at v3.8 1564 lines 45 kB view raw
1/* 2 * Copyright (C) 2005-2006 by Texas Instruments 3 * 4 * This file implements a DMA interface using TI's CPPI DMA. 5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB. 6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci. 7 */ 8 9#include <linux/module.h> 10#include <linux/platform_device.h> 11#include <linux/slab.h> 12#include <linux/usb.h> 13 14#include "musb_core.h" 15#include "musb_debug.h" 16#include "cppi_dma.h" 17 18 19/* CPPI DMA status 7-mar-2006: 20 * 21 * - See musb_{host,gadget}.c for more info 22 * 23 * - Correct RX DMA generally forces the engine into irq-per-packet mode, 24 * which can easily saturate the CPU under non-mass-storage loads. 25 * 26 * NOTES 24-aug-2006 (2.6.18-rc4): 27 * 28 * - peripheral RXDMA wedged in a test with packets of length 512/512/1. 29 * evidently after the 1 byte packet was received and acked, the queue 30 * of BDs got garbaged so it wouldn't empty the fifo. (rxcsr 0x2003, 31 * and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401 32 * 004001ff 00000001 .. 8feff860) Host was just getting NAKed on tx 33 * of its next (512 byte) packet. IRQ issues? 34 * 35 * REVISIT: the "transfer DMA" glue between CPPI and USB fifos will 36 * evidently also directly update the RX and TX CSRs ... so audit all 37 * host and peripheral side DMA code to avoid CSR access after DMA has 38 * been started. 39 */ 40 41/* REVISIT now we can avoid preallocating these descriptors; or 42 * more simply, switch to a global freelist not per-channel ones. 43 * Note: at full speed, 64 descriptors == 4K bulk data. 44 */ 45#define NUM_TXCHAN_BD 64 46#define NUM_RXCHAN_BD 64 47 48static inline void cpu_drain_writebuffer(void) 49{ 50 wmb(); 51#ifdef CONFIG_CPU_ARM926T 52 /* REVISIT this "should not be needed", 53 * but lack of it sure seemed to hurt ... 54 */ 55 asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n"); 56#endif 57} 58 59static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c) 60{ 61 struct cppi_descriptor *bd = c->freelist; 62 63 if (bd) 64 c->freelist = bd->next; 65 return bd; 66} 67 68static inline void 69cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd) 70{ 71 if (!bd) 72 return; 73 bd->next = c->freelist; 74 c->freelist = bd; 75} 76 77/* 78 * Start DMA controller 79 * 80 * Initialize the DMA controller as necessary. 81 */ 82 83/* zero out entire rx state RAM entry for the channel */ 84static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx) 85{ 86 musb_writel(&rx->rx_skipbytes, 0, 0); 87 musb_writel(&rx->rx_head, 0, 0); 88 musb_writel(&rx->rx_sop, 0, 0); 89 musb_writel(&rx->rx_current, 0, 0); 90 musb_writel(&rx->rx_buf_current, 0, 0); 91 musb_writel(&rx->rx_len_len, 0, 0); 92 musb_writel(&rx->rx_cnt_cnt, 0, 0); 93} 94 95/* zero out entire tx state RAM entry for the channel */ 96static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr) 97{ 98 musb_writel(&tx->tx_head, 0, 0); 99 musb_writel(&tx->tx_buf, 0, 0); 100 musb_writel(&tx->tx_current, 0, 0); 101 musb_writel(&tx->tx_buf_current, 0, 0); 102 musb_writel(&tx->tx_info, 0, 0); 103 musb_writel(&tx->tx_rem_len, 0, 0); 104 /* musb_writel(&tx->tx_dummy, 0, 0); */ 105 musb_writel(&tx->tx_complete, 0, ptr); 106} 107 108static void cppi_pool_init(struct cppi *cppi, struct cppi_channel *c) 109{ 110 int j; 111 112 /* initialize channel fields */ 113 c->head = NULL; 114 c->tail = NULL; 115 c->last_processed = NULL; 116 c->channel.status = MUSB_DMA_STATUS_UNKNOWN; 117 c->controller = cppi; 118 c->is_rndis = 0; 119 c->freelist = NULL; 120 121 /* build the BD Free list for the channel */ 122 for (j = 0; j < NUM_TXCHAN_BD + 1; j++) { 123 struct cppi_descriptor *bd; 124 dma_addr_t dma; 125 126 bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma); 127 bd->dma = dma; 128 cppi_bd_free(c, bd); 129 } 130} 131 132static int cppi_channel_abort(struct dma_channel *); 133 134static void cppi_pool_free(struct cppi_channel *c) 135{ 136 struct cppi *cppi = c->controller; 137 struct cppi_descriptor *bd; 138 139 (void) cppi_channel_abort(&c->channel); 140 c->channel.status = MUSB_DMA_STATUS_UNKNOWN; 141 c->controller = NULL; 142 143 /* free all its bds */ 144 bd = c->last_processed; 145 do { 146 if (bd) 147 dma_pool_free(cppi->pool, bd, bd->dma); 148 bd = cppi_bd_alloc(c); 149 } while (bd); 150 c->last_processed = NULL; 151} 152 153static int cppi_controller_start(struct dma_controller *c) 154{ 155 struct cppi *controller; 156 void __iomem *tibase; 157 int i; 158 159 controller = container_of(c, struct cppi, controller); 160 161 /* do whatever is necessary to start controller */ 162 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { 163 controller->tx[i].transmit = true; 164 controller->tx[i].index = i; 165 } 166 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { 167 controller->rx[i].transmit = false; 168 controller->rx[i].index = i; 169 } 170 171 /* setup BD list on a per channel basis */ 172 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) 173 cppi_pool_init(controller, controller->tx + i); 174 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) 175 cppi_pool_init(controller, controller->rx + i); 176 177 tibase = controller->tibase; 178 INIT_LIST_HEAD(&controller->tx_complete); 179 180 /* initialise tx/rx channel head pointers to zero */ 181 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { 182 struct cppi_channel *tx_ch = controller->tx + i; 183 struct cppi_tx_stateram __iomem *tx; 184 185 INIT_LIST_HEAD(&tx_ch->tx_complete); 186 187 tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i); 188 tx_ch->state_ram = tx; 189 cppi_reset_tx(tx, 0); 190 } 191 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) { 192 struct cppi_channel *rx_ch = controller->rx + i; 193 struct cppi_rx_stateram __iomem *rx; 194 195 INIT_LIST_HEAD(&rx_ch->tx_complete); 196 197 rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i); 198 rx_ch->state_ram = rx; 199 cppi_reset_rx(rx); 200 } 201 202 /* enable individual cppi channels */ 203 musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG, 204 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 205 musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG, 206 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 207 208 /* enable tx/rx CPPI control */ 209 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); 210 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE); 211 212 /* disable RNDIS mode, also host rx RNDIS autorequest */ 213 musb_writel(tibase, DAVINCI_RNDIS_REG, 0); 214 musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0); 215 216 return 0; 217} 218 219/* 220 * Stop DMA controller 221 * 222 * De-Init the DMA controller as necessary. 