at v3.8 85 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4#include <uapi/linux/sched.h> 5 6 7struct sched_param { 8 int sched_priority; 9}; 10 11#include <asm/param.h> /* for HZ */ 12 13#include <linux/capability.h> 14#include <linux/threads.h> 15#include <linux/kernel.h> 16#include <linux/types.h> 17#include <linux/timex.h> 18#include <linux/jiffies.h> 19#include <linux/rbtree.h> 20#include <linux/thread_info.h> 21#include <linux/cpumask.h> 22#include <linux/errno.h> 23#include <linux/nodemask.h> 24#include <linux/mm_types.h> 25 26#include <asm/page.h> 27#include <asm/ptrace.h> 28#include <asm/cputime.h> 29 30#include <linux/smp.h> 31#include <linux/sem.h> 32#include <linux/signal.h> 33#include <linux/compiler.h> 34#include <linux/completion.h> 35#include <linux/pid.h> 36#include <linux/percpu.h> 37#include <linux/topology.h> 38#include <linux/proportions.h> 39#include <linux/seccomp.h> 40#include <linux/rcupdate.h> 41#include <linux/rculist.h> 42#include <linux/rtmutex.h> 43 44#include <linux/time.h> 45#include <linux/param.h> 46#include <linux/resource.h> 47#include <linux/timer.h> 48#include <linux/hrtimer.h> 49#include <linux/task_io_accounting.h> 50#include <linux/latencytop.h> 51#include <linux/cred.h> 52#include <linux/llist.h> 53#include <linux/uidgid.h> 54 55#include <asm/processor.h> 56 57struct exec_domain; 58struct futex_pi_state; 59struct robust_list_head; 60struct bio_list; 61struct fs_struct; 62struct perf_event_context; 63struct blk_plug; 64 65/* 66 * List of flags we want to share for kernel threads, 67 * if only because they are not used by them anyway. 68 */ 69#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 70 71/* 72 * These are the constant used to fake the fixed-point load-average 73 * counting. Some notes: 74 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 75 * a load-average precision of 10 bits integer + 11 bits fractional 76 * - if you want to count load-averages more often, you need more 77 * precision, or rounding will get you. With 2-second counting freq, 78 * the EXP_n values would be 1981, 2034 and 2043 if still using only 79 * 11 bit fractions. 80 */ 81extern unsigned long avenrun[]; /* Load averages */ 82extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 83 84#define FSHIFT 11 /* nr of bits of precision */ 85#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 86#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 87#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 88#define EXP_5 2014 /* 1/exp(5sec/5min) */ 89#define EXP_15 2037 /* 1/exp(5sec/15min) */ 90 91#define CALC_LOAD(load,exp,n) \ 92 load *= exp; \ 93 load += n*(FIXED_1-exp); \ 94 load >>= FSHIFT; 95 96extern unsigned long total_forks; 97extern int nr_threads; 98DECLARE_PER_CPU(unsigned long, process_counts); 99extern int nr_processes(void); 100extern unsigned long nr_running(void); 101extern unsigned long nr_uninterruptible(void); 102extern unsigned long nr_iowait(void); 103extern unsigned long nr_iowait_cpu(int cpu); 104extern unsigned long this_cpu_load(void); 105 106 107extern void calc_global_load(unsigned long ticks); 108extern void update_cpu_load_nohz(void); 109 110/* Notifier for when a task gets migrated to a new CPU */ 111struct task_migration_notifier { 112 struct task_struct *task; 113 int from_cpu; 114 int to_cpu; 115}; 116extern void register_task_migration_notifier(struct notifier_block *n); 117 118extern unsigned long get_parent_ip(unsigned long addr); 119 120extern void dump_cpu_task(int cpu); 121 122struct seq_file; 123struct cfs_rq; 124struct task_group; 125#ifdef CONFIG_SCHED_DEBUG 126extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 127extern void proc_sched_set_task(struct task_struct *p); 128extern void 129print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 130#else 131static inline void 132proc_sched_show_task(struct task_struct *p, struct seq_file *m) 133{ 134} 135static inline void proc_sched_set_task(struct task_struct *p) 136{ 137} 138static inline void 139print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 140{ 141} 142#endif 143 144/* 145 * Task state bitmask. NOTE! These bits are also 146 * encoded in fs/proc/array.c: get_task_state(). 147 * 148 * We have two separate sets of flags: task->state 149 * is about runnability, while task->exit_state are 150 * about the task exiting. Confusing, but this way 151 * modifying one set can't modify the other one by 152 * mistake. 153 */ 154#define TASK_RUNNING 0 155#define TASK_INTERRUPTIBLE 1 156#define TASK_UNINTERRUPTIBLE 2 157#define __TASK_STOPPED 4 158#define __TASK_TRACED 8 159/* in tsk->exit_state */ 160#define EXIT_ZOMBIE 16 161#define EXIT_DEAD 32 162/* in tsk->state again */ 163#define TASK_DEAD 64 164#define TASK_WAKEKILL 128 165#define TASK_WAKING 256 166#define TASK_STATE_MAX 512 167 168#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 169 170extern char ___assert_task_state[1 - 2*!!( 171 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 172 173/* Convenience macros for the sake of set_task_state */ 174#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 175#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 176#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 177 178/* Convenience macros for the sake of wake_up */ 179#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 180#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 181 182/* get_task_state() */ 183#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 184 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 185 __TASK_TRACED) 186 187#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 188#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 189#define task_is_dead(task) ((task)->exit_state != 0) 190#define task_is_stopped_or_traced(task) \ 191 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 192#define task_contributes_to_load(task) \ 193 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 194 (task->flags & PF_FROZEN) == 0) 195 196#define __set_task_state(tsk, state_value) \ 197 do { (tsk)->state = (state_value); } while (0) 198#define set_task_state(tsk, state_value) \ 199 set_mb((tsk)->state, (state_value)) 200 201/* 202 * set_current_state() includes a barrier so that the write of current->state 203 * is correctly serialised wrt the caller's subsequent test of whether to 204 * actually sleep: 205 * 206 * set_current_state(TASK_UNINTERRUPTIBLE); 207 * if (do_i_need_to_sleep()) 208 * schedule(); 209 * 210 * If the caller does not need such serialisation then use __set_current_state() 211 */ 212#define __set_current_state(state_value) \ 213 do { current->state = (state_value); } while (0) 214#define set_current_state(state_value) \ 215 set_mb(current->state, (state_value)) 216 217/* Task command name length */ 218#define TASK_COMM_LEN 16 219 220#include <linux/spinlock.h> 221 222/* 223 * This serializes "schedule()" and also protects 224 * the run-queue from deletions/modifications (but 225 * _adding_ to the beginning of the run-queue has 226 * a separate lock). 227 */ 228extern rwlock_t tasklist_lock; 229extern spinlock_t mmlist_lock; 230 231struct task_struct; 232 233#ifdef CONFIG_PROVE_RCU 234extern int lockdep_tasklist_lock_is_held(void); 235#endif /* #ifdef CONFIG_PROVE_RCU */ 236 237extern void sched_init(void); 238extern void sched_init_smp(void); 239extern asmlinkage void schedule_tail(struct task_struct *prev); 240extern void init_idle(struct task_struct *idle, int cpu); 241extern void init_idle_bootup_task(struct task_struct *idle); 242 243extern int runqueue_is_locked(int cpu); 244 245#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 246extern void nohz_balance_enter_idle(int cpu); 247extern void set_cpu_sd_state_idle(void); 248extern int get_nohz_timer_target(void); 249#else 250static inline void nohz_balance_enter_idle(int cpu) { } 251static inline void set_cpu_sd_state_idle(void) { } 252#endif 253 254/* 255 * Only dump TASK_* tasks. (0 for all tasks) 256 */ 257extern void show_state_filter(unsigned long state_filter); 258 259static inline void show_state(void) 260{ 261 show_state_filter(0); 262} 263 264extern void show_regs(struct pt_regs *); 265 266/* 267 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 268 * task), SP is the stack pointer of the first frame that should be shown in the back 269 * trace (or NULL if the entire call-chain of the task should be shown). 270 */ 271extern void show_stack(struct task_struct *task, unsigned long *sp); 272 273void io_schedule(void); 274long io_schedule_timeout(long timeout); 275 276extern void cpu_init (void); 277extern void trap_init(void); 278extern void update_process_times(int user); 279extern void scheduler_tick(void); 280 281extern void sched_show_task(struct task_struct *p); 282 283#ifdef CONFIG_LOCKUP_DETECTOR 284extern void touch_softlockup_watchdog(void); 285extern void touch_softlockup_watchdog_sync(void); 286extern void touch_all_softlockup_watchdogs(void); 287extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 288 void __user *buffer, 289 size_t *lenp, loff_t *ppos); 290extern unsigned int softlockup_panic; 291void lockup_detector_init(void); 292#else 293static inline void touch_softlockup_watchdog(void) 294{ 295} 296static inline void touch_softlockup_watchdog_sync(void) 297{ 298} 299static inline void touch_all_softlockup_watchdogs(void) 300{ 301} 302static inline void lockup_detector_init(void) 303{ 304} 305#endif 306 307#ifdef CONFIG_DETECT_HUNG_TASK 308extern unsigned int sysctl_hung_task_panic; 309extern unsigned long sysctl_hung_task_check_count; 310extern unsigned long sysctl_hung_task_timeout_secs; 311extern unsigned long sysctl_hung_task_warnings; 312extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 313 void __user *buffer, 314 size_t *lenp, loff_t *ppos); 315#else 316/* Avoid need for ifdefs elsewhere in the code */ 317enum { sysctl_hung_task_timeout_secs = 0 }; 318#endif 319 320/* Attach to any functions which should be ignored in wchan output. */ 321#define __sched __attribute__((__section__(".sched.text"))) 322 323/* Linker adds these: start and end of __sched functions */ 324extern char __sched_text_start[], __sched_text_end[]; 325 326/* Is this address in the __sched functions? */ 327extern int in_sched_functions(unsigned long addr); 328 329#define MAX_SCHEDULE_TIMEOUT LONG_MAX 330extern signed long schedule_timeout(signed long timeout); 331extern signed long schedule_timeout_interruptible(signed long timeout); 332extern signed long schedule_timeout_killable(signed long timeout); 333extern signed long schedule_timeout_uninterruptible(signed long timeout); 334asmlinkage void schedule(void); 335extern void schedule_preempt_disabled(void); 336extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 337 338struct nsproxy; 339struct user_namespace; 340 341/* 342 * Default maximum number of active map areas, this limits the number of vmas 343 * per mm struct. Users can overwrite this number by sysctl but there is a 344 * problem. 345 * 346 * When a program's coredump is generated as ELF format, a section is created 347 * per a vma. In ELF, the number of sections is represented in unsigned short. 348 * This means the number of sections should be smaller than 65535 at coredump. 