Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <uapi/linux/perf_event.h>
18
19/*
20 * Kernel-internal data types and definitions:
21 */
22
23#ifdef CONFIG_PERF_EVENTS
24# include <linux/cgroup.h>
25# include <asm/perf_event.h>
26# include <asm/local64.h>
27#endif
28
29struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33};
34
35#ifdef CONFIG_HAVE_HW_BREAKPOINT
36#include <asm/hw_breakpoint.h>
37#endif
38
39#include <linux/list.h>
40#include <linux/mutex.h>
41#include <linux/rculist.h>
42#include <linux/rcupdate.h>
43#include <linux/spinlock.h>
44#include <linux/hrtimer.h>
45#include <linux/fs.h>
46#include <linux/pid_namespace.h>
47#include <linux/workqueue.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/irq_work.h>
51#include <linux/static_key.h>
52#include <linux/atomic.h>
53#include <linux/sysfs.h>
54#include <linux/perf_regs.h>
55#include <asm/local.h>
56
57struct perf_callchain_entry {
58 __u64 nr;
59 __u64 ip[PERF_MAX_STACK_DEPTH];
60};
61
62struct perf_raw_record {
63 u32 size;
64 void *data;
65};
66
67/*
68 * single taken branch record layout:
69 *
70 * from: source instruction (may not always be a branch insn)
71 * to: branch target
72 * mispred: branch target was mispredicted
73 * predicted: branch target was predicted
74 *
75 * support for mispred, predicted is optional. In case it
76 * is not supported mispred = predicted = 0.
77 */
78struct perf_branch_entry {
79 __u64 from;
80 __u64 to;
81 __u64 mispred:1, /* target mispredicted */
82 predicted:1,/* target predicted */
83 reserved:62;
84};
85
86/*
87 * branch stack layout:
88 * nr: number of taken branches stored in entries[]
89 *
90 * Note that nr can vary from sample to sample
91 * branches (to, from) are stored from most recent
92 * to least recent, i.e., entries[0] contains the most
93 * recent branch.
94 */
95struct perf_branch_stack {
96 __u64 nr;
97 struct perf_branch_entry entries[0];
98};
99
100struct perf_regs_user {
101 __u64 abi;
102 struct pt_regs *regs;
103};
104
105struct task_struct;
106
107/*
108 * extra PMU register associated with an event
109 */
110struct hw_perf_event_extra {
111 u64 config; /* register value */
112 unsigned int reg; /* register address or index */
113 int alloc; /* extra register already allocated */
114 int idx; /* index in shared_regs->regs[] */
115};
116
117/**
118 * struct hw_perf_event - performance event hardware details:
119 */
120struct hw_perf_event {
121#ifdef CONFIG_PERF_EVENTS
122 union {
123 struct { /* hardware */
124 u64 config;
125 u64 last_tag;
126 unsigned long config_base;
127 unsigned long event_base;
128 int event_base_rdpmc;
129 int idx;
130 int last_cpu;
131
132 struct hw_perf_event_extra extra_reg;
133 struct hw_perf_event_extra branch_reg;
134 };
135 struct { /* software */
136 struct hrtimer hrtimer;
137 };
138#ifdef CONFIG_HAVE_HW_BREAKPOINT
139 struct { /* breakpoint */
140 struct arch_hw_breakpoint info;
141 struct list_head bp_list;
142 /*
143 * Crufty hack to avoid the chicken and egg
144 * problem hw_breakpoint has with context
145 * creation and event initalization.
146 */
147 struct task_struct *bp_target;
148 };
149#endif
150 };
151 int state;
152 local64_t prev_count;
153 u64 sample_period;
154 u64 last_period;
155 local64_t period_left;
156 u64 interrupts_seq;
157 u64 interrupts;
158
159 u64 freq_time_stamp;
160 u64 freq_count_stamp;
161#endif
162};
163
164/*
165 * hw_perf_event::state flags
166 */
167#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
168#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
169#define PERF_HES_ARCH 0x04
170
171struct perf_event;
172
173/*
174 * Common implementation detail of pmu::{start,commit,cancel}_txn
175 */
176#define PERF_EVENT_TXN 0x1
177
178/**
179 * struct pmu - generic performance monitoring unit
180 */
181struct pmu {
182 struct list_head entry;
183
184 struct device *dev;
185 const struct attribute_group **attr_groups;
186 char *name;
187 int type;
188
189 int * __percpu pmu_disable_count;
190 struct perf_cpu_context * __percpu pmu_cpu_context;
191 int task_ctx_nr;
192
193 /*
194 * Fully disable/enable this PMU, can be used to protect from the PMI
195 * as well as for lazy/batch writing of the MSRs.