223 */ 224 225static int cppi_controller_stop(struct dma_controller *c) 226{ 227 struct cppi *controller; 228 void __iomem *tibase; 229 int i; 230 struct musb *musb; 231 232 controller = container_of(c, struct cppi, controller); 233 musb = controller->musb; 234 235 tibase = controller->tibase; 236 /* DISABLE INDIVIDUAL CHANNEL Interrupts */ 237 musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG, 238 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 239 musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG, 240 DAVINCI_DMA_ALL_CHANNELS_ENABLE); 241 242 dev_dbg(musb->controller, "Tearing down RX and TX Channels\n"); 243 for (i = 0; i < ARRAY_SIZE(controller->tx); i++) { 244 /* FIXME restructure of txdma to use bds like rxdma */ 245 controller->tx[i].last_processed = NULL; 246 cppi_pool_free(controller->tx + i); 247 } 248 for (i = 0; i < ARRAY_SIZE(controller->rx); i++) 249 cppi_pool_free(controller->rx + i); 250 251 /* in Tx Case proper teardown is supported. We resort to disabling 252 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is 253 * complete TX CPPI cannot be disabled. 254 */ 255 /*disable tx/rx cppi */ 256 musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); 257 musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE); 258 259 return 0; 260} 261 262/* While dma channel is allocated, we only want the core irqs active 263 * for fault reports, otherwise we'd get irqs that we don't care about. 264 * Except for TX irqs, where dma done != fifo empty and reusable ... 265 * 266 * NOTE: docs don't say either way, but irq masking **enables** irqs. 267 * 268 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma... 269 */ 270static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum) 271{ 272 musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8)); 273} 274 275static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum) 276{ 277 musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8)); 278} 279 280 281/* 282 * Allocate a CPPI Channel for DMA. With CPPI, channels are bound to 283 * each transfer direction of a non-control endpoint, so allocating 284 * (and deallocating) is mostly a way to notice bad housekeeping on 285 * the software side. We assume the irqs are always active. 286 */ 287static struct dma_channel * 288cppi_channel_allocate(struct dma_controller *c, 289 struct musb_hw_ep *ep, u8 transmit) 290{ 291 struct cppi *controller; 292 u8 index; 293 struct cppi_channel *cppi_ch; 294 void __iomem *tibase; 295 struct musb *musb; 296 297 controller = container_of(c, struct cppi, controller); 298 tibase = controller->tibase; 299 musb = controller->musb; 300 301 /* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */ 302 index = ep->epnum - 1; 303 304 /* return the corresponding CPPI Channel Handle, and 305 * probably disable the non-CPPI irq until we need it. 306 */ 307 if (transmit) { 308 if (index >= ARRAY_SIZE(controller->tx)) { 309 dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'T', index); 310 return NULL; 311 } 312 cppi_ch = controller->tx + index; 313 } else { 314 if (index >= ARRAY_SIZE(controller->rx)) { 315 dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'R', index); 316 return NULL; 317 } 318 cppi_ch = controller->rx + index; 319 core_rxirq_disable(tibase, ep->epnum); 320 } 321 322 /* REVISIT make this an error later once the same driver code works 323 * with the other DMA engine too 324 */ 325 if (cppi_ch->hw_ep) 326 dev_dbg(musb->controller, "re-allocating DMA%d %cX channel %p\n", 327 index, transmit ? 'T' : 'R', cppi_ch); 328 cppi_ch->hw_ep = ep; 329 cppi_ch->channel.status = MUSB_DMA_STATUS_FREE; 330 cppi_ch->channel.max_len = 0x7fffffff; 331 332 dev_dbg(musb->controller, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R'); 333 return &cppi_ch->channel; 334} 335 336/* Release a CPPI Channel. */ 337static void cppi_channel_release(struct dma_channel *channel) 338{ 339 struct cppi_channel *c; 340 void __iomem *tibase; 341 342 /* REVISIT: for paranoia, check state and abort if needed... */ 343 344 c = container_of(channel, struct cppi_channel, channel); 345 tibase = c->controller->tibase; 346 if (!c->hw_ep) 347 dev_dbg(c->controller->musb->controller, 348 "releasing idle DMA channel %p\n", c); 349 else if (!c->transmit) 350 core_rxirq_enable(tibase, c->index + 1); 351 352 /* for now, leave its cppi IRQ enabled (we won't trigger it) */ 353 c->hw_ep = NULL; 354 channel->status = MUSB_DMA_STATUS_UNKNOWN; 355} 356 357/* Context: controller irqlocked */ 358static void 359cppi_dump_rx(int level, struct cppi_channel *c, const char *tag) 360{ 361 void __iomem *base = c->controller->mregs; 362 struct cppi_rx_stateram __iomem *rx = c->state_ram; 363 364 musb_ep_select(base, c->index + 1); 365 366 dev_dbg(c->controller->musb->controller, 367 "RX DMA%d%s: %d left, csr %04x, " 368 "%08x H%08x S%08x C%08x, " 369 "B%08x L%08x %08x .. %08x" 370 "\n", 371 c->index, tag, 372 musb_readl(c->controller->tibase, 373 DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index), 374 musb_readw(c->hw_ep->regs, MUSB_RXCSR), 375 376 musb_readl(&rx->rx_skipbytes, 0), 377 musb_readl(&rx->rx_head, 0), 378 musb_readl(&rx->rx_sop, 0), 379 musb_readl(&rx->rx_current, 0), 380 381 musb_readl(&rx->rx_buf_current, 0), 382 musb_readl(&rx->rx_len_len, 0), 383 musb_readl(&rx->rx_cnt_cnt, 0), 384 musb_readl(&rx->rx_complete, 0) 385 ); 386} 387 388/* Context: controller irqlocked */ 389static void 390cppi_dump_tx(int level, struct cppi_channel *c, const char *tag) 391{ 392 void __iomem *base = c->controller->mregs; 393 struct cppi_tx_stateram __iomem *tx = c->state_ram; 394 395 musb_ep_select(base, c->index + 1); 