349 * Because the kernel adds some informative sections to a image of program at 350 * generating coredump, we need some margin. The number of extra sections is 351 * 1-3 now and depends on arch. We use "5" as safe margin, here. 352 */ 353#define MAPCOUNT_ELF_CORE_MARGIN (5) 354#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 355 356extern int sysctl_max_map_count; 357 358#include <linux/aio.h> 359 360#ifdef CONFIG_MMU 361extern void arch_pick_mmap_layout(struct mm_struct *mm); 362extern unsigned long 363arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 364 unsigned long, unsigned long); 365extern unsigned long 366arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 367 unsigned long len, unsigned long pgoff, 368 unsigned long flags); 369extern void arch_unmap_area(struct mm_struct *, unsigned long); 370extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 371#else 372static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 373#endif 374 375 376extern void set_dumpable(struct mm_struct *mm, int value); 377extern int get_dumpable(struct mm_struct *mm); 378 379/* get/set_dumpable() values */ 380#define SUID_DUMPABLE_DISABLED 0 381#define SUID_DUMPABLE_ENABLED 1 382#define SUID_DUMPABLE_SAFE 2 383 384/* mm flags */ 385/* dumpable bits */ 386#define MMF_DUMPABLE 0 /* core dump is permitted */ 387#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 388 389#define MMF_DUMPABLE_BITS 2 390#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 391 392/* coredump filter bits */ 393#define MMF_DUMP_ANON_PRIVATE 2 394#define MMF_DUMP_ANON_SHARED 3 395#define MMF_DUMP_MAPPED_PRIVATE 4 396#define MMF_DUMP_MAPPED_SHARED 5 397#define MMF_DUMP_ELF_HEADERS 6 398#define MMF_DUMP_HUGETLB_PRIVATE 7 399#define MMF_DUMP_HUGETLB_SHARED 8 400 401#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 402#define MMF_DUMP_FILTER_BITS 7 403#define MMF_DUMP_FILTER_MASK \ 404 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 405#define MMF_DUMP_FILTER_DEFAULT \ 406 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 407 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 408 409#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 410# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 411#else 412# define MMF_DUMP_MASK_DEFAULT_ELF 0 413#endif 414 /* leave room for more dump flags */ 415#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 416#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 417#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 418 419#define MMF_HAS_UPROBES 19 /* has uprobes */ 420#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 421 422#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 423 424struct sighand_struct { 425 atomic_t count; 426 struct k_sigaction action[_NSIG]; 427 spinlock_t siglock; 428 wait_queue_head_t signalfd_wqh; 429}; 430 431struct pacct_struct { 432 int ac_flag; 433 long ac_exitcode; 434 unsigned long ac_mem; 435 cputime_t ac_utime, ac_stime; 436 unsigned long ac_minflt, ac_majflt; 437}; 438 439struct cpu_itimer { 440 cputime_t expires; 441 cputime_t incr; 442 u32 error; 443 u32 incr_error; 444}; 445 446/** 447 * struct cputime - snaphsot of system and user cputime 448 * @utime: time spent in user mode 449 * @stime: time spent in system mode 450 * 451 * Gathers a generic snapshot of user and system time. 452 */ 453struct cputime { 454 cputime_t utime; 455 cputime_t stime; 456}; 457 458/** 459 * struct task_cputime - collected CPU time counts 460 * @utime: time spent in user mode, in &cputime_t units 461 * @stime: time spent in kernel mode, in &cputime_t units 462 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 463 * 464 * This is an extension of struct cputime that includes the total runtime 465 * spent by the task from the scheduler point of view. 466 * 467 * As a result, this structure groups together three kinds of CPU time 468 * that are tracked for threads and thread groups. Most things considering 469 * CPU time want to group these counts together and treat all three 470 * of them in parallel. 471 */ 472struct task_cputime { 473 cputime_t utime; 474 cputime_t stime; 475 unsigned long long sum_exec_runtime; 476}; 477/* Alternate field names when used to cache expirations. */ 478#define prof_exp stime 479#define virt_exp utime 480#define sched_exp sum_exec_runtime 481 482#define INIT_CPUTIME \ 483 (struct task_cputime) { \ 484 .utime = 0, \ 485 .stime = 0, \ 486 .sum_exec_runtime = 0, \ 487 } 488 489/* 490 * Disable preemption until the scheduler is running. 491 * Reset by start_kernel()->sched_init()->init_idle(). 492 * 493 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 494 * before the scheduler is active -- see should_resched(). 495 */ 496#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 497 498/** 499 * struct thread_group_cputimer - thread group interval timer counts 500 * @cputime: thread group interval timers. 501 * @running: non-zero when there are timers running and 502 * @cputime receives updates. 503 * @lock: lock for fields in this struct. 504 * 505 * This structure contains the version of task_cputime, above, that is 506 * used for thread group CPU timer calculations. 507 */ 508struct thread_group_cputimer { 509 struct task_cputime cputime; 510 int running; 511 raw_spinlock_t lock; 512}; 513 514#include <linux/rwsem.h> 515struct autogroup; 516 517/* 518 * NOTE! "signal_struct" does not have its own 519 * locking, because a shared signal_struct always 520 * implies a shared sighand_struct, so locking 521 * sighand_struct is always a proper superset of 522 * the locking of signal_struct. 523 */ 524struct signal_struct { 525 atomic_t sigcnt; 526 atomic_t live; 527 int nr_threads; 528 529 wait_queue_head_t wait_chldexit; /* for wait4() */ 530 531 /* current thread group signal load-balancing target: */ 532 struct task_struct *curr_target; 533 534 /* shared signal handling: */ 535 struct sigpending shared_pending; 536 537 /* thread group exit support */ 538 int group_exit_code; 539 /* overloaded: 540 * - notify group_exit_task when ->count is equal to notify_count 541 * - everyone except group_exit_task is stopped during signal delivery 542 * of fatal signals, group_exit_task processes the signal. 543 */ 544 int notify_count; 545 struct task_struct *group_exit_task; 546 547 /* thread group stop support, overloads group_exit_code too */ 548 int group_stop_count; 549 unsigned int flags; /* see SIGNAL_* flags below */ 550 551 /* 552 * PR_SET_CHILD_SUBREAPER marks a process, like a service 553 * manager, to re-parent orphan (double-forking) child processes 554 * to this process instead of 'init'. The service manager is 555 * able to receive SIGCHLD signals and is able to investigate 556 * the process until it calls wait(). All children of this 557 * process will inherit a flag if they should look for a 558 * child_subreaper process at exit. 559 */ 560 unsigned int is_child_subreaper:1; 561 unsigned int has_child_subreaper:1; 562 563 /* POSIX.1b Interval Timers */ 564 struct list_head posix_timers; 565 566 /* ITIMER_REAL timer for the process */ 567 struct hrtimer real_timer; 568 struct pid *leader_pid; 569 ktime_t it_real_incr; 570 571 /* 572 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 573 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 574 * values are defined to 0 and 1 respectively 575 */ 576 struct cpu_itimer it[2]; 577 578 /* 579 * Thread group totals for process CPU timers. 580 * See thread_group_cputimer(), et al, for details. 581 */ 582 struct thread_group_cputimer cputimer; 583 584 /* Earliest-expiration cache. */ 585 struct task_cputime cputime_expires; 586 587 struct list_head cpu_timers[3]; 588 589 struct pid *tty_old_pgrp; 590 591 /* boolean value for session group leader */ 592 int leader; 593 594 struct tty_struct *tty; /* NULL if no tty */ 595 596#ifdef CONFIG_SCHED_AUTOGROUP 597 struct autogroup *autogroup; 598#endif 599 /* 600 * Cumulative resource counters for dead threads in the group, 601 * and for reaped dead child processes forked by this group. 602 * Live threads maintain their own counters and add to these 603 * in __exit_signal, except for the group leader. 604 */ 605 cputime_t utime, stime, cutime, cstime; 606 cputime_t gtime; 607 cputime_t cgtime; 608#ifndef CONFIG_VIRT_CPU_ACCOUNTING 609 struct cputime prev_cputime; 610#endif 611 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 612 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 613 unsigned long inblock, oublock, cinblock, coublock; 614 unsigned long maxrss, cmaxrss; 615 struct task_io_accounting ioac; 616 617 /* 618 * Cumulative ns of schedule CPU time fo dead threads in the 619 * group, not including a zombie group leader, (This only differs 620 * from jiffies_to_ns(utime + stime) if sched_clock uses something 621 * other than jiffies.) 622 */ 623 unsigned long long sum_sched_runtime; 624 625 /* 626 * We don't bother to synchronize most readers of this at all, 627 * because there is no reader checking a limit that actually needs 628 * to get both rlim_cur and rlim_max atomically, and either one 629 * alone is a single word that can safely be read normally. 630 * getrlimit/setrlimit use task_lock(current->group_leader) to 631 * protect this instead of the siglock, because they really 632 * have no need to disable irqs. 633 */ 634 struct rlimit rlim[RLIM_NLIMITS]; 635 636#ifdef CONFIG_BSD_PROCESS_ACCT 637 struct pacct_struct pacct; /* per-process accounting information */ 638#endif 639#ifdef CONFIG_TASKSTATS 640 struct taskstats *stats; 641#endif 642#ifdef CONFIG_AUDIT 643 unsigned audit_tty; 644 struct tty_audit_buf *tty_audit_buf; 645#endif 646#ifdef CONFIG_CGROUPS 647 /* 648 * group_rwsem prevents new tasks from entering the threadgroup and 649 * member tasks from exiting,a more specifically, setting of 650 * PF_EXITING. fork and exit paths are protected with this rwsem 651 * using threadgroup_change_begin/end(). Users which require 652 * threadgroup to remain stable should use threadgroup_[un]lock() 653 * which also takes care of exec path. Currently, cgroup is the 654 * only user. 655 */ 656 struct rw_semaphore group_rwsem; 657#endif 658 659 oom_flags_t oom_flags; 660 short oom_score_adj; /* OOM kill score adjustment */ 661 short oom_score_adj_min; /* OOM kill score adjustment min value. 662 * Only settable by CAP_SYS_RESOURCE. */ 663 664 struct mutex cred_guard_mutex; /* guard against foreign influences on 665 * credential calculations 666 * (notably. ptrace) */ 667}; 668 669/* 670 * Bits in flags field of signal_struct. 671 */ 672#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 673#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 674#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 675/* 676 * Pending notifications to parent. 677 */ 678#define SIGNAL_CLD_STOPPED 0x00000010 679#define SIGNAL_CLD_CONTINUED 0x00000020 680#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 681 682#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 683 684/* If true, all threads except ->group_exit_task have pending SIGKILL */ 685static inline int signal_group_exit(const struct signal_struct *sig) 686{ 687 return (sig->flags & SIGNAL_GROUP_EXIT) || 688 (sig->group_exit_task != NULL); 689} 690 691/* 692 * Some day this will be a full-fledged user tracking system.. 