196 */
197 void (*pmu_enable) (struct pmu *pmu); /* optional */
198 void (*pmu_disable) (struct pmu *pmu); /* optional */
199
200 /*
201 * Try and initialize the event for this PMU.
202 * Should return -ENOENT when the @event doesn't match this PMU.
203 */
204 int (*event_init) (struct perf_event *event);
205
206#define PERF_EF_START 0x01 /* start the counter when adding */
207#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
208#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
209
210 /*
211 * Adds/Removes a counter to/from the PMU, can be done inside
212 * a transaction, see the ->*_txn() methods.
213 */
214 int (*add) (struct perf_event *event, int flags);
215 void (*del) (struct perf_event *event, int flags);
216
217 /*
218 * Starts/Stops a counter present on the PMU. The PMI handler
219 * should stop the counter when perf_event_overflow() returns
220 * !0. ->start() will be used to continue.
221 */
222 void (*start) (struct perf_event *event, int flags);
223 void (*stop) (struct perf_event *event, int flags);
224
225 /*
226 * Updates the counter value of the event.
227 */
228 void (*read) (struct perf_event *event);
229
230 /*
231 * Group events scheduling is treated as a transaction, add
232 * group events as a whole and perform one schedulability test.
233 * If the test fails, roll back the whole group
234 *
235 * Start the transaction, after this ->add() doesn't need to
236 * do schedulability tests.
237 */
238 void (*start_txn) (struct pmu *pmu); /* optional */
239 /*
240 * If ->start_txn() disabled the ->add() schedulability test
241 * then ->commit_txn() is required to perform one. On success
242 * the transaction is closed. On error the transaction is kept
243 * open until ->cancel_txn() is called.
244 */
245 int (*commit_txn) (struct pmu *pmu); /* optional */
246 /*
247 * Will cancel the transaction, assumes ->del() is called
248 * for each successful ->add() during the transaction.
249 */
250 void (*cancel_txn) (struct pmu *pmu); /* optional */
251
252 /*
253 * Will return the value for perf_event_mmap_page::index for this event,
254 * if no implementation is provided it will default to: event->hw.idx + 1.
255 */
256 int (*event_idx) (struct perf_event *event); /*optional */
257
258 /*
259 * flush branch stack on context-switches (needed in cpu-wide mode)
260 */
261 void (*flush_branch_stack) (void);
262};
263
264/**
265 * enum perf_event_active_state - the states of a event
266 */
267enum perf_event_active_state {
268 PERF_EVENT_STATE_ERROR = -2,
269 PERF_EVENT_STATE_OFF = -1,
270 PERF_EVENT_STATE_INACTIVE = 0,
271 PERF_EVENT_STATE_ACTIVE = 1,
272};
273
274struct file;
275struct perf_sample_data;
276
277typedef void (*perf_overflow_handler_t)(struct perf_event *,
278 struct perf_sample_data *,
279 struct pt_regs *regs);
280
281enum perf_group_flag {
282 PERF_GROUP_SOFTWARE = 0x1,
283};
284
285#define SWEVENT_HLIST_BITS 8
286#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
287
288struct swevent_hlist {
289 struct hlist_head heads[SWEVENT_HLIST_SIZE];
290 struct rcu_head rcu_head;
291};
292
293#define PERF_ATTACH_CONTEXT 0x01
294#define PERF_ATTACH_GROUP 0x02
295#define PERF_ATTACH_TASK 0x04
296
297#ifdef CONFIG_CGROUP_PERF
298/*
299 * perf_cgroup_info keeps track of time_enabled for a cgroup.
300 * This is a per-cpu dynamically allocated data structure.