396 397 dev_dbg(c->controller->musb->controller, 398 "TX DMA%d%s: csr %04x, " 399 "H%08x S%08x C%08x %08x, " 400 "F%08x L%08x .. %08x" 401 "\n", 402 c->index, tag, 403 musb_readw(c->hw_ep->regs, MUSB_TXCSR), 404 405 musb_readl(&tx->tx_head, 0), 406 musb_readl(&tx->tx_buf, 0), 407 musb_readl(&tx->tx_current, 0), 408 musb_readl(&tx->tx_buf_current, 0), 409 410 musb_readl(&tx->tx_info, 0), 411 musb_readl(&tx->tx_rem_len, 0), 412 /* dummy/unused word 6 */ 413 musb_readl(&tx->tx_complete, 0) 414 ); 415} 416 417/* Context: controller irqlocked */ 418static inline void 419cppi_rndis_update(struct cppi_channel *c, int is_rx, 420 void __iomem *tibase, int is_rndis) 421{ 422 /* we may need to change the rndis flag for this cppi channel */ 423 if (c->is_rndis != is_rndis) { 424 u32 value = musb_readl(tibase, DAVINCI_RNDIS_REG); 425 u32 temp = 1 << (c->index); 426 427 if (is_rx) 428 temp <<= 16; 429 if (is_rndis) 430 value |= temp; 431 else 432 value &= ~temp; 433 musb_writel(tibase, DAVINCI_RNDIS_REG, value); 434 c->is_rndis = is_rndis; 435 } 436} 437 438#ifdef CONFIG_USB_MUSB_DEBUG 439static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd) 440{ 441 pr_debug("RXBD/%s %08x: " 442 "nxt %08x buf %08x off.blen %08x opt.plen %08x\n", 443 tag, bd->dma, 444 bd->hw_next, bd->hw_bufp, bd->hw_off_len, 445 bd->hw_options); 446} 447#endif 448 449static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx) 450{ 451#ifdef CONFIG_USB_MUSB_DEBUG 452 struct cppi_descriptor *bd; 453 454 if (!_dbg_level(level)) 455 return; 456 cppi_dump_rx(level, rx, tag); 457 if (rx->last_processed) 458 cppi_dump_rxbd("last", rx->last_processed); 459 for (bd = rx->head; bd; bd = bd->next) 460 cppi_dump_rxbd("active", bd); 461#endif 462} 463 464 465/* NOTE: DaVinci autoreq is ignored except for host side "RNDIS" mode RX; 466 * so we won't ever use it (see "CPPI RX Woes" below). 467 */ 468static inline int cppi_autoreq_update(struct cppi_channel *rx, 469 void __iomem *tibase, int onepacket, unsigned n_bds) 470{ 471 u32 val; 472 473#ifdef RNDIS_RX_IS_USABLE 474 u32 tmp; 475 /* assert(is_host_active(musb)) */ 476 477 /* start from "AutoReq never" */ 478 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); 479 val = tmp & ~((0x3) << (rx->index * 2)); 480 481 /* HCD arranged reqpkt for packet #1. we arrange int 482 * for all but the last one, maybe in two segments. 483 */ 484 if (!onepacket) { 485#if 0 486 /* use two segments, autoreq "all" then the last "never" */ 487 val |= ((0x3) << (rx->index * 2)); 488 n_bds--; 489#else 490 /* one segment, autoreq "all-but-last" */ 491 val |= ((0x1) << (rx->index * 2)); 492#endif 493 } 494 495 if (val != tmp) { 496 int n = 100; 497 498 /* make sure that autoreq is updated before continuing */ 499 musb_writel(tibase, DAVINCI_AUTOREQ_REG, val); 500 do { 501 tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG); 502 if (tmp == val) 503 break; 504 cpu_relax(); 505 } while (n-- > 0); 506 } 507#endif 508 509 /* REQPKT is turned off after each segment */ 510 if (n_bds && rx->channel.actual_len) { 511 void __iomem *regs = rx->hw_ep->regs; 512 513 val = musb_readw(regs, MUSB_RXCSR); 514 if (!(val & MUSB_RXCSR_H_REQPKT)) { 515 val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS; 516 musb_writew(regs, MUSB_RXCSR, val); 517 /* flush writebuffer */ 518 val = musb_readw(regs, MUSB_RXCSR); 519 } 520 } 521 return n_bds; 522} 523 524 525/* Buffer enqueuing Logic: 526 * 527 * - RX builds new queues each time, to help handle routine "early 528 * termination" cases (faults, including errors and short reads) 529 * more correctly. 530 * 531 * - for now, TX reuses the same queue of BDs every time 532 * 533 * REVISIT long term, we want a normal dynamic model. 534 * ... the goal will be to append to the 535 * existing queue, processing completed "dma buffers" (segments) on the fly. 536 * 537 * Otherwise we force an IRQ latency between requests, which slows us a lot 538 * (especially in "transparent" dma). Unfortunately that model seems to be 539 * inherent in the DMA model from the Mentor code, except in the rare case 540 * of transfers big enough (~128+ KB) that we could append "middle" segments 541 * in the TX paths. (RX can't do this, see below.) 542 * 543 * That's true even in the CPPI- friendly iso case, where most urbs have 544 * several small segments provided in a group and where the "packet at a time" 545 * "transparent" DMA model is always correct, even on the RX side. 546 */ 547 548/* 549 * CPPI TX: 550 * ======== 551 * TX is a lot more reasonable than RX; it doesn't need to run in 552 * irq-per-packet mode very often. RNDIS mode seems to behave too 553 * (except how it handles the exactly-N-packets case). Building a 554 * txdma queue with multiple requests (urb or usb_request) looks 555 * like it would work ... but fault handling would need much testing. 556 * 557 * The main issue with TX mode RNDIS relates to transfer lengths that 558 * are an exact multiple of the packet length. It appears that there's 559 * a hiccup in that case (maybe the DMA completes before the ZLP gets 560 * written?) boiling down to not being able to rely on CPPI writing any 561 * terminating zero length packet before the next transfer is written. 562 * So that's punted to PIO; better yet, gadget drivers can avoid it. 563 * 564 * Plus, there's allegedly an undocumented constraint that rndis transfer 565 * length be a multiple of 64 bytes ... but the chip doesn't act that 566 * way, and we really don't _want_ that behavior anyway. 567 * 568 * On TX, "transparent" mode works ... although experiments have shown 569 * problems trying to use the SOP/EOP bits in different USB packets. 570 * 571 * REVISIT try to handle terminating zero length packets using CPPI 572 * instead of doing it by PIO after an IRQ. (Meanwhile, make Ethernet 573 * links avoid that issue by forcing them to avoid zlps.) 574 */ 575static void 576cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx) 577{ 578 unsigned maxpacket = tx->maxpacket; 579 dma_addr_t addr = tx->buf_dma + tx->offset; 580 size_t length = tx->buf_len - tx->offset; 581 struct cppi_descriptor *bd; 582 unsigned n_bds; 583 unsigned i; 584 struct cppi_tx_stateram __iomem *tx_ram = tx->state_ram; 585 int rndis; 586 587 /* TX can use the CPPI "rndis" mode, where we can probably fit this 588 * transfer in one BD and one IRQ. The only time we would NOT want 589 * to use it is when hardware constraints prevent it, or if we'd 590 * trigger the "send a ZLP?" confusion. 