693 */ 694struct user_struct { 695 atomic_t __count; /* reference count */ 696 atomic_t processes; /* How many processes does this user have? */ 697 atomic_t files; /* How many open files does this user have? */ 698 atomic_t sigpending; /* How many pending signals does this user have? */ 699#ifdef CONFIG_INOTIFY_USER 700 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 701 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 702#endif 703#ifdef CONFIG_FANOTIFY 704 atomic_t fanotify_listeners; 705#endif 706#ifdef CONFIG_EPOLL 707 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 708#endif 709#ifdef CONFIG_POSIX_MQUEUE 710 /* protected by mq_lock */ 711 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 712#endif 713 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 714 715#ifdef CONFIG_KEYS 716 struct key *uid_keyring; /* UID specific keyring */ 717 struct key *session_keyring; /* UID's default session keyring */ 718#endif 719 720 /* Hash table maintenance information */ 721 struct hlist_node uidhash_node; 722 kuid_t uid; 723 724#ifdef CONFIG_PERF_EVENTS 725 atomic_long_t locked_vm; 726#endif 727}; 728 729extern int uids_sysfs_init(void); 730 731extern struct user_struct *find_user(kuid_t); 732 733extern struct user_struct root_user; 734#define INIT_USER (&root_user) 735 736 737struct backing_dev_info; 738struct reclaim_state; 739 740#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 741struct sched_info { 742 /* cumulative counters */ 743 unsigned long pcount; /* # of times run on this cpu */ 744 unsigned long long run_delay; /* time spent waiting on a runqueue */ 745 746 /* timestamps */ 747 unsigned long long last_arrival,/* when we last ran on a cpu */ 748 last_queued; /* when we were last queued to run */ 749}; 750#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 751 752#ifdef CONFIG_TASK_DELAY_ACCT 753struct task_delay_info { 754 spinlock_t lock; 755 unsigned int flags; /* Private per-task flags */ 756 757 /* For each stat XXX, add following, aligned appropriately 758 * 759 * struct timespec XXX_start, XXX_end; 760 * u64 XXX_delay; 761 * u32 XXX_count; 762 * 763 * Atomicity of updates to XXX_delay, XXX_count protected by 764 * single lock above (split into XXX_lock if contention is an issue). 765 */ 766 767 /* 768 * XXX_count is incremented on every XXX operation, the delay 769 * associated with the operation is added to XXX_delay. 770 * XXX_delay contains the accumulated delay time in nanoseconds. 771 */ 772 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 773 u64 blkio_delay; /* wait for sync block io completion */ 774 u64 swapin_delay; /* wait for swapin block io completion */ 775 u32 blkio_count; /* total count of the number of sync block */ 776 /* io operations performed */ 777 u32 swapin_count; /* total count of the number of swapin block */ 778 /* io operations performed */ 779 780 struct timespec freepages_start, freepages_end; 781 u64 freepages_delay; /* wait for memory reclaim */ 782 u32 freepages_count; /* total count of memory reclaim */ 783}; 784#endif /* CONFIG_TASK_DELAY_ACCT */ 785 786static inline int sched_info_on(void) 787{ 788#ifdef CONFIG_SCHEDSTATS 789 return 1; 790#elif defined(CONFIG_TASK_DELAY_ACCT) 791 extern int delayacct_on; 792 return delayacct_on; 793#else 794 return 0; 795#endif 796} 797 798enum cpu_idle_type { 799 CPU_IDLE, 800 CPU_NOT_IDLE, 801 CPU_NEWLY_IDLE, 802 CPU_MAX_IDLE_TYPES 803}; 804 805/* 806 * Increase resolution of nice-level calculations for 64-bit architectures. 807 * The extra resolution improves shares distribution and load balancing of 808 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 809 * hierarchies, especially on larger systems. This is not a user-visible change 810 * and does not change the user-interface for setting shares/weights. 811 * 812 * We increase resolution only if we have enough bits to allow this increased 813 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 814 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 815 * increased costs. 816 */ 817#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 818# define SCHED_LOAD_RESOLUTION 10 819# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 820# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 821#else 822# define SCHED_LOAD_RESOLUTION 0 823# define scale_load(w) (w) 824# define scale_load_down(w) (w) 825#endif 826 827#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 828#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 829 830/* 831 * Increase resolution of cpu_power calculations 832 */ 833#define SCHED_POWER_SHIFT 10 834#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 835 836/* 837 * sched-domains (multiprocessor balancing) declarations: 838 */ 839#ifdef CONFIG_SMP 840#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 841#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 842#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 843#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 844#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 845#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 846#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 847#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 848#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 849#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 850#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 851#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 852 853extern int __weak arch_sd_sibiling_asym_packing(void); 854 855struct sched_group_power { 856 atomic_t ref; 857 /* 858 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 859 * single CPU. 860 */ 861 unsigned int power, power_orig; 862 unsigned long next_update; 863 /* 864 * Number of busy cpus in this group. 865 */ 866 atomic_t nr_busy_cpus; 867 868 unsigned long cpumask[0]; /* iteration mask */ 869}; 870 871struct sched_group { 872 struct sched_group *next; /* Must be a circular list */ 873 atomic_t ref; 874 875 unsigned int group_weight; 876 struct sched_group_power *sgp; 877 878 /* 879 * The CPUs this group covers. 880 * 881 * NOTE: this field is variable length. (Allocated dynamically 882 * by attaching extra space to the end of the structure, 883 * depending on how many CPUs the kernel has booted up with) 884 */ 885 unsigned long cpumask[0]; 886}; 887 888static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 889{ 890 return to_cpumask(sg->cpumask); 891} 892 893/* 894 * cpumask masking which cpus in the group are allowed to iterate up the domain 895 * tree. 896 */ 897static inline struct cpumask *sched_group_mask(struct sched_group *sg) 898{ 899 return to_cpumask(sg->sgp->cpumask); 900} 901 902/** 903 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 904 * @group: The group whose first cpu is to be returned. 905 */ 906static inline unsigned int group_first_cpu(struct sched_group *group) 907{ 908 return cpumask_first(sched_group_cpus(group)); 909} 910 911struct sched_domain_attr { 912 int relax_domain_level; 913}; 914 915#define SD_ATTR_INIT (struct sched_domain_attr) { \ 916 .relax_domain_level = -1, \ 917} 918 919extern int sched_domain_level_max; 920 921struct sched_domain { 922 /* These fields must be setup */ 923 struct sched_domain *parent; /* top domain must be null terminated */ 924 struct sched_domain *child; /* bottom domain must be null terminated */ 925 struct sched_group *groups; /* the balancing groups of the domain */ 926 unsigned long min_interval; /* Minimum balance interval ms */ 927 unsigned long max_interval; /* Maximum balance interval ms */ 928 unsigned int busy_factor; /* less balancing by factor if busy */ 929 unsigned int imbalance_pct; /* No balance until over watermark */ 930 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 931 unsigned int busy_idx; 932 unsigned int idle_idx; 933 unsigned int newidle_idx; 934 unsigned int wake_idx; 935 unsigned int forkexec_idx; 936 unsigned int smt_gain; 937 int flags; /* See SD_* */ 938 int level; 939 940 /* Runtime fields. */ 941 unsigned long last_balance; /* init to jiffies. units in jiffies */ 942 unsigned int balance_interval; /* initialise to 1. units in ms. */ 943 unsigned int nr_balance_failed; /* initialise to 0 */ 944 945 u64 last_update; 946 947#ifdef CONFIG_SCHEDSTATS 948 /* load_balance() stats */ 949 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 950 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 951 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 952 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 953 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 954 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 955 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 956 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 957 958 /* Active load balancing */ 959 unsigned int alb_count; 960 unsigned int alb_failed; 961 unsigned int alb_pushed; 962 963 /* SD_BALANCE_EXEC stats */ 964 unsigned int sbe_count; 965 unsigned int sbe_balanced; 966 unsigned int sbe_pushed; 967 968 /* SD_BALANCE_FORK stats */ 969 unsigned int sbf_count; 970 unsigned int sbf_balanced; 971 unsigned int sbf_pushed; 972 973 /* try_to_wake_up() stats */ 974 unsigned int ttwu_wake_remote; 975 unsigned int ttwu_move_affine; 976 unsigned int ttwu_move_balance; 977#endif 978#ifdef CONFIG_SCHED_DEBUG 979 char *name; 980#endif 981 union { 982 void *private; /* used during construction */ 983 struct rcu_head rcu; /* used during destruction */ 984 }; 985 986 unsigned int span_weight; 987 /* 988 * Span of all CPUs in this domain. 989 * 990 * NOTE: this field is variable length. (Allocated dynamically 991 * by attaching extra space to the end of the structure, 992 * depending on how many CPUs the kernel has booted up with) 993 */ 994 unsigned long span[0]; 995}; 996 997static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 998{ 999 return to_cpumask(sd->span); 1000} 1001 1002extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1003 struct sched_domain_attr *dattr_new); 1004 1005/* Allocate an array of sched domains, for partition_sched_domains(). */ 1006cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1007void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1008 1009/* Test a flag in parent sched domain */ 1010static inline int test_sd_parent(struct sched_domain *sd, int flag) 1011{ 1012 if (sd->parent && (sd->parent->flags & flag)) 1013 return 1; 1014 1015 return 0; 1016} 1017 1018unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1019unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1020 1021bool cpus_share_cache(int this_cpu, int that_cpu); 1022 1023#else /* CONFIG_SMP */ 1024 1025struct sched_domain_attr; 1026 1027static inline void 1028partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1029 struct sched_domain_attr *dattr_new) 1030{ 1031} 1032 1033static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1034{ 1035 return true; 1036} 1037 1038#endif /* !CONFIG_SMP */ 1039 1040 1041struct io_context; /* See blkdev.h */ 1042 1043 1044#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1045extern void prefetch_stack(struct task_struct *t); 1046#else 1047static inline void prefetch_stack(struct task_struct *t) { } 1048#endif 1049 1050struct audit_context; /* See audit.c */ 1051struct mempolicy; 1052struct pipe_inode_info; 1053struct uts_namespace; 1054 1055struct rq; 1056struct sched_domain; 1057 1058/* 1059 * wake flags 1060 */ 1061#define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1062#define WF_FORK 0x02 /* child wakeup after fork */ 1063#define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1064 1065#define ENQUEUE_WAKEUP 