb->head + skb->inner_network_header; 1481} 1482 1483static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1484{ 1485 skb->inner_network_header = skb->data - skb->head; 1486} 1487 1488static inline void skb_set_inner_network_header(struct sk_buff *skb, 1489 const int offset) 1490{ 1491 skb_reset_inner_network_header(skb); 1492 skb->inner_network_header += offset; 1493} 1494 1495static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1496{ 1497 return skb->head + skb->transport_header; 1498} 1499 1500static inline void skb_reset_transport_header(struct sk_buff *skb) 1501{ 1502 skb->transport_header = skb->data - skb->head; 1503} 1504 1505static inline void skb_set_transport_header(struct sk_buff *skb, 1506 const int offset) 1507{ 1508 skb_reset_transport_header(skb); 1509 skb->transport_header += offset; 1510} 1511 1512static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1513{ 1514 return skb->head + skb->network_header; 1515} 1516 1517static inline void skb_reset_network_header(struct sk_buff *skb) 1518{ 1519 skb->network_header = skb->data - skb->head; 1520} 1521 1522static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1523{ 1524 skb_reset_network_header(skb); 1525 skb->network_header += offset; 1526} 1527 1528static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1529{ 1530 return skb->head + skb->mac_header; 1531} 1532 1533static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1534{ 1535 return skb->mac_header != ~0U; 1536} 1537 1538static inline void skb_reset_mac_header(struct sk_buff *skb) 1539{ 1540 skb->mac_header = skb->data - skb->head; 1541} 1542 1543static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1544{ 1545 skb_reset_mac_header(skb); 1546 skb->mac_header += offset; 1547} 1548 1549#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1550static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1551 *skb) 1552{ 1553 return skb->inner_transport_header; 1554} 1555 1556static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1557{ 1558 skb->inner_transport_header = skb->data; 1559} 1560 1561static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1562 const int offset) 1563{ 1564 skb->inner_transport_header = skb->data + offset; 1565} 1566 1567static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1568{ 1569 return skb->inner_network_header; 1570} 1571 1572static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1573{ 1574 skb->inner_network_header = skb->data; 1575} 1576 1577static inline void skb_set_inner_network_header(struct sk_buff *skb, 1578 const int offset) 1579{ 1580 skb->inner_network_header = skb->data + offset; 1581} 1582 1583static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1584{ 1585 return skb->transport_header; 1586} 1587 1588static inline void skb_reset_transport_header(struct sk_buff *skb) 1589{ 1590 skb->transport_header = skb->data; 1591} 1592 1593static inline void skb_set_transport_header(struct sk_buff *skb, 1594 const int offset) 1595{ 1596 skb->transport_header = skb->data + offset; 1597} 1598 1599static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1600{ 1601 return skb->network_header; 1602} 1603 1604static inline void skb_reset_network_header(struct sk_buff *skb) 1605{ 1606 skb->network_header = skb->data; 1607} 1608 1609static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1610{ 1611 skb->network_header = skb->data + offset; 1612} 1613 1614static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1615{ 1616 return skb->mac_header; 1617} 1618 1619static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1620{ 1621 return skb->mac_header != NULL; 1622} 1623 1624static inline void skb_reset_mac_header(struct sk_buff *skb) 1625{ 1626 skb->mac_header = skb->data; 1627} 1628 1629static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1630{ 1631 skb->mac_header = skb->data + offset; 1632} 1633#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1634 1635static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1636{ 1637 if (skb_mac_header_was_set(skb)) { 1638 const unsigned char *old_mac = skb_mac_header(skb); 1639 1640 skb_set_mac_header(skb, -skb->mac_len); 1641 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1642 } 1643} 1644 1645static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1646{ 1647 return skb->csum_start - skb_headroom(skb); 1648} 1649 1650static inline int skb_transport_offset(const struct sk_buff *skb) 1651{ 1652 return skb_transport_header(skb) - skb->data; 1653} 1654 1655static inline u32 skb_network_header_len(const struct sk_buff *skb) 1656{ 1657 return skb->transport_header - skb->network_header; 1658} 1659 1660static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1661{ 1662 return skb->inner_transport_header - skb->inner_network_header; 1663} 1664 1665static inline int skb_network_offset(const struct sk_buff *skb) 1666{ 1667 return skb_network_header(skb) - skb->data; 1668} 1669 1670static inline int skb_inner_network_offset(const struct sk_buff *skb) 1671{ 1672 return skb_inner_network_header(skb) - skb->data; 1673} 1674 1675static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1676{ 1677 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1678} 1679 1680/* 1681 * CPUs often take a performance hit when accessing unaligned memory 1682 * locations. The actual performance hit varies, it can be small if the 1683 * hardware handles it or large if we have to take an exception and fix it 1684 * in software. 