591 */ 592 rndis = (maxpacket & 0x3f) == 0 593 && length > maxpacket 594 && length < 0xffff 595 && (length % maxpacket) != 0; 596 597 if (rndis) { 598 maxpacket = length; 599 n_bds = 1; 600 } else { 601 n_bds = length / maxpacket; 602 if (!length || (length % maxpacket)) 603 n_bds++; 604 n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD); 605 length = min(n_bds * maxpacket, length); 606 } 607 608 dev_dbg(musb->controller, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u\n", 609 tx->index, 610 maxpacket, 611 rndis ? "rndis" : "transparent", 612 n_bds, 613 (unsigned long long)addr, length); 614 615 cppi_rndis_update(tx, 0, musb->ctrl_base, rndis); 616 617 /* assuming here that channel_program is called during 618 * transfer initiation ... current code maintains state 619 * for one outstanding request only (no queues, not even 620 * the implicit ones of an iso urb). 621 */ 622 623 bd = tx->freelist; 624 tx->head = bd; 625 tx->last_processed = NULL; 626 627 /* FIXME use BD pool like RX side does, and just queue 628 * the minimum number for this request. 629 */ 630 631 /* Prepare queue of BDs first, then hand it to hardware. 632 * All BDs except maybe the last should be of full packet 633 * size; for RNDIS there _is_ only that last packet. 634 */ 635 for (i = 0; i < n_bds; ) { 636 if (++i < n_bds && bd->next) 637 bd->hw_next = bd->next->dma; 638 else 639 bd->hw_next = 0; 640 641 bd->hw_bufp = tx->buf_dma + tx->offset; 642 643 /* FIXME set EOP only on the last packet, 644 * SOP only on the first ... avoid IRQs 645 */ 646 if ((tx->offset + maxpacket) <= tx->buf_len) { 647 tx->offset += maxpacket; 648 bd->hw_off_len = maxpacket; 649 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET 650 | CPPI_OWN_SET | maxpacket; 651 } else { 652 /* only this one may be a partial USB Packet */ 653 u32 partial_len; 654 655 partial_len = tx->buf_len - tx->offset; 656 tx->offset = tx->buf_len; 657 bd->hw_off_len = partial_len; 658 659 bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET 660 | CPPI_OWN_SET | partial_len; 661 if (partial_len == 0) 662 bd->hw_options |= CPPI_ZERO_SET; 663 } 664 665 dev_dbg(musb->controller, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n", 666 bd, bd->hw_next, bd->hw_bufp, 667 bd->hw_off_len, bd->hw_options); 668 669 /* update the last BD enqueued to the list */ 670 tx->tail = bd; 671 bd = bd->next; 672 } 673 674 /* BDs live in DMA-coherent memory, but writes might be pending */ 675 cpu_drain_writebuffer(); 676 677 /* Write to the HeadPtr in state RAM to trigger */ 678 musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma); 679 680 cppi_dump_tx(5, tx, "/S"); 681} 682 683/* 684 * CPPI RX Woes: 685 * ============= 686 * Consider a 1KB bulk RX buffer in two scenarios: (a) it's fed two 300 byte 687 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back. 688 * (Full speed transfers have similar scenarios.) 689 * 690 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes, 691 * and the next packet goes into a buffer that's queued later; while (b) fills 692 * the buffer with 1024 bytes. How to do that with CPPI? 693 * 694 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but 695 * (b) loses **BADLY** because nothing (!) happens when that second packet 696 * fills the buffer, much less when a third one arrives. (Which makes this 697 * not a "true" RNDIS mode. In the RNDIS protocol short-packet termination 698 * is optional, and it's fine if peripherals -- not hosts! -- pad messages 699 * out to end-of-buffer. Standard PCI host controller DMA descriptors 700 * implement that mode by default ... which is no accident.) 701 * 702 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have 703 * converse problems: (b) is handled right, but (a) loses badly. CPPI RX 704 * ignores SOP/EOP markings and processes both of those BDs; so both packets 705 * are loaded into the buffer (with a 212 byte gap between them), and the next 706 * buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP 707 * are intended as outputs for RX queues, not inputs...) 708 * 709 * - A variant of "transparent" mode -- one BD at a time -- is the only way to 710 * reliably make both cases work, with software handling both cases correctly 711 * and at the significant penalty of needing an IRQ per packet. (The lack of 712 * I/O overlap can be slightly ameliorated by enabling double buffering.) 713 * 714 * So how to get rid of IRQ-per-packet? The transparent multi-BD case could 715 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK 716 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors 717 * with guaranteed driver level fault recovery and scrubbing out what's left 718 * of that garbaged datastream. 719 * 720 * But there seems to be no way to identify the cases where CPPI RNDIS mode 721 * is appropriate -- which do NOT include RNDIS host drivers, but do include 722 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong. 723 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic 724 * that applies best on the peripheral side (and which could fail rudely). 725 * 726 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all 727 * cases other than mass storage class. Otherwise we're correct but slow, 728 * since CPPI penalizes our need for a "true RNDIS" default mode. 729 */ 730 731 732/* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY 733 * 734 * IFF 735 * (a) peripheral mode ... since rndis peripherals could pad their 736 * writes to hosts, causing i/o failure; or we'd have to cope with 737 * a largely unknowable variety of host side protocol variants 738 * (b) and short reads are NOT errors ... since full reads would 739 * cause those same i/o failures 740 * (c) and read length is 741 * - less than 64KB (max per cppi descriptor) 742 * - not a multiple of 4096 (g_zero default, full reads typical) 743 * - N (>1) packets long, ditto (full reads not EXPECTED) 744 * THEN 745 * try rx rndis mode 746 * 747 * Cost of heuristic failing: RXDMA wedges at the end of transfers that 748 * fill out the whole buffer. Buggy host side usb network drivers could 749 * trigger that, but "in the field" such bugs seem to be all but unknown. 