1 1066#define ENQUEUE_HEAD 2 1067#ifdef CONFIG_SMP 1068#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1069#else 1070#define ENQUEUE_WAKING 0 1071#endif 1072 1073#define DEQUEUE_SLEEP 1 1074 1075struct sched_class { 1076 const struct sched_class *next; 1077 1078 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1079 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1080 void (*yield_task) (struct rq *rq); 1081 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1082 1083 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1084 1085 struct task_struct * (*pick_next_task) (struct rq *rq); 1086 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1087 1088#ifdef CONFIG_SMP 1089 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1090 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 1091 1092 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1093 void (*post_schedule) (struct rq *this_rq); 1094 void (*task_waking) (struct task_struct *task); 1095 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1096 1097 void (*set_cpus_allowed)(struct task_struct *p, 1098 const struct cpumask *newmask); 1099 1100 void (*rq_online)(struct rq *rq); 1101 void (*rq_offline)(struct rq *rq); 1102#endif 1103 1104 void (*set_curr_task) (struct rq *rq); 1105 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1106 void (*task_fork) (struct task_struct *p); 1107 1108 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1109 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1110 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1111 int oldprio); 1112 1113 unsigned int (*get_rr_interval) (struct rq *rq, 1114 struct task_struct *task); 1115 1116#ifdef CONFIG_FAIR_GROUP_SCHED 1117 void (*task_move_group) (struct task_struct *p, int on_rq); 1118#endif 1119}; 1120 1121struct load_weight { 1122 unsigned long weight, inv_weight; 1123}; 1124 1125struct sched_avg { 1126 /* 1127 * These sums represent an infinite geometric series and so are bound 1128 * above by 1024/(1-y). Thus we only need a u32 to store them for for all 1129 * choices of y < 1-2^(-32)*1024. 1130 */ 1131 u32 runnable_avg_sum, runnable_avg_period; 1132 u64 last_runnable_update; 1133 s64 decay_count; 1134 unsigned long load_avg_contrib; 1135}; 1136 1137#ifdef CONFIG_SCHEDSTATS 1138struct sched_statistics { 1139 u64 wait_start; 1140 u64 wait_max; 1141 u64 wait_count; 1142 u64 wait_sum; 1143 u64 iowait_count; 1144 u64 iowait_sum; 1145 1146 u64 sleep_start; 1147 u64 sleep_max; 1148 s64 sum_sleep_runtime; 1149 1150 u64 block_start; 1151 u64 block_max; 1152 u64 exec_max; 1153 u64 slice_max; 1154 1155 u64 nr_migrations_cold; 1156 u64 nr_failed_migrations_affine; 1157 u64 nr_failed_migrations_running; 1158 u64 nr_failed_migrations_hot; 1159 u64 nr_forced_migrations; 1160 1161 u64 nr_wakeups; 1162 u64 nr_wakeups_sync; 1163 u64 nr_wakeups_migrate; 1164 u64 nr_wakeups_local; 1165 u64 nr_wakeups_remote; 1166 u64 nr_wakeups_affine; 1167 u64 nr_wakeups_affine_attempts; 1168 u64 nr_wakeups_passive; 1169 u64 nr_wakeups_idle; 1170}; 1171#endif 1172 1173struct sched_entity { 1174 struct load_weight load; /* for load-balancing */ 1175 struct rb_node run_node; 1176 struct list_head group_node; 1177 unsigned int on_rq; 1178 1179 u64 exec_start; 1180 u64 sum_exec_runtime; 1181 u64 vruntime; 1182 u64 prev_sum_exec_runtime; 1183 1184 u64 nr_migrations; 1185 1186#ifdef CONFIG_SCHEDSTATS 1187 struct sched_statistics statistics; 1188#endif 1189 1190#ifdef CONFIG_FAIR_GROUP_SCHED 1191 struct sched_entity *parent; 1192 /* rq on which this entity is (to be) queued: */ 1193 struct cfs_rq *cfs_rq; 1194 /* rq "owned" by this entity/group: */ 1195 struct cfs_rq *my_q; 1196#endif 1197/* 1198 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 1199 * removed when useful for applications beyond shares distribution (e.g. 1200 * load-balance). 1201 */ 1202#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1203 /* Per-entity load-tracking */ 1204 struct sched_avg avg; 1205#endif 1206}; 1207 1208struct sched_rt_entity { 1209 struct list_head run_list; 1210 unsigned long timeout; 1211 unsigned int time_slice; 1212 1213 struct sched_rt_entity *back; 1214#ifdef CONFIG_RT_GROUP_SCHED 1215 struct sched_rt_entity *parent; 1216 /* rq on which this entity is (to be) queued: */ 1217 struct rt_rq *rt_rq; 1218 /* rq "owned" by this entity/group: */ 1219 struct rt_rq *my_q; 1220#endif 1221}; 1222 1223/* 1224 * default timeslice is 100 msecs (used only for SCHED_RR tasks). 1225 * Timeslices get refilled after they expire. 1226 */ 1227#define RR_TIMESLICE (100 * HZ / 1000) 1228 1229struct rcu_node; 1230 1231enum perf_event_task_context { 1232 perf_invalid_context = -1, 1233 perf_hw_context = 0, 1234 perf_sw_context, 1235 perf_nr_task_contexts, 1236}; 1237 1238struct task_struct { 1239 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1240 void *stack; 1241 atomic_t usage; 1242 unsigned int flags; /* per process flags, defined below */ 1243 unsigned int ptrace; 1244 1245#ifdef CONFIG_SMP 1246 struct llist_node wake_entry; 1247 int on_cpu; 1248#endif 1249 int on_rq; 1250 1251 int prio, static_prio, normal_prio; 1252 unsigned int rt_priority; 1253 const struct sched_class *sched_class; 1254 struct sched_entity se; 1255 struct sched_rt_entity rt; 1256#ifdef CONFIG_CGROUP_SCHED 1257 struct task_group *sched_task_group; 1258#endif 1259 1260#ifdef CONFIG_PREEMPT_NOTIFIERS 1261 /* list of struct preempt_notifier: */ 1262 struct hlist_head preempt_notifiers; 1263#endif 1264 1265 /* 1266 * fpu_counter contains the number of consecutive context switches 1267 * that the FPU is used. If this is over a threshold, the lazy fpu 1268 * saving becomes unlazy to save the trap. This is an unsigned char 1269 * so that after 256 times the counter wraps and the behavior turns 1270 * lazy again; this to deal with bursty apps that only use FPU for 1271 * a short time 1272 */ 1273 unsigned char fpu_counter; 1274#ifdef CONFIG_BLK_DEV_IO_TRACE 1275 unsigned int btrace_seq; 1276#endif 1277 1278 unsigned int policy; 1279 int nr_cpus_allowed; 1280 cpumask_t cpus_allowed; 1281 1282#ifdef CONFIG_PREEMPT_RCU 1283 int rcu_read_lock_nesting; 1284 char rcu_read_unlock_special; 1285 struct list_head rcu_node_entry; 1286#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1287#ifdef CONFIG_TREE_PREEMPT_RCU 1288 struct rcu_node *rcu_blocked_node; 1289#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1290#ifdef CONFIG_RCU_BOOST 1291 struct rt_mutex *rcu_boost_mutex; 1292#endif /* #ifdef CONFIG_RCU_BOOST */ 1293 1294#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1295 struct sched_info sched_info; 1296#endif 1297 1298 struct list_head tasks; 1299#ifdef CONFIG_SMP 1300 struct plist_node pushable_tasks; 1301#endif 1302 1303 struct mm_struct *mm, *active_mm; 1304#ifdef CONFIG_COMPAT_BRK 1305 unsigned brk_randomized:1; 1306#endif 1307#if defined(SPLIT_RSS_COUNTING) 1308 struct task_rss_stat rss_stat; 1309#endif 1310/* task state */ 1311 int exit_state; 1312 int exit_code, exit_signal; 1313 int pdeath_signal; /* The signal sent when the parent dies */ 1314 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1315 /* ??? */ 1316 unsigned int personality; 1317 unsigned did_exec:1; 1318 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1319 * execve */ 1320 unsigned in_iowait:1; 1321 1322 /* task may not gain privileges */ 1323 unsigned no_new_privs:1; 1324 1325 /* Revert to default priority/policy when forking */ 1326 unsigned sched_reset_on_fork:1; 1327 unsigned sched_contributes_to_load:1; 1328 1329 pid_t pid; 1330 pid_t tgid; 1331 1332#ifdef CONFIG_CC_STACKPROTECTOR 1333 /* Canary value for the -fstack-protector gcc feature */ 1334 unsigned long stack_canary; 1335#endif 1336 /* 1337 * pointers to (original) parent process, youngest child, younger sibling, 1338 * older sibling, respectively. (p->father can be replaced with 1339 * p->real_parent->pid) 1340 */ 1341 struct task_struct __rcu *real_parent; /* real parent process */ 1342 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1343 /* 1344 * children/sibling forms the list of my natural children 1345 */ 1346 struct list_head children; /* list of my children */ 1347 struct list_head sibling; /* linkage in my parent's children list */ 1348 struct task_struct *group_leader; /* threadgroup leader */ 1349 1350 /* 1351 * ptraced is the list of tasks this task is using ptrace on. 1352 * This includes both natural children and PTRACE_ATTACH targets. 1353 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1354 */ 1355 struct list_head ptraced; 1356 struct list_head ptrace_entry; 1357 1358 /* PID/PID hash table linkage. */ 1359 struct pid_link pids[PIDTYPE_MAX]; 1360 struct list_head thread_group; 1361 1362 struct completion *vfork_done; /* for vfork() */ 1363 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1364 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1365 1366 cputime_t utime, stime, utimescaled, stimescaled; 1367 cputime_t gtime; 1368#ifndef CONFIG_VIRT_CPU_ACCOUNTING 1369 struct cputime prev_cputime; 1370#endif 1371 unsigned long nvcsw, nivcsw; /* context switch counts */ 1372 struct timespec start_time; /* monotonic time */ 1373 struct timespec real_start_time; /* boot based time */ 1374/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1375 unsigned long min_flt, maj_flt; 1376 1377 struct task_cputime cputime_expires; 1378 struct list_head cpu_timers[3]; 1379 1380/* process credentials */ 1381 const struct cred __rcu *real_cred; /* objective and real subjective task 1382 * credentials (COW) */ 1383 const struct cred __rcu *cred; /* effective (overridable) subjective task 1384 * credentials (COW) */ 1385 char comm[TASK_COMM_LEN]; /* executable name excluding path 1386 - access with [gs]et_task_comm (which lock 1387 it with task_lock()) 1388 - initialized normally by setup_new_exec */ 1389/* file system info */ 1390 int link_count, total_link_count; 1391#ifdef CONFIG_SYSVIPC 1392/* ipc stuff */ 1393 struct sysv_sem sysvsem; 1394#endif 1395#ifdef CONFIG_DETECT_HUNG_TASK 1396/* hung task detection */ 1397 unsigned long last_switch_count; 1398#endif 1399/* CPU-specific state of this task */ 1400 struct thread_struct thread; 1401/* filesystem information */ 1402 struct fs_struct *fs; 1403/* open file information */ 1404 struct files_struct *files; 1405/* namespaces */ 1406 struct nsproxy *nsproxy; 1407/* signal handlers */ 1408 struct signal_struct *signal; 1409 struct sighand_struct *sighand; 1410 1411 sigset_t blocked, real_blocked; 1412 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1413 struct sigpending pending; 1414 1415 unsigned long sas_ss_sp; 1416 size_t sas_ss_size; 1417 int (*notifier)(void *priv); 1418 void *notifier_data; 1419 sigset_t *notifier_mask; 1420 struct callback_head *task_works; 1421 1422 struct audit_context *audit_context; 1423#ifdef CONFIG_AUDITSYSCALL 1424 kuid_t loginuid; 1425 unsigned int sessionid; 1426#endif 1427 struct seccomp seccomp; 1428 1429/* Thread group tracking */ 1430 u32 parent_exec_id; 1431 u32 self_exec_id; 1432/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1433 * mempolicy */ 1434 spinlock_t alloc_lock; 1435 1436 /* Protection of the PI data structures: */ 1437 raw_spinlock_t pi_lock; 1438 1439#ifdef CONFIG_RT_MUTEXES 1440 /* PI waiters blocked on a rt_mutex held by this task */ 1441 struct plist_head pi_waiters; 1442 /* Deadlock