Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33#ifndef __LINUX_RCUPDATE_H
34#define __LINUX_RCUPDATE_H
35
36#include <linux/types.h>
37#include <linux/cache.h>
38#include <linux/spinlock.h>
39#include <linux/threads.h>
40#include <linux/cpumask.h>
41#include <linux/seqlock.h>
42#include <linux/lockdep.h>
43#include <linux/completion.h>
44#include <linux/debugobjects.h>
45#include <linux/bug.h>
46#include <linux/compiler.h>
47
48#ifdef CONFIG_RCU_TORTURE_TEST
49extern int rcutorture_runnable; /* for sysctl */
50#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51
52#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53extern void rcutorture_record_test_transition(void);
54extern void rcutorture_record_progress(unsigned long vernum);
55extern void do_trace_rcu_torture_read(char *rcutorturename,
56 struct rcu_head *rhp);
57#else
58static inline void rcutorture_record_test_transition(void)
59{
60}
61static inline void rcutorture_record_progress(unsigned long vernum)
62{
63}
64#ifdef CONFIG_RCU_TRACE
65extern void do_trace_rcu_torture_read(char *rcutorturename,
66 struct rcu_head *rhp);
67#else
68#define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0)
69#endif
70#endif
71
72#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
73#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
74#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
75#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
76
77/* Exported common interfaces */
78
79#ifdef CONFIG_PREEMPT_RCU
80
81/**
82 * call_rcu() - Queue an RCU callback for invocation after a grace period.
83 * @head: structure to be used for queueing the RCU updates.
84 * @func: actual callback function to be invoked after the grace period
85 *
86 * The callback function will be invoked some time after a full grace
87 * period elapses, in other words after all pre-existing RCU read-side
88 * critical sections have completed. However, the callback function
89 * might well execute concurrently with RCU read-side critical sections
90 * that started after call_rcu() was invoked. RCU read-side critical
91 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
92 * and may be nested.
93 *
94 * Note that all CPUs must agree that the grace period extended beyond
95 * all pre-existing RCU read-side critical section. On systems with more
96 * than one CPU, this means that when "func()" is invoked, each CPU is
97 * guaranteed to have executed a full memory barrier since the end of its
98 * last RCU read-side critical section whose beginning preceded the call
99 * to call_rcu(). It also means that each CPU executing an RCU read-side
100 * critical section that continues beyond the start of "func()" must have
101 * executed a memory barrier after the call_rcu() but before the beginning
102 * of that RCU read-side critical section. Note that these guarantees
103 * include CPUs that are offline, idle, or executing in user mode, as
104 * well as CPUs that are executing in the kernel.
105 *
106 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
107 * resulting RCU callback function "func()", then both CPU A and CPU B are
108 * guaranteed to execute a full memory barrier during the time interval
109 * between the call to call_rcu() and the invocation of "func()" -- even
110 * if CPU A and CPU B are the same CPU (but again only if the system has
111 * more than one CPU).
112 */
113extern void call_rcu(struct rcu_head *head,
114 void (*func)(struct rcu_head *head));
115
116#else /* #ifdef CONFIG_PREEMPT_RCU */
117
118/* In classic RCU, call_rcu() is just call_rcu_sched(). */
119#define call_rcu call_rcu_sched
120
121#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
122
123/**
124 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
125 * @head: structure to be used for queueing the RCU updates.
126 * @func: actual callback function to be invoked after the grace period
127 *
128 * The callback function will be invoked some time after a full grace
129 * period elapses, in other words after all currently executing RCU
130 * read-side critical sections have completed. call_rcu_bh() assumes
131 * that the read-side critical sections end on completion of a softirq
132 * handler. This means that read-side critical sections in process
133 * context must not be interrupted by softirqs. This interface is to be
134 * used when most of the read-side critical sections are in softirq context.
135 * RCU read-side critical sections are delimited by :
136 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
137 * OR
138 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
139 * These may be nested.
140 *
141 * See the description of call_rcu() for more detailed information on
142 * memory ordering guarantees.