750 * 751 * So this module parameter lets the heuristic be disabled. When using 752 * gadgetfs, the heuristic will probably need to be disabled. 753 */ 754static bool cppi_rx_rndis = 1; 755 756module_param(cppi_rx_rndis, bool, 0); 757MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic"); 758 759 760/** 761 * cppi_next_rx_segment - dma read for the next chunk of a buffer 762 * @musb: the controller 763 * @rx: dma channel 764 * @onepacket: true unless caller treats short reads as errors, and 765 * performs fault recovery above usbcore. 766 * Context: controller irqlocked 767 * 768 * See above notes about why we can't use multi-BD RX queues except in 769 * rare cases (mass storage class), and can never use the hardware "rndis" 770 * mode (since it's not a "true" RNDIS mode) with complete safety.. 771 * 772 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in 773 * code to recover from corrupted datastreams after each short transfer. 774 */ 775static void 776cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket) 777{ 778 unsigned maxpacket = rx->maxpacket; 779 dma_addr_t addr = rx->buf_dma + rx->offset; 780 size_t length = rx->buf_len - rx->offset; 781 struct cppi_descriptor *bd, *tail; 782 unsigned n_bds; 783 unsigned i; 784 void __iomem *tibase = musb->ctrl_base; 785 int is_rndis = 0; 786 struct cppi_rx_stateram __iomem *rx_ram = rx->state_ram; 787 788 if (onepacket) { 789 /* almost every USB driver, host or peripheral side */ 790 n_bds = 1; 791 792 /* maybe apply the heuristic above */ 793 if (cppi_rx_rndis 794 && is_peripheral_active(musb) 795 && length > maxpacket 796 && (length & ~0xffff) == 0 797 && (length & 0x0fff) != 0 798 && (length & (maxpacket - 1)) == 0) { 799 maxpacket = length; 800 is_rndis = 1; 801 } 802 } else { 803 /* virtually nothing except mass storage class */ 804 if (length > 0xffff) { 805 n_bds = 0xffff / maxpacket; 806 length = n_bds * maxpacket; 807 } else { 808 n_bds = length / maxpacket; 809 if (length % maxpacket) 810 n_bds++; 811 } 812 if (n_bds == 1) 813 onepacket = 1; 814 else 815 n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD); 816 } 817 818 /* In host mode, autorequest logic can generate some IN tokens; it's 819 * tricky since we can't leave REQPKT set in RXCSR after the transfer 820 * finishes. So: multipacket transfers involve two or more segments. 821 * And always at least two IRQs ... RNDIS mode is not an option. 822 */ 823 if (is_host_active(musb)) 824 n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds); 825 826 cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis); 827 828 length = min(n_bds * maxpacket, length); 829 830 dev_dbg(musb->controller, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) " 831 "dma 0x%llx len %u %u/%u\n", 832 rx->index, maxpacket, 833 onepacket 834 ? (is_rndis ? "rndis" : "onepacket") 835 : "multipacket", 836 n_bds, 837 musb_readl(tibase, 838 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) 839 & 0xffff, 840 (unsigned long long)addr, length, 841 rx->channel.actual_len, rx->buf_len); 842 843 /* only queue one segment at a time, since the hardware prevents 844 * correct queue shutdown after unexpected short packets 845 */ 846 bd = cppi_bd_alloc(rx); 847 rx->head = bd; 848 849 /* Build BDs for all packets in this segment */ 850 for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) { 851 u32 bd_len; 852 853 if (i) { 854 bd = cppi_bd_alloc(rx); 855 if (!bd) 856 break; 857 tail->next = bd; 858 tail->hw_next = bd->dma; 859 } 860 bd->hw_next = 0; 861 862 /* all but the last packet will be maxpacket size */ 863 if (maxpacket < length) 864 bd_len = maxpacket; 865 else 866 bd_len = length; 867 868 bd->hw_bufp = addr; 869 addr += bd_len; 870 rx->offset += bd_len; 871 872 bd->hw_off_len = (0 /*offset*/ << 16) + bd_len; 873 bd->buflen = bd_len; 874 875 bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0); 876 length -= bd_len; 877 } 878 879 /* we always expect at least one reusable BD! */ 880 if (!tail) { 881 WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds); 882 return; 883 } else if (i < n_bds) 884 WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds); 885 886 tail->next = NULL; 887 tail->hw_next = 0; 888 889 bd = rx->head; 890 rx->tail = tail; 891 892 /* short reads and other faults should terminate this entire 893 * dma segment. we want one "dma packet" per dma segment, not 894 * one per USB packet, terminating the whole queue at once... 895 * NOTE that current hardware seems to ignore SOP and EOP. 896 */ 897 bd->hw_options |= CPPI_SOP_SET; 898 tail->hw_options |= CPPI_EOP_SET; 899 900#ifdef CONFIG_USB_MUSB_DEBUG 901 if (_dbg_level(5)) { 902 struct cppi_descriptor *d; 903 904 for (d = rx->head; d; d = d->next) 905 cppi_dump_rxbd("S", d); 906 } 907#endif 908 909 /* in case the preceding transfer left some state... */ 910 tail = rx->last_processed; 911 if (tail) { 912 tail->next = bd; 913 tail->hw_next = bd->dma; 914 } 915 916 core_rxirq_enable(tibase, rx->index + 1); 917 918 /* BDs live in DMA-coherent memory, but writes might be pending */ 919 cpu_drain_writebuffer(); 920 921 /* REVISIT specs say to write this AFTER the BUFCNT register 922 * below ... but that loses badly. 923 */ 924 musb_writel(&rx_ram->rx_head, 0, bd->dma); 925 926 /* bufferCount must be at least 3, and zeroes on completion 927 * unless it underflows below zero, or stops at two, or keeps 928 * growing ... grr. 929 */ 930 i = musb_readl(tibase, 931 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) 932 & 0xffff; 933 934 if (!i) 935 musb_writel(tibase, 936 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), 937 n_bds + 2); 938 else if (n_bds > (i - 3)) 939 musb_writel(tibase, 940 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), 941 n_bds - (i - 3)); 942 943 i = musb_readl(tibase, 944 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4)) 945 & 0xffff; 946 if (i < (2 + n_bds)) { 947 dev_dbg(musb->controller, "bufcnt%d underrun - %d (for %d)\n", 948 rx->index, i, n_bds); 949 musb_writel(tibase, 950 DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4), 951 n_bds + 2); 952 } 953 954 cppi_dump_rx(4, rx, "/S"); 955} 956 957/** 958 * cppi_channel_program - program channel for data transfer 959 * @ch: the channel 960 * @maxpacket: max packet size 961 * @mode: For RX, 1 unless the usb protocol driver promised to treat 962 * all short reads as errors and kick in high level fault recovery. 