detection and priority inheritance handling */ 1443 struct rt_mutex_waiter *pi_blocked_on; 1444#endif 1445 1446#ifdef CONFIG_DEBUG_MUTEXES 1447 /* mutex deadlock detection */ 1448 struct mutex_waiter *blocked_on; 1449#endif 1450#ifdef CONFIG_TRACE_IRQFLAGS 1451 unsigned int irq_events; 1452 unsigned long hardirq_enable_ip; 1453 unsigned long hardirq_disable_ip; 1454 unsigned int hardirq_enable_event; 1455 unsigned int hardirq_disable_event; 1456 int hardirqs_enabled; 1457 int hardirq_context; 1458 unsigned long softirq_disable_ip; 1459 unsigned long softirq_enable_ip; 1460 unsigned int softirq_disable_event; 1461 unsigned int softirq_enable_event; 1462 int softirqs_enabled; 1463 int softirq_context; 1464#endif 1465#ifdef CONFIG_LOCKDEP 1466# define MAX_LOCK_DEPTH 48UL 1467 u64 curr_chain_key; 1468 int lockdep_depth; 1469 unsigned int lockdep_recursion; 1470 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1471 gfp_t lockdep_reclaim_gfp; 1472#endif 1473 1474/* journalling filesystem info */ 1475 void *journal_info; 1476 1477/* stacked block device info */ 1478 struct bio_list *bio_list; 1479 1480#ifdef CONFIG_BLOCK 1481/* stack plugging */ 1482 struct blk_plug *plug; 1483#endif 1484 1485/* VM state */ 1486 struct reclaim_state *reclaim_state; 1487 1488 struct backing_dev_info *backing_dev_info; 1489 1490 struct io_context *io_context; 1491 1492 unsigned long ptrace_message; 1493 siginfo_t *last_siginfo; /* For ptrace use. */ 1494 struct task_io_accounting ioac; 1495#if defined(CONFIG_TASK_XACCT) 1496 u64 acct_rss_mem1; /* accumulated rss usage */ 1497 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1498 cputime_t acct_timexpd; /* stime + utime since last update */ 1499#endif 1500#ifdef CONFIG_CPUSETS 1501 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1502 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1503 int cpuset_mem_spread_rotor; 1504 int cpuset_slab_spread_rotor; 1505#endif 1506#ifdef CONFIG_CGROUPS 1507 /* Control Group info protected by css_set_lock */ 1508 struct css_set __rcu *cgroups; 1509 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1510 struct list_head cg_list; 1511#endif 1512#ifdef CONFIG_FUTEX 1513 struct robust_list_head __user *robust_list; 1514#ifdef CONFIG_COMPAT 1515 struct compat_robust_list_head __user *compat_robust_list; 1516#endif 1517 struct list_head pi_state_list; 1518 struct futex_pi_state *pi_state_cache; 1519#endif 1520#ifdef CONFIG_PERF_EVENTS 1521 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1522 struct mutex perf_event_mutex; 1523 struct list_head perf_event_list; 1524#endif 1525#ifdef CONFIG_NUMA 1526 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1527 short il_next; 1528 short pref_node_fork; 1529#endif 1530#ifdef CONFIG_NUMA_BALANCING 1531 int numa_scan_seq; 1532 int numa_migrate_seq; 1533 unsigned int numa_scan_period; 1534 u64 node_stamp; /* migration stamp */ 1535 struct callback_head numa_work; 1536#endif /* CONFIG_NUMA_BALANCING */ 1537 1538 struct rcu_head rcu; 1539 1540 /* 1541 * cache last used pipe for splice 1542 */ 1543 struct pipe_inode_info *splice_pipe; 1544 1545 struct page_frag task_frag; 1546 1547#ifdef CONFIG_TASK_DELAY_ACCT 1548 struct task_delay_info *delays; 1549#endif 1550#ifdef CONFIG_FAULT_INJECTION 1551 int make_it_fail; 1552#endif 1553 /* 1554 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1555 * balance_dirty_pages() for some dirty throttling pause 1556 */ 1557 int nr_dirtied; 1558 int nr_dirtied_pause; 1559 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1560 1561#ifdef CONFIG_LATENCYTOP 1562 int latency_record_count; 1563 struct latency_record latency_record[LT_SAVECOUNT]; 1564#endif 1565 /* 1566 * time slack values; these are used to round up poll() and 1567 * select() etc timeout values. These are in nanoseconds. 1568 */ 1569 unsigned long timer_slack_ns; 1570 unsigned long default_timer_slack_ns; 1571 1572#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1573 /* Index of current stored address in ret_stack */ 1574 int curr_ret_stack; 1575 /* Stack of return addresses for return function tracing */ 1576 struct ftrace_ret_stack *ret_stack; 1577 /* time stamp for last schedule */ 1578 unsigned long long ftrace_timestamp; 1579 /* 1580 * Number of functions that haven't been traced 1581 * because of depth overrun. 1582 */ 1583 atomic_t trace_overrun; 1584 /* Pause for the tracing */ 1585 atomic_t tracing_graph_pause; 1586#endif 1587#ifdef CONFIG_TRACING 1588 /* state flags for use by tracers */ 1589 unsigned long trace; 1590 /* bitmask and counter of trace recursion */ 1591 unsigned long trace_recursion; 1592#endif /* CONFIG_TRACING */ 1593#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1594 struct memcg_batch_info { 1595 int do_batch; /* incremented when batch uncharge started */ 1596 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1597 unsigned long nr_pages; /* uncharged usage */ 1598 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1599 } memcg_batch; 1600 unsigned int memcg_kmem_skip_account; 1601#endif 1602#ifdef CONFIG_HAVE_HW_BREAKPOINT 1603 atomic_t ptrace_bp_refcnt; 1604#endif 1605#ifdef CONFIG_UPROBES 1606 struct uprobe_task *utask; 1607#endif 1608}; 1609 1610/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1611#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1612 1613#ifdef CONFIG_NUMA_BALANCING 1614extern void task_numa_fault(int node, int pages, bool migrated); 1615extern void set_numabalancing_state(bool enabled); 1616#else 1617static inline void task_numa_fault(int node, int pages, bool migrated) 1618{ 1619} 1620static inline void set_numabalancing_state(bool enabled) 1621{ 1622} 1623#endif 1624 1625/* 1626 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1627 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1628 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1629 * values are inverted: lower p->prio value means higher priority. 1630 * 1631 * The MAX_USER_RT_PRIO value allows the actual maximum 1632 * RT priority to be separate from the value exported to 1633 * user-space. This allows kernel threads to set their 1634 * priority to a value higher than any user task. Note: 1635 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1636 */ 1637 1638#define MAX_USER_RT_PRIO 100 1639#define MAX_RT_PRIO MAX_USER_RT_PRIO 1640 1641#define MAX_PRIO (MAX_RT_PRIO + 40) 1642#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1643 1644static inline int rt_prio(int prio) 1645{ 1646 if (unlikely(prio < MAX_RT_PRIO)) 1647 return 1; 1648 return 0; 1649} 1650 1651static inline int rt_task(struct task_struct *p) 1652{ 1653 return rt_prio(p->prio); 1654} 1655 1656static inline struct pid *task_pid(struct task_struct *task) 1657{ 1658 return task->pids[PIDTYPE_PID].pid; 1659} 1660 1661static inline struct pid *task_tgid(struct task_struct *task) 1662{ 1663 return task->group_leader->pids[PIDTYPE_PID].pid; 1664} 1665 1666/* 1667 * Without tasklist or rcu lock it is not safe to dereference 1668 * the result of task_pgrp/task_session even if task == current, 1669 * we can race with another thread doing sys_setsid/sys_setpgid. 1670 */ 1671static inline struct pid *task_pgrp(struct task_struct *task) 1672{ 1673 return task->group_leader->pids[PIDTYPE_PGID].pid; 1674} 1675 1676static inline struct pid *task_session(struct task_struct *task) 1677{ 1678 return task->group_leader->pids[PIDTYPE_SID].pid; 1679} 1680 1681struct pid_namespace; 1682 1683/* 1684 * the helpers to get the task's different pids as they are seen 1685 * from various namespaces 1686 * 1687 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1688 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1689 * current. 1690 * task_xid_nr_ns() : id seen from the ns specified; 1691 * 1692 * set_task_vxid() : assigns a virtual id to a task; 1693 * 1694 * see also pid_nr() etc in include/linux/pid.h 1695 */ 1696pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1697 struct pid_namespace *ns); 1698 1699static inline pid_t task_pid_nr(struct task_struct *tsk) 1700{ 1701 return tsk->pid; 1702} 1703 1704static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1705 struct pid_namespace *ns) 1706{ 1707 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1708} 1709 1710static inline pid_t task_pid_vnr(struct task_struct *tsk) 1711{ 1712 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1713} 1714 1715 1716static inline pid_t task_tgid_nr(struct task_struct *tsk) 1717{ 1718 return tsk->tgid; 1719} 1720 1721pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1722 1723static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1724{ 1725 return pid_vnr(task_tgid(tsk)); 1726} 1727 1728 1729static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1730 struct pid_namespace *ns) 1731{ 1732 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1733} 1734 1735static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1736{ 1737 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1738} 1739 1740 1741static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1742 struct pid_namespace *ns) 1743{ 1744 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1745} 1746 1747static inline pid_t task_session_vnr(struct task_struct *tsk) 1748{ 1749 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1750} 1751 1752/* obsolete, do not use */ 1753static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1754{ 1755 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1756} 1757 1758/** 1759 * pid_alive - check that a task structure is not stale 1760 * @p: Task structure to be checked. 1761 * 1762 * Test if a process is not yet dead (at most zombie state) 1763 * If pid_alive fails, then pointers within the task structure 1764 * can be stale and must not be dereferenced. 1765 */ 1766static inline int pid_alive(struct task_struct *p) 1767{ 1768 return p->pids[PIDTYPE_PID].pid != NULL; 1769} 1770 1771/** 1772 * is_global_init - check if a task structure is init 1773 * @tsk: Task structure to be checked. 1774 * 1775 * Check if a task structure is the first user space task the kernel created. 1776 */ 1777static inline int is_global_init(struct task_struct *tsk) 1778{ 1779 return tsk->pid == 1; 1780} 1781 1782extern struct pid *cad_pid; 1783 1784extern void free_task(struct task_struct *tsk); 1785#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1786 1787extern void __put_task_struct(struct task_struct *t); 1788 1789static inline void put_task_struct(struct task_struct *t) 1790{ 1791 if (atomic_dec_and_test(&t->usage)) 1792 __put_task_struct(t); 1793} 1794 1795extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1796extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1797 1798/* 1799 * Per process flags 1800 */ 1801#define PF_EXITING 0x00000004 /* getting shut down */ 1802#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1803#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1804#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1805#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1806#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1807#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1808#define PF_DUMPCORE 0x00000200 /* dumped core */ 1809#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1810#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1811#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1812#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1813#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1814#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1815#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1816#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1817#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1818#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1819#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1820#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1821#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1822#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1823#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1824#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1825#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1826#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1827#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1828#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1829 1830/* 1831 * Only the _current_ task can read/write to tsk->flags, but other 1832 * tasks can access tsk->flags in readonly mode for example 1833 * with tsk_used_math (like during threaded core dumping). 