Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30#include <drm/drmP.h>
31#include "i915_drv.h"
32#include <drm/i915_drm.h>
33#include "i915_trace.h"
34#include "intel_drv.h"
35
36/*
37 * 965+ support PIPE_CONTROL commands, which provide finer grained control
38 * over cache flushing.
39 */
40struct pipe_control {
41 struct drm_i915_gem_object *obj;
42 volatile u32 *cpu_page;
43 u32 gtt_offset;
44};
45
46static inline int ring_space(struct intel_ring_buffer *ring)
47{
48 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
49 if (space < 0)
50 space += ring->size;
51 return space;
52}
53
54static int
55gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
57 u32 flush_domains)
58{
59 u32 cmd;
60 int ret;
61
62 cmd = MI_FLUSH;
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
65
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67 cmd |= MI_READ_FLUSH;
68
69 ret = intel_ring_begin(ring, 2);
70 if (ret)
71 return ret;
72
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
76
77 return 0;
78}
79
80static int
81gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
83 u32 flush_domains)
84{
85 struct drm_device *dev = ring->dev;
86 u32 cmd;
87 int ret;
88
89 /*
90 * read/write caches:
91 *
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
95 *
96 * read-only caches:
97 *
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
100 *
101 * I915_GEM_DOMAIN_COMMAND may not exist?
102 *
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
105 *
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
108 *
109 * TLBs:
110 *
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
115 */
116
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121 cmd |= MI_EXE_FLUSH;
122
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
126
127 ret = intel_ring_begin(ring, 2);
128 if (ret)
129 return ret;
130
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
134
135 return 0;
136}
137
138/**
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142 *
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146 * 0.
147 *
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150 *
151 * And the workaround for these two requires this workaround first:
152 *
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
155 * flushes.
156 *
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159 * volume 2 part 1:
160 *
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
168 *
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
174 */
175static int
176intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177{
178 struct pipe_control *pc = ring->private;
179 u32 scratch_addr = pc->gtt_offset + 128;
180 int ret;
181
182
183 ret = intel_ring_begin(ring, 6);
184 if (ret)
185 return ret;
186
187 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189 PIPE_CONTROL_STALL_AT_SCOREBOARD);
190 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191 intel_ring_emit(ring, 0); /* low dword */
192 intel_ring_emit(ring, 0); /* high dword */
193 intel_ring_emit(ring, MI_NOOP);
194 intel_ring_advance(ring);
195
196 ret = intel_ring_begin(ring, 6);
197 if (ret)
198 return ret;
199
200 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, 0);
205 intel_ring_emit(ring, MI_NOOP);
206 intel_ring_advance(ring);
207
208 return 0;
209}
210
211static int
212gen6_render_ring_flush(struct intel_ring_buffer *ring,
213 u32 invalidate_domains, u32 flush_domains)
214{
215 u32 flags = 0;
216 struct pipe_control *pc = ring->private;
217 u32 scratch_addr = pc->gtt_offset + 128;
218 int ret;
219
220 /* Force SNB workarounds for PIPE_CONTROL flushes */
221 ret = intel_emit_post_sync_nonzero_flush(ring);
222 if (ret)
223 return ret;
224
225 /* Just flush everything. Experiments have shown that reducing the
226 * number of bits based on the write domains has little performance
227 * impact.
228 */
229 if (flush_domains) {
230 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232 /*
233 * Ensure that any following seqno writes only happen
234 * when the render cache is indeed flushed.
235 */
236 flags |= PIPE_CONTROL_CS_STALL;
237 }
238 if (invalidate_domains) {
239 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245 /*
246 * TLB invalidate requires a post-sync write.
247 */
248 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249 }
250
251 ret = intel_ring_begin(ring, 4);
252 if (ret)
253 return ret;
254
255 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256 intel_ring_emit(ring, flags);
257 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258 intel_ring_emit(ring, 0);
259 intel_ring_advance(ring);
260
261 return 0;
262}
263
264static int
265gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
266{
267 int ret;
268
269 ret = intel_ring_begin(ring, 4);
270 if (ret)
271 return ret;
272
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275 PIPE_CONTROL_STALL_AT_SCOREBOARD);
276 intel_ring_emit(ring, 0);
277 intel_ring_emit(ring, 0);
278 intel_ring_advance(ring);
279
280 return 0;
281}
282
283static int
284gen7_render_ring_flush(struct intel_ring_buffer *ring,
285 u32 invalidate_domains, u32 flush_domains)
286{
287 u32 flags = 0;
288 struct pipe_control *pc = ring->private;
289 u32 scratch_addr = pc->gtt_offset + 128;
290 int ret;
291
292 /*
293 * Ensure that any following seqno writes only happen when the render
294 * cache is indeed flushed.
295 *
296 * Workaround: 4th PIPE_CONTROL command (except the ones with only
297 * read-cache invalidate bits set) must have the CS_STALL bit set. We
298 * don't try to be clever and just set it unconditionally.
299 */
300 flags |= PIPE_CONTROL_CS_STALL;
301
302 /* Just flush everything. Experiments have shown that reducing the
303 * number of bits based on the write domains has little performance
304 * impact.
305 */
306 if (flush_domains) {
307 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
308 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
309 }
310 if (invalidate_domains) {
311 flags |= PIPE_CONTROL_TLB_INVALIDATE;
312 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
313 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
314 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
315 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
316 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
317 /*
318 * TLB invalidate requires a post-sync write.
