Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22/*
23 Module: rt2x00lib
24 Abstract: rt2x00 generic device routines.
25 */
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/slab.h>
30#include <linux/log2.h>
31
32#include "rt2x00.h"
33#include "rt2x00lib.h"
34
35/*
36 * Utility functions.
37 */
38u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 struct ieee80211_vif *vif)
40{
41 /*
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
44 */
45 if (rt2x00dev->intf_sta_count)
46 return 0;
47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48}
49EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51/*
52 * Radio control handlers.
53 */
54int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55{
56 int status;
57
58 /*
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
61 */
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 return 0;
64
65 /*
66 * Initialize all data queues.
67 */
68 rt2x00queue_init_queues(rt2x00dev);
69
70 /*
71 * Enable radio.
72 */
73 status =
74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 if (status)
76 return status;
77
78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80 rt2x00leds_led_radio(rt2x00dev, true);
81 rt2x00led_led_activity(rt2x00dev, true);
82
83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85 /*
86 * Enable queues.
87 */
88 rt2x00queue_start_queues(rt2x00dev);
89 rt2x00link_start_tuner(rt2x00dev);
90 rt2x00link_start_agc(rt2x00dev);
91 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
92 rt2x00link_start_vcocal(rt2x00dev);
93
94 /*
95 * Start watchdog monitoring.
96 */
97 rt2x00link_start_watchdog(rt2x00dev);
98
99 return 0;
100}
101
102void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
103{
104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105 return;
106
107 /*
108 * Stop watchdog monitoring.
109 */
110 rt2x00link_stop_watchdog(rt2x00dev);
111
112 /*
113 * Stop all queues
114 */
115 rt2x00link_stop_agc(rt2x00dev);
116 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
117 rt2x00link_stop_vcocal(rt2x00dev);
118 rt2x00link_stop_tuner(rt2x00dev);
119 rt2x00queue_stop_queues(rt2x00dev);
120 rt2x00queue_flush_queues(rt2x00dev, true);
121
122 /*
123 * Disable radio.
124 */
125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127 rt2x00led_led_activity(rt2x00dev, false);
128 rt2x00leds_led_radio(rt2x00dev, false);
129}
130
131static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132 struct ieee80211_vif *vif)
133{
134 struct rt2x00_dev *rt2x00dev = data;
135 struct rt2x00_intf *intf = vif_to_intf(vif);
136
137 /*
138 * It is possible the radio was disabled while the work had been
139 * scheduled. If that happens we should return here immediately,
140 * note that in the spinlock protected area above the delayed_flags
141 * have been cleared correctly.
142 */
143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144 return;
145
146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
147 rt2x00queue_update_beacon(rt2x00dev, vif);
148}
149
150static void rt2x00lib_intf_scheduled(struct work_struct *work)
151{
152 struct rt2x00_dev *rt2x00dev =
153 container_of(work, struct rt2x00_dev, intf_work);
154
155 /*
156 * Iterate over each interface and perform the
157 * requested configurations.
158 */
159 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160 IEEE80211_IFACE_ITER_RESUME_ALL,
161 rt2x00lib_intf_scheduled_iter,
162 rt2x00dev);
163}
164
165static void rt2x00lib_autowakeup(struct work_struct *work)
166{
167 struct rt2x00_dev *rt2x00dev =
168 container_of(work, struct rt2x00_dev, autowakeup_work.work);
169
170 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
171 return;
172
173 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
174 ERROR(rt2x00dev, "Device failed to wakeup.\n");
175 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
176}
177
178/*
179 * Interrupt context handlers.
180 */
181static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
182 struct ieee80211_vif *vif)
183{
184 struct rt2x00_dev *rt2x00dev = data;
185 struct sk_buff *skb;
186
187 /*
188 * Only AP mode interfaces do broad- and multicast buffering
189 */
190 if (vif->type != NL80211_IFTYPE_AP)
191 return;
192
193 /*
194 * Send out buffered broad- and multicast frames
195 */
196 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
197 while (skb) {
198 rt2x00mac_tx(rt2x00dev->hw, NULL, skb);
199 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
200 }
201}
202
203static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
204 struct ieee80211_vif *vif)
205{
206 struct rt2x00_dev *rt2x00dev = data;
207
208 if (vif->type != NL80211_IFTYPE_AP &&
209 vif->type != NL80211_IFTYPE_ADHOC &&
210 vif->type != NL80211_IFTYPE_MESH_POINT &&
211 vif->type != NL80211_IFTYPE_WDS)
212 return;
213
214 /*
215 * Update the beacon without locking. This is safe on PCI devices
216 * as they only update the beacon periodically here. This should
217 * never be called for USB devices.