1834 * There is however an exception to this rule during ptrace 1835 * or during fork: the ptracer task is allowed to write to the 1836 * child->flags of its traced child (same goes for fork, the parent 1837 * can write to the child->flags), because we're guaranteed the 1838 * child is not running and in turn not changing child->flags 1839 * at the same time the parent does it. 1840 */ 1841#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1842#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1843#define clear_used_math() clear_stopped_child_used_math(current) 1844#define set_used_math() set_stopped_child_used_math(current) 1845#define conditional_stopped_child_used_math(condition, child) \ 1846 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1847#define conditional_used_math(condition) \ 1848 conditional_stopped_child_used_math(condition, current) 1849#define copy_to_stopped_child_used_math(child) \ 1850 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1851/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1852#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1853#define used_math() tsk_used_math(current) 1854 1855/* 1856 * task->jobctl flags 1857 */ 1858#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1859 1860#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1861#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1862#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1863#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1864#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1865#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1866#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1867 1868#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1869#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1870#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1871#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1872#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1873#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1874#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1875 1876#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1877#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1878 1879extern bool task_set_jobctl_pending(struct task_struct *task, 1880 unsigned int mask); 1881extern void task_clear_jobctl_trapping(struct task_struct *task); 1882extern void task_clear_jobctl_pending(struct task_struct *task, 1883 unsigned int mask); 1884 1885#ifdef CONFIG_PREEMPT_RCU 1886 1887#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1888#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1889 1890static inline void rcu_copy_process(struct task_struct *p) 1891{ 1892 p->rcu_read_lock_nesting = 0; 1893 p->rcu_read_unlock_special = 0; 1894#ifdef CONFIG_TREE_PREEMPT_RCU 1895 p->rcu_blocked_node = NULL; 1896#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1897#ifdef CONFIG_RCU_BOOST 1898 p->rcu_boost_mutex = NULL; 1899#endif /* #ifdef CONFIG_RCU_BOOST */ 1900 INIT_LIST_HEAD(&p->rcu_node_entry); 1901} 1902 1903#else 1904 1905static inline void rcu_copy_process(struct task_struct *p) 1906{ 1907} 1908 1909#endif 1910 1911static inline void tsk_restore_flags(struct task_struct *task, 1912 unsigned long orig_flags, unsigned long flags) 1913{ 1914 task->flags &= ~flags; 1915 task->flags |= orig_flags & flags; 1916} 1917 1918#ifdef CONFIG_SMP 1919extern void do_set_cpus_allowed(struct task_struct *p, 1920 const struct cpumask *new_mask); 1921 1922extern int set_cpus_allowed_ptr(struct task_struct *p, 1923 const struct cpumask *new_mask); 1924#else 1925static inline void do_set_cpus_allowed(struct task_struct *p, 1926 const struct cpumask *new_mask) 1927{ 1928} 1929static inline int set_cpus_allowed_ptr(struct task_struct *p, 1930 const struct cpumask *new_mask) 1931{ 1932 if (!cpumask_test_cpu(0, new_mask)) 1933 return -EINVAL; 1934 return 0; 1935} 1936#endif 1937 1938#ifdef CONFIG_NO_HZ 1939void calc_load_enter_idle(void); 1940void calc_load_exit_idle(void); 1941#else 1942static inline void calc_load_enter_idle(void) { } 1943static inline void calc_load_exit_idle(void) { } 1944#endif /* CONFIG_NO_HZ */ 1945 1946#ifndef CONFIG_CPUMASK_OFFSTACK 1947static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1948{ 1949 return set_cpus_allowed_ptr(p, &new_mask); 1950} 1951#endif 1952 1953/* 1954 * Do not use outside of architecture code which knows its limitations. 1955 * 1956 * sched_clock() has no promise of monotonicity or bounded drift between 1957 * CPUs, use (which you should not) requires disabling IRQs. 1958 * 1959 * Please use one of the three interfaces below. 1960 */ 1961extern unsigned long long notrace sched_clock(void); 1962/* 1963 * See the comment in kernel/sched/clock.c 1964 */ 1965extern u64 cpu_clock(int cpu); 1966extern u64 local_clock(void); 1967extern u64 sched_clock_cpu(int cpu); 1968 1969 1970extern void sched_clock_init(void); 1971 1972#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1973static inline void sched_clock_tick(void) 1974{ 1975} 1976 1977static inline void sched_clock_idle_sleep_event(void) 1978{ 1979} 1980 1981static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1982{ 1983} 1984#else 1985/* 1986 * Architectures can set this to 1 if they have specified 1987 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1988 * but then during bootup it turns out that sched_clock() 1989 * is reliable after all: 1990 */ 1991extern int sched_clock_stable; 1992 1993extern void sched_clock_tick(void); 1994extern void sched_clock_idle_sleep_event(void); 1995extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1996#endif 1997 1998#ifdef CONFIG_IRQ_TIME_ACCOUNTING 1999/* 2000 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2001 * The reason for this explicit opt-in is not to have perf penalty with 2002 * slow sched_clocks. 2003 */ 2004extern void enable_sched_clock_irqtime(void); 2005extern void disable_sched_clock_irqtime(void); 2006#else 2007static inline void enable_sched_clock_irqtime(void) {} 2008static inline void disable_sched_clock_irqtime(void) {} 2009#endif 2010 2011extern unsigned long long 2012task_sched_runtime(struct task_struct *task); 2013 2014/* sched_exec is called by processes performing an exec */ 2015#ifdef CONFIG_SMP 2016extern void sched_exec(void); 2017#else 2018#define sched_exec() {} 2019#endif 2020 2021extern void sched_clock_idle_sleep_event(void); 2022extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2023 2024#ifdef CONFIG_HOTPLUG_CPU 2025extern void idle_task_exit(void); 2026#else 2027static inline void idle_task_exit(void) {} 2028#endif 2029 2030#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 2031extern void wake_up_idle_cpu(int cpu); 2032#else 2033static inline void wake_up_idle_cpu(int cpu) { } 2034#endif 2035 2036extern unsigned int sysctl_sched_latency; 2037extern unsigned int sysctl_sched_min_granularity; 2038extern unsigned int sysctl_sched_wakeup_granularity; 2039extern unsigned int sysctl_sched_child_runs_first; 2040 2041enum sched_tunable_scaling { 2042 SCHED_TUNABLESCALING_NONE, 2043 SCHED_TUNABLESCALING_LOG, 2044 SCHED_TUNABLESCALING_LINEAR, 2045 SCHED_TUNABLESCALING_END, 2046}; 2047extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 2048 2049extern unsigned int sysctl_numa_balancing_scan_delay; 2050extern unsigned int sysctl_numa_balancing_scan_period_min; 2051extern unsigned int sysctl_numa_balancing_scan_period_max; 2052extern unsigned int sysctl_numa_balancing_scan_period_reset; 2053extern unsigned int sysctl_numa_balancing_scan_size; 2054extern unsigned int sysctl_numa_balancing_settle_count; 2055 2056#ifdef CONFIG_SCHED_DEBUG 2057extern unsigned int sysctl_sched_migration_cost; 2058extern unsigned int sysctl_sched_nr_migrate; 2059extern unsigned int sysctl_sched_time_avg; 2060extern unsigned int sysctl_timer_migration; 2061extern unsigned int sysctl_sched_shares_window; 2062 2063int sched_proc_update_handler(struct ctl_table *table, int write, 2064 void __user *buffer, size_t *length, 2065 loff_t *ppos); 2066#endif 2067#ifdef CONFIG_SCHED_DEBUG 2068static inline unsigned int get_sysctl_timer_migration(void) 2069{ 2070 return sysctl_timer_migration; 2071} 2072#else 2073static inline unsigned int get_sysctl_timer_migration(void) 2074{ 2075 return 1; 2076} 2077#endif 2078extern unsigned int sysctl_sched_rt_period; 2079extern int sysctl_sched_rt_runtime; 2080 2081int sched_rt_handler(struct ctl_table *table, int write, 2082 void __user *buffer, size_t *lenp, 2083 loff_t *ppos); 2084 2085#ifdef CONFIG_SCHED_AUTOGROUP 2086extern unsigned int sysctl_sched_autogroup_enabled; 2087 2088extern void sched_autogroup_create_attach(struct task_struct *p); 2089extern void sched_autogroup_detach(struct task_struct *p); 2090extern void sched_autogroup_fork(struct signal_struct *sig); 2091extern void sched_autogroup_exit(struct signal_struct *sig); 2092#ifdef CONFIG_PROC_FS 2093extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2094extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2095#endif 2096#else 2097static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2098static inline void sched_autogroup_detach(struct task_struct *p) { } 2099static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2100static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2101#endif 2102 2103#ifdef CONFIG_CFS_BANDWIDTH 2104extern unsigned int sysctl_sched_cfs_bandwidth_slice; 2105#endif 2106 2107#ifdef CONFIG_RT_MUTEXES 2108extern int rt_mutex_getprio(struct task_struct *p); 2109extern void rt_mutex_setprio(struct task_struct *p, int prio); 2110extern void rt_mutex_adjust_pi(struct task_struct *p); 2111static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2112{ 2113 return tsk->pi_blocked_on != NULL; 2114} 2115#else 2116static inline int rt_mutex_getprio(struct task_struct *p) 2117{ 2118 return p->normal_prio; 2119} 2120# define rt_mutex_adjust_pi(p) do { } while (0) 2121static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2122{ 2123 return false; 2124} 2125#endif 2126 2127extern bool yield_to(struct task_struct *p, bool preempt); 2128extern void set_user_nice(struct task_struct *p, long nice); 2129extern int task_prio(const struct task_struct *p); 2130extern int task_nice(const struct task_struct *p); 2131extern int can_nice(const struct task_struct *p, const int nice); 2132extern int task_curr(const struct task_struct *p); 2133extern int idle_cpu(int cpu); 2134extern int sched_setscheduler(struct task_struct *, int, 2135 const struct sched_param *); 2136extern int sched_setscheduler_nocheck(struct task_struct *, int, 2137 const struct sched_param *); 2138extern struct task_struct *idle_task(int cpu); 2139/** 2140 * is_idle_task - is the specified task an idle task? 2141 * @p: the task in question. 