143 */
144extern void call_rcu_bh(struct rcu_head *head,
145 void (*func)(struct rcu_head *head));
146
147/**
148 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
149 * @head: structure to be used for queueing the RCU updates.
150 * @func: actual callback function to be invoked after the grace period
151 *
152 * The callback function will be invoked some time after a full grace
153 * period elapses, in other words after all currently executing RCU
154 * read-side critical sections have completed. call_rcu_sched() assumes
155 * that the read-side critical sections end on enabling of preemption
156 * or on voluntary preemption.
157 * RCU read-side critical sections are delimited by :
158 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
159 * OR
160 * anything that disables preemption.
161 * These may be nested.
162 *
163 * See the description of call_rcu() for more detailed information on
164 * memory ordering guarantees.
165 */
166extern void call_rcu_sched(struct rcu_head *head,
167 void (*func)(struct rcu_head *rcu));
168
169extern void synchronize_sched(void);
170
171#ifdef CONFIG_PREEMPT_RCU
172
173extern void __rcu_read_lock(void);
174extern void __rcu_read_unlock(void);
175extern void rcu_read_unlock_special(struct task_struct *t);
176void synchronize_rcu(void);
177
178/*
179 * Defined as a macro as it is a very low level header included from
180 * areas that don't even know about current. This gives the rcu_read_lock()
181 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
182 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
183 */
184#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
185
186#else /* #ifdef CONFIG_PREEMPT_RCU */
187
188static inline void __rcu_read_lock(void)
189{
190 preempt_disable();
191}
192
193static inline void __rcu_read_unlock(void)
194{
195 preempt_enable();
196}
197
198static inline void synchronize_rcu(void)
199{
200 synchronize_sched();
201}
202
203static inline int rcu_preempt_depth(void)
204{
205 return 0;
206}
207
208#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
209
210/* Internal to kernel */
211extern void rcu_sched_qs(int cpu);
212extern void rcu_bh_qs(int cpu);
213extern void rcu_check_callbacks(int cpu, int user);
214struct notifier_block;
215extern void rcu_idle_enter(void);
216extern void rcu_idle_exit(void);
217extern void rcu_irq_enter(void);
218extern void rcu_irq_exit(void);
219
220#ifdef CONFIG_RCU_USER_QS
221extern void rcu_user_enter(void);
222extern void rcu_user_exit(void);
223extern void rcu_user_enter_after_irq(void);
224extern void rcu_user_exit_after_irq(void);
225#else
226static inline void rcu_user_enter(void) { }
227static inline void rcu_user_exit(void) { }
228static inline void rcu_user_enter_after_irq(void) { }
229static inline void rcu_user_exit_after_irq(void) { }
230static inline void rcu_user_hooks_switch(struct task_struct *prev,
231 struct task_struct *next) { }
232#endif /* CONFIG_RCU_USER_QS */
233
234extern void exit_rcu(void);
235
236/**
237 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
238 * @a: Code that RCU needs to pay attention to.
239 *
240 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
241 * in the inner idle loop, that is, between the rcu_idle_enter() and
242 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
243 * critical sections. However, things like powertop need tracepoints
244 * in the inner idle loop.
245 *
246 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
247 * will tell RCU that it needs to pay attending, invoke its argument
248 * (in this example, a call to the do_something_with_RCU() function),
249 * and then tell RCU to go back to ignoring this CPU. It is permissible
250 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
251 * quite limited. If deeper nesting is required, it will be necessary
252 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
253 */
254#define RCU_NONIDLE(a) \
255 do { \
256 rcu_irq_enter(); \
257 do { a; } while (0); \
258 rcu_irq_exit(); \
259 } while (0)
260
261/*
262 * Infrastructure to implement the synchronize_() primitives in
263 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
264 */
265
266typedef void call_rcu_func_t(struct rcu_head *head,
267 void (*func)(struct rcu_head *head));
268void wait_rcu_gp(call_rcu_func_t crf);
269
270#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
271#include <linux/rcutree.h>
272#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
273#include <linux/rcutiny.h>
274#else
275#error "Unknown RCU implementation specified to kernel configuration"
276#endif
277
278/*
279 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
280 * initialization and destruction of rcu_head on the stack. rcu_head structures
281 * allocated dynamically in the heap or defined statically don't need any
282 * initialization.