963 * For TX, ignored because of RNDIS mode races/glitches. 964 * @dma_addr: dma address of buffer 965 * @len: length of buffer 966 * Context: controller irqlocked 967 */ 968static int cppi_channel_program(struct dma_channel *ch, 969 u16 maxpacket, u8 mode, 970 dma_addr_t dma_addr, u32 len) 971{ 972 struct cppi_channel *cppi_ch; 973 struct cppi *controller; 974 struct musb *musb; 975 976 cppi_ch = container_of(ch, struct cppi_channel, channel); 977 controller = cppi_ch->controller; 978 musb = controller->musb; 979 980 switch (ch->status) { 981 case MUSB_DMA_STATUS_BUS_ABORT: 982 case MUSB_DMA_STATUS_CORE_ABORT: 983 /* fault irq handler should have handled cleanup */ 984 WARNING("%cX DMA%d not cleaned up after abort!\n", 985 cppi_ch->transmit ? 'T' : 'R', 986 cppi_ch->index); 987 /* WARN_ON(1); */ 988 break; 989 case MUSB_DMA_STATUS_BUSY: 990 WARNING("program active channel? %cX DMA%d\n", 991 cppi_ch->transmit ? 'T' : 'R', 992 cppi_ch->index); 993 /* WARN_ON(1); */ 994 break; 995 case MUSB_DMA_STATUS_UNKNOWN: 996 dev_dbg(musb->controller, "%cX DMA%d not allocated!\n", 997 cppi_ch->transmit ? 'T' : 'R', 998 cppi_ch->index); 999 /* FALLTHROUGH */ 1000 case MUSB_DMA_STATUS_FREE: 1001 break; 1002 } 1003 1004 ch->status = MUSB_DMA_STATUS_BUSY; 1005 1006 /* set transfer parameters, then queue up its first segment */ 1007 cppi_ch->buf_dma = dma_addr; 1008 cppi_ch->offset = 0; 1009 cppi_ch->maxpacket = maxpacket; 1010 cppi_ch->buf_len = len; 1011 cppi_ch->channel.actual_len = 0; 1012 1013 /* TX channel? or RX? */ 1014 if (cppi_ch->transmit) 1015 cppi_next_tx_segment(musb, cppi_ch); 1016 else 1017 cppi_next_rx_segment(musb, cppi_ch, mode); 1018 1019 return true; 1020} 1021 1022static bool cppi_rx_scan(struct cppi *cppi, unsigned ch) 1023{ 1024 struct cppi_channel *rx = &cppi->rx[ch]; 1025 struct cppi_rx_stateram __iomem *state = rx->state_ram; 1026 struct cppi_descriptor *bd; 1027 struct cppi_descriptor *last = rx->last_processed; 1028 bool completed = false; 1029 bool acked = false; 1030 int i; 1031 dma_addr_t safe2ack; 1032 void __iomem *regs = rx->hw_ep->regs; 1033 struct musb *musb = cppi->musb; 1034 1035 cppi_dump_rx(6, rx, "/K"); 1036 1037 bd = last ? last->next : rx->head; 1038 if (!bd) 1039 return false; 1040 1041 /* run through all completed BDs */ 1042 for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0); 1043 (safe2ack || completed) && bd && i < NUM_RXCHAN_BD; 1044 i++, bd = bd->next) { 1045 u16 len; 1046 1047 /* catch latest BD writes from CPPI */ 1048 rmb(); 1049 if (!completed && (bd->hw_options & CPPI_OWN_SET)) 1050 break; 1051 1052 dev_dbg(musb->controller, "C/RXBD %llx: nxt %08x buf %08x " 1053 "off.len %08x opt.len %08x (%d)\n", 1054 (unsigned long long)bd->dma, bd->hw_next, bd->hw_bufp, 1055 bd->hw_off_len, bd->hw_options, 1056 rx->channel.actual_len); 1057 1058 /* actual packet received length */ 1059 if ((bd->hw_options & CPPI_SOP_SET) && !completed) 1060 len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK; 1061 else 1062 len = 0; 1063 1064 if (bd->hw_options & CPPI_EOQ_MASK) 1065 completed = true; 1066 1067 if (!completed && len < bd->buflen) { 1068 /* NOTE: when we get a short packet, RXCSR_H_REQPKT 1069 * must have been cleared, and no more DMA packets may 1070 * active be in the queue... TI docs didn't say, but 1071 * CPPI ignores those BDs even though OWN is still set. 1072 */ 1073 completed = true; 1074 dev_dbg(musb->controller, "rx short %d/%d (%d)\n", 1075 len, bd->buflen, 1076 rx->channel.actual_len); 1077 } 1078 1079 /* If we got here, we expect to ack at least one BD; meanwhile 1080 * CPPI may completing other BDs while we scan this list... 1081 * 1082 * RACE: we can notice OWN cleared before CPPI raises the 1083 * matching irq by writing that BD as the completion pointer. 1084 * In such cases, stop scanning and wait for the irq, avoiding 1085 * lost acks and states where BD ownership is unclear. 1086 */ 1087 if (bd->dma == safe2ack) { 1088 musb_writel(&state->rx_complete, 0, safe2ack); 1089 safe2ack = musb_readl(&state->rx_complete, 0); 1090 acked = true; 1091 if (bd->dma == safe2ack) 1092 safe2ack = 0; 1093 } 1094 1095 rx->channel.actual_len += len; 1096 1097 cppi_bd_free(rx, last); 1098 last = bd; 1099 1100 /* stop scanning on end-of-segment */ 1101 if (bd->hw_next == 0) 1102 completed = true; 1103 } 1104 rx->last_processed = last; 1105 1106 /* dma abort, lost ack, or ... */ 1107 if (!acked && last) { 1108 int csr; 1109 1110 if (safe2ack == 0 || safe2ack == rx->last_processed->dma) 1111 musb_writel(&state->rx_complete, 0, safe2ack); 1112 if (safe2ack == 0) { 1113 cppi_bd_free(rx, last); 1114 rx->last_processed = NULL; 1115 1116 /* if we land here on the host side, H_REQPKT will 1117 * be clear and we need to restart the queue... 1118 */ 1119 WARN_ON(rx->head); 1120 } 1121 musb_ep_select(cppi->mregs, rx->index + 1); 1122 csr = musb_readw(regs, MUSB_RXCSR); 1123 if (csr & MUSB_RXCSR_DMAENAB) { 1124 dev_dbg(musb->controller, "list%d %p/%p, last %llx%s, csr %04x\n", 1125 rx->index, 1126 rx->head, rx->tail, 1127 rx->last_processed 1128 ? (unsigned long long) 1129 rx->last_processed->dma 1130 : 0, 1131 completed ? ", completed" : "", 1132 csr); 1133 cppi_dump_rxq(4, "/what?", rx); 1134 } 1135 } 1136 if (!completed) { 1137 int csr; 1138 1139 rx->head = bd; 1140 1141 /* REVISIT seems like "autoreq all but EOP" doesn't... 1142 * setting it here "should" be racey, but seems to work 1143 */ 1144 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); 1145 if (is_host_active(cppi->musb) 1146 && bd 1147 && !