1685 * 1686 * Since an ethernet header is 14 bytes network drivers often end up with 1687 * the IP header at an unaligned offset. The IP header can be aligned by 1688 * shifting the start of the packet by 2 bytes. Drivers should do this 1689 * with: 1690 * 1691 * skb_reserve(skb, NET_IP_ALIGN); 1692 * 1693 * The downside to this alignment of the IP header is that the DMA is now 1694 * unaligned. On some architectures the cost of an unaligned DMA is high 1695 * and this cost outweighs the gains made by aligning the IP header. 1696 * 1697 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1698 * to be overridden. 1699 */ 1700#ifndef NET_IP_ALIGN 1701#define NET_IP_ALIGN 2 1702#endif 1703 1704/* 1705 * The networking layer reserves some headroom in skb data (via 1706 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1707 * the header has to grow. In the default case, if the header has to grow 1708 * 32 bytes or less we avoid the reallocation. 1709 * 1710 * Unfortunately this headroom changes the DMA alignment of the resulting 1711 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1712 * on some architectures. An architecture can override this value, 1713 * perhaps setting it to a cacheline in size (since that will maintain 1714 * cacheline alignment of the DMA). It must be a power of 2. 1715 * 1716 * Various parts of the networking layer expect at least 32 bytes of 1717 * headroom, you should not reduce this. 1718 * 1719 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1720 * to reduce average number of cache lines per packet. 1721 * get_rps_cpus() for example only access one 64 bytes aligned block : 1722 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1723 */ 1724#ifndef NET_SKB_PAD 1725#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1726#endif 1727 1728extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1729 1730static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1731{ 1732 if (unlikely(skb_is_nonlinear(skb))) { 1733 WARN_ON(1); 1734 return; 1735 } 1736 skb->len = len; 1737 skb_set_tail_pointer(skb, len); 1738} 1739 1740extern void skb_trim(struct sk_buff *skb, unsigned int len); 1741 1742static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1743{ 1744 if (skb->data_len) 1745 return ___pskb_trim(skb, len); 1746 __skb_trim(skb, len); 1747 return 0; 1748} 1749 1750static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1751{ 1752 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1753} 1754 1755/** 1756 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1757 * @skb: buffer to alter 1758 * @len: new length 1759 * 1760 * This is identical to pskb_trim except that the caller knows that 1761 * the skb is not cloned so we should never get an error due to out- 1762 * of-memory. 1763 */ 1764static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1765{ 1766 int err = pskb_trim(skb, len); 1767 BUG_ON(err); 1768} 1769 1770/** 1771 * skb_orphan - orphan a buffer 1772 * @skb: buffer to orphan 1773 * 1774 * If a buffer currently has an owner then we call the owner's 1775 * destructor function and make the @skb unowned. The buffer continues 1776 * to exist but is no longer charged to its former owner. 1777 */ 1778static inline void skb_orphan(struct sk_buff *skb) 1779{ 1780 if (skb->destructor) 1781 skb->destructor(skb); 1782 skb->destructor = NULL; 1783 skb->sk = NULL; 1784} 1785 1786/** 1787 * skb_orphan_frags - orphan the frags contained in a buffer 1788 * @skb: buffer to orphan frags from 1789 * @gfp_mask: allocation mask for replacement pages 1790 * 1791 * For each frag in the SKB which needs a destructor (i.e. has an 1792 * owner) create a copy of that frag and release the original 1793 * page by calling the destructor. 