at v3.8 1414 lines 36 kB view raw
1/* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the 18 Free Software Foundation, Inc., 19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 */ 21 22/* 23 Module: rt2x00lib 24 Abstract: rt2x00 generic device routines. 25 */ 26 27#include <linux/kernel.h> 28#include <linux/module.h> 29#include <linux/slab.h> 30#include <linux/log2.h> 31 32#include "rt2x00.h" 33#include "rt2x00lib.h" 34 35/* 36 * Utility functions. 37 */ 38u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 39 struct ieee80211_vif *vif) 40{ 41 /* 42 * When in STA mode, bssidx is always 0 otherwise local_address[5] 43 * contains the bss number, see BSS_ID_MASK comments for details. 44 */ 45 if (rt2x00dev->intf_sta_count) 46 return 0; 47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 48} 49EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 50 51/* 52 * Radio control handlers. 53 */ 54int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 55{ 56 int status; 57 58 /* 59 * Don't enable the radio twice. 60 * And check if the hardware button has been disabled. 61 */ 62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 63 return 0; 64 65 /* 66 * Initialize all data queues. 67 */ 68 rt2x00queue_init_queues(rt2x00dev); 69 70 /* 71 * Enable radio. 72 */ 73 status = 74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 75 if (status) 76 return status; 77 78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 79 80 rt2x00leds_led_radio(rt2x00dev, true); 81 rt2x00led_led_activity(rt2x00dev, true); 82 83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 84 85 /* 86 * Enable queues. 87 */ 88 rt2x00queue_start_queues(rt2x00dev); 89 rt2x00link_start_tuner(rt2x00dev); 90 rt2x00link_start_agc(rt2x00dev); 91 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) 92 rt2x00link_start_vcocal(rt2x00dev); 93 94 /* 95 * Start watchdog monitoring. 96 */ 97 rt2x00link_start_watchdog(rt2x00dev); 98 99 return 0; 100} 101 102void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 103{ 104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 105 return; 106 107 /* 108 * Stop watchdog monitoring. 109 */ 110 rt2x00link_stop_watchdog(rt2x00dev); 111 112 /* 113 * Stop all queues 114 */ 115 rt2x00link_stop_agc(rt2x00dev); 116 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) 117 rt2x00link_stop_vcocal(rt2x00dev); 118 rt2x00link_stop_tuner(rt2x00dev); 119 rt2x00queue_stop_queues(rt2x00dev); 120 rt2x00queue_flush_queues(rt2x00dev, true); 121 122 /* 123 * Disable radio. 124 */ 125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 127 rt2x00led_led_activity(rt2x00dev, false); 128 rt2x00leds_led_radio(rt2x00dev, false); 129} 130 131static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 132 struct ieee80211_vif *vif) 133{ 134 struct rt2x00_dev *rt2x00dev = data; 135 struct rt2x00_intf *intf = vif_to_intf(vif); 136 137 /* 138 * It is possible the radio was disabled while the work had been 139 * scheduled. If that happens we should return here immediately, 140 * note that in the spinlock protected area above the delayed_flags 141 * have been cleared correctly. 142 */ 143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 144 return; 145 146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) 147 rt2x00queue_update_beacon(rt2x00dev, vif); 148} 149 150static void rt2x00lib_intf_scheduled(struct work_struct *work) 151{ 152 struct rt2x00_dev *rt2x00dev = 153 container_of(work, struct rt2x00_dev, intf_work); 154 155 /* 156 * Iterate over each interface and perform the 157 * requested configurations. 158 */ 159 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 160 IEEE80211_IFACE_ITER_RESUME_ALL, 161 rt2x00lib_intf_scheduled_iter, 162 rt2x00dev); 163} 164 165static void rt2x00lib_autowakeup(struct work_struct *work) 166{ 167 struct rt2x00_dev *rt2x00dev = 168 container_of(work, struct rt2x00_dev, autowakeup_work.work); 169 170 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 171 return; 172 173 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 174 ERROR(rt2x00dev, "Device failed to wakeup.\n"); 175 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 176} 177 178/* 179 * Interrupt context handlers. 180 */ 181static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 182 struct ieee80211_vif *vif) 183{ 184 struct rt2x00_dev *rt2x00dev = data; 185 struct sk_buff *skb; 186 187 /* 188 * Only AP mode interfaces do broad- and multicast buffering 189 */ 190 if (vif->type != NL80211_IFTYPE_AP) 191 return; 192 193 /* 194 * Send out buffered broad- and multicast frames 195 */ 196 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 197 while (skb) { 198 rt2x00mac_tx(rt2x00dev->hw, NULL, skb); 199 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 200 } 201} 202 203static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 204 struct ieee80211_vif *vif) 205{ 206 struct rt2x00_dev *rt2x00dev = data; 207 208 if (vif->type != NL80211_IFTYPE_AP && 209 vif->type != NL80211_IFTYPE_ADHOC && 210 vif->type != NL80211_IFTYPE_MESH_POINT && 211 vif->type != NL80211_IFTYPE_WDS) 212 return; 213 214 /* 215 * Update the beacon without locking. This is safe on PCI devices 216 * as they only update the beacon periodically here. This should 217 * never be called for USB devices. 