319 */
320 flags |= PIPE_CONTROL_QW_WRITE;
321
322 /* Workaround: we must issue a pipe_control with CS-stall bit
323 * set before a pipe_control command that has the state cache
324 * invalidate bit set. */
325 gen7_render_ring_cs_stall_wa(ring);
326 }
327
328 ret = intel_ring_begin(ring, 4);
329 if (ret)
330 return ret;
331
332 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
333 intel_ring_emit(ring, flags);
334 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
335 intel_ring_emit(ring, 0);
336 intel_ring_advance(ring);
337
338 return 0;
339}
340
341static void ring_write_tail(struct intel_ring_buffer *ring,
342 u32 value)
343{
344 drm_i915_private_t *dev_priv = ring->dev->dev_private;
345 I915_WRITE_TAIL(ring, value);
346}
347
348u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
349{
350 drm_i915_private_t *dev_priv = ring->dev->dev_private;
351 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
352 RING_ACTHD(ring->mmio_base) : ACTHD;
353
354 return I915_READ(acthd_reg);
355}
356
357static int init_ring_common(struct intel_ring_buffer *ring)
358{
359 struct drm_device *dev = ring->dev;
360 drm_i915_private_t *dev_priv = dev->dev_private;
361 struct drm_i915_gem_object *obj = ring->obj;
362 int ret = 0;
363 u32 head;
364
365 if (HAS_FORCE_WAKE(dev))
366 gen6_gt_force_wake_get(dev_priv);
367
368 /* Stop the ring if it's running. */
369 I915_WRITE_CTL(ring, 0);
370 I915_WRITE_HEAD(ring, 0);
371 ring->write_tail(ring, 0);
372
373 head = I915_READ_HEAD(ring) & HEAD_ADDR;
374
375 /* G45 ring initialization fails to reset head to zero */
376 if (head != 0) {
377 DRM_DEBUG_KMS("%s head not reset to zero "
378 "ctl %08x head %08x tail %08x start %08x\n",
379 ring->name,
380 I915_READ_CTL(ring),
381 I915_READ_HEAD(ring),
382 I915_READ_TAIL(ring),
383 I915_READ_START(ring));
384
385 I915_WRITE_HEAD(ring, 0);
386
387 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
388 DRM_ERROR("failed to set %s head to zero "
389 "ctl %08x head %08x tail %08x start %08x\n",
390 ring->name,
391 I915_READ_CTL(ring),
392 I915_READ_HEAD(ring),
393 I915_READ_TAIL(ring),
394 I915_READ_START(ring));
395 }
396 }
397
398 /* Initialize the ring. This must happen _after_ we've cleared the ring
399 * registers with the above sequence (the readback of the HEAD registers
400 * also enforces ordering), otherwise the hw might lose the new ring
401 * register values. */
402 I915_WRITE_START(ring, obj->gtt_offset);
403 I915_WRITE_CTL(ring,
404 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
405 | RING_VALID);
406
407 /* If the head is still not zero, the ring is dead */
408 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
409 I915_READ_START(ring) == obj->gtt_offset &&
410 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
411 DRM_ERROR("%s initialization failed "
412 "ctl %08x head %08x tail %08x start %08x\n",
413 ring->name,
414 I915_READ_CTL(ring),
415 I915_READ_HEAD(ring),
416 I915_READ_TAIL(ring),
417 I915_READ_START(ring));
418 ret = -EIO;
419 goto out;
420 }
421
422 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
423 i915_kernel_lost_context(ring->dev);
424 else {
425 ring->head = I915_READ_HEAD(ring);
426 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
427 ring->space = ring_space(ring);
428 ring->last_retired_head = -1;
429 }
430
431out:
432 if (HAS_FORCE_WAKE(dev))
433 gen6_gt_force_wake_put(dev_priv);
434
435 return ret;
436}
437
438static int
439init_pipe_control(struct intel_ring_buffer *ring)
440{
441 struct pipe_control *pc;
442 struct drm_i915_gem_object *obj;
443 int ret;
444
445 if (ring->private)
446 return 0;
447
448 pc = kmalloc(sizeof(*pc), GFP_KERNEL);
449 if (!pc)
450 return -ENOMEM;
451
452 obj = i915_gem_alloc_object(ring->dev, 4096);
453 if (obj == NULL) {
454 DRM_ERROR("Failed to allocate seqno page\n");
455 ret = -ENOMEM;
456 goto err;
457 }
458
459 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
460
461 ret = i915_gem_object_pin(obj, 4096, true, false);
462 if (ret)
463 goto err_unref;
464
465 pc->gtt_offset = obj->gtt_offset;
466 pc->cpu_page = kmap(sg_page(obj->pages->sgl));
467 if (pc->cpu_page == NULL)
468 goto err_unpin;
469
470 pc->obj = obj;
471 ring->private = pc;
472 return 0;
473
474err_unpin:
475 i915_gem_object_unpin(obj);
476err_unref:
477 drm_gem_object_unreference(&obj->base);
478err:
479 kfree(pc);
480 return ret;
481}
482
483static void
484cleanup_pipe_control(struct intel_ring_buffer *ring)
485{
486 struct pipe_control *pc = ring->private;
487 struct drm_i915_gem_object *obj;
488
489 if (!ring->private)
490 return;
491
492 obj = pc->obj;
493
494 kunmap(sg_page(obj->pages->sgl));
495 i915_gem_object_unpin(obj);
496 drm_gem_object_unreference(&obj->base);
497
498 kfree(pc);
499 ring->private = NULL;
500}
501
502static int init_render_ring(struct intel_ring_buffer *ring)
503{
504 struct drm_device *dev = ring->dev;
505 struct drm_i915_private *dev_priv = dev->dev_private;
506 int ret = init_ring_common(ring);
507
508 if (INTEL_INFO(dev)->gen > 3)
509 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
510
511 /* We need to disable the AsyncFlip performance optimisations in order
512 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
513 * programmed to '1' on all products.
514 */
515 if (INTEL_INFO(dev)->gen >= 6)
516 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
517
518 /* Required for the hardware to program scanline values for waiting */
519 if (INTEL_INFO(dev)->gen == 6)
520 I915_WRITE(GFX_MODE,
521 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
522
523 if (IS_GEN7(dev))
524 I915_WRITE(GFX_MODE_GEN7,
525 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
526 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
527
528 if (INTEL_INFO(dev)->gen >= 5) {
529 ret = init_pipe_control(ring);
530 if (ret)
531 return ret;
532 }
533
534 if (IS_GEN6(dev)) {
535 /* From the Sandybridge PRM, volume 1 part 3, page 24:
536 * "If this bit is set, STCunit will have LRA as replacement
537 * policy. [...] This bit must be reset. LRA replacement
538 * policy is not supported."
539 */
540 I915_WRITE(CACHE_MODE_0,
541 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
542
543 /* This is not explicitly set for GEN6, so read the register.
544 * see intel_ring_mi_set_context() for why we care.
545 * TODO: consider explicitly setting the bit for GEN5
546 */
547 ring->itlb_before_ctx_switch =
548 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
549 }
550
551 if (INTEL_INFO(dev)->gen >= 6)
552 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
553
554 if (HAS_L3_GPU_CACHE(dev))
555 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
556
557 return ret;
558}
559
560static void render_ring_cleanup(struct intel_ring_buffer *ring)
561{
562 struct drm_device *dev = ring->dev;
563
564 if (!ring->private)
565 return;
566
567 if (HAS_BROKEN_CS_TLB(dev))
568 drm_gem_object_unreference(to_gem_object(ring->private));
569
570 cleanup_pipe_control(ring);
571}
572
573static void
574update_mboxes(struct intel_ring_buffer *ring,
575 u32 mmio_offset)
576{
577 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
578 intel_ring_emit(ring, mmio_offset);
579 intel_ring_emit(ring, ring->outstanding_lazy_request);
580}
581
582/**
583 * gen6_add_request - Update the semaphore mailbox registers
584 *
585 * @ring - ring that is adding a request
586 * @seqno - return seqno stuck into the ring
587 *
588 * Update the mailbox registers in the *other* rings with the current seqno.