1794 */ 1795static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 1796{ 1797 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 1798 return 0; 1799 return skb_copy_ubufs(skb, gfp_mask); 1800} 1801 1802/** 1803 * __skb_queue_purge - empty a list 1804 * @list: list to empty 1805 * 1806 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1807 * the list and one reference dropped. This function does not take the 1808 * list lock and the caller must hold the relevant locks to use it. 1809 */ 1810extern void skb_queue_purge(struct sk_buff_head *list); 1811static inline void __skb_queue_purge(struct sk_buff_head *list) 1812{ 1813 struct sk_buff *skb; 1814 while ((skb = __skb_dequeue(list)) != NULL) 1815 kfree_skb(skb); 1816} 1817 1818extern void *netdev_alloc_frag(unsigned int fragsz); 1819 1820extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1821 unsigned int length, 1822 gfp_t gfp_mask); 1823 1824/** 1825 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1826 * @dev: network device to receive on 1827 * @length: length to allocate 1828 * 1829 * Allocate a new &sk_buff and assign it a usage count of one. The 1830 * buffer has unspecified headroom built in. Users should allocate 1831 * the headroom they think they need without accounting for the 1832 * built in space. The built in space is used for optimisations. 1833 * 1834 * %NULL is returned if there is no free memory. Although this function 1835 * allocates memory it can be called from an interrupt. 1836 */ 1837static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1838 unsigned int length) 1839{ 1840 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1841} 1842 1843/* legacy helper around __netdev_alloc_skb() */ 1844static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1845 gfp_t gfp_mask) 1846{ 1847 return __netdev_alloc_skb(NULL, length, gfp_mask); 1848} 1849 1850/* legacy helper around netdev_alloc_skb() */ 1851static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1852{ 1853 return netdev_alloc_skb(NULL, length); 1854} 1855 1856 1857static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1858 unsigned int length, gfp_t gfp) 1859{ 1860 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1861 1862 if (NET_IP_ALIGN && skb) 1863 skb_reserve(skb, NET_IP_ALIGN); 1864 return skb; 1865} 1866 1867static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1868 unsigned int length) 1869{ 1870 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 1871} 1872 1873/* 1874 * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data 1875 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1876 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1877 * @order: size of the allocation 1878 * 1879 * Allocate a new page. 1880 * 1881 * %NULL is returned if there is no free memory. 1882*/ 1883static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 1884 struct sk_buff *skb, 1885 unsigned int order) 1886{ 1887 struct page *page; 1888 1889 gfp_mask |= __GFP_COLD; 1890 1891 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1892 gfp_mask |= __GFP_MEMALLOC; 1893 1894 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 1895 if (skb && page && page->pfmemalloc) 1896 skb->pfmemalloc = true; 1897 1898 return page; 1899} 1900 1901/** 1902 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 1903 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1904 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1905 * 1906 * Allocate a new page. 1907 * 1908 * %NULL is returned if there is no free memory. 1909 */ 1910static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 1911 struct sk_buff *skb) 1912{ 1913 return __skb_alloc_pages(gfp_mask, skb, 0); 1914} 1915 1916/** 1917 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 1918 * @page: The page that was allocated from skb_alloc_page 1919 * @skb: The skb that may need pfmemalloc set 1920 */ 1921static inline void skb_propagate_pfmemalloc(struct page *page, 1922 struct sk_buff *skb) 1923{ 1924 if (page && page->pfmemalloc) 1925 skb->pfmemalloc = true; 1926} 1927 1928/** 1929 * skb_frag_page - retrieve the page refered to by a paged fragment 1930 * @frag: the paged fragment 1931 * 1932 * Returns the &struct page associated with @frag. 1933 */ 1934static inline struct page *skb_frag_page(const skb_frag_t *frag) 1935{ 1936 return frag->page.p; 1937} 1938 1939/** 1940 * __skb_frag_ref - take an addition reference on a paged fragment. 1941 * @frag: the paged fragment 1942 * 1943 * Takes an additional reference on the paged fragment @frag. 1944 */ 1945static inline void __skb_frag_ref(skb_frag_t *frag) 1946{ 1947 get_page(skb_frag_page(frag)); 1948} 1949 1950/** 1951 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 1952 * @skb: the buffer 1953 * @f: the fragment offset. 1954 * 1955 * Takes an additional reference on the @f'th paged fragment of @skb. 1956 */ 1957static inline void skb_frag_ref(struct sk_buff *skb, int f) 1958{ 1959 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 1960} 1961 1962/** 1963 * __skb_frag_unref - release a reference on a paged fragment. 