218 */ 219 WARN_ON(rt2x00_is_usb(rt2x00dev)); 220 rt2x00queue_update_beacon_locked(rt2x00dev, vif); 221} 222 223void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 224{ 225 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 226 return; 227 228 /* send buffered bc/mc frames out for every bssid */ 229 ieee80211_iterate_active_interfaces_atomic( 230 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 231 rt2x00lib_bc_buffer_iter, rt2x00dev); 232 /* 233 * Devices with pre tbtt interrupt don't need to update the beacon 234 * here as they will fetch the next beacon directly prior to 235 * transmission. 236 */ 237 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags)) 238 return; 239 240 /* fetch next beacon */ 241 ieee80211_iterate_active_interfaces_atomic( 242 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 243 rt2x00lib_beaconupdate_iter, rt2x00dev); 244} 245EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 246 247void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 248{ 249 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 250 return; 251 252 /* fetch next beacon */ 253 ieee80211_iterate_active_interfaces_atomic( 254 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 255 rt2x00lib_beaconupdate_iter, rt2x00dev); 256} 257EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 258 259void rt2x00lib_dmastart(struct queue_entry *entry) 260{ 261 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 262 rt2x00queue_index_inc(entry, Q_INDEX); 263} 264EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 265 266void rt2x00lib_dmadone(struct queue_entry *entry) 267{ 268 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 269 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 270 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 271} 272EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 273 274void rt2x00lib_txdone(struct queue_entry *entry, 275 struct txdone_entry_desc *txdesc) 276{ 277 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 278 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 279 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 280 unsigned int header_length, i; 281 u8 rate_idx, rate_flags, retry_rates; 282 u8 skbdesc_flags = skbdesc->flags; 283 bool success; 284 285 /* 286 * Unmap the skb. 287 */ 288 rt2x00queue_unmap_skb(entry); 289 290 /* 291 * Remove the extra tx headroom from the skb. 292 */ 293 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom); 294 295 /* 296 * Signal that the TX descriptor is no longer in the skb. 297 */ 298 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 299 300 /* 301 * Determine the length of 802.11 header. 302 */ 303 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 304 305 /* 306 * Remove L2 padding which was added during 307 */ 308 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 309 rt2x00queue_remove_l2pad(entry->skb, header_length); 310 311 /* 312 * If the IV/EIV data was stripped from the frame before it was 313 * passed to the hardware, we should now reinsert it again because 314 * mac80211 will expect the same data to be present it the 315 * frame as it was passed to us. 316 */ 317 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) 318 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 319 320 /* 321 * Send frame to debugfs immediately, after this call is completed 322 * we are going to overwrite the skb->cb array. 323 */ 324 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb); 325 326 /* 327 * Determine if the frame has been successfully transmitted. 328 */ 329 success = 330 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 331 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 332 333 /* 334 * Update TX statistics. 335 */ 336 rt2x00dev->link.qual.tx_success += success; 337 rt2x00dev->link.qual.tx_failed += !success; 338 339 rate_idx = skbdesc->tx_rate_idx; 340 rate_flags = skbdesc->tx_rate_flags; 341 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 342 (txdesc->retry + 1) : 1; 343 344 /* 345 * Initialize TX status 346 */ 347 memset(&tx_info->status, 0, sizeof(tx_info->status)); 348 tx_info->status.ack_signal = 0; 349 350 /* 351 * Frame was send with retries, hardware tried 352 * different rates to send out the frame, at each 353 * retry it lowered the rate 1 step except when the 354 * lowest rate was used. 355 */ 356 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 357 tx_info->status.rates[i].idx = rate_idx - i; 358 tx_info->status.rates[i].flags = rate_flags; 359 360 if (rate_idx - i == 0) { 361 /* 362 * The lowest rate (index 0) was used until the 363 * number of max retries was reached. 