589 * This acts like a signal in the canonical semaphore.
590 */
591static int
592gen6_add_request(struct intel_ring_buffer *ring)
593{
594 u32 mbox1_reg;
595 u32 mbox2_reg;
596 int ret;
597
598 ret = intel_ring_begin(ring, 10);
599 if (ret)
600 return ret;
601
602 mbox1_reg = ring->signal_mbox[0];
603 mbox2_reg = ring->signal_mbox[1];
604
605 update_mboxes(ring, mbox1_reg);
606 update_mboxes(ring, mbox2_reg);
607 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
608 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
609 intel_ring_emit(ring, ring->outstanding_lazy_request);
610 intel_ring_emit(ring, MI_USER_INTERRUPT);
611 intel_ring_advance(ring);
612
613 return 0;
614}
615
616/**
617 * intel_ring_sync - sync the waiter to the signaller on seqno
618 *
619 * @waiter - ring that is waiting
620 * @signaller - ring which has, or will signal
621 * @seqno - seqno which the waiter will block on
622 */
623static int
624gen6_ring_sync(struct intel_ring_buffer *waiter,
625 struct intel_ring_buffer *signaller,
626 u32 seqno)
627{
628 int ret;
629 u32 dw1 = MI_SEMAPHORE_MBOX |
630 MI_SEMAPHORE_COMPARE |
631 MI_SEMAPHORE_REGISTER;
632
633 /* Throughout all of the GEM code, seqno passed implies our current
634 * seqno is >= the last seqno executed. However for hardware the
635 * comparison is strictly greater than.
636 */
637 seqno -= 1;
638
639 WARN_ON(signaller->semaphore_register[waiter->id] ==
640 MI_SEMAPHORE_SYNC_INVALID);
641
642 ret = intel_ring_begin(waiter, 4);
643 if (ret)
644 return ret;
645
646 intel_ring_emit(waiter,
647 dw1 | signaller->semaphore_register[waiter->id]);
648 intel_ring_emit(waiter, seqno);
649 intel_ring_emit(waiter, 0);
650 intel_ring_emit(waiter, MI_NOOP);
651 intel_ring_advance(waiter);
652
653 return 0;
654}
655
656#define PIPE_CONTROL_FLUSH(ring__, addr__) \
657do { \
658 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
659 PIPE_CONTROL_DEPTH_STALL); \
660 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
661 intel_ring_emit(ring__, 0); \
662 intel_ring_emit(ring__, 0); \
663} while (0)
664
665static int
666pc_render_add_request(struct intel_ring_buffer *ring)
667{
668 struct pipe_control *pc = ring->private;
669 u32 scratch_addr = pc->gtt_offset + 128;
670 int ret;
671
672 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
673 * incoherent with writes to memory, i.e. completely fubar,
674 * so we need to use PIPE_NOTIFY instead.
675 *
676 * However, we also need to workaround the qword write
677 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
678 * memory before requesting an interrupt.
679 */
680 ret = intel_ring_begin(ring, 32);
681 if (ret)
682 return ret;
683
684 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
685 PIPE_CONTROL_WRITE_FLUSH |
686 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
687 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
688 intel_ring_emit(ring, ring->outstanding_lazy_request);
689 intel_ring_emit(ring, 0);
690 PIPE_CONTROL_FLUSH(ring, scratch_addr);
691 scratch_addr += 128; /* write to separate cachelines */
692 PIPE_CONTROL_FLUSH(ring, scratch_addr);
693 scratch_addr += 128;
694 PIPE_CONTROL_FLUSH(ring, scratch_addr);
695 scratch_addr += 128;
696 PIPE_CONTROL_FLUSH(ring, scratch_addr);
697 scratch_addr += 128;
698 PIPE_CONTROL_FLUSH(ring, scratch_addr);
699 scratch_addr += 128;
700 PIPE_CONTROL_FLUSH(ring, scratch_addr);
701
702 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
703 PIPE_CONTROL_WRITE_FLUSH |
704 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
705 PIPE_CONTROL_NOTIFY);
706 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
707 intel_ring_emit(ring, ring->outstanding_lazy_request);
708 intel_ring_emit(ring, 0);
709 intel_ring_advance(ring);
710
711 return 0;
712}
713
714static u32
715gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
716{
717 /* Workaround to force correct ordering between irq and seqno writes on
718 * ivb (and maybe also on snb) by reading from a CS register (like
719 * ACTHD) before reading the status page. */
720 if (!lazy_coherency)
721 intel_ring_get_active_head(ring);
722 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
723}
724
725static u32
726ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
727{
728 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
729}
730
731static u32
732pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
733{
734 struct pipe_control *pc = ring->private;
735 return pc->cpu_page[0];
736}
737
738static bool
739gen5_ring_get_irq(struct intel_ring_buffer *ring)
740{
741 struct drm_device *dev = ring->dev;
742 drm_i915_private_t *dev_priv = dev->dev_private;
743 unsigned long flags;
744
745 if (!dev->irq_enabled)
746 return false;
747
748 spin_lock_irqsave(&dev_priv->irq_lock, flags);
749 if (ring->irq_refcount++ == 0) {
750 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
751 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
752 POSTING_READ(GTIMR);
753 }
754 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
755
756 return true;
757}
758
759static void
760gen5_ring_put_irq(struct intel_ring_buffer *ring)
761{
762 struct drm_device *dev = ring->dev;
763 drm_i915_private_t *dev_priv = dev->dev_private;
764 unsigned long flags;
765
766 spin_lock_irqsave(&dev_priv->irq_lock, flags);
767 if (--ring->irq_refcount == 0) {
768 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
769 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
770 POSTING_READ(GTIMR);
771 }
772 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
773}
774
775static bool
776i9xx_ring_get_irq(struct intel_ring_buffer *ring)
777{
778 struct drm_device *dev = ring->dev;
779 drm_i915_private_t *dev_priv = dev->dev_private;