1964 * @frag: the paged fragment 1965 * 1966 * Releases a reference on the paged fragment @frag. 1967 */ 1968static inline void __skb_frag_unref(skb_frag_t *frag) 1969{ 1970 put_page(skb_frag_page(frag)); 1971} 1972 1973/** 1974 * skb_frag_unref - release a reference on a paged fragment of an skb. 1975 * @skb: the buffer 1976 * @f: the fragment offset 1977 * 1978 * Releases a reference on the @f'th paged fragment of @skb. 1979 */ 1980static inline void skb_frag_unref(struct sk_buff *skb, int f) 1981{ 1982 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 1983} 1984 1985/** 1986 * skb_frag_address - gets the address of the data contained in a paged fragment 1987 * @frag: the paged fragment buffer 1988 * 1989 * Returns the address of the data within @frag. The page must already 1990 * be mapped. 1991 */ 1992static inline void *skb_frag_address(const skb_frag_t *frag) 1993{ 1994 return page_address(skb_frag_page(frag)) + frag->page_offset; 1995} 1996 1997/** 1998 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 1999 * @frag: the paged fragment buffer 2000 * 2001 * Returns the address of the data within @frag. Checks that the page 2002 * is mapped and returns %NULL otherwise. 2003 */ 2004static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2005{ 2006 void *ptr = page_address(skb_frag_page(frag)); 2007 if (unlikely(!ptr)) 2008 return NULL; 2009 2010 return ptr + frag->page_offset; 2011} 2012 2013/** 2014 * __skb_frag_set_page - sets the page contained in a paged fragment 2015 * @frag: the paged fragment 2016 * @page: the page to set 2017 * 2018 * Sets the fragment @frag to contain @page. 2019 */ 2020static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2021{ 2022 frag->page.p = page; 2023} 2024 2025/** 2026 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2027 * @skb: the buffer 2028 * @f: the fragment offset 2029 * @page: the page to set 2030 * 2031 * Sets the @f'th fragment of @skb to contain @page. 2032 */ 2033static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2034 struct page *page) 2035{ 2036 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2037} 2038 2039/** 2040 * skb_frag_dma_map - maps a paged fragment via the DMA API 2041 * @dev: the device to map the fragment to 2042 * @frag: the paged fragment to map 2043 * @offset: the offset within the fragment (starting at the 2044 * fragment's own offset) 2045 * @size: the number of bytes to map 2046 * @dir: the direction of the mapping (%PCI_DMA_*) 2047 * 2048 * Maps the page associated with @frag to @device. 2049 */ 2050static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2051 const skb_frag_t *frag, 2052 size_t offset, size_t size, 2053 enum dma_data_direction dir) 2054{ 2055 return dma_map_page(dev, skb_frag_page(frag), 2056 frag->page_offset + offset, size, dir); 2057} 2058 2059static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2060 gfp_t gfp_mask) 2061{ 2062 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2063} 2064 2065/** 2066 * skb_clone_writable - is the header of a clone writable 2067 * @skb: buffer to check 2068 * @len: length up to which to write 2069 * 2070 * Returns true if modifying the header part of the cloned buffer 2071 * does not requires the data to be copied. 2072 */ 2073static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2074{ 2075 return !skb_header_cloned(skb) && 2076 skb_headroom(skb) + len <= skb->hdr_len; 2077} 2078 2079static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2080 int cloned) 2081{ 2082 int delta = 0; 2083 2084 if (headroom > skb_headroom(skb)) 2085 delta = headroom - skb_headroom(skb); 2086 2087 if (delta || cloned) 2088 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2089 GFP_ATOMIC); 2090 return 0; 2091} 2092 2093/** 2094 * skb_cow - copy header of skb when it is required 2095 * @skb: buffer to cow 2096 * @headroom: needed headroom 2097 * 2098 * If the skb passed lacks sufficient headroom or its data part 2099 * is shared, data is reallocated. If reallocation fails, an error 2100 * is returned and original skb is not changed. 2101 * 2102 * The result is skb with writable area skb->head...skb->tail 2103 * and at least @headroom of space at head. 2104 */ 2105static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2106{ 2107 return __skb_cow(skb, headroom, skb_cloned(skb)); 2108} 2109 2110/** 2111 * skb_cow_head - skb_cow but only making the head writable 2112 * @skb: buffer to cow 2113 * @headroom: needed headroom 2114 * 2115 * This function is identical to skb_cow except that we replace the 2116 * skb_cloned check by skb_header_cloned. It should be used when 2117 * you only need to push on some header and do not need to modify 2118 * the data. 2119 */ 2120static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2121{ 2122 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2123} 2124 2125/** 2126 * skb_padto - pad an skbuff up to a minimal size 2127 * @skb: buffer to pad 2128 * @len: minimal length 2129 * 2130 * Pads up a buffer to ensure the trailing bytes exist and are 2131 * blanked. If the buffer already contains sufficient data it 2132 * is untouched. Otherwise it is extended. Returns zero on 2133 * success. The skb is freed on error. 