283 */
284#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
285extern void init_rcu_head_on_stack(struct rcu_head *head);
286extern void destroy_rcu_head_on_stack(struct rcu_head *head);
287#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
288static inline void init_rcu_head_on_stack(struct rcu_head *head)
289{
290}
291
292static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
293{
294}
295#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
296
297#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP)
298extern int rcu_is_cpu_idle(void);
299#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) */
300
301#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
302bool rcu_lockdep_current_cpu_online(void);
303#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
304static inline bool rcu_lockdep_current_cpu_online(void)
305{
306 return 1;
307}
308#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
309
310#ifdef CONFIG_DEBUG_LOCK_ALLOC
311
312static inline void rcu_lock_acquire(struct lockdep_map *map)
313{
314 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
315}
316
317static inline void rcu_lock_release(struct lockdep_map *map)
318{
319 lock_release(map, 1, _THIS_IP_);
320}
321
322extern struct lockdep_map rcu_lock_map;
323extern struct lockdep_map rcu_bh_lock_map;
324extern struct lockdep_map rcu_sched_lock_map;
325extern int debug_lockdep_rcu_enabled(void);
326
327/**
328 * rcu_read_lock_held() - might we be in RCU read-side critical section?
329 *
330 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
331 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
332 * this assumes we are in an RCU read-side critical section unless it can
333 * prove otherwise. This is useful for debug checks in functions that
334 * require that they be called within an RCU read-side critical section.
335 *
336 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
337 * and while lockdep is disabled.
338 *
339 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
340 * occur in the same context, for example, it is illegal to invoke
341 * rcu_read_unlock() in process context if the matching rcu_read_lock()
342 * was invoked from within an irq handler.
343 *
344 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
345 * offline from an RCU perspective, so check for those as well.
346 */
347static inline int rcu_read_lock_held(void)
348{
349 if (!debug_lockdep_rcu_enabled())
350 return 1;
351 if (rcu_is_cpu_idle())
352 return 0;
353 if (!rcu_lockdep_current_cpu_online())
354 return 0;
355 return lock_is_held(&rcu_lock_map);
356}
357
358/*
359 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
360 * hell.
361 */
362extern int rcu_read_lock_bh_held(void);
363
364/**
365 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
366 *
367 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
368 * RCU-sched read-side critical section. In absence of
369 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
370 * critical section unless it can prove otherwise. Note that disabling
371 * of preemption (including disabling irqs) counts as an RCU-sched
372 * read-side critical section. This is useful for debug checks in functions
373 * that required that they be called within an RCU-sched read-side
374 * critical section.
375 *
376 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
377 * and while lockdep is disabled.
378 *
379 * Note that if the CPU is in the idle loop from an RCU point of
380 * view (ie: that we are in the section between rcu_idle_enter() and
381 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
382 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
383 * that are in such a section, considering these as in extended quiescent
384 * state, so such a CPU is effectively never in an RCU read-side critical
385 * section regardless of what RCU primitives it invokes. This state of
386 * affairs is required --- we need to keep an RCU-free window in idle
387 * where the CPU may possibly enter into low power mode. This way we can
388 * notice an extended quiescent state to other CPUs that started a grace
389 * period. Otherwise we would delay any grace period as long as we run in
390 * the idle task.
391 *
392 * Similarly, we avoid claiming an SRCU read lock held if the current
393 * CPU is offline.