301 */
302struct perf_cgroup_info {
303 u64 time;
304 u64 timestamp;
305};
306
307struct perf_cgroup {
308 struct cgroup_subsys_state css;
309 struct perf_cgroup_info *info; /* timing info, one per cpu */
310};
311#endif
312
313struct ring_buffer;
314
315/**
316 * struct perf_event - performance event kernel representation:
317 */
318struct perf_event {
319#ifdef CONFIG_PERF_EVENTS
320 struct list_head group_entry;
321 struct list_head event_entry;
322 struct list_head sibling_list;
323 struct hlist_node hlist_entry;
324 int nr_siblings;
325 int group_flags;
326 struct perf_event *group_leader;
327 struct pmu *pmu;
328
329 enum perf_event_active_state state;
330 unsigned int attach_state;
331 local64_t count;
332 atomic64_t child_count;
333
334 /*
335 * These are the total time in nanoseconds that the event
336 * has been enabled (i.e. eligible to run, and the task has
337 * been scheduled in, if this is a per-task event)
338 * and running (scheduled onto the CPU), respectively.
339 *
340 * They are computed from tstamp_enabled, tstamp_running and
341 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
342 */
343 u64 total_time_enabled;
344 u64 total_time_running;
345
346 /*
347 * These are timestamps used for computing total_time_enabled
348 * and total_time_running when the event is in INACTIVE or
349 * ACTIVE state, measured in nanoseconds from an arbitrary point
350 * in time.
351 * tstamp_enabled: the notional time when the event was enabled
352 * tstamp_running: the notional time when the event was scheduled on
353 * tstamp_stopped: in INACTIVE state, the notional time when the
354 * event was scheduled off.
355 */
356 u64 tstamp_enabled;
357 u64 tstamp_running;
358 u64 tstamp_stopped;
359
360 /*
361 * timestamp shadows the actual context timing but it can
362 * be safely used in NMI interrupt context. It reflects the
363 * context time as it was when the event was last scheduled in.
364 *
365 * ctx_time already accounts for ctx->timestamp. Therefore to
366 * compute ctx_time for a sample, simply add perf_clock().
367 */
368 u64 shadow_ctx_time;
369
370 struct perf_event_attr attr;
371 u16 header_size;
372 u16 id_header_size;
373 u16 read_size;
374 struct hw_perf_event hw;
375
376 struct perf_event_context *ctx;
377 atomic_long_t refcount;
378
379 /*
380 * These accumulate total time (in nanoseconds) that children
381 * events have been enabled and running, respectively.
382 */
383 atomic64_t child_total_time_enabled;
384 atomic64_t child_total_time_running;
385
386 /*
387 * Protect attach/detach and child_list:
388 */
389 struct mutex child_mutex;
390 struct list_head child_list;
391 struct perf_event *parent;
392
393 int oncpu;
394 int cpu;
395
396 struct list_head owner_entry;
397 struct task_struct *owner;
398
399 /* mmap bits */
400 struct mutex mmap_mutex;
401 atomic_t mmap_count;
402 int mmap_locked;
403 struct user_struct *mmap_user;
404 struct ring_buffer *rb;
405 struct list_head rb_entry;
406
407 /* poll related */
408 wait_queue_head_t waitq;
409 struct fasync_struct *fasync;
410
411 /* delayed work for NMIs and such */
412 int pending_wakeup;
413 int pending_kill;
414 int pending_disable;
415 struct irq_work pending;
416
417 atomic_t event_limit;
418
419 void (*destroy)(struct perf_event *);
420 struct rcu_head rcu_head;
421
422 struct pid_namespace *ns;
423 u64 id;
424
425 perf_overflow_handler_t overflow_handler;
426 void *overflow_handler_context;
427
428#ifdef CONFIG_EVENT_TRACING
429 struct ftrace_event_call *tp_event;
430 struct event_filter *filter;
431#ifdef CONFIG_FUNCTION_TRACER
432 struct ftrace_ops ftrace_ops;
433#endif
434#endif
435
436#ifdef CONFIG_CGROUP_PERF
437 struct perf_cgroup *cgrp; /* cgroup event is attach to */
438 int cgrp_defer_enabled;
439#endif
440
441#endif /* CONFIG_PERF_EVENTS */
442};
443
444enum perf_event_context_type {
445 task_context,
446 cpu_context,
447};
448
449/**
450 * struct perf_event_context - event context structure
451 *
452 * Used as a container for task events and CPU events as well:
453 */
454struct perf_event_context {
455 struct pmu *pmu;
456 enum perf_event_context_type type;
457 /*
458 * Protect the states of the events in the list,
459 * nr_active, and the list:
460 */
461 raw_spinlock_t lock;
462 /*
463 * Protect the list of events. Locking either mutex or lock
464 * is sufficient to ensure the list doesn't change; to change
465 * the list you need to lock both the mutex and the spinlock.