780 unsigned long flags;
781
782 if (!dev->irq_enabled)
783 return false;
784
785 spin_lock_irqsave(&dev_priv->irq_lock, flags);
786 if (ring->irq_refcount++ == 0) {
787 dev_priv->irq_mask &= ~ring->irq_enable_mask;
788 I915_WRITE(IMR, dev_priv->irq_mask);
789 POSTING_READ(IMR);
790 }
791 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
792
793 return true;
794}
795
796static void
797i9xx_ring_put_irq(struct intel_ring_buffer *ring)
798{
799 struct drm_device *dev = ring->dev;
800 drm_i915_private_t *dev_priv = dev->dev_private;
801 unsigned long flags;
802
803 spin_lock_irqsave(&dev_priv->irq_lock, flags);
804 if (--ring->irq_refcount == 0) {
805 dev_priv->irq_mask |= ring->irq_enable_mask;
806 I915_WRITE(IMR, dev_priv->irq_mask);
807 POSTING_READ(IMR);
808 }
809 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
810}
811
812static bool
813i8xx_ring_get_irq(struct intel_ring_buffer *ring)
814{
815 struct drm_device *dev = ring->dev;
816 drm_i915_private_t *dev_priv = dev->dev_private;
817 unsigned long flags;
818
819 if (!dev->irq_enabled)
820 return false;
821
822 spin_lock_irqsave(&dev_priv->irq_lock, flags);
823 if (ring->irq_refcount++ == 0) {
824 dev_priv->irq_mask &= ~ring->irq_enable_mask;
825 I915_WRITE16(IMR, dev_priv->irq_mask);
826 POSTING_READ16(IMR);
827 }
828 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
829
830 return true;
831}
832
833static void
834i8xx_ring_put_irq(struct intel_ring_buffer *ring)
835{
836 struct drm_device *dev = ring->dev;
837 drm_i915_private_t *dev_priv = dev->dev_private;
838 unsigned long flags;
839
840 spin_lock_irqsave(&dev_priv->irq_lock, flags);
841 if (--ring->irq_refcount == 0) {
842 dev_priv->irq_mask |= ring->irq_enable_mask;
843 I915_WRITE16(IMR, dev_priv->irq_mask);
844 POSTING_READ16(IMR);
845 }
846 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
847}
848
849void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
850{
851 struct drm_device *dev = ring->dev;
852 drm_i915_private_t *dev_priv = ring->dev->dev_private;
853 u32 mmio = 0;
854
855 /* The ring status page addresses are no longer next to the rest of
856 * the ring registers as of gen7.
857 */
858 if (IS_GEN7(dev)) {
859 switch (ring->id) {
860 case RCS:
861 mmio = RENDER_HWS_PGA_GEN7;
862 break;
863 case BCS:
864 mmio = BLT_HWS_PGA_GEN7;
865 break;
866 case VCS:
867 mmio = BSD_HWS_PGA_GEN7;
868 break;
869 }
870 } else if (IS_GEN6(ring->dev)) {
871 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
872 } else {
873 mmio = RING_HWS_PGA(ring->mmio_base);
874 }
875
876 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
877 POSTING_READ(mmio);
878}
879
880static int
881bsd_ring_flush(struct intel_ring_buffer *ring,
882 u32 invalidate_domains,
883 u32 flush_domains)
884{
885 int ret;
886
887 ret = intel_ring_begin(ring, 2);
888 if (ret)
889 return ret;
890
891 intel_ring_emit(ring, MI_FLUSH);
892 intel_ring_emit(ring, MI_NOOP);
893 intel_ring_advance(ring);
894 return 0;
895}
896
897static int
898i9xx_add_request(struct intel_ring_buffer *ring)
899{
900 int ret;
901
902 ret = intel_ring_begin(ring, 4);
903 if (ret)
904 return ret;
905
906 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
907 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
908 intel_ring_emit(ring, ring->outstanding_lazy_request);
909 intel_ring_emit(ring, MI_USER_INTERRUPT);
910 intel_ring_advance(ring);
911
912 return 0;
913}
914
915static bool
916gen6_ring_get_irq(struct intel_ring_buffer *ring)
917{
918 struct drm_device *dev = ring->dev;
919 drm_i915_private_t *dev_priv = dev->dev_private;
920 unsigned long flags;
921
922 if (!dev->irq_enabled)
923 return false;
924
925 /* It looks like we need to prevent the gt from suspending while waiting
926 * for an notifiy irq, otherwise irqs seem to get lost on at least the
927 * blt/bsd rings on ivb. */
928 gen6_gt_force_wake_get(dev_priv);
929
930 spin_lock_irqsave(&dev_priv->irq_lock, flags);
931 if (ring->irq_refcount++ == 0) {
932 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
933 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask |
934 GEN6_RENDER_L3_PARITY_ERROR));
935 else
936 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
937 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
938 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
939 POSTING_READ(GTIMR);
940 }
941 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
942
943 return true;
944}
945
946static void
947gen6_ring_put_irq(struct intel_ring_buffer *ring)
948{
949 struct drm_device *dev = ring->dev;
950 drm_i915_private_t *dev_priv = dev->dev_private;
951 unsigned long flags;
952
953 spin_lock_irqsave(&dev_priv->irq_lock, flags);
954 if (--ring->irq_refcount == 0) {
955 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
956 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
957 else
958 I915_WRITE_IMR(ring, ~0);
959 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
960 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
961 POSTING_READ(GTIMR);
962 }
963 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
964
965 gen6_gt_force_wake_put(dev_priv);
966}
967
968static int
969i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
970 u32 offset, u32 length,
971 unsigned flags)
972{
973 int ret;
974
975 ret = intel_ring_begin(ring, 2);
976 if (ret)
977 return ret;
978
979 intel_ring_emit(ring,
980 MI_BATCH_BUFFER_START |
981 MI_BATCH_GTT |
982 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
983 intel_ring_emit(ring, offset);
984 intel_ring_advance(ring);
985
986 return 0;
987}
988
989/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
990#define I830_BATCH_LIMIT (256*1024)
991static int