218 */
219 WARN_ON(rt2x00_is_usb(rt2x00dev));
220 rt2x00queue_update_beacon_locked(rt2x00dev, vif);
221}
222
223void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
224{
225 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
226 return;
227
228 /* send buffered bc/mc frames out for every bssid */
229 ieee80211_iterate_active_interfaces_atomic(
230 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
231 rt2x00lib_bc_buffer_iter, rt2x00dev);
232 /*
233 * Devices with pre tbtt interrupt don't need to update the beacon
234 * here as they will fetch the next beacon directly prior to
235 * transmission.
236 */
237 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
238 return;
239
240 /* fetch next beacon */
241 ieee80211_iterate_active_interfaces_atomic(
242 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
243 rt2x00lib_beaconupdate_iter, rt2x00dev);
244}
245EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
246
247void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
248{
249 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
250 return;
251
252 /* fetch next beacon */
253 ieee80211_iterate_active_interfaces_atomic(
254 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
255 rt2x00lib_beaconupdate_iter, rt2x00dev);
256}
257EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
258
259void rt2x00lib_dmastart(struct queue_entry *entry)
260{
261 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
262 rt2x00queue_index_inc(entry, Q_INDEX);
263}
264EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
265
266void rt2x00lib_dmadone(struct queue_entry *entry)
267{
268 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
269 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
270 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
271}
272EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
273
274void rt2x00lib_txdone(struct queue_entry *entry,
275 struct txdone_entry_desc *txdesc)
276{
277 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
278 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
279 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
280 unsigned int header_length, i;
281 u8 rate_idx, rate_flags, retry_rates;
282 u8 skbdesc_flags = skbdesc->flags;
283 bool success;
284
285 /*
286 * Unmap the skb.
287 */
288 rt2x00queue_unmap_skb(entry);
289
290 /*
291 * Remove the extra tx headroom from the skb.
292 */
293 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
294
295 /*
296 * Signal that the TX descriptor is no longer in the skb.
297 */
298 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
299
300 /*
301 * Determine the length of 802.11 header.
302 */
303 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
304
305 /*
306 * Remove L2 padding which was added during
307 */
308 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
309 rt2x00queue_remove_l2pad(entry->skb, header_length);
310
311 /*
312 * If the IV/EIV data was stripped from the frame before it was
313 * passed to the hardware, we should now reinsert it again because
314 * mac80211 will expect the same data to be present it the
315 * frame as it was passed to us.
316 */
317 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
318 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
319
320 /*
321 * Send frame to debugfs immediately, after this call is completed
322 * we are going to overwrite the skb->cb array.
323 */
324 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
325
326 /*
327 * Determine if the frame has been successfully transmitted.
328 */
329 success =
330 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
331 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
332
333 /*
334 * Update TX statistics.
335 */
336 rt2x00dev->link.qual.tx_success += success;
337 rt2x00dev->link.qual.tx_failed += !success;
338
339 rate_idx = skbdesc->tx_rate_idx;
340 rate_flags = skbdesc->tx_rate_flags;
341 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
342 (txdesc->retry + 1) : 1;
343
344 /*
345 * Initialize TX status
346 */
347 memset(&tx_info->status, 0, sizeof(tx_info->status));
348 tx_info->status.ack_signal = 0;
349
350 /*
351 * Frame was send with retries, hardware tried
352 * different rates to send out the frame, at each
353 * retry it lowered the rate 1 step except when the
354 * lowest rate was used.
355 */
356 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
357 tx_info->status.rates[i].idx = rate_idx - i;
358 tx_info->status.rates[i].flags = rate_flags;
359
360 if (rate_idx - i == 0) {
361 /*
362 * The lowest rate (index 0) was used until the
363 * number of max retries was reached.
364 */
365 tx_info->status.rates[i].count = retry_rates - i;
366 i++;
367 break;
368 }
369 tx_info->status.rates[i].count = 1;
370 }
371 if (i < (IEEE80211_TX_MAX_RATES - 1))
372 tx_info->status.rates[i].idx = -1; /* terminate */
373
374 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
375 if (success)
376 tx_info->flags |= IEEE80211_TX_STAT_ACK;
377 else
378 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
379 }
380
381 /*
382 * Every single frame has it's own tx status, hence report
383 * every frame as ampdu of size 1.