394 */
395#ifdef CONFIG_PREEMPT_COUNT
396static inline int rcu_read_lock_sched_held(void)
397{
398 int lockdep_opinion = 0;
399
400 if (!debug_lockdep_rcu_enabled())
401 return 1;
402 if (rcu_is_cpu_idle())
403 return 0;
404 if (!rcu_lockdep_current_cpu_online())
405 return 0;
406 if (debug_locks)
407 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
408 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
409}
410#else /* #ifdef CONFIG_PREEMPT_COUNT */
411static inline int rcu_read_lock_sched_held(void)
412{
413 return 1;
414}
415#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
416
417#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
418
419# define rcu_lock_acquire(a) do { } while (0)
420# define rcu_lock_release(a) do { } while (0)
421
422static inline int rcu_read_lock_held(void)
423{
424 return 1;
425}
426
427static inline int rcu_read_lock_bh_held(void)
428{
429 return 1;
430}
431
432#ifdef CONFIG_PREEMPT_COUNT
433static inline int rcu_read_lock_sched_held(void)
434{
435 return preempt_count() != 0 || irqs_disabled();
436}
437#else /* #ifdef CONFIG_PREEMPT_COUNT */
438static inline int rcu_read_lock_sched_held(void)
439{
440 return 1;
441}
442#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
443
444#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
445
446#ifdef CONFIG_PROVE_RCU
447
448extern int rcu_my_thread_group_empty(void);
449
450/**
451 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
452 * @c: condition to check
453 * @s: informative message
454 */
455#define rcu_lockdep_assert(c, s) \
456 do { \
457 static bool __section(.data.unlikely) __warned; \
458 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
459 __warned = true; \
460 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
461 } \
462 } while (0)
463
464#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
465static inline void rcu_preempt_sleep_check(void)
466{
467 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
468 "Illegal context switch in RCU read-side critical section");
469}
470#else /* #ifdef CONFIG_PROVE_RCU */
471static inline void rcu_preempt_sleep_check(void)
472{
473}
474#endif /* #else #ifdef CONFIG_PROVE_RCU */
475
476#define rcu_sleep_check() \
477 do { \
478 rcu_preempt_sleep_check(); \
479 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
480 "Illegal context switch in RCU-bh" \
481 " read-side critical section"); \
482 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
483 "Illegal context switch in RCU-sched"\
484 " read-side critical section"); \
485 } while (0)
486
487#else /* #ifdef CONFIG_PROVE_RCU */
488
489#define rcu_lockdep_assert(c, s) do { } while (0)
490#define rcu_sleep_check() do { } while (0)
491
492#endif /* #else #ifdef CONFIG_PROVE_RCU */
493
494/*
495 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
496 * and rcu_assign_pointer(). Some of these could be folded into their
497 * callers, but they are left separate in order to ease introduction of
498 * multiple flavors of pointers to match the multiple flavors of RCU
499 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
500 * the future.
501 */
502
503#ifdef __CHECKER__
504#define rcu_dereference_sparse(p, space) \
505 ((void)(((typeof(*p) space *)p) == p))
506#else /* #ifdef __CHECKER__ */
507#define rcu_dereference_sparse(p, space)
508#endif /* #else #ifdef __CHECKER__ */
509
510#define __rcu_access_pointer(p, space) \
511 ({ \
512 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
513 rcu_dereference_sparse(p, space); \
514 ((typeof(*p) __force __kernel *)(_________p1)); \
515 })
516#define __rcu_dereference_check(p, c, space) \
517 ({ \
518 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
519 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
520 " usage"); \
521 rcu_dereference_sparse(p, space); \
522 smp_read_barrier_depends(); \
523 ((typeof(*p) __force __kernel *)(_________p1)); \
524 })
525#define __rcu_dereference_protected(p, c, space) \
526 ({ \
527 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
528 " usage"); \
529 rcu_dereference_sparse(p, space); \
530 ((typeof(*p) __force __kernel *)(p)); \
531 })
532
533#define __rcu_access_index(p, space) \
534 ({ \
535 typeof(p) _________p1 = ACCESS_ONCE(p); \
536 rcu_dereference_sparse(p, space); \
537 (_________p1); \
538 })
539#define __rcu_dereference_index_check(p, c) \
540 ({ \
541 typeof(p) _________p1 = ACCESS_ONCE(p); \
542 rcu_lockdep_assert(c, \
543 "suspicious rcu_dereference_index_check()" \
544 " usage"); \
545 smp_read_barrier_depends(); \
546 (_________p1); \
547 })
548#define __rcu_assign_pointer(p, v, space) \
549 do { \
550 smp_wmb(); \
551 (p) = (typeof(*v) __force space *)(v); \
552 } while (0)
553
554
555/**
556 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
557 * @p: The pointer to read
558 *
559 * Return the value of the specified RCU-protected pointer, but omit the
560 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
561 * when the value of this pointer is accessed, but the pointer is not
562 * dereferenced, for example, when testing an RCU-protected pointer against
563 * NULL. Although rcu_access_pointer() may also be used in cases where
564 * update-side locks prevent the value of the pointer from changing, you
565 * should instead use rcu_dereference_protected() for this use case.