992i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
993 u32 offset, u32 len,
994 unsigned flags)
995{
996 int ret;
997
998 if (flags & I915_DISPATCH_PINNED) {
999 ret = intel_ring_begin(ring, 4);
1000 if (ret)
1001 return ret;
1002
1003 intel_ring_emit(ring, MI_BATCH_BUFFER);
1004 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1005 intel_ring_emit(ring, offset + len - 8);
1006 intel_ring_emit(ring, MI_NOOP);
1007 intel_ring_advance(ring);
1008 } else {
1009 struct drm_i915_gem_object *obj = ring->private;
1010 u32 cs_offset = obj->gtt_offset;
1011
1012 if (len > I830_BATCH_LIMIT)
1013 return -ENOSPC;
1014
1015 ret = intel_ring_begin(ring, 9+3);
1016 if (ret)
1017 return ret;
1018 /* Blit the batch (which has now all relocs applied) to the stable batch
1019 * scratch bo area (so that the CS never stumbles over its tlb
1020 * invalidation bug) ... */
1021 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1022 XY_SRC_COPY_BLT_WRITE_ALPHA |
1023 XY_SRC_COPY_BLT_WRITE_RGB);
1024 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1025 intel_ring_emit(ring, 0);
1026 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1027 intel_ring_emit(ring, cs_offset);
1028 intel_ring_emit(ring, 0);
1029 intel_ring_emit(ring, 4096);
1030 intel_ring_emit(ring, offset);
1031 intel_ring_emit(ring, MI_FLUSH);
1032
1033 /* ... and execute it. */
1034 intel_ring_emit(ring, MI_BATCH_BUFFER);
1035 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1036 intel_ring_emit(ring, cs_offset + len - 8);
1037 intel_ring_advance(ring);
1038 }
1039
1040 return 0;
1041}
1042
1043static int
1044i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1045 u32 offset, u32 len,
1046 unsigned flags)
1047{
1048 int ret;
1049
1050 ret = intel_ring_begin(ring, 2);
1051 if (ret)
1052 return ret;
1053
1054 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1055 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1056 intel_ring_advance(ring);
1057
1058 return 0;
1059}
1060
1061static void cleanup_status_page(struct intel_ring_buffer *ring)
1062{
1063 struct drm_i915_gem_object *obj;
1064
1065 obj = ring->status_page.obj;
1066 if (obj == NULL)
1067 return;
1068
1069 kunmap(sg_page(obj->pages->sgl));
1070 i915_gem_object_unpin(obj);
1071 drm_gem_object_unreference(&obj->base);
1072 ring->status_page.obj = NULL;
1073}
1074
1075static int init_status_page(struct intel_ring_buffer *ring)
1076{
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_gem_object *obj;
1079 int ret;
1080
1081 obj = i915_gem_alloc_object(dev, 4096);
1082 if (obj == NULL) {
1083 DRM_ERROR("Failed to allocate status page\n");
1084 ret = -ENOMEM;
1085 goto err;
1086 }
1087
1088 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1089
1090 ret = i915_gem_object_pin(obj, 4096, true, false);
1091 if (ret != 0) {
1092 goto err_unref;
1093 }
1094
1095 ring->status_page.gfx_addr = obj->gtt_offset;
1096 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1097 if (ring->status_page.page_addr == NULL) {
1098 ret = -ENOMEM;
1099 goto err_unpin;
1100 }
1101 ring->status_page.obj = obj;
1102 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1103
1104 intel_ring_setup_status_page(ring);
1105 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1106 ring->name, ring->status_page.gfx_addr);
1107
1108 return 0;
1109
1110err_unpin:
1111 i915_gem_object_unpin(obj);
1112err_unref:
1113 drm_gem_object_unreference(&obj->base);
1114err:
1115 return ret;
1116}
1117
1118static int init_phys_hws_pga(struct intel_ring_buffer *ring)
1119{
1120 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1121 u32 addr;
1122
1123 if (!dev_priv->status_page_dmah) {
1124 dev_priv->status_page_dmah =
1125 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1126 if (!dev_priv->status_page_dmah)
1127 return -ENOMEM;
1128 }
1129
1130 addr = dev_priv->status_page_dmah->busaddr;
1131 if (INTEL_INFO(ring->dev)->gen >= 4)
1132 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
1133 I915_WRITE(HWS_PGA, addr);
1134
1135 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1136 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1137
1138 return 0;
1139}
1140
1141static int intel_init_ring_buffer(struct drm_device *dev,
1142 struct intel_ring_buffer *ring)
1143{
1144 struct drm_i915_gem_object *obj;
1145 struct drm_i915_private *dev_priv = dev->dev_private;
1146 int ret;
1147
1148 ring->dev = dev;
1149 INIT_LIST_HEAD(&ring->active_list);
1150 INIT_LIST_HEAD(&ring->request_list);
1151 ring->size = 32 * PAGE_SIZE;
1152 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1153
1154 init_waitqueue_head(&ring->irq_queue);
1155
1156 if (I915_NEED_GFX_HWS(dev)) {
1157 ret = init_status_page(ring);
1158 if (ret)
1159 return ret;
1160 } else {
1161 BUG_ON(ring->id != RCS);
1162 ret = init_phys_hws_pga(ring);
1163 if (ret)
1164 return ret;
1165 }
1166
1167 obj = i915_gem_alloc_object(dev, ring->size);
1168 if (obj == NULL) {
1169 DRM_ERROR("Failed to allocate ringbuffer\n");
1170 ret = -ENOMEM;
1171 goto err_hws;
1172 }
1173
1174 ring->obj = obj;
1175
1176 ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1177 if (ret)
1178 goto err_unref;
1179
1180 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1181 if (ret)
1182 goto err_unpin;
1183
1184 ring->virtual_start =
1185 ioremap_wc(dev_priv->mm.gtt->gma_bus_addr + obj->gtt_offset,
1186 ring->size);
1187 if (ring->virtual_start == NULL) {
1188 DRM_ERROR("Failed to map ringbuffer.\n");
1189 ret = -EINVAL;
1190 goto err_unpin;
1191 }
1192
1193 ret = ring->init(ring);
1194 if (ret)
1195 goto err_unmap;
1196
1197 /* Workaround an erratum on the i830 which causes a hang if
1198 * the TAIL pointer points to within the last 2 cachelines
1199 * of the buffer.