(csr & MUSB_RXCSR_H_REQPKT)) { 1148 csr |= MUSB_RXCSR_H_REQPKT; 1149 musb_writew(regs, MUSB_RXCSR, 1150 MUSB_RXCSR_H_WZC_BITS | csr); 1151 csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR); 1152 } 1153 } else { 1154 rx->head = NULL; 1155 rx->tail = NULL; 1156 } 1157 1158 cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned"); 1159 return completed; 1160} 1161 1162irqreturn_t cppi_interrupt(int irq, void *dev_id) 1163{ 1164 struct musb *musb = dev_id; 1165 struct cppi *cppi; 1166 void __iomem *tibase; 1167 struct musb_hw_ep *hw_ep = NULL; 1168 u32 rx, tx; 1169 int i, index; 1170 unsigned long uninitialized_var(flags); 1171 1172 cppi = container_of(musb->dma_controller, struct cppi, controller); 1173 if (cppi->irq) 1174 spin_lock_irqsave(&musb->lock, flags); 1175 1176 tibase = musb->ctrl_base; 1177 1178 tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG); 1179 rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG); 1180 1181 if (!tx && !rx) { 1182 if (cppi->irq) 1183 spin_unlock_irqrestore(&musb->lock, flags); 1184 return IRQ_NONE; 1185 } 1186 1187 dev_dbg(musb->controller, "CPPI IRQ Tx%x Rx%x\n", tx, rx); 1188 1189 /* process TX channels */ 1190 for (index = 0; tx; tx = tx >> 1, index++) { 1191 struct cppi_channel *tx_ch; 1192 struct cppi_tx_stateram __iomem *tx_ram; 1193 bool completed = false; 1194 struct cppi_descriptor *bd; 1195 1196 if (!(tx & 1)) 1197 continue; 1198 1199 tx_ch = cppi->tx + index; 1200 tx_ram = tx_ch->state_ram; 1201 1202 /* FIXME need a cppi_tx_scan() routine, which 1203 * can also be called from abort code 1204 */ 1205 1206 cppi_dump_tx(5, tx_ch, "/E"); 1207 1208 bd = tx_ch->head; 1209 1210 /* 1211 * If Head is null then this could mean that a abort interrupt 1212 * that needs to be acknowledged. 1213 */ 1214 if (NULL == bd) { 1215 dev_dbg(musb->controller, "null BD\n"); 1216 musb_writel(&tx_ram->tx_complete, 0, 0); 1217 continue; 1218 } 1219 1220 /* run through all completed BDs */ 1221 for (i = 0; !completed && bd && i < NUM_TXCHAN_BD; 1222 i++, bd = bd->next) { 1223 u16 len; 1224 1225 /* catch latest BD writes from CPPI */ 1226 rmb(); 1227 if (bd->hw_options & CPPI_OWN_SET) 1228 break; 1229 1230 dev_dbg(musb->controller, "C/TXBD %p n %x b %x off %x opt %x\n", 1231 bd, bd->hw_next, bd->hw_bufp, 1232 bd->hw_off_len, bd->hw_options); 1233 1234 len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK; 1235 tx_ch->channel.actual_len += len; 1236 1237 tx_ch->last_processed = bd; 1238 1239 /* write completion register to acknowledge 1240 * processing of completed BDs, and possibly 1241 * release the IRQ; EOQ might not be set ... 1242 * 1243 * REVISIT use the same ack strategy as rx 1244 * 1245 * REVISIT have observed bit 18 set; huh?? 1246 */ 1247 /* if ((bd->hw_options & CPPI_EOQ_MASK)) */ 1248 musb_writel(&tx_ram->tx_complete, 0, bd->dma); 1249 1250 /* stop scanning on end-of-segment */ 1251 if (bd->hw_next == 0) 1252 completed = true; 1253 } 1254 1255 /* on end of segment, maybe go to next one */ 1256 if (completed) { 1257 /* cppi_dump_tx(4, tx_ch, "/complete"); */ 1258 1259 /* transfer more, or report completion */ 1260 if (tx_ch->offset >= tx_ch->buf_len) { 1261 tx_ch->head = NULL; 1262 tx_ch->tail = NULL; 1263 tx_ch->channel.status = MUSB_DMA_STATUS_FREE; 1264 1265 hw_ep = tx_ch->hw_ep; 1266 1267 musb_dma_completion(musb, index + 1, 1); 1268 1269 } else { 1270 /* Bigger transfer than we could fit in 1271 * that first batch of descriptors... 1272 */ 1273 cppi_next_tx_segment(musb, tx_ch); 1274 } 1275 } else 1276 tx_ch->head = bd; 1277 } 1278 1279 /* Start processing the RX block */ 1280 for (index = 0; rx; rx = rx >> 1, index++) { 1281 1282 if (rx & 1) { 1283 struct cppi_channel *rx_ch; 1284 1285 rx_ch = cppi->rx + index; 1286 1287 /* let incomplete dma segments finish */ 1288 if (!cppi_rx_scan(cppi, index)) 1289 continue; 1290 1291 /* start another dma segment if needed */ 1292 if (rx_ch->channel.actual_len != rx_ch->buf_len 1293 && rx_ch->channel.actual_len 1294 == rx_ch->offset) { 1295 cppi_next_rx_segment(musb, rx_ch, 1); 1296 continue; 1297 } 1298 1299 /* all segments completed! */ 1300 rx_ch->channel.status = MUSB_DMA_STATUS_FREE; 1301 1302 hw_ep = rx_ch->hw_ep; 1303 1304 core_rxirq_disable(tibase, index + 1); 1305 musb_dma_completion(musb, index + 1, 0); 1306 } 1307 } 1308 1309 /* write to CPPI EOI register to re-enable interrupts */ 1310 musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0); 1311 1312 if (cppi->irq) 1313 spin_unlock_irqrestore(&musb->lock, flags); 1314 1315 return IRQ_HANDLED; 1316} 1317EXPORT_SYMBOL_GPL(cppi_interrupt); 1318 1319/* Instantiate a software object representing a DMA controller. */ 1320struct dma_controller *dma_controller_create(struct musb *musb, void __iomem *mregs) 1321{ 1322 struct cppi *controller; 1323 struct device *dev = musb->controller; 1324 struct platform_device *pdev = to_platform_device(dev); 1325 int irq = platform_get_irq_byname(pdev, "dma"); 1326 1327 controller = kzalloc(sizeof *controller, GFP_KERNEL); 1328 if (!controller) 1329 return NULL; 1330 1331 controller->mregs = mregs; 1332 controller->tibase = mregs - DAVINCI_BASE_OFFSET; 1333 1334 controller->musb = musb; 1335 controller->controller.start = cppi_controller_start; 1336 controller->controller.stop = cppi_controller_stop; 1337 controller->controller.channel_alloc = cppi_channel_allocate; 1338 controller->controller.channel_release = cppi_channel_release; 1339 controller->controller.channel_program = cppi_channel_program; 1340 controller->controller.channel_abort = cppi_channel_abort; 1341 1342 /* NOTE: allocating from on-chip SRAM would give the least 1343 * contention for memory access, if that ever matters here. 1344 */ 1345 1346 /* setup BufferPool */ 1347 controller->pool = dma_pool_create("cppi", 1348 controller->musb->controller, 1349 sizeof(struct cppi_descriptor), 1350 CPPI_DESCRIPTOR_ALIGN, 0); 1351 if (!controller->pool) { 1352 kfree(controller); 1353 return NULL; 1354 } 1355 1356 if (irq > 0) { 1357 if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) { 1358 dev_err(dev, "request_irq %d failed!