384 *
385 * TODO: if we can find out how many frames were aggregated
386 * by the hw we could provide the real ampdu_len to mac80211
387 * which would allow the rc algorithm to better decide on
388 * which rates are suitable.
389 */
390 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
391 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
392 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
393 tx_info->status.ampdu_len = 1;
394 tx_info->status.ampdu_ack_len = success ? 1 : 0;
395
396 if (!success)
397 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
398 }
399
400 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
401 if (success)
402 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
403 else
404 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
405 }
406
407 /*
408 * Only send the status report to mac80211 when it's a frame
409 * that originated in mac80211. If this was a extra frame coming
410 * through a mac80211 library call (RTS/CTS) then we should not
411 * send the status report back.
412 */
413 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
414 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
415 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
416 else
417 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
418 } else
419 dev_kfree_skb_any(entry->skb);
420
421 /*
422 * Make this entry available for reuse.
423 */
424 entry->skb = NULL;
425 entry->flags = 0;
426
427 rt2x00dev->ops->lib->clear_entry(entry);
428
429 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
430
431 /*
432 * If the data queue was below the threshold before the txdone
433 * handler we must make sure the packet queue in the mac80211 stack
434 * is reenabled when the txdone handler has finished. This has to be
435 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
436 * before it was stopped.
437 */
438 spin_lock_bh(&entry->queue->tx_lock);
439 if (!rt2x00queue_threshold(entry->queue))
440 rt2x00queue_unpause_queue(entry->queue);
441 spin_unlock_bh(&entry->queue->tx_lock);
442}
443EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
444
445void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
446{
447 struct txdone_entry_desc txdesc;
448
449 txdesc.flags = 0;
450 __set_bit(status, &txdesc.flags);
451 txdesc.retry = 0;
452
453 rt2x00lib_txdone(entry, &txdesc);
454}
455EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
456
457static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
458{
459 struct ieee80211_mgmt *mgmt = (void *)data;
460 u8 *pos, *end;
461
462 pos = (u8 *)mgmt->u.beacon.variable;
463 end = data + len;
464 while (pos < end) {
465 if (pos + 2 + pos[1] > end)
466 return NULL;
467
468 if (pos[0] == ie)
469 return pos;
470
471 pos += 2 + pos[1];
472 }
473
474 return NULL;
475}
476
477static void rt2x00lib_sleep(struct work_struct *work)
478{
479 struct rt2x00_dev *rt2x00dev =
480 container_of(work, struct rt2x00_dev, sleep_work);
481
482 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
483 return;
484
485 /*
486 * Check again is powersaving is enabled, to prevent races from delayed
487 * work execution.
488 */
489 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
490 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
491 IEEE80211_CONF_CHANGE_PS);
492}
493
494static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
495 struct sk_buff *skb,
496 struct rxdone_entry_desc *rxdesc)
497{
498 struct ieee80211_hdr *hdr = (void *) skb->data;
499 struct ieee80211_tim_ie *tim_ie;
500 u8 *tim;
501 u8 tim_len;
502 bool cam;
503
504 /* If this is not a beacon, or if mac80211 has no powersaving
505 * configured, or if the device is already in powersaving mode
506 * we can exit now. */
507 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
508 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
509 return;
510
511 /* min. beacon length + FCS_LEN */
512 if (skb->len <= 40 + FCS_LEN)
513 return;
514
515 /* and only beacons from the associated BSSID, please */
516 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
517 !rt2x00dev->aid)
518 return;
519
520 rt2x00dev->last_beacon = jiffies;
521
522 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
523 if (!tim)
524 return;
525
526 if (tim[1] < sizeof(*tim_ie))
527 return;
528
529 tim_len = tim[1];
530 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
531
532 /* Check whenever the PHY can be turned off again. */
533
534 /* 1. What about buffered unicast traffic for our AID? */
535 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
536
537 /* 2. Maybe the AP wants to send multicast/broadcast data? */
538 cam |= (tim_ie->bitmap_ctrl & 0x01);
539
540 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
541 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
542}
543
544static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
545 struct rxdone_entry_desc *rxdesc)
546{
547 struct ieee80211_supported_band *sband;
548 const struct rt2x00_rate *rate;
549 unsigned int i;
550 int signal = rxdesc->signal;
551 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
552
553 switch (rxdesc->rate_mode) {
554 case RATE_MODE_CCK:
555 case RATE_MODE_OFDM:
556 /*
557 * For non-HT rates the MCS value needs to contain the
558 * actually used rate modulation (CCK or OFDM).