364 */ 365 tx_info->status.rates[i].count = retry_rates - i; 366 i++; 367 break; 368 } 369 tx_info->status.rates[i].count = 1; 370 } 371 if (i < (IEEE80211_TX_MAX_RATES - 1)) 372 tx_info->status.rates[i].idx = -1; /* terminate */ 373 374 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 375 if (success) 376 tx_info->flags |= IEEE80211_TX_STAT_ACK; 377 else 378 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 379 } 380 381 /* 382 * Every single frame has it's own tx status, hence report 383 * every frame as ampdu of size 1. 384 * 385 * TODO: if we can find out how many frames were aggregated 386 * by the hw we could provide the real ampdu_len to mac80211 387 * which would allow the rc algorithm to better decide on 388 * which rates are suitable. 389 */ 390 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 391 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 392 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 393 tx_info->status.ampdu_len = 1; 394 tx_info->status.ampdu_ack_len = success ? 1 : 0; 395 396 if (!success) 397 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 398 } 399 400 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 401 if (success) 402 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 403 else 404 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 405 } 406 407 /* 408 * Only send the status report to mac80211 when it's a frame 409 * that originated in mac80211. If this was a extra frame coming 410 * through a mac80211 library call (RTS/CTS) then we should not 411 * send the status report back. 412 */ 413 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 414 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags)) 415 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 416 else 417 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 418 } else 419 dev_kfree_skb_any(entry->skb); 420 421 /* 422 * Make this entry available for reuse. 423 */ 424 entry->skb = NULL; 425 entry->flags = 0; 426 427 rt2x00dev->ops->lib->clear_entry(entry); 428 429 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 430 431 /* 432 * If the data queue was below the threshold before the txdone 433 * handler we must make sure the packet queue in the mac80211 stack 434 * is reenabled when the txdone handler has finished. This has to be 435 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 436 * before it was stopped. 437 */ 438 spin_lock_bh(&entry->queue->tx_lock); 439 if (!rt2x00queue_threshold(entry->queue)) 440 rt2x00queue_unpause_queue(entry->queue); 441 spin_unlock_bh(&entry->queue->tx_lock); 442} 443EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 444 445void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 446{ 447 struct txdone_entry_desc txdesc; 448 449 txdesc.flags = 0; 450 __set_bit(status, &txdesc.flags); 451 txdesc.retry = 0; 452 453 rt2x00lib_txdone(entry, &txdesc); 454} 455EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 456 457static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 458{ 459 struct ieee80211_mgmt *mgmt = (void *)data; 460 u8 *pos, *end; 461 462 pos = (u8 *)mgmt->u.beacon.variable; 463 end = data + len; 464 while (pos < end) { 465 if (pos + 2 + pos[1] > end) 466 return NULL; 467 468 if (pos[0] == ie) 469 return pos; 470 471 pos += 2 + pos[1]; 472 } 473 474 return NULL; 475} 476 477static void rt2x00lib_sleep(struct work_struct *work) 478{ 479 struct rt2x00_dev *rt2x00dev = 480 container_of(work, struct rt2x00_dev, sleep_work); 481 482 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 483 return; 484 485 /* 486 * Check again is powersaving is enabled, to prevent races from delayed 487 * work execution. 488 */ 489 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 490 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 491 IEEE80211_CONF_CHANGE_PS); 492} 493 494static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 495 struct sk_buff *skb, 496 struct rxdone_entry_desc *rxdesc) 497{ 498 struct ieee80211_hdr *hdr = (void *) skb->data; 499 struct ieee80211_tim_ie *tim_ie; 500 u8 *tim; 501 u8 tim_len; 502 bool cam; 503 504 /* If this is not a beacon, or if mac80211 has no powersaving 505 * configured, or if the device is already in powersaving mode 506 * we can exit now. */ 507 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 508 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 509 return; 510 511 /* min. beacon length + FCS_LEN */ 512 if (skb->len <= 40 + FCS_LEN) 513 return; 514 515 /* and only beacons from the associated BSSID, please */ 516 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 517 !rt2x00dev->aid) 518 return; 519 520 rt2x00dev->last_beacon = jiffies; 521 522 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 523 if (!tim) 524 return; 525 526 if (tim[1] < sizeof(*tim_ie)) 527 