2134 */ 2135 2136static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2137{ 2138 unsigned int size = skb->len; 2139 if (likely(size >= len)) 2140 return 0; 2141 return skb_pad(skb, len - size); 2142} 2143 2144static inline int skb_add_data(struct sk_buff *skb, 2145 char __user *from, int copy) 2146{ 2147 const int off = skb->len; 2148 2149 if (skb->ip_summed == CHECKSUM_NONE) { 2150 int err = 0; 2151 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2152 copy, 0, &err); 2153 if (!err) { 2154 skb->csum = csum_block_add(skb->csum, csum, off); 2155 return 0; 2156 } 2157 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2158 return 0; 2159 2160 __skb_trim(skb, off); 2161 return -EFAULT; 2162} 2163 2164static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2165 const struct page *page, int off) 2166{ 2167 if (i) { 2168 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2169 2170 return page == skb_frag_page(frag) && 2171 off == frag->page_offset + skb_frag_size(frag); 2172 } 2173 return false; 2174} 2175 2176static inline int __skb_linearize(struct sk_buff *skb) 2177{ 2178 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2179} 2180 2181/** 2182 * skb_linearize - convert paged skb to linear one 2183 * @skb: buffer to linarize 2184 * 2185 * If there is no free memory -ENOMEM is returned, otherwise zero 2186 * is returned and the old skb data released. 2187 */ 2188static inline int skb_linearize(struct sk_buff *skb) 2189{ 2190 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2191} 2192 2193/** 2194 * skb_linearize_cow - make sure skb is linear and writable 2195 * @skb: buffer to process 2196 * 2197 * If there is no free memory -ENOMEM is returned, otherwise zero 2198 * is returned and the old skb data released. 2199 */ 2200static inline int skb_linearize_cow(struct sk_buff *skb) 2201{ 2202 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2203 __skb_linearize(skb) : 0; 2204} 2205 2206/** 2207 * skb_postpull_rcsum - update checksum for received skb after pull 2208 * @skb: buffer to update 2209 * @start: start of data before pull 2210 * @len: length of data pulled 2211 * 2212 * After doing a pull on a received packet, you need to call this to 2213 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2214 * CHECKSUM_NONE so that it can be recomputed from scratch. 2215 */ 2216 2217static inline void skb_postpull_rcsum(struct sk_buff *skb, 2218 const void *start, unsigned int len) 2219{ 2220 if (skb->ip_summed == CHECKSUM_COMPLETE) 2221 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2222} 2223 2224unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2225 2226/** 2227 * pskb_trim_rcsum - trim received skb and update checksum 2228 * @skb: buffer to trim 2229 * @len: new length 2230 * 2231 * This is exactly the same as pskb_trim except that it ensures the 2232 * checksum of received packets are still valid after the operation. 2233 */ 2234 2235static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2236{ 2237 if (likely(len >= skb->len)) 2238 return 0; 2239 if (skb->ip_summed == CHECKSUM_COMPLETE) 2240 skb->ip_summed = CHECKSUM_NONE; 2241 return __pskb_trim(skb, len); 2242} 2243 2244#define skb_queue_walk(queue, skb) \ 2245 for (skb = (queue)->next; \ 2246 skb != (struct sk_buff *)(queue); \ 2247 skb = skb->next) 2248 2249#define skb_queue_walk_safe(queue, skb, tmp) \ 2250 for (skb = (queue)->next, tmp = skb->next; \ 2251 skb != (struct sk_buff *)(queue); \ 2252 skb = tmp, tmp = skb->next) 2253 2254#define skb_queue_walk_from(queue, skb) \ 2255 for (; skb != (struct sk_buff *)(queue); \ 2256 skb = skb->next) 2257 2258#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2259 for (tmp = skb->next; \ 2260 skb != (struct sk_buff *)(queue); \ 2261 skb = tmp, tmp = skb->next) 2262 2263#define skb_queue_reverse_walk(queue, skb) \ 2264 for (skb = (queue)->prev; \ 2265 skb != (struct sk_buff *)(queue); \ 2266 skb = skb->prev) 2267 2268#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2269 for (skb = (queue)->prev, tmp = skb->prev; \ 2270 skb != (struct sk_buff *)(queue); \ 2271 skb = tmp, tmp = skb->prev) 2272 2273#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2274 for (tmp = skb->prev; \ 2275 skb != (struct sk_buff *)(queue); \ 2276 skb = tmp, tmp = skb->prev) 2277 2278static inline bool skb_has_frag_list(const struct sk_buff *skb) 2279{ 2280 return skb_shinfo(skb)->frag_list != NULL; 2281} 2282 2283static inline void skb_frag_list_init(struct