559 */
560 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
561 signal = RATE_MCS(rxdesc->rate_mode, signal);
562
563 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
564 for (i = 0; i < sband->n_bitrates; i++) {
565 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
566 if (((type == RXDONE_SIGNAL_PLCP) &&
567 (rate->plcp == signal)) ||
568 ((type == RXDONE_SIGNAL_BITRATE) &&
569 (rate->bitrate == signal)) ||
570 ((type == RXDONE_SIGNAL_MCS) &&
571 (rate->mcs == signal))) {
572 return i;
573 }
574 }
575 break;
576 case RATE_MODE_HT_MIX:
577 case RATE_MODE_HT_GREENFIELD:
578 if (signal >= 0 && signal <= 76)
579 return signal;
580 break;
581 default:
582 break;
583 }
584
585 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
586 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
587 rxdesc->rate_mode, signal, type);
588 return 0;
589}
590
591void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
592{
593 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
594 struct rxdone_entry_desc rxdesc;
595 struct sk_buff *skb;
596 struct ieee80211_rx_status *rx_status;
597 unsigned int header_length;
598 int rate_idx;
599
600 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
601 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
602 goto submit_entry;
603
604 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
605 goto submit_entry;
606
607 /*
608 * Allocate a new sk_buffer. If no new buffer available, drop the
609 * received frame and reuse the existing buffer.
610 */
611 skb = rt2x00queue_alloc_rxskb(entry, gfp);
612 if (!skb)
613 goto submit_entry;
614
615 /*
616 * Unmap the skb.
617 */
618 rt2x00queue_unmap_skb(entry);
619
620 /*
621 * Extract the RXD details.
622 */
623 memset(&rxdesc, 0, sizeof(rxdesc));
624 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
625
626 /*
627 * Check for valid size in case we get corrupted descriptor from
628 * hardware.
629 */
630 if (unlikely(rxdesc.size == 0 ||
631 rxdesc.size > entry->queue->data_size)) {
632 ERROR(rt2x00dev, "Wrong frame size %d max %d.\n",
633 rxdesc.size, entry->queue->data_size);
634 dev_kfree_skb(entry->skb);
635 goto renew_skb;
636 }
637
638 /*
639 * The data behind the ieee80211 header must be
640 * aligned on a 4 byte boundary.
641 */
642 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
643
644 /*
645 * Hardware might have stripped the IV/EIV/ICV data,
646 * in that case it is possible that the data was
647 * provided separately (through hardware descriptor)
648 * in which case we should reinsert the data into the frame.
649 */
650 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
651 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
652 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
653 &rxdesc);
654 else if (header_length &&
655 (rxdesc.size > header_length) &&
656 (rxdesc.dev_flags & RXDONE_L2PAD))
657 rt2x00queue_remove_l2pad(entry->skb, header_length);
658
659 /* Trim buffer to correct size */
660 skb_trim(entry->skb, rxdesc.size);
661
662 /*
663 * Translate the signal to the correct bitrate index.
664 */
665 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
666 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
667 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
668 rxdesc.flags |= RX_FLAG_HT;
669
670 /*
671 * Check if this is a beacon, and more frames have been
672 * buffered while we were in powersaving mode.
673 */
674 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
675
676 /*
677 * Update extra components
678 */
679 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
680 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
681 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
682
683 /*
684 * Initialize RX status information, and send frame
685 * to mac80211.
686 */
687 rx_status = IEEE80211_SKB_RXCB(entry->skb);
688
689 /* Ensure that all fields of rx_status are initialized
690 * properly. The skb->cb array was used for driver
691 * specific informations, so rx_status might contain
692 * garbage.
693 */
694 memset(rx_status, 0, sizeof(*rx_status));
695
696 rx_status->mactime = rxdesc.timestamp;
697 rx_status->band = rt2x00dev->curr_band;
698 rx_status->freq = rt2x00dev->curr_freq;
699 rx_status->rate_idx = rate_idx;
700 rx_status->signal = rxdesc.rssi;
701 rx_status->flag = rxdesc.flags;
702 rx_status->antenna = rt2x00dev->link.ant.active.rx;
703
704 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
705
706renew_skb:
707 /*
708 * Replace the skb with the freshly allocated one.
709 */
710 entry->skb = skb;
711
712submit_entry:
713 entry->flags = 0;
714 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
715 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
716 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
717 rt2x00dev->ops->lib->clear_entry(entry);
718}
719EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
720
721/*
722 * Driver initialization handlers.