566 *
567 * It is also permissible to use rcu_access_pointer() when read-side
568 * access to the pointer was removed at least one grace period ago, as
569 * is the case in the context of the RCU callback that is freeing up
570 * the data, or after a synchronize_rcu() returns. This can be useful
571 * when tearing down multi-linked structures after a grace period
572 * has elapsed.
573 */
574#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
575
576/**
577 * rcu_dereference_check() - rcu_dereference with debug checking
578 * @p: The pointer to read, prior to dereferencing
579 * @c: The conditions under which the dereference will take place
580 *
581 * Do an rcu_dereference(), but check that the conditions under which the
582 * dereference will take place are correct. Typically the conditions
583 * indicate the various locking conditions that should be held at that
584 * point. The check should return true if the conditions are satisfied.
585 * An implicit check for being in an RCU read-side critical section
586 * (rcu_read_lock()) is included.
587 *
588 * For example:
589 *
590 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
591 *
592 * could be used to indicate to lockdep that foo->bar may only be dereferenced
593 * if either rcu_read_lock() is held, or that the lock required to replace
594 * the bar struct at foo->bar is held.
595 *
596 * Note that the list of conditions may also include indications of when a lock
597 * need not be held, for example during initialisation or destruction of the
598 * target struct:
599 *
600 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
601 * atomic_read(&foo->usage) == 0);
602 *
603 * Inserts memory barriers on architectures that require them
604 * (currently only the Alpha), prevents the compiler from refetching
605 * (and from merging fetches), and, more importantly, documents exactly
606 * which pointers are protected by RCU and checks that the pointer is
607 * annotated as __rcu.
608 */
609#define rcu_dereference_check(p, c) \
610 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
611
612/**
613 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
614 * @p: The pointer to read, prior to dereferencing
615 * @c: The conditions under which the dereference will take place
616 *
617 * This is the RCU-bh counterpart to rcu_dereference_check().
618 */
619#define rcu_dereference_bh_check(p, c) \
620 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
621
622/**
623 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
624 * @p: The pointer to read, prior to dereferencing
625 * @c: The conditions under which the dereference will take place
626 *
627 * This is the RCU-sched counterpart to rcu_dereference_check().
628 */
629#define rcu_dereference_sched_check(p, c) \
630 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
631 __rcu)
632
633#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
634
635/**
636 * rcu_access_index() - fetch RCU index with no dereferencing
637 * @p: The index to read
638 *
639 * Return the value of the specified RCU-protected index, but omit the
640 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
641 * when the value of this index is accessed, but the index is not
642 * dereferenced, for example, when testing an RCU-protected index against
643 * -1. Although rcu_access_index() may also be used in cases where
644 * update-side locks prevent the value of the index from changing, you
645 * should instead use rcu_dereference_index_protected() for this use case.
646 */
647#define rcu_access_index(p) __rcu_access_index((p), __rcu)
648
649/**
650 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
651 * @p: The pointer to read, prior to dereferencing
652 * @c: The conditions under which the dereference will take place
653 *
654 * Similar to rcu_dereference_check(), but omits the sparse checking.