return; 528 529 tim_len = tim[1]; 530 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 531 532 /* Check whenever the PHY can be turned off again. */ 533 534 /* 1. What about buffered unicast traffic for our AID? */ 535 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 536 537 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 538 cam |= (tim_ie->bitmap_ctrl & 0x01); 539 540 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 541 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 542} 543 544static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 545 struct rxdone_entry_desc *rxdesc) 546{ 547 struct ieee80211_supported_band *sband; 548 const struct rt2x00_rate *rate; 549 unsigned int i; 550 int signal = rxdesc->signal; 551 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 552 553 switch (rxdesc->rate_mode) { 554 case RATE_MODE_CCK: 555 case RATE_MODE_OFDM: 556 /* 557 * For non-HT rates the MCS value needs to contain the 558 * actually used rate modulation (CCK or OFDM). 559 */ 560 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 561 signal = RATE_MCS(rxdesc->rate_mode, signal); 562 563 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 564 for (i = 0; i < sband->n_bitrates; i++) { 565 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 566 if (((type == RXDONE_SIGNAL_PLCP) && 567 (rate->plcp == signal)) || 568 ((type == RXDONE_SIGNAL_BITRATE) && 569 (rate->bitrate == signal)) || 570 ((type == RXDONE_SIGNAL_MCS) && 571 (rate->mcs == signal))) { 572 return i; 573 } 574 } 575 break; 576 case RATE_MODE_HT_MIX: 577 case RATE_MODE_HT_GREENFIELD: 578 if (signal >= 0 && signal <= 76) 579 return signal; 580 break; 581 default: 582 break; 583 } 584 585 WARNING(rt2x00dev, "Frame received with unrecognized signal, " 586 "mode=0x%.4x, signal=0x%.4x, type=%d.\n", 587 rxdesc->rate_mode, signal, type); 588 return 0; 589} 590 591void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) 592{ 593 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 594 struct rxdone_entry_desc rxdesc; 595 struct sk_buff *skb; 596 struct ieee80211_rx_status *rx_status; 597 unsigned int header_length; 598 int rate_idx; 599 600 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 601 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 602 goto submit_entry; 603 604 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 605 goto submit_entry; 606 607 /* 608 * Allocate a new sk_buffer. If no new buffer available, drop the 609 * received frame and reuse the existing buffer. 610 */ 611 skb = rt2x00queue_alloc_rxskb(entry, gfp); 612 if (!skb) 613 goto submit_entry; 614 615 /* 616 * Unmap the skb. 617 */ 618 rt2x00queue_unmap_skb(entry); 619 620 /* 621 * Extract the RXD details. 622 */ 623 memset(&rxdesc, 0, sizeof(rxdesc)); 624 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 625 626 /* 627 * Check for valid size in case we get corrupted descriptor from 628 * hardware. 629 */ 630 if (unlikely(rxdesc.size == 0 || 631 rxdesc.size > entry->queue->data_size)) { 632 ERROR(rt2x00dev, "Wrong frame size %d max %d.\n", 633 rxdesc.size, entry->queue->data_size); 634 dev_kfree_skb(entry->skb); 635 goto renew_skb; 636 } 637 638 /* 639 * The data behind the ieee80211 header must be 640 * aligned on a 4 byte boundary. 641 */ 642 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 643 644 /* 645 * Hardware might have stripped the IV/EIV/ICV data, 646 * in that case it is possible that the data was 647 * provided separately (through hardware descriptor) 648 * in which case we should reinsert the data into the frame. 649 */ 650 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 651 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 652 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 653 &rxdesc); 654 else if (header_length && 655 (rxdesc.size > header_length) && 656 (rxdesc.dev_flags & RXDONE_L2PAD)) 657 rt2x00queue_remove_l2pad(entry->skb, header_length); 658 659 /* Trim buffer to correct size */ 660 skb_trim(entry->skb, rxdesc.size); 661 662 /* 663 * Translate the signal to the correct bitrate index. 664 */ 665 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 666 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 667 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 668 rxdesc.flags |= RX_FLAG_HT; 669 670 /* 671 * Check if this is a beacon, and more frames have been 672 * buffered while we were in powersaving mode. 673 */ 674 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 675 676 /* 677 * Update extra components 678 */ 679 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 680 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 681 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb); 682 683 /* 684 * Initialize RX status information, and send frame 685 * to mac80211. 