723 */
724const struct rt2x00_rate rt2x00_supported_rates[12] = {
725 {
726 .flags = DEV_RATE_CCK,
727 .bitrate = 10,
728 .ratemask = BIT(0),
729 .plcp = 0x00,
730 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
731 },
732 {
733 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
734 .bitrate = 20,
735 .ratemask = BIT(1),
736 .plcp = 0x01,
737 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
738 },
739 {
740 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
741 .bitrate = 55,
742 .ratemask = BIT(2),
743 .plcp = 0x02,
744 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
745 },
746 {
747 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
748 .bitrate = 110,
749 .ratemask = BIT(3),
750 .plcp = 0x03,
751 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
752 },
753 {
754 .flags = DEV_RATE_OFDM,
755 .bitrate = 60,
756 .ratemask = BIT(4),
757 .plcp = 0x0b,
758 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
759 },
760 {
761 .flags = DEV_RATE_OFDM,
762 .bitrate = 90,
763 .ratemask = BIT(5),
764 .plcp = 0x0f,
765 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
766 },
767 {
768 .flags = DEV_RATE_OFDM,
769 .bitrate = 120,
770 .ratemask = BIT(6),
771 .plcp = 0x0a,
772 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
773 },
774 {
775 .flags = DEV_RATE_OFDM,
776 .bitrate = 180,
777 .ratemask = BIT(7),
778 .plcp = 0x0e,
779 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
780 },
781 {
782 .flags = DEV_RATE_OFDM,
783 .bitrate = 240,
784 .ratemask = BIT(8),
785 .plcp = 0x09,
786 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
787 },
788 {
789 .flags = DEV_RATE_OFDM,
790 .bitrate = 360,
791 .ratemask = BIT(9),
792 .plcp = 0x0d,
793 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
794 },
795 {
796 .flags = DEV_RATE_OFDM,
797 .bitrate = 480,
798 .ratemask = BIT(10),
799 .plcp = 0x08,
800 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
801 },
802 {
803 .flags = DEV_RATE_OFDM,
804 .bitrate = 540,
805 .ratemask = BIT(11),
806 .plcp = 0x0c,
807 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
808 },
809};
810
811static void rt2x00lib_channel(struct ieee80211_channel *entry,
812 const int channel, const int tx_power,
813 const int value)
814{
815 /* XXX: this assumption about the band is wrong for 802.11j */
816 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
817 entry->center_freq = ieee80211_channel_to_frequency(channel,
818 entry->band);
819 entry->hw_value = value;
820 entry->max_power = tx_power;
821 entry->max_antenna_gain = 0xff;
822}
823
824static void rt2x00lib_rate(struct ieee80211_rate *entry,
825 const u16 index, const struct rt2x00_rate *rate)
826{
827 entry->flags = 0;
828 entry->bitrate = rate->bitrate;
829 entry->hw_value = index;
830 entry->hw_value_short = index;
831
832 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
833 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
834}
835
836static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
837 struct hw_mode_spec *spec)
838{
839 struct ieee80211_hw *hw = rt2x00dev->hw;
840 struct ieee80211_channel *channels;
841 struct ieee80211_rate *rates;
842 unsigned int num_rates;
843 unsigned int i;
844
845 num_rates = 0;
846 if (spec->supported_rates & SUPPORT_RATE_CCK)
847 num_rates += 4;
848 if (spec->supported_rates & SUPPORT_RATE_OFDM)
849 num_rates += 8;
850
851 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
852 if (!channels)
853 return -ENOMEM;
854
855 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
856 if (!rates)
857 goto exit_free_channels;
858
859 /*
860 * Initialize Rate list.
861 */
862 for (i = 0; i < num_rates; i++)
863 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
864
865 /*
866 * Initialize Channel list.
867 */
868 for (i = 0; i < spec->num_channels; i++) {
869 rt2x00lib_channel(&channels[i],
870 spec->channels[i].channel,
871 spec->channels_info[i].max_power, i);
872 }
873
874 /*
875 * Intitialize 802.11b, 802.11g
876 * Rates: CCK, OFDM.
877 * Channels: 2.4 GHz
878 */
879 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
880 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
881 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
882 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
883 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
884 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
885 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
886 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
887 &spec->ht, sizeof(spec->ht));
888 }
889
890 /*
891 * Intitialize 802.11a
892 * Rates: OFDM.