655 * This allows rcu_dereference_index_check() to be used on integers,
656 * which can then be used as array indices. Attempting to use
657 * rcu_dereference_check() on an integer will give compiler warnings
658 * because the sparse address-space mechanism relies on dereferencing
659 * the RCU-protected pointer. Dereferencing integers is not something
660 * that even gcc will put up with.
661 *
662 * Note that this function does not implicitly check for RCU read-side
663 * critical sections. If this function gains lots of uses, it might
664 * make sense to provide versions for each flavor of RCU, but it does
665 * not make sense as of early 2010.
666 */
667#define rcu_dereference_index_check(p, c) \
668 __rcu_dereference_index_check((p), (c))
669
670/**
671 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
672 * @p: The pointer to read, prior to dereferencing
673 * @c: The conditions under which the dereference will take place
674 *
675 * Return the value of the specified RCU-protected pointer, but omit
676 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
677 * is useful in cases where update-side locks prevent the value of the
678 * pointer from changing. Please note that this primitive does -not-
679 * prevent the compiler from repeating this reference or combining it
680 * with other references, so it should not be used without protection
681 * of appropriate locks.
682 *
683 * This function is only for update-side use. Using this function
684 * when protected only by rcu_read_lock() will result in infrequent
685 * but very ugly failures.
686 */
687#define rcu_dereference_protected(p, c) \
688 __rcu_dereference_protected((p), (c), __rcu)
689
690
691/**
692 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
693 * @p: The pointer to read, prior to dereferencing
694 *
695 * This is a simple wrapper around rcu_dereference_check().
696 */
697#define rcu_dereference(p) rcu_dereference_check(p, 0)
698
699/**
700 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
701 * @p: The pointer to read, prior to dereferencing
702 *
703 * Makes rcu_dereference_check() do the dirty work.
704 */
705#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
706
707/**
708 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
709 * @p: The pointer to read, prior to dereferencing
710 *
711 * Makes rcu_dereference_check() do the dirty work.
712 */
713#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
714
715/**
716 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
717 *
718 * When synchronize_rcu() is invoked on one CPU while other CPUs
719 * are within RCU read-side critical sections, then the
720 * synchronize_rcu() is guaranteed to block until after all the other
721 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
722 * on one CPU while other CPUs are within RCU read-side critical
723 * sections, invocation of the corresponding RCU callback is deferred
724 * until after the all the other CPUs exit their critical sections.
725 *
726 * Note, however, that RCU callbacks are permitted to run concurrently
727 * with new RCU read-side critical sections. One way that this can happen
728 * is via the following sequence of events: (1) CPU 0 enters an RCU
729 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
730 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
731 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
732 * callback is invoked. This is legal, because the RCU read-side critical
733 * section that was running concurrently with the call_rcu() (and which
734 * therefore might be referencing something that the corresponding RCU
735 * callback would free up) has completed before the corresponding
736 * RCU callback is invoked.
737 *
738 * RCU read-side critical sections may be nested. Any deferred actions
739 * will be deferred until the outermost RCU read-side critical section
740 * completes.
741 *
742 * You can avoid reading and understanding the next paragraph by
743 * following this rule: don't put anything in an rcu_read_lock() RCU
744 * read-side critical section that would block in a !PREEMPT kernel.
745 * But if you want the full story, read on!
746 *
747 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
748 * is illegal to block while in an RCU read-side critical section. In
749 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
750 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
751 * be preempted, but explicit blocking is illegal. Finally, in preemptible
752 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
753 * RCU read-side critical sections may be preempted and they may also
754 * block, but only when acquiring spinlocks that are subject to priority
755 * inheritance.
756 */
757static inline void rcu_read_lock(void)
758{
759 __rcu_read_lock();
760 __acquire(RCU);
761 rcu_lock_acquire(&rcu_lock_map);
762 rcu_lockdep_assert(!rcu_is_cpu_idle(),
763 "rcu_read_lock() used illegally while idle");
764}
765
766/*
767 * So where is rcu_write_lock()? It does not exist, as there is no
768 * way for writers to lock out RCU readers. This is a feature, not
769 * a bug -- this property is what provides RCU's performance benefits.