686 */ 687 rx_status = IEEE80211_SKB_RXCB(entry->skb); 688 689 /* Ensure that all fields of rx_status are initialized 690 * properly. The skb->cb array was used for driver 691 * specific informations, so rx_status might contain 692 * garbage. 693 */ 694 memset(rx_status, 0, sizeof(*rx_status)); 695 696 rx_status->mactime = rxdesc.timestamp; 697 rx_status->band = rt2x00dev->curr_band; 698 rx_status->freq = rt2x00dev->curr_freq; 699 rx_status->rate_idx = rate_idx; 700 rx_status->signal = rxdesc.rssi; 701 rx_status->flag = rxdesc.flags; 702 rx_status->antenna = rt2x00dev->link.ant.active.rx; 703 704 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 705 706renew_skb: 707 /* 708 * Replace the skb with the freshly allocated one. 709 */ 710 entry->skb = skb; 711 712submit_entry: 713 entry->flags = 0; 714 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 715 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 716 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 717 rt2x00dev->ops->lib->clear_entry(entry); 718} 719EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 720 721/* 722 * Driver initialization handlers. 723 */ 724const struct rt2x00_rate rt2x00_supported_rates[12] = { 725 { 726 .flags = DEV_RATE_CCK, 727 .bitrate = 10, 728 .ratemask = BIT(0), 729 .plcp = 0x00, 730 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 731 }, 732 { 733 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 734 .bitrate = 20, 735 .ratemask = BIT(1), 736 .plcp = 0x01, 737 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 738 }, 739 { 740 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 741 .bitrate = 55, 742 .ratemask = BIT(2), 743 .plcp = 0x02, 744 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 745 }, 746 { 747 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 748 .bitrate = 110, 749 .ratemask = BIT(3), 750 .plcp = 0x03, 751 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 752 }, 753 { 754 .flags = DEV_RATE_OFDM, 755 .bitrate = 60, 756 .ratemask = BIT(4), 757 .plcp = 0x0b, 758 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 759 }, 760 { 761 .flags = DEV_RATE_OFDM, 762 .bitrate = 90, 763 .ratemask = BIT(5), 764 .plcp = 0x0f, 765 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 766 }, 767 { 768 .flags = DEV_RATE_OFDM, 769 .bitrate = 120, 770 .ratemask = BIT(6), 771 .plcp = 0x0a, 772 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 773 }, 774 { 775 .flags = DEV_RATE_OFDM, 776 .bitrate = 180, 777 .ratemask = BIT(7), 778 .plcp = 0x0e, 779 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 780 }, 781 { 782 .flags = DEV_RATE_OFDM, 783 .bitrate = 240, 784 .ratemask = BIT(8), 785 .plcp = 0x09, 786 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 787 }, 788 { 789 .flags = DEV_RATE_OFDM, 790 .bitrate = 360, 791 .ratemask = BIT(9), 792 .plcp = 0x0d, 793 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 794 }, 795 { 796 .flags = DEV_RATE_OFDM, 797 .bitrate = 480, 798 .ratemask = BIT(10), 799 .plcp = 0x08, 800 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 801 }, 802 { 803 .flags = DEV_RATE_OFDM, 804 .bitrate = 540, 805 .ratemask = BIT(11), 806 .plcp = 0x0c, 807 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 808 }, 809}; 810 811static void rt2x00lib_channel(struct ieee80211_channel *entry, 812 const int channel, const int tx_power, 813 const int value) 814{ 815 /* XXX: this assumption about the band is wrong for 802.11j */ 816 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; 817 entry->center_freq = ieee80211_channel_to_frequency(channel, 818 entry->band); 819 entry->hw_value = value; 820 entry->max_power = tx_power; 821 entry->max_antenna_gain = 0xff; 822} 823 824static void rt2x00lib_rate(struct ieee80211_rate *entry, 825 const u16 index, const struct rt2x00_rate *rate) 826{ 827 entry->flags = 0; 828 entry->bitrate = rate->bitrate; 829 entry->hw_value = index; 830 entry->hw_value_short = index; 831 832 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 833 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 834} 835 836static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 837 struct hw_mode_spec *spec) 838{ 839 struct ieee80211_hw *hw = rt2x00dev->hw; 840 struct ieee80211_channel *channels; 841 struct ieee80211_rate *rates; 842 unsigned int num_rates; 843 unsigned int i; 844 845 num_rates = 0; 846 if (spec->supported_rates & SUPPORT_RATE_CCK) 847 num_rates += 4; 848 if (spec->supported_rates & SUPPORT_RATE_OFDM) 849 num_rates += 8; 850 851 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 852 if (!channels) 853 return -ENOMEM; 854 855 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 856 if (!rates) 857 goto exit_free_channels; 858 859 /* 860 * Initialize Rate list. 861 */ 862 for (i = 0; i < num_rates; i++) 863 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 864 865 /* 866 * Initialize Channel list. 867 */ 868 for (i = 0; i < spec->num_channels; i++) { 869 rt2x00lib_channel(&channels[i], 870 spec->channels[i].channel, 871 