1200 */
1201 ring->effective_size = ring->size;
1202 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1203 ring->effective_size -= 128;
1204
1205 return 0;
1206
1207err_unmap:
1208 iounmap(ring->virtual_start);
1209err_unpin:
1210 i915_gem_object_unpin(obj);
1211err_unref:
1212 drm_gem_object_unreference(&obj->base);
1213 ring->obj = NULL;
1214err_hws:
1215 cleanup_status_page(ring);
1216 return ret;
1217}
1218
1219void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1220{
1221 struct drm_i915_private *dev_priv;
1222 int ret;
1223
1224 if (ring->obj == NULL)
1225 return;
1226
1227 /* Disable the ring buffer. The ring must be idle at this point */
1228 dev_priv = ring->dev->dev_private;
1229 ret = intel_ring_idle(ring);
1230 if (ret)
1231 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1232 ring->name, ret);
1233
1234 I915_WRITE_CTL(ring, 0);
1235
1236 iounmap(ring->virtual_start);
1237
1238 i915_gem_object_unpin(ring->obj);
1239 drm_gem_object_unreference(&ring->obj->base);
1240 ring->obj = NULL;
1241
1242 if (ring->cleanup)
1243 ring->cleanup(ring);
1244
1245 cleanup_status_page(ring);
1246}
1247
1248static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1249{
1250 int ret;
1251
1252 ret = i915_wait_seqno(ring, seqno);
1253 if (!ret)
1254 i915_gem_retire_requests_ring(ring);
1255
1256 return ret;
1257}
1258
1259static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1260{
1261 struct drm_i915_gem_request *request;
1262 u32 seqno = 0;
1263 int ret;
1264
1265 i915_gem_retire_requests_ring(ring);
1266
1267 if (ring->last_retired_head != -1) {
1268 ring->head = ring->last_retired_head;
1269 ring->last_retired_head = -1;
1270 ring->space = ring_space(ring);
1271 if (ring->space >= n)
1272 return 0;
1273 }
1274
1275 list_for_each_entry(request, &ring->request_list, list) {
1276 int space;
1277
1278 if (request->tail == -1)
1279 continue;
1280
1281 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1282 if (space < 0)
1283 space += ring->size;
1284 if (space >= n) {
1285 seqno = request->seqno;
1286 break;
1287 }
1288
1289 /* Consume this request in case we need more space than
1290 * is available and so need to prevent a race between
1291 * updating last_retired_head and direct reads of
1292 * I915_RING_HEAD. It also provides a nice sanity check.
1293 */
1294 request->tail = -1;
1295 }
1296
1297 if (seqno == 0)
1298 return -ENOSPC;
1299
1300 ret = intel_ring_wait_seqno(ring, seqno);
1301 if (ret)
1302 return ret;
1303
1304 if (WARN_ON(ring->last_retired_head == -1))
1305 return -ENOSPC;
1306
1307 ring->head = ring->last_retired_head;
1308 ring->last_retired_head = -1;
1309 ring->space = ring_space(ring);
1310 if (WARN_ON(ring->space < n))
1311 return -ENOSPC;
1312
1313 return 0;
1314}
1315
1316static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1317{
1318 struct drm_device *dev = ring->dev;
1319 struct drm_i915_private *dev_priv = dev->dev_private;
1320 unsigned long end;
1321 int ret;
1322
1323 ret = intel_ring_wait_request(ring, n);
1324 if (ret != -ENOSPC)
1325 return ret;
1326
1327 trace_i915_ring_wait_begin(ring);
1328 /* With GEM the hangcheck timer should kick us out of the loop,
1329 * leaving it early runs the risk of corrupting GEM state (due
1330 * to running on almost untested codepaths). But on resume
1331 * timers don't work yet, so prevent a complete hang in that
1332 * case by choosing an insanely large timeout. */
1333 end = jiffies + 60 * HZ;
1334
1335 do {
1336 ring->head = I915_READ_HEAD(ring);
1337 ring->space = ring_space(ring);
1338 if (ring->space >= n) {
1339 trace_i915_ring_wait_end(ring);
1340 return 0;
1341 }
1342
1343 if (dev->primary->master) {
1344 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1345 if (master_priv->sarea_priv)
1346 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1347 }
1348
1349 msleep(1);
1350
1351 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1352 if (ret)
1353 return ret;
1354 } while (!time_after(jiffies, end));
1355 trace_i915_ring_wait_end(ring);
1356 return -EBUSY;
1357}
1358
1359static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1360{
1361 uint32_t __iomem *virt;
1362 int rem = ring->size - ring->tail;
1363
1364 if (ring->space < rem) {
1365 int ret = ring_wait_for_space(ring, rem);
1366 if (ret)
1367 return ret;
1368 }
1369
1370 virt = ring->virtual_start + ring->tail;
1371 rem /= 4;
1372 while (rem--)
1373 iowrite32(MI_NOOP, virt++);
1374
1375 ring->tail = 0;
1376 ring->space = ring_space(ring);
1377
1378 return 0;
1379}
1380
1381int intel_ring_idle(struct intel_ring_buffer *ring)
1382{
1383 u32 seqno;
1384 int ret;
1385
1386 /* We need to add any requests required to flush the objects and ring */
1387 if (ring->outstanding_lazy_request) {
1388 ret = i915_add_request(ring, NULL, NULL);
1389 if (ret)
1390 return ret;
1391 }
1392
1393 /* Wait upon the last request to be completed */
1394 if (list_empty(&ring->request_list))
1395 return 0;
1396
1397 seqno = list_entry(ring->request_list.prev,
1398 struct drm_i915_gem_request,
1399 list)->seqno;
1400
1401 return i915_wait_seqno(ring, seqno);
1402}
1403
1404static int
1405intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1406{
1407 if (ring->outstanding_lazy_request)
1408 return 0;
1409
1410 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1411}
1412
1413int intel_ring_begin(struct intel_ring_buffer *ring,
1414 int num_dwords)
1415{
1416 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1417 int n = 4*num_dwords;
1418 int ret;
1419
1420 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1421 if (ret)
1422 return ret;
1423
1424 /* Preallocate the olr before touching the ring */
1425 ret = intel_ring_alloc_seqno(ring);
1426 if (ret)
1427 return ret;
1428
1429 if (unlikely(ring->tail + n > ring->effective_size)) {
1430 ret = intel_wrap_ring_buffer(ring);
1431 if (unlikely(ret))
1432 return ret;
1433 }
1434
1435 if (unlikely(ring->space < n)) {
1436 ret = ring_wait_for_space(ring, n);
1437 if (unlikely(ret))
1438 return ret;
1439 }
1440
1441 ring->space -= n;
1442 return 0;
1443}
1444
1445void intel_ring_advance(struct intel_ring_buffer *ring)
1446{
1447 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1448
1449 ring->tail &= ring->size - 1;
1450 if (dev_priv->stop_rings & intel_ring_flag(ring))
1451 return;
1452 ring->write_tail(ring, ring->tail);
1453}
1454
1455
1456static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1457 u32 value)
1458{
1459 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1460
1461 /* Every tail move must follow the sequence below */
1462
1463 /* Disable notification that the ring is IDLE. The GT
1464 * will then assume that it is busy and bring it out of rc6.