770 * Of course, writers must coordinate with each other. The normal
771 * spinlock primitives work well for this, but any other technique may be
772 * used as well. RCU does not care how the writers keep out of each
773 * others' way, as long as they do so.
774 */
775
776/**
777 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
778 *
779 * See rcu_read_lock() for more information.
780 */
781static inline void rcu_read_unlock(void)
782{
783 rcu_lockdep_assert(!rcu_is_cpu_idle(),
784 "rcu_read_unlock() used illegally while idle");
785 rcu_lock_release(&rcu_lock_map);
786 __release(RCU);
787 __rcu_read_unlock();
788}
789
790/**
791 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
792 *
793 * This is equivalent of rcu_read_lock(), but to be used when updates
794 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
795 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
796 * softirq handler to be a quiescent state, a process in RCU read-side
797 * critical section must be protected by disabling softirqs. Read-side
798 * critical sections in interrupt context can use just rcu_read_lock(),
799 * though this should at least be commented to avoid confusing people
800 * reading the code.
801 *
802 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
803 * must occur in the same context, for example, it is illegal to invoke
804 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
805 * was invoked from some other task.
806 */
807static inline void rcu_read_lock_bh(void)
808{
809 local_bh_disable();
810 __acquire(RCU_BH);
811 rcu_lock_acquire(&rcu_bh_lock_map);
812 rcu_lockdep_assert(!rcu_is_cpu_idle(),
813 "rcu_read_lock_bh() used illegally while idle");
814}
815
816/*
817 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
818 *
819 * See rcu_read_lock_bh() for more information.
820 */
821static inline void rcu_read_unlock_bh(void)
822{
823 rcu_lockdep_assert(!rcu_is_cpu_idle(),
824 "rcu_read_unlock_bh() used illegally while idle");
825 rcu_lock_release(&rcu_bh_lock_map);
826 __release(RCU_BH);
827 local_bh_enable();
828}
829
830/**
831 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
832 *
833 * This is equivalent of rcu_read_lock(), but to be used when updates
834 * are being done using call_rcu_sched() or synchronize_rcu_sched().
835 * Read-side critical sections can also be introduced by anything that
836 * disables preemption, including local_irq_disable() and friends.
837 *
838 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
839 * must occur in the same context, for example, it is illegal to invoke
840 * rcu_read_unlock_sched() from process context if the matching
841 * rcu_read_lock_sched() was invoked from an NMI handler.
842 */
843static inline void rcu_read_lock_sched(void)
844{
845 preempt_disable();
846 __acquire(RCU_SCHED);
847 rcu_lock_acquire(&rcu_sched_lock_map);
848 rcu_lockdep_assert(!rcu_is_cpu_idle(),
849 "rcu_read_lock_sched() used illegally while idle");
850}
851
852/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
853static inline notrace void rcu_read_lock_sched_notrace(void)
854{
855 preempt_disable_notrace();
856 __acquire(RCU_SCHED);
857}
858
859/*
860 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
861 *
862 * See rcu_read_lock_sched for more information.
863 */
864static inline void rcu_read_unlock_sched(void)
865{
866 rcu_lockdep_assert(!rcu_is_cpu_idle(),
867 "rcu_read_unlock_sched() used illegally while idle");
868 rcu_lock_release(&rcu_sched_lock_map);
869 __release(RCU_SCHED);
870 preempt_enable();
871}
872
873/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
874static inline notrace void rcu_read_unlock_sched_notrace(void)
875{
876 __release(RCU_SCHED);
877 preempt_enable_notrace();
878}
879
880/**
881 * rcu_assign_pointer() - assign to RCU-protected pointer
882 * @p: pointer to assign to
883 * @v: value to assign (publish)
884 *
885 * Assigns the specified value to the specified RCU-protected
886 * pointer, ensuring that any concurrent RCU readers will see
887 * any prior initialization.
888 *
889 * Inserts memory barriers on architectures that require them
890 * (which is most of them), and also prevents the compiler from
891 * reordering the code that initializes the structure after the pointer
892 * assignment. More importantly, this call documents which pointers
893 * will be dereferenced by RCU read-side code.