spec->channels_info[i].max_power, i); 872 } 873 874 /* 875 * Intitialize 802.11b, 802.11g 876 * Rates: CCK, OFDM. 877 * Channels: 2.4 GHz 878 */ 879 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 880 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14; 881 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates; 882 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels; 883 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates; 884 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = 885 &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; 886 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap, 887 &spec->ht, sizeof(spec->ht)); 888 } 889 890 /* 891 * Intitialize 802.11a 892 * Rates: OFDM. 893 * Channels: OFDM, UNII, HiperLAN2. 894 */ 895 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 896 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels = 897 spec->num_channels - 14; 898 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates = 899 num_rates - 4; 900 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14]; 901 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4]; 902 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = 903 &rt2x00dev->bands[IEEE80211_BAND_5GHZ]; 904 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap, 905 &spec->ht, sizeof(spec->ht)); 906 } 907 908 return 0; 909 910 exit_free_channels: 911 kfree(channels); 912 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); 913 return -ENOMEM; 914} 915 916static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 917{ 918 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 919 ieee80211_unregister_hw(rt2x00dev->hw); 920 921 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) { 922 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels); 923 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates); 924 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL; 925 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL; 926 } 927 928 kfree(rt2x00dev->spec.channels_info); 929} 930 931static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 932{ 933 struct hw_mode_spec *spec = &rt2x00dev->spec; 934 int status; 935 936 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 937 return 0; 938 939 /* 940 * Initialize HW modes. 941 */ 942 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 943 if (status) 944 return status; 945 946 /* 947 * Initialize HW fields. 948 */ 949 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 950 951 /* 952 * Initialize extra TX headroom required. 953 */ 954 rt2x00dev->hw->extra_tx_headroom = 955 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 956 rt2x00dev->ops->extra_tx_headroom); 957 958 /* 959 * Take TX headroom required for alignment into account. 960 */ 961 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 962 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 963 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) 964 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 965 966 /* 967 * Tell mac80211 about the size of our private STA structure. 968 */ 969 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 970 971 /* 972 * Allocate tx status FIFO for driver use. 973 */ 974 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) { 975 /* 976 * Allocate the txstatus fifo. In the worst case the tx 977 * status fifo has to hold the tx status of all entries 978 * in all tx queues. Hence, calculate the kfifo size as 979 * tx_queues * entry_num and round up to the nearest 980 * power of 2. 981 */ 982 int kfifo_size = 983 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 984 rt2x00dev->ops->tx->entry_num * 985 sizeof(u32)); 986 987 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 988 GFP_KERNEL); 989 if (status) 990 return status; 991 } 992 993 /* 994 * Initialize tasklets if used by the driver. Tasklets are 995 * disabled until the interrupts are turned on. The driver 996 * has to handle that. 997 */ 998#define RT2X00_TASKLET_INIT(taskletname) \ 999 if (rt2x00dev->ops->lib->taskletname) { \ 1000 tasklet_init(&rt2x00dev->taskletname, \ 1001 rt2x00dev->ops->lib->taskletname, \ 1002 (unsigned long)rt2x00dev); \ 1003 } 1004 1005 RT2X00_TASKLET_INIT(txstatus_tasklet); 1006 RT2X00_TASKLET_INIT(pretbtt_tasklet); 1007 RT2X00_TASKLET_INIT(tbtt_tasklet); 1008 RT2X00_TASKLET_INIT(rxdone_tasklet); 1009 RT2X00_TASKLET_INIT(autowake_tasklet); 1010 1011#undef RT2X00_TASKLET_INIT 1012 1013 /* 1014 * Register HW. 1015 */ 1016 status = ieee80211_register_hw(rt2x00dev->hw); 1017 if (status) 1018 return status; 1019 1020 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1021 1022 return 0; 1023} 1024 1025/* 1026 * Initialization/uninitialization handlers. 1027 */ 1028static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1029{ 1030 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1031 return; 1032 1033 /* 1034 * Unregister extra components. 