sk_buff *skb) 2284{ 2285 skb_shinfo(skb)->frag_list = NULL; 2286} 2287 2288static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2289{ 2290 frag->next = skb_shinfo(skb)->frag_list; 2291 skb_shinfo(skb)->frag_list = frag; 2292} 2293 2294#define skb_walk_frags(skb, iter) \ 2295 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2296 2297extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2298 int *peeked, int *off, int *err); 2299extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 2300 int noblock, int *err); 2301extern unsigned int datagram_poll(struct file *file, struct socket *sock, 2302 struct poll_table_struct *wait); 2303extern int skb_copy_datagram_iovec(const struct sk_buff *from, 2304 int offset, struct iovec *to, 2305 int size); 2306extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 2307 int hlen, 2308 struct iovec *iov); 2309extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 2310 int offset, 2311 const struct iovec *from, 2312 int from_offset, 2313 int len); 2314extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 2315 int offset, 2316 const struct iovec *to, 2317 int to_offset, 2318 int size); 2319extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2320extern void skb_free_datagram_locked(struct sock *sk, 2321 struct sk_buff *skb); 2322extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 2323 unsigned int flags); 2324extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 2325 int len, __wsum csum); 2326extern int skb_copy_bits(const struct sk_buff *skb, int offset, 2327 void *to, int len); 2328extern int skb_store_bits(struct sk_buff *skb, int offset, 2329 const void *from, int len); 2330extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 2331 int offset, u8 *to, int len, 2332 __wsum csum); 2333extern int skb_splice_bits(struct sk_buff *skb, 2334 unsigned int offset, 2335 struct pipe_inode_info *pipe, 2336 unsigned int len, 2337 unsigned int flags); 2338extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2339extern void skb_split(struct sk_buff *skb, 2340 struct sk_buff *skb1, const u32 len); 2341extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 2342 int shiftlen); 2343 2344extern struct sk_buff *skb_segment(struct sk_buff *skb, 2345 netdev_features_t features); 2346 2347static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2348 int len, void *buffer) 2349{ 2350 int hlen = skb_headlen(skb); 2351 2352 if (hlen - offset >= len) 2353 return skb->data + offset; 2354 2355 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2356 return NULL; 2357 2358 return buffer; 2359} 2360 2361static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2362 void *to, 2363 const unsigned int len) 2364{ 2365 memcpy(to, skb->data, len); 2366} 2367 2368static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2369 const int offset, void *to, 2370 const unsigned int len) 2371{ 2372 memcpy(to, skb->data + offset, len); 2373} 2374 2375static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2376 const void *from, 2377 const unsigned int len) 2378{ 2379 memcpy(skb->data, from, len); 2380} 2381 2382static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2383 const int offset, 2384 const void *from, 2385 const unsigned int len) 2386{ 2387 memcpy(skb->data + offset, from, len); 2388} 2389 2390extern void skb_init(void); 2391 2392static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2393{ 2394 return skb->tstamp; 2395} 2396 2397/** 2398 * skb_get_timestamp - get timestamp from a skb 2399 * @skb: skb to get stamp from 2400 * @stamp: pointer to struct timeval to store stamp in 2401 * 2402 * Timestamps are stored in the skb as offsets to a base timestamp. 2403 * This function converts the offset back to a struct timeval and stores 2404 * it in stamp. 2405 */ 2406static inline void skb_get_timestamp(const struct sk_buff *skb, 2407 struct timeval *stamp) 2408{ 2409 *stamp = ktime_to_timeval(skb->tstamp); 2410} 2411 2412static inline void skb_get_timestampns(const struct sk_buff *skb, 2413 struct timespec *stamp) 2414{ 2415 *stamp = ktime_to_timespec(skb->tstamp); 2416} 2417 2418static inline void __net_timestamp(struct sk_buff *skb) 2419{ 2420 skb->tstamp = ktime_get_real(); 2421} 2422 2423static inline ktime_t net_timedelta(ktime_t t) 2424{ 2425 return ktime_sub(ktime_get_real(), t); 2426} 2427 2428static inline ktime_t net_invalid_timestamp(void) 2429{ 2430 return ktime_set(0, 0); 2431} 2432 2433extern void skb_timestamping_init(void); 2434 2435#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2436 2437extern void skb_clone_tx_timestamp(struct sk_buff *skb); 2438extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 2439 2440#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2441 2442static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2443{ 2444} 2445 2446static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2447{ 2448 return false; 2449} 2450 2451#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2452 2453/** 2454 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2455 * 2456 * PHY drivers may accept clones of transmitted packets for 2457 * timestamping via their phy_driver.txtstamp method. These drivers 2458 * must call this function to return the skb back to the stack, with 2459 * or without a timestamp. 