893 * Channels: OFDM, UNII, HiperLAN2.
894 */
895 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
896 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
897 spec->num_channels - 14;
898 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
899 num_rates - 4;
900 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
901 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
902 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
903 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
904 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
905 &spec->ht, sizeof(spec->ht));
906 }
907
908 return 0;
909
910 exit_free_channels:
911 kfree(channels);
912 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
913 return -ENOMEM;
914}
915
916static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
917{
918 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
919 ieee80211_unregister_hw(rt2x00dev->hw);
920
921 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
922 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
923 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
924 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
925 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
926 }
927
928 kfree(rt2x00dev->spec.channels_info);
929}
930
931static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
932{
933 struct hw_mode_spec *spec = &rt2x00dev->spec;
934 int status;
935
936 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
937 return 0;
938
939 /*
940 * Initialize HW modes.
941 */
942 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
943 if (status)
944 return status;
945
946 /*
947 * Initialize HW fields.
948 */
949 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
950
951 /*
952 * Initialize extra TX headroom required.
953 */
954 rt2x00dev->hw->extra_tx_headroom =
955 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
956 rt2x00dev->ops->extra_tx_headroom);
957
958 /*
959 * Take TX headroom required for alignment into account.
960 */
961 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
962 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
963 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
964 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
965
966 /*
967 * Tell mac80211 about the size of our private STA structure.
968 */
969 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
970
971 /*
972 * Allocate tx status FIFO for driver use.
973 */
974 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
975 /*
976 * Allocate the txstatus fifo. In the worst case the tx
977 * status fifo has to hold the tx status of all entries
978 * in all tx queues. Hence, calculate the kfifo size as
979 * tx_queues * entry_num and round up to the nearest
980 * power of 2.
981 */
982 int kfifo_size =
983 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
984 rt2x00dev->ops->tx->entry_num *
985 sizeof(u32));
986
987 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
988 GFP_KERNEL);
989 if (status)
990 return status;
991 }
992
993 /*
994 * Initialize tasklets if used by the driver. Tasklets are
995 * disabled until the interrupts are turned on. The driver
996 * has to handle that.
997 */
998#define RT2X00_TASKLET_INIT(taskletname) \
999 if (rt2x00dev->ops->lib->taskletname) { \
1000 tasklet_init(&rt2x00dev->taskletname, \
1001 rt2x00dev->ops->lib->taskletname, \
1002 (unsigned long)rt2x00dev); \
1003 }
1004
1005 RT2X00_TASKLET_INIT(txstatus_tasklet);
1006 RT2X00_TASKLET_INIT(pretbtt_tasklet);
1007 RT2X00_TASKLET_INIT(tbtt_tasklet);
1008 RT2X00_TASKLET_INIT(rxdone_tasklet);
1009 RT2X00_TASKLET_INIT(autowake_tasklet);
1010
1011#undef RT2X00_TASKLET_INIT
1012
1013 /*
1014 * Register HW.
1015 */
1016 status = ieee80211_register_hw(rt2x00dev->hw);
1017 if (status)
1018 return status;
1019
1020 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1021
1022 return 0;
1023}
1024
1025/*
1026 * Initialization/uninitialization handlers.
1027 */
1028static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1029{
1030 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1031 return;
1032
1033 /*
1034 * Unregister extra components.
1035 */
1036 rt2x00rfkill_unregister(rt2x00dev);
1037
1038 /*
1039 * Allow the HW to uninitialize.
1040 */
1041 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1042
1043 /*
1044 * Free allocated queue entries.
1045 */
1046 rt2x00queue_uninitialize(rt2x00dev);
1047}
1048
1049static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1050{
1051 int status;
1052
1053 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1054 return 0;
1055
1056 /*
1057 * Allocate all queue entries.
1058 */
1059 status = rt2x00queue_initialize(rt2x00dev);
1060 if (status)
1061 return status;
1062
1063 /*
1064 * Initialize the device.
1065 */
1066 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1067 if (status) {
1068 rt2x00queue_uninitialize(rt2x00dev);
1069 return status;
1070 }
1071
1072 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1073
1074 return 0;
1075}
1076
1077int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1078{
1079 int retval;
1080
1081 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1082 return 0;
1083
1084 /*
1085 * If this is the first interface which is added,
1086 * we should load the firmware now.
1087 */
1088 retval = rt2x00lib_load_firmware(rt2x00dev);
1089 if (retval)
1090 return retval;
1091
1092 /*
1093 * Initialize the device.