1035 */ 1036 rt2x00rfkill_unregister(rt2x00dev); 1037 1038 /* 1039 * Allow the HW to uninitialize. 1040 */ 1041 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1042 1043 /* 1044 * Free allocated queue entries. 1045 */ 1046 rt2x00queue_uninitialize(rt2x00dev); 1047} 1048 1049static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1050{ 1051 int status; 1052 1053 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1054 return 0; 1055 1056 /* 1057 * Allocate all queue entries. 1058 */ 1059 status = rt2x00queue_initialize(rt2x00dev); 1060 if (status) 1061 return status; 1062 1063 /* 1064 * Initialize the device. 1065 */ 1066 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1067 if (status) { 1068 rt2x00queue_uninitialize(rt2x00dev); 1069 return status; 1070 } 1071 1072 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1073 1074 return 0; 1075} 1076 1077int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1078{ 1079 int retval; 1080 1081 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1082 return 0; 1083 1084 /* 1085 * If this is the first interface which is added, 1086 * we should load the firmware now. 1087 */ 1088 retval = rt2x00lib_load_firmware(rt2x00dev); 1089 if (retval) 1090 return retval; 1091 1092 /* 1093 * Initialize the device. 1094 */ 1095 retval = rt2x00lib_initialize(rt2x00dev); 1096 if (retval) 1097 return retval; 1098 1099 rt2x00dev->intf_ap_count = 0; 1100 rt2x00dev->intf_sta_count = 0; 1101 rt2x00dev->intf_associated = 0; 1102 1103 /* Enable the radio */ 1104 retval = rt2x00lib_enable_radio(rt2x00dev); 1105 if (retval) 1106 return retval; 1107 1108 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1109 1110 return 0; 1111} 1112 1113void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1114{ 1115 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1116 return; 1117 1118 /* 1119 * Perhaps we can add something smarter here, 1120 * but for now just disabling the radio should do. 1121 */ 1122 rt2x00lib_disable_radio(rt2x00dev); 1123 1124 rt2x00dev->intf_ap_count = 0; 1125 rt2x00dev->intf_sta_count = 0; 1126 rt2x00dev->intf_associated = 0; 1127} 1128 1129static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) 1130{ 1131 struct ieee80211_iface_limit *if_limit; 1132 struct ieee80211_iface_combination *if_combination; 1133 1134 if (rt2x00dev->ops->max_ap_intf < 2) 1135 return; 1136 1137 /* 1138 * Build up AP interface limits structure. 1139 */ 1140 if_limit = &rt2x00dev->if_limits_ap; 1141 if_limit->max = rt2x00dev->ops->max_ap_intf; 1142 if_limit->types = BIT(NL80211_IFTYPE_AP); 1143 1144 /* 1145 * Build up AP interface combinations structure. 1146 */ 1147 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; 1148 if_combination->limits = if_limit; 1149 if_combination->n_limits = 1; 1150 if_combination->max_interfaces = if_limit->max; 1151 if_combination->num_different_channels = 1; 1152 1153 /* 1154 * Finally, specify the possible combinations to mac80211. 1155 */ 1156 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; 1157 rt2x00dev->hw->wiphy->n_iface_combinations = 1; 1158} 1159 1160/* 1161 * driver allocation handlers. 1162 */ 1163int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1164{ 1165 int retval = -ENOMEM; 1166 1167 /* 1168 * Set possible interface combinations. 1169 */ 1170 rt2x00lib_set_if_combinations(rt2x00dev); 1171 1172 /* 1173 * Allocate the driver data memory, if necessary. 1174 */ 1175 if (rt2x00dev->ops->drv_data_size > 0) { 1176 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1177 GFP_KERNEL); 1178 if (!rt2x00dev->drv_data) { 1179 retval = -ENOMEM; 1180 goto exit; 1181 } 1182 } 1183 1184 spin_lock_init(&rt2x00dev->irqmask_lock); 1185 mutex_init(&rt2x00dev->csr_mutex); 1186 1187 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1188 1189 /* 1190 * Make room for rt2x00_intf inside the per-interface 1191 * structure ieee80211_vif. 1192 */ 1193 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1194 1195 /* 1196 * rt2x00 devices can only use the last n bits of the MAC address 1197 * for virtual interfaces. 1198 */ 1199 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = 1200 (rt2x00dev->ops->max_ap_intf - 1); 1201 1202 /* 1203 * Determine which operating modes are supported, all modes 1204 * which require beaconing, depend on the availability of 1205 * beacon entries. 1206 */ 1207 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1208 if (rt2x00dev->ops->bcn->entry_num > 0) 1209 rt2x00dev->hw->wiphy->interface_modes |= 1210 BIT(NL80211_IFTYPE_ADHOC) | 1211 BIT(NL80211_IFTYPE_AP) | 1212 BIT(NL80211_IFTYPE_MESH_POINT) | 1213 BIT(NL80211_IFTYPE_WDS); 1214 1215 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 1216 1217 /* 1218 * Initialize work. 1219 */ 1220 rt2x00dev->workqueue = 1221 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0); 1222 if (!rt2x00dev->workqueue) { 1223 retval = -ENOMEM; 1224 goto exit; 1225 } 1226 1227 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1228 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1229 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1230 1231 /* 1232 * Let the driver probe the device to detect the capabilities. 