2460 * 2461 * @skb: clone of the the original outgoing packet 2462 * @hwtstamps: hardware time stamps, may be NULL if not available 2463 * 2464 */ 2465void skb_complete_tx_timestamp(struct sk_buff *skb, 2466 struct skb_shared_hwtstamps *hwtstamps); 2467 2468/** 2469 * skb_tstamp_tx - queue clone of skb with send time stamps 2470 * @orig_skb: the original outgoing packet 2471 * @hwtstamps: hardware time stamps, may be NULL if not available 2472 * 2473 * If the skb has a socket associated, then this function clones the 2474 * skb (thus sharing the actual data and optional structures), stores 2475 * the optional hardware time stamping information (if non NULL) or 2476 * generates a software time stamp (otherwise), then queues the clone 2477 * to the error queue of the socket. Errors are silently ignored. 2478 */ 2479extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2480 struct skb_shared_hwtstamps *hwtstamps); 2481 2482static inline void sw_tx_timestamp(struct sk_buff *skb) 2483{ 2484 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2485 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2486 skb_tstamp_tx(skb, NULL); 2487} 2488 2489/** 2490 * skb_tx_timestamp() - Driver hook for transmit timestamping 2491 * 2492 * Ethernet MAC Drivers should call this function in their hard_xmit() 2493 * function immediately before giving the sk_buff to the MAC hardware. 2494 * 2495 * @skb: A socket buffer. 2496 */ 2497static inline void skb_tx_timestamp(struct sk_buff *skb) 2498{ 2499 skb_clone_tx_timestamp(skb); 2500 sw_tx_timestamp(skb); 2501} 2502 2503/** 2504 * skb_complete_wifi_ack - deliver skb with wifi status 2505 * 2506 * @skb: the original outgoing packet 2507 * @acked: ack status 2508 * 2509 */ 2510void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2511 2512extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2513extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2514 2515static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2516{ 2517 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2518} 2519 2520/** 2521 * skb_checksum_complete - Calculate checksum of an entire packet 2522 * @skb: packet to process 2523 * 2524 * This function calculates the checksum over the entire packet plus 2525 * the value of skb->csum. The latter can be used to supply the 2526 * checksum of a pseudo header as used by TCP/UDP. It returns the 2527 * checksum. 2528 * 2529 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2530 * this function can be used to verify that checksum on received 2531 * packets. In that case the function should return zero if the 2532 * checksum is correct. In particular, this function will return zero 2533 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2534 * hardware has already verified the correctness of the checksum. 2535 */ 2536static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2537{ 2538 return skb_csum_unnecessary(skb) ? 2539 0 : __skb_checksum_complete(skb); 2540} 2541 2542#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2543extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2544static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2545{ 2546 if (nfct && atomic_dec_and_test(&nfct->use)) 2547 nf_conntrack_destroy(nfct); 2548} 2549static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2550{ 2551 if (nfct) 2552 atomic_inc(&nfct->use); 2553} 2554#endif 2555#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2556static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2557{ 2558 if (skb) 2559 atomic_inc(&skb->users); 2560} 2561static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2562{ 2563 if (skb) 2564 kfree_skb(skb); 2565} 2566#endif 2567#ifdef CONFIG_BRIDGE_NETFILTER 2568static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2569{ 2570 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2571 kfree(nf_bridge); 2572} 2573static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2574{ 2575 if (nf_bridge) 2576 atomic_inc(&nf_bridge->use); 2577} 2578#endif /* CONFIG_BRIDGE_NETFILTER */ 2579static inline void nf_reset(struct sk_buff *skb) 2580{ 2581#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2582 nf_conntrack_put(skb->nfct); 2583 skb->nfct = NULL; 2584#endif 2585#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2586 