1094 */
1095 retval = rt2x00lib_initialize(rt2x00dev);
1096 if (retval)
1097 return retval;
1098
1099 rt2x00dev->intf_ap_count = 0;
1100 rt2x00dev->intf_sta_count = 0;
1101 rt2x00dev->intf_associated = 0;
1102
1103 /* Enable the radio */
1104 retval = rt2x00lib_enable_radio(rt2x00dev);
1105 if (retval)
1106 return retval;
1107
1108 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1109
1110 return 0;
1111}
1112
1113void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1114{
1115 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1116 return;
1117
1118 /*
1119 * Perhaps we can add something smarter here,
1120 * but for now just disabling the radio should do.
1121 */
1122 rt2x00lib_disable_radio(rt2x00dev);
1123
1124 rt2x00dev->intf_ap_count = 0;
1125 rt2x00dev->intf_sta_count = 0;
1126 rt2x00dev->intf_associated = 0;
1127}
1128
1129static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1130{
1131 struct ieee80211_iface_limit *if_limit;
1132 struct ieee80211_iface_combination *if_combination;
1133
1134 if (rt2x00dev->ops->max_ap_intf < 2)
1135 return;
1136
1137 /*
1138 * Build up AP interface limits structure.
1139 */
1140 if_limit = &rt2x00dev->if_limits_ap;
1141 if_limit->max = rt2x00dev->ops->max_ap_intf;
1142 if_limit->types = BIT(NL80211_IFTYPE_AP);
1143
1144 /*
1145 * Build up AP interface combinations structure.
1146 */
1147 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1148 if_combination->limits = if_limit;
1149 if_combination->n_limits = 1;
1150 if_combination->max_interfaces = if_limit->max;
1151 if_combination->num_different_channels = 1;
1152
1153 /*
1154 * Finally, specify the possible combinations to mac80211.
1155 */
1156 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1157 rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1158}
1159
1160/*
1161 * driver allocation handlers.
1162 */
1163int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1164{
1165 int retval = -ENOMEM;
1166
1167 /*
1168 * Set possible interface combinations.
1169 */
1170 rt2x00lib_set_if_combinations(rt2x00dev);
1171
1172 /*
1173 * Allocate the driver data memory, if necessary.
1174 */
1175 if (rt2x00dev->ops->drv_data_size > 0) {
1176 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1177 GFP_KERNEL);
1178 if (!rt2x00dev->drv_data) {
1179 retval = -ENOMEM;
1180 goto exit;
1181 }
1182 }
1183
1184 spin_lock_init(&rt2x00dev->irqmask_lock);
1185 mutex_init(&rt2x00dev->csr_mutex);
1186
1187 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1188
1189 /*
1190 * Make room for rt2x00_intf inside the per-interface
1191 * structure ieee80211_vif.
1192 */
1193 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1194
1195 /*
1196 * rt2x00 devices can only use the last n bits of the MAC address
1197 * for virtual interfaces.
1198 */
1199 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1200 (rt2x00dev->ops->max_ap_intf - 1);
1201
1202 /*
1203 * Determine which operating modes are supported, all modes
1204 * which require beaconing, depend on the availability of
1205 * beacon entries.
1206 */
1207 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1208 if (rt2x00dev->ops->bcn->entry_num > 0)
1209 rt2x00dev->hw->wiphy->interface_modes |=
1210 BIT(NL80211_IFTYPE_ADHOC) |
1211 BIT(NL80211_IFTYPE_AP) |
1212 BIT(NL80211_IFTYPE_MESH_POINT) |
1213 BIT(NL80211_IFTYPE_WDS);
1214
1215 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1216
1217 /*
1218 * Initialize work.
1219 */
1220 rt2x00dev->workqueue =
1221 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1222 if (!rt2x00dev->workqueue) {
1223 retval = -ENOMEM;
1224 goto exit;
1225 }
1226
1227 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1228 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1229 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1230
1231 /*
1232 * Let the driver probe the device to detect the capabilities.
1233 */
1234 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1235 if (retval) {
1236 ERROR(rt2x00dev, "Failed to allocate device.\n");
1237 goto exit;
1238 }
1239
1240 /*
1241 * Allocate queue array.
1242 */
1243 retval = rt2x00queue_allocate(rt2x00dev);
1244 if (retval)
1245 goto exit;
1246
1247 /*
1248 * Initialize ieee80211 structure.