466 */
467 struct mutex mutex;
468
469 struct list_head pinned_groups;
470 struct list_head flexible_groups;
471 struct list_head event_list;
472 int nr_events;
473 int nr_active;
474 int is_active;
475 int nr_stat;
476 int nr_freq;
477 int rotate_disable;
478 atomic_t refcount;
479 struct task_struct *task;
480
481 /*
482 * Context clock, runs when context enabled.
483 */
484 u64 time;
485 u64 timestamp;
486
487 /*
488 * These fields let us detect when two contexts have both
489 * been cloned (inherited) from a common ancestor.
490 */
491 struct perf_event_context *parent_ctx;
492 u64 parent_gen;
493 u64 generation;
494 int pin_count;
495 int nr_cgroups; /* cgroup evts */
496 int nr_branch_stack; /* branch_stack evt */
497 struct rcu_head rcu_head;
498};
499
500/*
501 * Number of contexts where an event can trigger:
502 * task, softirq, hardirq, nmi.
503 */
504#define PERF_NR_CONTEXTS 4
505
506/**
507 * struct perf_event_cpu_context - per cpu event context structure
508 */
509struct perf_cpu_context {
510 struct perf_event_context ctx;
511 struct perf_event_context *task_ctx;
512 int active_oncpu;
513 int exclusive;
514 struct list_head rotation_list;
515 int jiffies_interval;
516 struct pmu *unique_pmu;
517 struct perf_cgroup *cgrp;
518};
519
520struct perf_output_handle {
521 struct perf_event *event;
522 struct ring_buffer *rb;
523 unsigned long wakeup;
524 unsigned long size;
525 void *addr;
526 int page;
527};
528
529#ifdef CONFIG_PERF_EVENTS
530
531extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
532extern void perf_pmu_unregister(struct pmu *pmu);
533
534extern int perf_num_counters(void);
535extern const char *perf_pmu_name(void);
536extern void __perf_event_task_sched_in(struct task_struct *prev,
537 struct task_struct *task);
538extern void __perf_event_task_sched_out(struct task_struct *prev,
539 struct task_struct *next);
540extern int perf_event_init_task(struct task_struct *child);
541extern void perf_event_exit_task(struct task_struct *child);
542extern void perf_event_free_task(struct task_struct *task);
543extern void perf_event_delayed_put(struct task_struct *task);
544extern void perf_event_print_debug(void);
545extern void perf_pmu_disable(struct pmu *pmu);
546extern void perf_pmu_enable(struct pmu *pmu);
547extern int perf_event_task_disable(void);
548extern int perf_event_task_enable(void);
549extern int perf_event_refresh(struct perf_event *event, int refresh);
550extern void perf_event_update_userpage(struct perf_event *event);
551extern int perf_event_release_kernel(struct perf_event *event);
552extern struct perf_event *
553perf_event_create_kernel_counter(struct perf_event_attr *attr,
554 int cpu,
555 struct task_struct *task,
556 perf_overflow_handler_t callback,
557 void *context);
558extern void perf_pmu_migrate_context(struct pmu *pmu,
559 int src_cpu, int dst_cpu);
560extern u64 perf_event_read_value(struct perf_event *event,
561 u64 *enabled, u64 *running);
562
563
564struct perf_sample_data {
565 u64 type;
566
567 u64 ip;
568 struct {
569 u32 pid;
570 u32 tid;
571 } tid_entry;
572 u64 time;
573 u64 addr;
574 u64 id;
575 u64 stream_id;
576 struct {
577 u32 cpu;
578 u32 reserved;
579 } cpu_entry;
580 u64 period;
581 struct perf_callchain_entry *callchain;
582 struct perf_raw_record *raw;
583 struct perf_branch_stack *br_stack;
584 struct perf_regs_user regs_user;
585 u64 stack_user_size;
586};
587
588static inline void perf_sample_data_init(struct perf_sample_data *data,
589 u64 addr, u64 period)
590{
591 /* remaining struct members initialized in perf_prepare_sample() */
592 data->addr = addr;
593 data->raw = NULL;
594 data->br_stack = NULL;
595 data->period = period;
596 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
597 data->regs_user.regs = NULL;
598 data->stack_user_size = 0;
599}
600
601extern void perf_output_sample(struct perf_output_handle *handle,
602 struct perf_event_header *header,
603 struct perf_sample_data *data,
604 struct perf_event *event);