2142 */ 2143static inline bool is_idle_task(const struct task_struct *p) 2144{ 2145 return p->pid == 0; 2146} 2147extern struct task_struct *curr_task(int cpu); 2148extern void set_curr_task(int cpu, struct task_struct *p); 2149 2150void yield(void); 2151 2152/* 2153 * The default (Linux) execution domain. 2154 */ 2155extern struct exec_domain default_exec_domain; 2156 2157union thread_union { 2158 struct thread_info thread_info; 2159 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2160}; 2161 2162#ifndef __HAVE_ARCH_KSTACK_END 2163static inline int kstack_end(void *addr) 2164{ 2165 /* Reliable end of stack detection: 2166 * Some APM bios versions misalign the stack 2167 */ 2168 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2169} 2170#endif 2171 2172extern union thread_union init_thread_union; 2173extern struct task_struct init_task; 2174 2175extern struct mm_struct init_mm; 2176 2177extern struct pid_namespace init_pid_ns; 2178 2179/* 2180 * find a task by one of its numerical ids 2181 * 2182 * find_task_by_pid_ns(): 2183 * finds a task by its pid in the specified namespace 2184 * find_task_by_vpid(): 2185 * finds a task by its virtual pid 2186 * 2187 * see also find_vpid() etc in include/linux/pid.h 2188 */ 2189 2190extern struct task_struct *find_task_by_vpid(pid_t nr); 2191extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2192 struct pid_namespace *ns); 2193 2194extern void __set_special_pids(struct pid *pid); 2195 2196/* per-UID process charging. */ 2197extern struct user_struct * alloc_uid(kuid_t); 2198static inline struct user_struct *get_uid(struct user_struct *u) 2199{ 2200 atomic_inc(&u->__count); 2201 return u; 2202} 2203extern void free_uid(struct user_struct *); 2204 2205#include <asm/current.h> 2206 2207extern void xtime_update(unsigned long ticks); 2208 2209extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2210extern int wake_up_process(struct task_struct *tsk); 2211extern void wake_up_new_task(struct task_struct *tsk); 2212#ifdef CONFIG_SMP 2213 extern void kick_process(struct task_struct *tsk); 2214#else 2215 static inline void kick_process(struct task_struct *tsk) { } 2216#endif 2217extern void sched_fork(struct task_struct *p); 2218extern void sched_dead(struct task_struct *p); 2219 2220extern void proc_caches_init(void); 2221extern void flush_signals(struct task_struct *); 2222extern void __flush_signals(struct task_struct *); 2223extern void ignore_signals(struct task_struct *); 2224extern void flush_signal_handlers(struct task_struct *, int force_default); 2225extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2226 2227static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2228{ 2229 unsigned long flags; 2230 int ret; 2231 2232 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2233 ret = dequeue_signal(tsk, mask, info); 2234 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2235 2236 return ret; 2237} 2238 2239extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2240 sigset_t *mask); 2241extern void unblock_all_signals(void); 2242extern void release_task(struct task_struct * p); 2243extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2244extern int force_sigsegv(int, struct task_struct *); 2245extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2246extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2247extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2248extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2249 const struct cred *, u32); 2250extern int kill_pgrp(struct pid *pid, int sig, int priv); 2251extern int kill_pid(struct pid *pid, int sig, int priv); 2252extern int kill_proc_info(int, struct siginfo *, pid_t); 2253extern __must_check bool do_notify_parent(struct task_struct *, int); 2254extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2255extern void force_sig(int, struct task_struct *); 2256extern int send_sig(int, struct task_struct *, int); 2257extern int zap_other_threads(struct task_struct *p); 2258extern struct sigqueue *sigqueue_alloc(void); 2259extern void sigqueue_free(struct sigqueue *); 2260extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2261extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2262extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2263 2264static inline void restore_saved_sigmask(void) 2265{ 2266 if (test_and_clear_restore_sigmask()) 2267 __set_current_blocked(&current->saved_sigmask); 2268} 2269 2270static inline sigset_t *sigmask_to_save(void) 2271{ 2272 sigset_t *res = &current->blocked; 2273 if (unlikely(test_restore_sigmask())) 2274 res = &current->saved_sigmask; 2275 return res; 2276} 2277 2278static inline int kill_cad_pid(int sig, int priv) 2279{ 2280 return kill_pid(cad_pid, sig, priv); 2281} 2282 2283/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2284#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2285#define SEND_SIG_PRIV ((struct siginfo *) 1) 2286#define SEND_SIG_FORCED ((struct siginfo *) 2) 2287 2288/* 2289 * True if we are on the alternate signal stack. 2290 */ 2291static inline int on_sig_stack(unsigned long sp) 2292{ 2293#ifdef CONFIG_STACK_GROWSUP 2294 return sp >= current->sas_ss_sp && 2295 sp - current->sas_ss_sp < current->sas_ss_size; 2296#else 2297 return sp > current->sas_ss_sp && 2298 sp - current->sas_ss_sp <= current->sas_ss_size; 2299#endif 2300} 2301 2302static inline int sas_ss_flags(unsigned long sp) 2303{ 2304 return (current->sas_ss_size == 0 ? SS_DISABLE 2305 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2306} 2307 2308/* 2309 * Routines for handling mm_structs 2310 */ 2311extern struct mm_struct * mm_alloc(void); 2312 2313/* mmdrop drops the mm and the page tables */ 2314extern void __mmdrop(struct mm_struct *); 2315static inline void mmdrop(struct mm_struct * mm) 2316{ 2317 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2318 __mmdrop(mm); 2319} 2320 2321/* mmput gets rid of the mappings and all user-space */ 2322extern void mmput(struct mm_struct *); 2323/* Grab a reference to a task's mm, if it is not already going away */ 2324extern struct mm_struct *get_task_mm(struct task_struct *task); 2325/* 2326 * Grab a reference to a task's mm, if it is not already going away 2327 * and ptrace_may_access with the mode parameter passed to it 2328 * succeeds. 2329 */ 2330extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2331/* Remove the current tasks stale references to the old mm_struct */ 2332extern void mm_release(struct task_struct *, struct mm_struct *); 2333/* Allocate a new mm structure and copy contents from tsk->mm */ 2334extern struct mm_struct *dup_mm(struct task_struct *tsk); 2335 2336extern int copy_thread(unsigned long, unsigned long, unsigned long, 2337 struct task_struct *); 2338extern void flush_thread(void); 2339extern void exit_thread(void); 2340 2341extern void exit_files(struct task_struct *); 2342extern void __cleanup_sighand(struct sighand_struct *); 2343 2344extern void exit_itimers(struct signal_struct *); 2345extern void flush_itimer_signals(void); 2346 2347extern void do_group_exit(int); 2348 2349extern int allow_signal(int); 2350extern int disallow_signal(int); 2351 2352extern int do_execve(const char *, 2353 const char __user * const __user *, 2354 const char __user * const __user *); 2355extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2356struct task_struct *fork_idle(int); 2357extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2358 2359extern void set_task_comm(struct task_struct *tsk, char *from); 2360extern char *get_task_comm(char *to, struct task_struct *tsk); 2361 2362#ifdef CONFIG_SMP 2363void scheduler_ipi(void); 2364extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2365#else 2366static inline void scheduler_ipi(void) { } 2367static inline unsigned long wait_task_inactive(struct task_struct *p, 2368 long match_state) 2369{ 2370 return 1; 2371} 2372#endif 2373 2374#define next_task(p) \ 2375 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2376 2377#define for_each_process(p) \ 2378 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2379 2380extern bool current_is_single_threaded(void); 2381 2382/* 2383 * Careful: do_each_thread/while_each_thread is a double loop so 2384 * 'break' will not work as expected - use goto instead. 2385 */ 2386#define do_each_thread(g, t) \ 2387 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2388 2389#define while_each_thread(g, t) \ 2390 while ((t = next_thread(t)) != g) 2391 2392static inline int get_nr_threads(struct task_struct *tsk) 2393{ 2394 return tsk->signal->nr_threads; 2395} 2396 2397static inline bool thread_group_leader(struct task_struct *p) 2398{ 2399 return p->exit_signal >= 0; 2400} 2401 2402/* Do to the insanities of de_thread it is possible for a process 2403 * to have the pid of the thread group leader without actually being 2404 * the thread group leader. For iteration through the pids in proc 2405 * all we care about is that we have a task with the appropriate 2406 * pid, we don't actually care if we have the right task. 2407 */ 2408static inline int has_group_leader_pid(struct task_struct *p) 2409{ 2410 return p->pid == p->tgid; 2411} 2412 2413static inline 2414int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2415{ 2416 return p1->tgid == p2->tgid; 2417} 2418 2419static inline struct task_struct *next_thread(const struct task_struct *p) 2420{ 2421 return list_entry_rcu(p->thread_group.next, 2422 struct task_struct, thread_group); 2423} 2424 2425static inline int thread_group_empty(struct task_struct *p) 2426{ 2427 return list_empty(&p->thread_group); 2428} 2429 2430#define delay_group_leader(p) \ 2431 (thread_group_leader(p) && !thread_group_empty(p)) 2432 2433/* 2434 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2435 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2436 * pins the final release of task.io_context. Also protects ->cpuset and 2437 * ->cgroup.subsys[]. And ->vfork_done. 2438 * 2439 * Nests both inside and outside of read_lock(&tasklist_lock). 2440 * It must not be nested with write_lock_irq(&tasklist_lock), 2441 * neither inside nor outside. 2442 */ 2443static inline void task_lock(struct task_struct *p) 2444{ 2445 spin_lock(&p->alloc_lock); 2446} 2447 2448static inline void task_unlock(struct task_struct *p) 2449{ 2450 spin_unlock(&p->alloc_lock); 2451} 2452 2453extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2454 unsigned long *flags); 2455 2456static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2457 unsigned long *flags) 2458{ 2459 struct sighand_struct *ret; 2460 2461 ret = __lock_task_sighand(tsk, flags); 2462 (void)__cond_lock(&tsk->sighand->siglock, ret); 2463 return ret; 2464} 2465 2466static inline void unlock_task_sighand(struct task_struct *tsk, 2467 unsigned long *flags) 2468{ 2469 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2470} 2471 2472#ifdef CONFIG_CGROUPS 2473static inline void threadgroup_change_begin(struct task_struct *tsk) 2474{ 2475 down_read(&tsk->signal->group_rwsem); 2476} 2477static inline void threadgroup_change_end(struct task_struct *tsk) 2478{ 2479 up_read(&tsk->signal->group_rwsem); 2480} 2481 2482/** 2483 * threadgroup_lock - lock threadgroup 2484 * @tsk: member task of the threadgroup to lock 2485 * 2486 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2487 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2488 * perform exec. This is useful for cases where the threadgroup needs to 2489 * stay stable across blockable operations. 