\n", irq); 1359 dma_controller_destroy(&controller->controller); 1360 return NULL; 1361 } 1362 controller->irq = irq; 1363 } 1364 1365 return &controller->controller; 1366} 1367 1368/* 1369 * Destroy a previously-instantiated DMA controller. 1370 */ 1371void dma_controller_destroy(struct dma_controller *c) 1372{ 1373 struct cppi *cppi; 1374 1375 cppi = container_of(c, struct cppi, controller); 1376 1377 if (cppi->irq) 1378 free_irq(cppi->irq, cppi->musb); 1379 1380 /* assert: caller stopped the controller first */ 1381 dma_pool_destroy(cppi->pool); 1382 1383 kfree(cppi); 1384} 1385 1386/* 1387 * Context: controller irqlocked, endpoint selected 1388 */ 1389static int cppi_channel_abort(struct dma_channel *channel) 1390{ 1391 struct cppi_channel *cppi_ch; 1392 struct cppi *controller; 1393 void __iomem *mbase; 1394 void __iomem *tibase; 1395 void __iomem *regs; 1396 u32 value; 1397 struct cppi_descriptor *queue; 1398 1399 cppi_ch = container_of(channel, struct cppi_channel, channel); 1400 1401 controller = cppi_ch->controller; 1402 1403 switch (channel->status) { 1404 case MUSB_DMA_STATUS_BUS_ABORT: 1405 case MUSB_DMA_STATUS_CORE_ABORT: 1406 /* from RX or TX fault irq handler */ 1407 case MUSB_DMA_STATUS_BUSY: 1408 /* the hardware needs shutting down */ 1409 regs = cppi_ch->hw_ep->regs; 1410 break; 1411 case MUSB_DMA_STATUS_UNKNOWN: 1412 case MUSB_DMA_STATUS_FREE: 1413 return 0; 1414 default: 1415 return -EINVAL; 1416 } 1417 1418 if (!cppi_ch->transmit && cppi_ch->head) 1419 cppi_dump_rxq(3, "/abort", cppi_ch); 1420 1421 mbase = controller->mregs; 1422 tibase = controller->tibase; 1423 1424 queue = cppi_ch->head; 1425 cppi_ch->head = NULL; 1426 cppi_ch->tail = NULL; 1427 1428 /* REVISIT should rely on caller having done this, 1429 * and caller should rely on us not changing it. 1430 * peripheral code is safe ... check host too. 1431 */ 1432 musb_ep_select(mbase, cppi_ch->index + 1); 1433 1434 if (cppi_ch->transmit) { 1435 struct cppi_tx_stateram __iomem *tx_ram; 1436 /* REVISIT put timeouts on these controller handshakes */ 1437 1438 cppi_dump_tx(6, cppi_ch, " (teardown)"); 1439 1440 /* teardown DMA engine then usb core */ 1441 do { 1442 value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG); 1443 } while (!(value & CPPI_TEAR_READY)); 1444 musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index); 1445 1446 tx_ram = cppi_ch->state_ram; 1447 do { 1448 value = musb_readl(&tx_ram->tx_complete, 0); 1449 } while (0xFFFFFFFC != value); 1450 1451 /* FIXME clean up the transfer state ... here? 1452 * the completion routine should get called with 1453 * an appropriate status code. 1454 */ 1455 1456 value = musb_readw(regs, MUSB_TXCSR); 1457 value &= ~MUSB_TXCSR_DMAENAB; 1458 value |= MUSB_TXCSR_FLUSHFIFO; 1459 musb_writew(regs, MUSB_TXCSR, value); 1460 musb_writew(regs, MUSB_TXCSR, value); 1461 1462 /* 1463 * 1. Write to completion Ptr value 0x1(bit 0 set) 1464 * (write back mode) 1465 * 2. Wait for abort interrupt and then put the channel in 1466 * compare mode by writing 1 to the tx_complete register. 1467 */ 1468 cppi_reset_tx(tx_ram, 1); 1469 cppi_ch->head = NULL; 1470 musb_writel(&tx_ram->tx_complete, 0, 1); 1471 cppi_dump_tx(5, cppi_ch, " (done teardown)"); 1472 1473 /* REVISIT tx side _should_ clean up the same way 1474 * as the RX side ... this does no cleanup at all! 1475 */ 1476 1477 } else /* RX */ { 1478 u16 csr; 1479 1480 /* NOTE: docs don't guarantee any of this works ... we 1481 * expect that if the usb core stops telling the cppi core 1482 * to pull more data from it, then it'll be safe to flush 1483 * current RX DMA state iff any pending fifo transfer is done. 1484 */ 1485 1486 core_rxirq_disable(tibase, cppi_ch->index + 1); 1487 1488 /* for host, ensure ReqPkt is never set again */ 1489 if (is_host_active(cppi_ch->controller->musb)) { 1490 value = musb_readl(tibase, DAVINCI_AUTOREQ_REG); 1491 value &= ~((0x3) << (cppi_ch->index * 2)); 1492 musb_writel(tibase, DAVINCI_AUTOREQ_REG, value); 1493 } 1494 1495 csr = musb_readw(regs, MUSB_RXCSR); 1496 1497 /* for host, clear (just) ReqPkt at end of current packet(s) */ 1498 if (is_host_active(cppi_ch->controller->musb)) { 1499 csr |= MUSB_RXCSR_H_WZC_BITS; 1500 csr &= ~MUSB_RXCSR_H_REQPKT; 1501 } else 1502 csr |= MUSB_RXCSR_P_WZC_BITS; 1503 1504 /* clear dma enable */ 1505 csr &= ~(MUSB_RXCSR_DMAENAB); 1506 musb_writew(regs, MUSB_RXCSR, csr); 1507 csr = musb_readw(regs, MUSB_RXCSR); 1508 1509 /* Quiesce: wait for current dma to finish (if not cleanup). 1510 * We can't use bit zero of stateram->rx_sop, since that 1511 * refers to an entire "DMA packet" not just emptying the 1512 * current fifo. Most segments need multiple usb packets. 1513 */ 1514 if (channel->status == MUSB_DMA_STATUS_BUSY) 1515 udelay(50); 1516 1517 /* scan the current list, reporting any data that was 1518 * transferred and acking any IRQ 1519 */ 1520 cppi_rx_scan(controller, cppi_ch->index); 1521 1522 /* clobber the existing state once it's idle 1523 * 1524 * NOTE: arguably, we should also wait for all the other 1525 * RX channels to quiesce (how??) and then temporarily 1526 * disable RXCPPI_CTRL_REG ... but it seems that we can 1527 * rely on the controller restarting from state ram, with 1528 * only RXCPPI_BUFCNT state being bogus. BUFCNT will 1529 * correct itself after the next DMA transfer though. 1530 * 1531 * REVISIT does using rndis mode change that? 1532 */ 1533 cppi_reset_rx(cppi_ch->state_ram); 1534 1535 /* next DMA request _should_ load cppi head ptr */ 1536 1537 /* ... we don't "free" that list, only mutate it in place. */ 1538 cppi_dump_rx(5, cppi_ch, " (done abort)"); 1539 1540 /* clean up previously pending bds */ 1541 cppi_bd_free(cppi_ch, cppi_ch->last_processed); 1542 cppi_ch->last_processed = NULL; 1543 1544 while (queue) { 1545 struct cppi_descriptor *tmp = queue->next; 1546 1547 cppi_bd_free(cppi_ch, queue); 1548 queue = tmp; 1549 } 1550 } 1551 1552 channel->status = MUSB_DMA_STATUS_FREE; 1553 cppi_ch->buf_dma = 0; 1554 cppi_ch->offset = 0; 1555 cppi_ch->buf_len = 0; 1556 cppi_ch->maxpacket = 0; 1557 return 0; 1558} 1559 1560/* TBD Queries: 1561 * 1562 * Power Management ... probably turn off cppi during suspend, restart; 1563 * check state ram? Clocking is presumably shared with usb core. 1564 */