605extern void perf_prepare_sample(struct perf_event_header *header,
606 struct perf_sample_data *data,
607 struct perf_event *event,
608 struct pt_regs *regs);
609
610extern int perf_event_overflow(struct perf_event *event,
611 struct perf_sample_data *data,
612 struct pt_regs *regs);
613
614static inline bool is_sampling_event(struct perf_event *event)
615{
616 return event->attr.sample_period != 0;
617}
618
619/*
620 * Return 1 for a software event, 0 for a hardware event
621 */
622static inline int is_software_event(struct perf_event *event)
623{
624 return event->pmu->task_ctx_nr == perf_sw_context;
625}
626
627extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
628
629extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
630
631#ifndef perf_arch_fetch_caller_regs
632static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
633#endif
634
635/*
636 * Take a snapshot of the regs. Skip ip and frame pointer to
637 * the nth caller. We only need a few of the regs:
638 * - ip for PERF_SAMPLE_IP
639 * - cs for user_mode() tests
640 * - bp for callchains
641 * - eflags, for future purposes, just in case
642 */
643static inline void perf_fetch_caller_regs(struct pt_regs *regs)
644{
645 memset(regs, 0, sizeof(*regs));
646
647 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
648}
649
650static __always_inline void
651perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
652{
653 struct pt_regs hot_regs;
654
655 if (static_key_false(&perf_swevent_enabled[event_id])) {
656 if (!regs) {
657 perf_fetch_caller_regs(&hot_regs);
658 regs = &hot_regs;
659 }
660 __perf_sw_event(event_id, nr, regs, addr);
661 }
662}
663
664extern struct static_key_deferred perf_sched_events;
665
666static inline void perf_event_task_sched_in(struct task_struct *prev,
667 struct task_struct *task)
668{
669 if (static_key_false(&perf_sched_events.key))
670 __perf_event_task_sched_in(prev, task);
671}
672
673static inline void perf_event_task_sched_out(struct task_struct *prev,
674 struct task_struct *next)
675{
676 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
677
678 if (static_key_false(&perf_sched_events.key))
679 __perf_event_task_sched_out(prev, next);
680}
681
682extern void perf_event_mmap(struct vm_area_struct *vma);
683extern struct perf_guest_info_callbacks *perf_guest_cbs;
684extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
685extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
686
687extern void perf_event_comm(struct task_struct *tsk);
688extern void perf_event_fork(struct task_struct *tsk);
689
690/* Callchains */
691DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
692
693extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
694extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
695
696static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
697{
698 if (entry->nr < PERF_MAX_STACK_DEPTH)
699 entry->ip[entry->nr++] = ip;
700}
701
702extern int sysctl_perf_event_paranoid;
703extern int sysctl_perf_event_mlock;
704extern int sysctl_perf_event_sample_rate;
705
706extern int perf_proc_update_handler(struct ctl_table *table, int write,
707 void __user *buffer, size_t *lenp,
708 loff_t *ppos);
709
710static inline bool perf_paranoid_tracepoint_raw(void)
711{
712 return sysctl_perf_event_paranoid > -1;
713}
714
715static inline bool perf_paranoid_cpu(void)
716{
717 return sysctl_perf_event_paranoid > 0;
718}
719
720static inline bool perf_paranoid_kernel(void)
721{
722 return sysctl_perf_event_paranoid > 1;
723}
724
725extern void perf_event_init(void);
726extern void perf_tp_event(u64 addr, u64 count, void *record,
727 int entry_size, struct pt_regs *regs,
728 struct hlist_head *head, int rctx,
729 struct task_struct *task);
730extern void perf_bp_event(struct perf_event *event, void *data);
731
732#ifndef perf_misc_flags
733# define perf_misc_flags(regs) \
734 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
735# define perf_instruction_pointer(regs) instruction_pointer(regs)