2490 * 2491 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2492 * synchronization. While held, no new task will be added to threadgroup 2493 * and no existing live task will have its PF_EXITING set. 2494 * 2495 * During exec, a task goes and puts its thread group through unusual 2496 * changes. After de-threading, exclusive access is assumed to resources 2497 * which are usually shared by tasks in the same group - e.g. sighand may 2498 * be replaced with a new one. Also, the exec'ing task takes over group 2499 * leader role including its pid. Exclude these changes while locked by 2500 * grabbing cred_guard_mutex which is used to synchronize exec path. 2501 */ 2502static inline void threadgroup_lock(struct task_struct *tsk) 2503{ 2504 /* 2505 * exec uses exit for de-threading nesting group_rwsem inside 2506 * cred_guard_mutex. Grab cred_guard_mutex first. 2507 */ 2508 mutex_lock(&tsk->signal->cred_guard_mutex); 2509 down_write(&tsk->signal->group_rwsem); 2510} 2511 2512/** 2513 * threadgroup_unlock - unlock threadgroup 2514 * @tsk: member task of the threadgroup to unlock 2515 * 2516 * Reverse threadgroup_lock(). 2517 */ 2518static inline void threadgroup_unlock(struct task_struct *tsk) 2519{ 2520 up_write(&tsk->signal->group_rwsem); 2521 mutex_unlock(&tsk->signal->cred_guard_mutex); 2522} 2523#else 2524static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2525static inline void threadgroup_change_end(struct task_struct *tsk) {} 2526static inline void threadgroup_lock(struct task_struct *tsk) {} 2527static inline void threadgroup_unlock(struct task_struct *tsk) {} 2528#endif 2529 2530#ifndef __HAVE_THREAD_FUNCTIONS 2531 2532#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2533#define task_stack_page(task) ((task)->stack) 2534 2535static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2536{ 2537 *task_thread_info(p) = *task_thread_info(org); 2538 task_thread_info(p)->task = p; 2539} 2540 2541static inline unsigned long *end_of_stack(struct task_struct *p) 2542{ 2543 return (unsigned long *)(task_thread_info(p) + 1); 2544} 2545 2546#endif 2547 2548static inline int object_is_on_stack(void *obj) 2549{ 2550 void *stack = task_stack_page(current); 2551 2552 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2553} 2554 2555extern void thread_info_cache_init(void); 2556 2557#ifdef CONFIG_DEBUG_STACK_USAGE 2558static inline unsigned long stack_not_used(struct task_struct *p) 2559{ 2560 unsigned long *n = end_of_stack(p); 2561 2562 do { /* Skip over canary */ 2563 n++; 2564 } while (!*n); 2565 2566 return (unsigned long)n - (unsigned long)end_of_stack(p); 2567} 2568#endif 2569 2570/* set thread flags in other task's structures 2571 * - see asm/thread_info.h for TIF_xxxx flags available 2572 */ 2573static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2574{ 2575 set_ti_thread_flag(task_thread_info(tsk), flag); 2576} 2577 2578static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2579{ 2580 clear_ti_thread_flag(task_thread_info(tsk), flag); 2581} 2582 2583static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2584{ 2585 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2586} 2587 2588static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2589{ 2590 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2591} 2592 2593static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2594{ 2595 return test_ti_thread_flag(task_thread_info(tsk), flag); 2596} 2597 2598static inline void set_tsk_need_resched(struct task_struct *tsk) 2599{ 2600 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2601} 2602 2603static inline void clear_tsk_need_resched(struct task_struct *tsk) 2604{ 2605 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2606} 2607 2608static inline int test_tsk_need_resched(struct task_struct *tsk) 2609{ 2610 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2611} 2612 2613static inline int restart_syscall(void) 2614{ 2615 set_tsk_thread_flag(current, TIF_SIGPENDING); 2616 return -ERESTARTNOINTR; 2617} 2618 2619static inline int signal_pending(struct task_struct *p) 2620{ 2621 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2622} 2623 2624static inline int __fatal_signal_pending(struct task_struct *p) 2625{ 2626 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2627} 2628 2629static inline int fatal_signal_pending(struct task_struct *p) 2630{ 2631 return signal_pending(p) && __fatal_signal_pending(p); 2632} 2633 2634static inline int signal_pending_state(long state, struct task_struct *p) 2635{ 2636 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2637 return 0; 2638 if (!signal_pending(p)) 2639 return 0; 2640 2641 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2642} 2643 2644static inline int need_resched(void) 2645{ 2646 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2647} 2648 2649/* 2650 * cond_resched() and cond_resched_lock(): latency reduction via 2651 * explicit rescheduling in places that are safe. The return 2652 * value indicates whether a reschedule was done in fact. 2653 * cond_resched_lock() will drop the spinlock before scheduling, 2654 * cond_resched_softirq() will enable bhs before scheduling. 2655 */ 2656extern int _cond_resched(void); 2657 2658#define cond_resched() ({ \ 2659 __might_sleep(__FILE__, __LINE__, 0); \ 2660 _cond_resched(); \ 2661}) 2662 2663extern int __cond_resched_lock(spinlock_t *lock); 2664 2665#ifdef CONFIG_PREEMPT_COUNT 2666#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2667#else 2668#define PREEMPT_LOCK_OFFSET 0 2669#endif 2670 2671#define cond_resched_lock(lock) ({ \ 2672 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2673 __cond_resched_lock(lock); \ 2674}) 2675 2676extern int __cond_resched_softirq(void); 2677 2678#define cond_resched_softirq() ({ \ 2679 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2680 __cond_resched_softirq(); \ 2681}) 2682 2683/* 2684 * Does a critical section need to be broken due to another 2685 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2686 * but a general need for low latency) 2687 */ 2688static inline int spin_needbreak(spinlock_t *lock) 2689{ 2690#ifdef CONFIG_PREEMPT 2691 return spin_is_contended(lock); 2692#else 2693 return 0; 2694#endif 2695} 2696 2697/* 2698 * Thread group CPU time accounting. 2699 */ 2700void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2701void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2702 2703static inline void thread_group_cputime_init(struct signal_struct *sig) 2704{ 2705 raw_spin_lock_init(&sig->cputimer.lock); 2706} 2707 2708/* 2709 * Reevaluate whether the task has signals pending delivery. 2710 * Wake the task if so. 2711 * This is required every time the blocked sigset_t changes. 2712 * callers must hold sighand->siglock. 2713 */ 2714extern void recalc_sigpending_and_wake(struct task_struct *t); 2715extern void recalc_sigpending(void); 2716 2717extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2718 2719static inline void signal_wake_up(struct task_struct *t, bool resume) 2720{ 2721 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2722} 2723static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2724{ 2725 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2726} 2727 2728/* 2729 * Wrappers for p->thread_info->cpu access. No-op on UP. 2730 */ 2731#ifdef CONFIG_SMP 2732 2733static inline unsigned int task_cpu(const struct task_struct *p) 2734{ 2735 return task_thread_info(p)->cpu; 2736} 2737 2738extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2739 2740#else 2741 2742static inline unsigned int task_cpu(const struct task_struct *p) 2743{ 2744 return 0; 2745} 2746 2747static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2748{ 2749} 2750 2751#endif /* CONFIG_SMP */ 2752 2753extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2754extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2755 2756extern void normalize_rt_tasks(void); 2757 2758#ifdef CONFIG_CGROUP_SCHED 2759 2760extern struct task_group root_task_group; 2761 2762extern struct task_group *sched_create_group(struct task_group *parent); 2763extern void sched_destroy_group(struct task_group *tg); 2764extern void sched_move_task(struct task_struct *tsk); 2765#ifdef CONFIG_FAIR_GROUP_SCHED 2766extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2767extern unsigned long sched_group_shares(struct task_group *tg); 2768#endif 2769#ifdef CONFIG_RT_GROUP_SCHED 2770extern int sched_group_set_rt_runtime(struct task_group *tg, 2771 long rt_runtime_us); 2772extern long sched_group_rt_runtime(struct task_group *tg); 2773extern int sched_group_set_rt_period(struct task_group *tg, 2774 long rt_period_us); 2775extern long sched_group_rt_period(struct task_group *tg); 2776extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2777#endif 2778#endif /* CONFIG_CGROUP_SCHED */ 2779 2780extern int task_can_switch_user(struct user_struct *up, 2781 struct task_struct *tsk); 2782 2783#ifdef CONFIG_TASK_XACCT 2784static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2785{ 2786 tsk->ioac.rchar += amt; 2787} 2788 2789static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2790{ 2791 tsk->ioac.wchar += amt; 2792} 2793 2794static inline void inc_syscr(struct task_struct *tsk) 2795{ 2796 tsk->ioac.syscr++; 2797} 2798 2799static inline void inc_syscw(struct task_struct *tsk) 2800{ 2801 tsk->ioac.syscw++; 2802} 2803#else 2804static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2805{ 2806} 2807 2808static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2809{ 2810} 2811 2812static inline void inc_syscr(struct task_struct *tsk) 2813{ 2814} 2815 2816static inline void inc_syscw(struct task_struct *tsk) 2817{ 2818} 2819#endif 2820 2821#ifndef TASK_SIZE_OF 2822#define TASK_SIZE_OF(tsk) TASK_SIZE 2823#endif 2824 2825#ifdef CONFIG_MM_OWNER 2826extern void mm_update_next_owner(struct mm_struct *mm); 2827extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2828#else 2829static inline void mm_update_next_owner(struct mm_struct *mm) 2830{ 2831} 2832 2833static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2834{ 2835} 2836#endif /* CONFIG_MM_OWNER */ 2837 2838static inline unsigned long task_rlimit(const struct task_struct *tsk, 2839 unsigned int limit) 2840{ 2841 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2842} 2843 2844static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2845 unsigned int limit) 2846{ 2847 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2848} 2849 2850static inline unsigned long rlimit(unsigned int limit) 2851{ 2852 return task_rlimit(current, limit); 2853} 2854 2855static inline unsigned long rlimit_max(unsigned int limit) 2856{ 2857 return task_rlimit_max(current, limit); 2858} 2859 2860#endif