1465 */
1466 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1467 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1468
1469 /* Clear the context id. Here be magic! */
1470 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1471
1472 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1473 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1474 GEN6_BSD_SLEEP_INDICATOR) == 0,
1475 50))
1476 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1477
1478 /* Now that the ring is fully powered up, update the tail */
1479 I915_WRITE_TAIL(ring, value);
1480 POSTING_READ(RING_TAIL(ring->mmio_base));
1481
1482 /* Let the ring send IDLE messages to the GT again,
1483 * and so let it sleep to conserve power when idle.
1484 */
1485 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1486 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1487}
1488
1489static int gen6_ring_flush(struct intel_ring_buffer *ring,
1490 u32 invalidate, u32 flush)
1491{
1492 uint32_t cmd;
1493 int ret;
1494
1495 ret = intel_ring_begin(ring, 4);
1496 if (ret)
1497 return ret;
1498
1499 cmd = MI_FLUSH_DW;
1500 /*
1501 * Bspec vol 1c.5 - video engine command streamer:
1502 * "If ENABLED, all TLBs will be invalidated once the flush
1503 * operation is complete. This bit is only valid when the
1504 * Post-Sync Operation field is a value of 1h or 3h."
1505 */
1506 if (invalidate & I915_GEM_GPU_DOMAINS)
1507 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1508 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1509 intel_ring_emit(ring, cmd);
1510 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1511 intel_ring_emit(ring, 0);
1512 intel_ring_emit(ring, MI_NOOP);
1513 intel_ring_advance(ring);
1514 return 0;
1515}
1516
1517static int
1518hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1519 u32 offset, u32 len,
1520 unsigned flags)
1521{
1522 int ret;
1523
1524 ret = intel_ring_begin(ring, 2);
1525 if (ret)
1526 return ret;
1527
1528 intel_ring_emit(ring,
1529 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1530 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1531 /* bit0-7 is the length on GEN6+ */
1532 intel_ring_emit(ring, offset);
1533 intel_ring_advance(ring);
1534
1535 return 0;
1536}
1537
1538static int
1539gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1540 u32 offset, u32 len,
1541 unsigned flags)
1542{
1543 int ret;
1544
1545 ret = intel_ring_begin(ring, 2);
1546 if (ret)
1547 return ret;
1548
1549 intel_ring_emit(ring,
1550 MI_BATCH_BUFFER_START |
1551 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1552 /* bit0-7 is the length on GEN6+ */
1553 intel_ring_emit(ring, offset);
1554 intel_ring_advance(ring);
1555
1556 return 0;
1557}
1558
1559/* Blitter support (SandyBridge+) */
1560
1561static int blt_ring_flush(struct intel_ring_buffer *ring,
1562 u32 invalidate, u32 flush)
1563{
1564 uint32_t cmd;
1565 int ret;
1566
1567 ret = intel_ring_begin(ring, 4);
1568 if (ret)
1569 return ret;
1570
1571 cmd = MI_FLUSH_DW;
1572 /*
1573 * Bspec vol 1c.3 - blitter engine command streamer:
1574 * "If ENABLED, all TLBs will be invalidated once the flush
1575 * operation is complete. This bit is only valid when the
1576 * Post-Sync Operation field is a value of 1h or 3h."
1577 */
1578 if (invalidate & I915_GEM_DOMAIN_RENDER)
1579 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1580 MI_FLUSH_DW_OP_STOREDW;
1581 intel_ring_emit(ring, cmd);
1582 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1583 intel_ring_emit(ring, 0);
1584 intel_ring_emit(ring, MI_NOOP);
1585 intel_ring_advance(ring);
1586 return 0;
1587}
1588
1589int intel_init_render_ring_buffer(struct drm_device *dev)
1590{
1591 drm_i915_private_t *dev_priv = dev->dev_private;
1592 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1593
1594 ring->name = "render ring";
1595 ring->id = RCS;
1596 ring->mmio_base = RENDER_RING_BASE;
1597
1598 if (INTEL_INFO(dev)->gen >= 6) {
1599 ring->add_request = gen6_add_request;
1600 ring->flush = gen7_render_ring_flush;
1601 if (INTEL_INFO(dev)->gen == 6)
1602 ring->flush = gen6_render_ring_flush;
1603 ring->irq_get = gen6_ring_get_irq;
1604 ring->irq_put = gen6_ring_put_irq;
1605 ring->irq_enable_mask = GT_USER_INTERRUPT;
1606 ring->get_seqno = gen6_ring_get_seqno;
1607 ring->sync_to = gen6_ring_sync;
1608 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_INVALID;
1609 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_RV;
1610 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_RB;
1611 ring->signal_mbox[0] = GEN6_VRSYNC;
1612 ring->signal_mbox[1] = GEN6_BRSYNC;
1613 } else if (IS_GEN5(dev)) {
1614 ring->add_request = pc_render_add_request;
1615 ring->flush = gen4_render_ring_flush;
1616 ring->get_seqno = pc_render_get_seqno;
1617 ring->irq_get = gen5_ring_get_irq;
1618 ring->irq_put = gen5_ring_put_irq;
1619 ring->irq_enable_mask = GT_USER_INTERRUPT | GT_PIPE_NOTIFY;
1620 } else {
1621 ring->add_request = i9xx_add_request;
1622 if (INTEL_INFO(dev)->gen < 4)
1623 ring->flush = gen2_render_ring_flush;
1624 else
1625 ring->flush = gen4_render_ring_flush;
1626 ring->get_seqno = ring_get_seqno;
1627 if (IS_GEN2(dev)) {
1628 ring->irq_get = i8xx_ring_get_irq;
1629 ring->irq_put = i8xx_ring_put_irq;
1630 } else {
1631 ring->irq_get = i9xx_ring_get_irq;
1632 ring->irq_put = i9xx_ring_put_irq;
1633 }
1634 ring->irq_enable_mask = I915_USER_INTERRUPT;
1635 }
1636 ring->write_tail = ring_write_tail;
1637 if (IS_HASWELL(dev))
1638 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1639 else if (INTEL_INFO(dev)->gen >= 6)
1640 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1641 else if (INTEL_INFO(dev)->gen >= 4)
1642 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1643 else if (IS_I830(dev) || IS_845G(dev))
1644 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1645 else
1646 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1647 ring->init = init_render_ring;
1648 ring->cleanup = render_ring_cleanup;
1649
1650 /* Workaround batchbuffer to combat CS tlb bug. */
1651 if (HAS_BROKEN_CS_TLB(dev)) {
1652 struct drm_i915_gem_object *obj;
1653 int ret;
1654