736#endif
737
738static inline bool has_branch_stack(struct perf_event *event)
739{
740 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
741}
742
743extern int perf_output_begin(struct perf_output_handle *handle,
744 struct perf_event *event, unsigned int size);
745extern void perf_output_end(struct perf_output_handle *handle);
746extern unsigned int perf_output_copy(struct perf_output_handle *handle,
747 const void *buf, unsigned int len);
748extern unsigned int perf_output_skip(struct perf_output_handle *handle,
749 unsigned int len);
750extern int perf_swevent_get_recursion_context(void);
751extern void perf_swevent_put_recursion_context(int rctx);
752extern void perf_event_enable(struct perf_event *event);
753extern void perf_event_disable(struct perf_event *event);
754extern int __perf_event_disable(void *info);
755extern void perf_event_task_tick(void);
756#else
757static inline void
758perf_event_task_sched_in(struct task_struct *prev,
759 struct task_struct *task) { }
760static inline void
761perf_event_task_sched_out(struct task_struct *prev,
762 struct task_struct *next) { }
763static inline int perf_event_init_task(struct task_struct *child) { return 0; }
764static inline void perf_event_exit_task(struct task_struct *child) { }
765static inline void perf_event_free_task(struct task_struct *task) { }
766static inline void perf_event_delayed_put(struct task_struct *task) { }
767static inline void perf_event_print_debug(void) { }
768static inline int perf_event_task_disable(void) { return -EINVAL; }
769static inline int perf_event_task_enable(void) { return -EINVAL; }
770static inline int perf_event_refresh(struct perf_event *event, int refresh)
771{
772 return -EINVAL;
773}
774
775static inline void
776perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
777static inline void
778perf_bp_event(struct perf_event *event, void *data) { }
779
780static inline int perf_register_guest_info_callbacks
781(struct perf_guest_info_callbacks *callbacks) { return 0; }
782static inline int perf_unregister_guest_info_callbacks
783(struct perf_guest_info_callbacks *callbacks) { return 0; }
784
785static inline void perf_event_mmap(struct vm_area_struct *vma) { }
786static inline void perf_event_comm(struct task_struct *tsk) { }
787static inline void perf_event_fork(struct task_struct *tsk) { }
788static inline void perf_event_init(void) { }
789static inline int perf_swevent_get_recursion_context(void) { return -1; }
790static inline void perf_swevent_put_recursion_context(int rctx) { }
791static inline void perf_event_enable(struct perf_event *event) { }
792static inline void perf_event_disable(struct perf_event *event) { }
793static inline int __perf_event_disable(void *info) { return -1; }
794static inline void perf_event_task_tick(void) { }
795#endif
796
797#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
798
799/*
800 * This has to have a higher priority than migration_notifier in sched.c.
801 */
802#define perf_cpu_notifier(fn) \
803do { \
804 static struct notifier_block fn##_nb __cpuinitdata = \
805 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
806 unsigned long cpu = smp_processor_id(); \
807 unsigned long flags; \
808 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
809 (void *)(unsigned long)cpu); \
810 local_irq_save(flags); \
811 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
812 (void *)(unsigned long)cpu); \
813 local_irq_restore(flags); \
814 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
815 (void *)(unsigned long)cpu); \
816 register_cpu_notifier(&fn##_nb); \
817} while (0)
818
819
820#define PMU_FORMAT_ATTR(_name, _format) \
821static ssize_t \
822_name##_show(struct device *dev, \
823 struct device_attribute *attr, \
824 char *page) \
825{ \
826 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
827 return sprintf(page, _format "\n"); \
828} \
829 \
830static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
831
832#endif /* _LINUX_PERF_EVENT_H */