894 *
895 * In some special cases, you may use RCU_INIT_POINTER() instead
896 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
897 * to the fact that it does not constrain either the CPU or the compiler.
898 * That said, using RCU_INIT_POINTER() when you should have used
899 * rcu_assign_pointer() is a very bad thing that results in
900 * impossible-to-diagnose memory corruption. So please be careful.
901 * See the RCU_INIT_POINTER() comment header for details.
902 */
903#define rcu_assign_pointer(p, v) \
904 __rcu_assign_pointer((p), (v), __rcu)
905
906/**
907 * RCU_INIT_POINTER() - initialize an RCU protected pointer
908 *
909 * Initialize an RCU-protected pointer in special cases where readers
910 * do not need ordering constraints on the CPU or the compiler. These
911 * special cases are:
912 *
913 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
914 * 2. The caller has taken whatever steps are required to prevent
915 * RCU readers from concurrently accessing this pointer -or-
916 * 3. The referenced data structure has already been exposed to
917 * readers either at compile time or via rcu_assign_pointer() -and-
918 * a. You have not made -any- reader-visible changes to
919 * this structure since then -or-
920 * b. It is OK for readers accessing this structure from its
921 * new location to see the old state of the structure. (For
922 * example, the changes were to statistical counters or to
923 * other state where exact synchronization is not required.)
924 *
925 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
926 * result in impossible-to-diagnose memory corruption. As in the structures
927 * will look OK in crash dumps, but any concurrent RCU readers might
928 * see pre-initialized values of the referenced data structure. So
929 * please be very careful how you use RCU_INIT_POINTER()!!!
930 *
931 * If you are creating an RCU-protected linked structure that is accessed
932 * by a single external-to-structure RCU-protected pointer, then you may
933 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
934 * pointers, but you must use rcu_assign_pointer() to initialize the
935 * external-to-structure pointer -after- you have completely initialized
936 * the reader-accessible portions of the linked structure.
937 */
938#define RCU_INIT_POINTER(p, v) \
939 do { \
940 p = (typeof(*v) __force __rcu *)(v); \
941 } while (0)
942
943/**
944 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
945 *
946 * GCC-style initialization for an RCU-protected pointer in a structure field.
947 */
948#define RCU_POINTER_INITIALIZER(p, v) \
949 .p = (typeof(*v) __force __rcu *)(v)
950
951/*
952 * Does the specified offset indicate that the corresponding rcu_head
953 * structure can be handled by kfree_rcu()?
954 */
955#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
956
957/*
958 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
959 */
960#define __kfree_rcu(head, offset) \
961 do { \
962 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
963 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
964 } while (0)
965
966/**
967 * kfree_rcu() - kfree an object after a grace period.
968 * @ptr: pointer to kfree
969 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
970 *
971 * Many rcu callbacks functions just call kfree() on the base structure.
972 * These functions are trivial, but their size adds up, and furthermore
973 * when they are used in a kernel module, that module must invoke the
974 * high-latency rcu_barrier() function at module-unload time.
975 *
976 * The kfree_rcu() function handles this issue. Rather than encoding a
977 * function address in the embedded rcu_head structure, kfree_rcu() instead
978 * encodes the offset of the rcu_head structure within the base structure.
979 * Because the functions are not allowed in the low-order 4096 bytes of
980 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
981 * If the offset is larger than 4095 bytes, a compile-time error will
982 * be generated in __kfree_rcu(). If this error is triggered, you can
983 * either fall back to use of call_rcu() or rearrange the structure to
984 * position the rcu_head structure into the first 4096 bytes.
985 *
986 * Note that the allowable offset might decrease in the future, for example,
987 * to allow something like kmem_cache_free_rcu().
988 *
989 * The BUILD_BUG_ON check must not involve any function calls, hence the
990 * checks are done in macros here.
991 */
992#define kfree_rcu(ptr, rcu_head) \
993 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
994
995#endif /* __LINUX_RCUPDATE_H */