nf_conntrack_put_reasm(skb->nfct_reasm); 2587 skb->nfct_reasm = NULL; 2588#endif 2589#ifdef CONFIG_BRIDGE_NETFILTER 2590 nf_bridge_put(skb->nf_bridge); 2591 skb->nf_bridge = NULL; 2592#endif 2593} 2594 2595/* Note: This doesn't put any conntrack and bridge info in dst. */ 2596static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2597{ 2598#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2599 dst->nfct = src->nfct; 2600 nf_conntrack_get(src->nfct); 2601 dst->nfctinfo = src->nfctinfo; 2602#endif 2603#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2604 dst->nfct_reasm = src->nfct_reasm; 2605 nf_conntrack_get_reasm(src->nfct_reasm); 2606#endif 2607#ifdef CONFIG_BRIDGE_NETFILTER 2608 dst->nf_bridge = src->nf_bridge; 2609 nf_bridge_get(src->nf_bridge); 2610#endif 2611} 2612 2613static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2614{ 2615#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2616 nf_conntrack_put(dst->nfct); 2617#endif 2618#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2619 nf_conntrack_put_reasm(dst->nfct_reasm); 2620#endif 2621#ifdef CONFIG_BRIDGE_NETFILTER 2622 nf_bridge_put(dst->nf_bridge); 2623#endif 2624 __nf_copy(dst, src); 2625} 2626 2627#ifdef CONFIG_NETWORK_SECMARK 2628static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2629{ 2630 to->secmark = from->secmark; 2631} 2632 2633static inline void skb_init_secmark(struct sk_buff *skb) 2634{ 2635 skb->secmark = 0; 2636} 2637#else 2638static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2639{ } 2640 2641static inline void skb_init_secmark(struct sk_buff *skb) 2642{ } 2643#endif 2644 2645static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2646{ 2647 skb->queue_mapping = queue_mapping; 2648} 2649 2650static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2651{ 2652 return skb->queue_mapping; 2653} 2654 2655static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2656{ 2657 to->queue_mapping = from->queue_mapping; 2658} 2659 2660static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2661{ 2662 skb->queue_mapping = rx_queue + 1; 2663} 2664 2665static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2666{ 2667 return skb->queue_mapping - 1; 2668} 2669 2670static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2671{ 2672 return skb->queue_mapping != 0; 2673} 2674 2675extern u16 __skb_tx_hash(const struct net_device *dev, 2676 const struct sk_buff *skb, 2677 unsigned int num_tx_queues); 2678 2679#ifdef CONFIG_XFRM 2680static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2681{ 2682 return skb->sp; 2683} 2684#else 2685static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2686{ 2687 return NULL; 2688} 2689#endif 2690 2691static inline bool skb_is_gso(const struct sk_buff *skb) 2692{ 2693 return skb_shinfo(skb)->gso_size; 2694} 2695 2696static inline bool skb_is_gso_v6(const struct sk_buff *skb) 2697{ 2698 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2699} 2700 2701extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2702 2703static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2704{ 2705 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2706 * wanted then gso_type will be set. */ 2707 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2708 2709 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2710 unlikely(shinfo->gso_type == 0)) { 2711 __skb_warn_lro_forwarding(skb); 2712 return true; 2713 } 2714 return false; 2715} 2716 2717static inline void skb_forward_csum(struct sk_buff *skb) 2718{ 2719 /* Unfortunately we don't support this one. Any brave souls? */ 2720 if (skb->ip_summed == CHECKSUM_COMPLETE) 2721 skb->ip_summed = CHECKSUM_NONE; 2722} 2723 2724/** 2725 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2726 * @skb: skb to check 2727 * 2728 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2729 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2730 * use this helper, to document places where we make this assertion. 2731 */ 2732static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2733{ 2734#ifdef DEBUG 2735 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2736#endif 2737} 2738 2739bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2740 2741/** 2742 * skb_head_is_locked - Determine if the skb->head is locked down 2743 * @skb: skb to check 2744 * 2745 * The head on skbs build around a head frag can be removed if they are 2746 * not cloned. This function returns true if the skb head is locked down 2747 * due to either being allocated via kmalloc, or by being a clone with 2748 * multiple references to the head. 2749 */ 2750static inline bool skb_head_is_locked(const struct sk_buff *skb) 2751{ 2752 return !skb->head_frag || skb_cloned(skb); 2753} 2754#endif /* __KERNEL__ */ 2755#endif /* _LINUX_SKBUFF_H */