1233 */ 1234 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1235 if (retval) { 1236 ERROR(rt2x00dev, "Failed to allocate device.\n"); 1237 goto exit; 1238 } 1239 1240 /* 1241 * Allocate queue array. 1242 */ 1243 retval = rt2x00queue_allocate(rt2x00dev); 1244 if (retval) 1245 goto exit; 1246 1247 /* 1248 * Initialize ieee80211 structure. 1249 */ 1250 retval = rt2x00lib_probe_hw(rt2x00dev); 1251 if (retval) { 1252 ERROR(rt2x00dev, "Failed to initialize hw.\n"); 1253 goto exit; 1254 } 1255 1256 /* 1257 * Register extra components. 1258 */ 1259 rt2x00link_register(rt2x00dev); 1260 rt2x00leds_register(rt2x00dev); 1261 rt2x00debug_register(rt2x00dev); 1262 rt2x00rfkill_register(rt2x00dev); 1263 1264 return 0; 1265 1266exit: 1267 rt2x00lib_remove_dev(rt2x00dev); 1268 1269 return retval; 1270} 1271EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1272 1273void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1274{ 1275 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1276 1277 /* 1278 * Disable radio. 1279 */ 1280 rt2x00lib_disable_radio(rt2x00dev); 1281 1282 /* 1283 * Stop all work. 1284 */ 1285 cancel_work_sync(&rt2x00dev->intf_work); 1286 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1287 cancel_work_sync(&rt2x00dev->sleep_work); 1288 if (rt2x00_is_usb(rt2x00dev)) { 1289 hrtimer_cancel(&rt2x00dev->txstatus_timer); 1290 cancel_work_sync(&rt2x00dev->rxdone_work); 1291 cancel_work_sync(&rt2x00dev->txdone_work); 1292 } 1293 if (rt2x00dev->workqueue) 1294 destroy_workqueue(rt2x00dev->workqueue); 1295 1296 /* 1297 * Free the tx status fifo. 1298 */ 1299 kfifo_free(&rt2x00dev->txstatus_fifo); 1300 1301 /* 1302 * Kill the tx status tasklet. 1303 */ 1304 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1305 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1306 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1307 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1308 tasklet_kill(&rt2x00dev->autowake_tasklet); 1309 1310 /* 1311 * Uninitialize device. 1312 */ 1313 rt2x00lib_uninitialize(rt2x00dev); 1314 1315 /* 1316 * Free extra components 1317 */ 1318 rt2x00debug_deregister(rt2x00dev); 1319 rt2x00leds_unregister(rt2x00dev); 1320 1321 /* 1322 * Free ieee80211_hw memory. 1323 */ 1324 rt2x00lib_remove_hw(rt2x00dev); 1325 1326 /* 1327 * Free firmware image. 1328 */ 1329 rt2x00lib_free_firmware(rt2x00dev); 1330 1331 /* 1332 * Free queue structures. 1333 */ 1334 rt2x00queue_free(rt2x00dev); 1335 1336 /* 1337 * Free the driver data. 1338 */ 1339 if (rt2x00dev->drv_data) 1340 kfree(rt2x00dev->drv_data); 1341} 1342EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1343 1344/* 1345 * Device state handlers 1346 */ 1347#ifdef CONFIG_PM 1348int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) 1349{ 1350 NOTICE(rt2x00dev, "Going to sleep.\n"); 1351 1352 /* 1353 * Prevent mac80211 from accessing driver while suspended. 1354 */ 1355 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1356 return 0; 1357 1358 /* 1359 * Cleanup as much as possible. 1360 */ 1361 rt2x00lib_uninitialize(rt2x00dev); 1362 1363 /* 1364 * Suspend/disable extra components. 1365 */ 1366 rt2x00leds_suspend(rt2x00dev); 1367 rt2x00debug_deregister(rt2x00dev); 1368 1369 /* 1370 * Set device mode to sleep for power management, 1371 * on some hardware this call seems to consistently fail. 1372 * From the specifications it is hard to tell why it fails, 1373 * and if this is a "bad thing". 1374 * Overall it is safe to just ignore the failure and 1375 * continue suspending. The only downside is that the 1376 * device will not be in optimal power save mode, but with 1377 * the radio and the other components already disabled the 1378 * device is as good as disabled. 1379 */ 1380 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1381 WARNING(rt2x00dev, "Device failed to enter sleep state, " 1382 "continue suspending.\n"); 1383 1384 return 0; 1385} 1386EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1387 1388int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1389{ 1390 NOTICE(rt2x00dev, "Waking up.\n"); 1391 1392 /* 1393 * Restore/enable extra components. 1394 */ 1395 rt2x00debug_register(rt2x00dev); 1396 rt2x00leds_resume(rt2x00dev); 1397 1398 /* 1399 * We are ready again to receive requests from mac80211. 1400 */ 1401 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1402 1403 return 0; 1404} 1405EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1406#endif /* CONFIG_PM */ 1407 1408/* 1409 * rt2x00lib module information. 1410 */ 1411MODULE_AUTHOR(DRV_PROJECT); 1412MODULE_VERSION(DRV_VERSION); 1413MODULE_DESCRIPTION("rt2x00 library"); 1414MODULE_LICENSE("GPL");