1249 */
1250 retval = rt2x00lib_probe_hw(rt2x00dev);
1251 if (retval) {
1252 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1253 goto exit;
1254 }
1255
1256 /*
1257 * Register extra components.
1258 */
1259 rt2x00link_register(rt2x00dev);
1260 rt2x00leds_register(rt2x00dev);
1261 rt2x00debug_register(rt2x00dev);
1262 rt2x00rfkill_register(rt2x00dev);
1263
1264 return 0;
1265
1266exit:
1267 rt2x00lib_remove_dev(rt2x00dev);
1268
1269 return retval;
1270}
1271EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1272
1273void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1274{
1275 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1276
1277 /*
1278 * Disable radio.
1279 */
1280 rt2x00lib_disable_radio(rt2x00dev);
1281
1282 /*
1283 * Stop all work.
1284 */
1285 cancel_work_sync(&rt2x00dev->intf_work);
1286 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1287 cancel_work_sync(&rt2x00dev->sleep_work);
1288 if (rt2x00_is_usb(rt2x00dev)) {
1289 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1290 cancel_work_sync(&rt2x00dev->rxdone_work);
1291 cancel_work_sync(&rt2x00dev->txdone_work);
1292 }
1293 if (rt2x00dev->workqueue)
1294 destroy_workqueue(rt2x00dev->workqueue);
1295
1296 /*
1297 * Free the tx status fifo.
1298 */
1299 kfifo_free(&rt2x00dev->txstatus_fifo);
1300
1301 /*
1302 * Kill the tx status tasklet.
1303 */
1304 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1305 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1306 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1307 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1308 tasklet_kill(&rt2x00dev->autowake_tasklet);
1309
1310 /*
1311 * Uninitialize device.
1312 */
1313 rt2x00lib_uninitialize(rt2x00dev);
1314
1315 /*
1316 * Free extra components
1317 */
1318 rt2x00debug_deregister(rt2x00dev);
1319 rt2x00leds_unregister(rt2x00dev);
1320
1321 /*
1322 * Free ieee80211_hw memory.
1323 */
1324 rt2x00lib_remove_hw(rt2x00dev);
1325
1326 /*
1327 * Free firmware image.
1328 */
1329 rt2x00lib_free_firmware(rt2x00dev);
1330
1331 /*
1332 * Free queue structures.
1333 */
1334 rt2x00queue_free(rt2x00dev);
1335
1336 /*
1337 * Free the driver data.
1338 */
1339 if (rt2x00dev->drv_data)
1340 kfree(rt2x00dev->drv_data);
1341}
1342EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1343
1344/*
1345 * Device state handlers
1346 */
1347#ifdef CONFIG_PM
1348int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1349{
1350 NOTICE(rt2x00dev, "Going to sleep.\n");
1351
1352 /*
1353 * Prevent mac80211 from accessing driver while suspended.
1354 */
1355 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1356 return 0;
1357
1358 /*
1359 * Cleanup as much as possible.
1360 */
1361 rt2x00lib_uninitialize(rt2x00dev);
1362
1363 /*
1364 * Suspend/disable extra components.
1365 */
1366 rt2x00leds_suspend(rt2x00dev);
1367 rt2x00debug_deregister(rt2x00dev);
1368
1369 /*
1370 * Set device mode to sleep for power management,
1371 * on some hardware this call seems to consistently fail.
1372 * From the specifications it is hard to tell why it fails,
1373 * and if this is a "bad thing".
1374 * Overall it is safe to just ignore the failure and
1375 * continue suspending. The only downside is that the
1376 * device will not be in optimal power save mode, but with
1377 * the radio and the other components already disabled the
1378 * device is as good as disabled.
1379 */
1380 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1381 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1382 "continue suspending.\n");
1383
1384 return 0;
1385}
1386EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1387
1388int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1389{
1390 NOTICE(rt2x00dev, "Waking up.\n");
1391
1392 /*
1393 * Restore/enable extra components.
1394 */
1395 rt2x00debug_register(rt2x00dev);
1396 rt2x00leds_resume(rt2x00dev);
1397
1398 /*
1399 * We are ready again to receive requests from mac80211.
1400 */
1401 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1402
1403 return 0;
1404}
1405EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1406#endif /* CONFIG_PM */
1407
1408/*
1409 * rt2x00lib module information.
1410 */
1411MODULE_AUTHOR(DRV_PROJECT);
1412MODULE_VERSION(DRV_VERSION);
1413MODULE_DESCRIPTION("rt2x00 library");
1414MODULE_LICENSE("GPL");