1655 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1656 if (obj == NULL) {
1657 DRM_ERROR("Failed to allocate batch bo\n");
1658 return -ENOMEM;
1659 }
1660
1661 ret = i915_gem_object_pin(obj, 0, true, false);
1662 if (ret != 0) {
1663 drm_gem_object_unreference(&obj->base);
1664 DRM_ERROR("Failed to ping batch bo\n");
1665 return ret;
1666 }
1667
1668 ring->private = obj;
1669 }
1670
1671 return intel_init_ring_buffer(dev, ring);
1672}
1673
1674int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1675{
1676 drm_i915_private_t *dev_priv = dev->dev_private;
1677 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1678 int ret;
1679
1680 ring->name = "render ring";
1681 ring->id = RCS;
1682 ring->mmio_base = RENDER_RING_BASE;
1683
1684 if (INTEL_INFO(dev)->gen >= 6) {
1685 /* non-kms not supported on gen6+ */
1686 return -ENODEV;
1687 }
1688
1689 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1690 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1691 * the special gen5 functions. */
1692 ring->add_request = i9xx_add_request;
1693 if (INTEL_INFO(dev)->gen < 4)
1694 ring->flush = gen2_render_ring_flush;
1695 else
1696 ring->flush = gen4_render_ring_flush;
1697 ring->get_seqno = ring_get_seqno;
1698 if (IS_GEN2(dev)) {
1699 ring->irq_get = i8xx_ring_get_irq;
1700 ring->irq_put = i8xx_ring_put_irq;
1701 } else {
1702 ring->irq_get = i9xx_ring_get_irq;
1703 ring->irq_put = i9xx_ring_put_irq;
1704 }
1705 ring->irq_enable_mask = I915_USER_INTERRUPT;
1706 ring->write_tail = ring_write_tail;
1707 if (INTEL_INFO(dev)->gen >= 4)
1708 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1709 else if (IS_I830(dev) || IS_845G(dev))
1710 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1711 else
1712 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1713 ring->init = init_render_ring;
1714 ring->cleanup = render_ring_cleanup;
1715
1716 ring->dev = dev;
1717 INIT_LIST_HEAD(&ring->active_list);
1718 INIT_LIST_HEAD(&ring->request_list);
1719
1720 ring->size = size;
1721 ring->effective_size = ring->size;
1722 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1723 ring->effective_size -= 128;
1724
1725 ring->virtual_start = ioremap_wc(start, size);
1726 if (ring->virtual_start == NULL) {
1727 DRM_ERROR("can not ioremap virtual address for"
1728 " ring buffer\n");
1729 return -ENOMEM;
1730 }
1731
1732 if (!I915_NEED_GFX_HWS(dev)) {
1733 ret = init_phys_hws_pga(ring);
1734 if (ret)
1735 return ret;
1736 }
1737
1738 return 0;
1739}
1740
1741int intel_init_bsd_ring_buffer(struct drm_device *dev)
1742{
1743 drm_i915_private_t *dev_priv = dev->dev_private;
1744 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1745
1746 ring->name = "bsd ring";
1747 ring->id = VCS;
1748
1749 ring->write_tail = ring_write_tail;
1750 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1751 ring->mmio_base = GEN6_BSD_RING_BASE;
1752 /* gen6 bsd needs a special wa for tail updates */
1753 if (IS_GEN6(dev))
1754 ring->write_tail = gen6_bsd_ring_write_tail;
1755 ring->flush = gen6_ring_flush;
1756 ring->add_request = gen6_add_request;
1757 ring->get_seqno = gen6_ring_get_seqno;
1758 ring->irq_enable_mask = GEN6_BSD_USER_INTERRUPT;
1759 ring->irq_get = gen6_ring_get_irq;
1760 ring->irq_put = gen6_ring_put_irq;
1761 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1762 ring->sync_to = gen6_ring_sync;
1763 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_VR;
1764 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_INVALID;
1765 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_VB;
1766 ring->signal_mbox[0] = GEN6_RVSYNC;
1767 ring->signal_mbox[1] = GEN6_BVSYNC;
1768 } else {
1769 ring->mmio_base = BSD_RING_BASE;
1770 ring->flush = bsd_ring_flush;
1771 ring->add_request = i9xx_add_request;
1772 ring->get_seqno = ring_get_seqno;
1773 if (IS_GEN5(dev)) {
1774 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1775 ring->irq_get = gen5_ring_get_irq;
1776 ring->irq_put = gen5_ring_put_irq;
1777 } else {
1778 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1779 ring->irq_get = i9xx_ring_get_irq;
1780 ring->irq_put = i9xx_ring_put_irq;
1781 }
1782 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1783 }
1784 ring->init = init_ring_common;
1785
1786 return intel_init_ring_buffer(dev, ring);
1787}
1788
1789int intel_init_blt_ring_buffer(struct drm_device *dev)
1790{
1791 drm_i915_private_t *dev_priv = dev->dev_private;
1792 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1793
1794 ring->name = "blitter ring";
1795 ring->id = BCS;
1796
1797 ring->mmio_base = BLT_RING_BASE;
1798 ring->write_tail = ring_write_tail;
1799 ring->flush = blt_ring_flush;
1800 ring->add_request = gen6_add_request;
1801 ring->get_seqno = gen6_ring_get_seqno;
1802 ring->irq_enable_mask = GEN6_BLITTER_USER_INTERRUPT;
1803 ring->irq_get = gen6_ring_get_irq;
1804 ring->irq_put = gen6_ring_put_irq;
1805 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1806 ring->sync_to = gen6_ring_sync;
1807 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_BR;
1808 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_BV;
1809 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_INVALID;
1810 ring->signal_mbox[0] = GEN6_RBSYNC;
1811 ring->signal_mbox[1] = GEN6_VBSYNC;
1812 ring->init = init_ring_common;
1813
1814 return intel_init_ring_buffer(dev, ring);
1815}
1816
1817int
1818intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1819{
1820 int ret;
1821
1822 if (!ring->gpu_caches_dirty)
1823 return 0;
1824
1825 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1826 if (ret)
1827 return ret;
1828
1829 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
1830
1831 ring->gpu_caches_dirty = false;
1832 return 0;
1833}
1834
1835int
1836intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
1837{
1838 uint32_t flush_domains;
1839 int ret;
1840
1841 flush_domains = 0;
1842 if (ring->gpu_caches_dirty)
1843 flush_domains = I915_GEM_GPU_DOMAINS;
1844
1845 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1846 if (ret)
1847 return ret;
1848
1849 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1850
1851 ring->gpu_caches_dirty = false;
1852 return 0;
1853}