Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/gfp.h>
9#include <linux/bug.h>
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/atomic.h>
14#include <linux/debug_locks.h>
15#include <linux/mm_types.h>
16#include <linux/range.h>
17#include <linux/pfn.h>
18#include <linux/bit_spinlock.h>
19#include <linux/shrinker.h>
20
21struct mempolicy;
22struct anon_vma;
23struct anon_vma_chain;
24struct file_ra_state;
25struct user_struct;
26struct writeback_control;
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
33extern unsigned long totalram_pages;
34extern void * high_memory;
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
46
47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
49/* to align the pointer to the (next) page boundary */
50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
52/*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
61extern struct kmem_cache *vm_area_cachep;
62
63#ifndef CONFIG_MMU
64extern struct rb_root nommu_region_tree;
65extern struct rw_semaphore nommu_region_sem;
66
67extern unsigned int kobjsize(const void *objp);
68#endif
69
70/*
71 * vm_flags in vm_area_struct, see mm_types.h.
72 */
73#define VM_NONE 0x00000000
74
75#define VM_READ 0x00000001 /* currently active flags */
76#define VM_WRITE 0x00000002
77#define VM_EXEC 0x00000004
78#define VM_SHARED 0x00000008
79
80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82#define VM_MAYWRITE 0x00000020
83#define VM_MAYEXEC 0x00000040
84#define VM_MAYSHARE 0x00000080
85
86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
90#define VM_LOCKED 0x00002000
91#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
99#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
100#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
101#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
103#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
104#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
105
106#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
107#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
108#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
109#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
110
111#if defined(CONFIG_X86)
112# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
113#elif defined(CONFIG_PPC)
114# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
115#elif defined(CONFIG_PARISC)
116# define VM_GROWSUP VM_ARCH_1
117#elif defined(CONFIG_IA64)
118# define VM_GROWSUP VM_ARCH_1
119#elif !defined(CONFIG_MMU)
120# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
121#endif
122
123#ifndef VM_GROWSUP
124# define VM_GROWSUP VM_NONE
125#endif
126
127/* Bits set in the VMA until the stack is in its final location */
128#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
129
130#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
131#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
132#endif
133
134#ifdef CONFIG_STACK_GROWSUP
135#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
136#else
137#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138#endif
139
140#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
141#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
142#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
143#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
144#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
145
146/*
147 * Special vmas that are non-mergable, non-mlock()able.
148 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
149 */
150#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
151
152/*
153 * mapping from the currently active vm_flags protection bits (the
154 * low four bits) to a page protection mask..
155 */
156extern pgprot_t protection_map[16];
157
158#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
159#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
160#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
161#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
162#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
163#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
164#define FAULT_FLAG_TRIED 0x40 /* second try */
165
166/*
167 * vm_fault is filled by the the pagefault handler and passed to the vma's
168 * ->fault function. The vma's ->fault is responsible for returning a bitmask
169 * of VM_FAULT_xxx flags that give details about how the fault was handled.
170 *
171 * pgoff should be used in favour of virtual_address, if possible. If pgoff
172 * is used, one may implement ->remap_pages to get nonlinear mapping support.
173 */
174struct vm_fault {
175 unsigned int flags; /* FAULT_FLAG_xxx flags */
176 pgoff_t pgoff; /* Logical page offset based on vma */
177 void __user *virtual_address; /* Faulting virtual address */
178
179 struct page *page; /* ->fault handlers should return a
180 * page here, unless VM_FAULT_NOPAGE
181 * is set (which is also implied by
182 * VM_FAULT_ERROR).
183 */
184};
185
186/*
187 * These are the virtual MM functions - opening of an area, closing and
188 * unmapping it (needed to keep files on disk up-to-date etc), pointer
189 * to the functions called when a no-page or a wp-page exception occurs.
190 */
191struct vm_operations_struct {
192 void (*open)(struct vm_area_struct * area);
193 void (*close)(struct vm_area_struct * area);
194 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
195
196 /* notification that a previously read-only page is about to become
197 * writable, if an error is returned it will cause a SIGBUS */
198 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
199
200 /* called by access_process_vm when get_user_pages() fails, typically
201 * for use by special VMAs that can switch between memory and hardware
202 */
203 int (*access)(struct vm_area_struct *vma, unsigned long addr,
204 void *buf, int len, int write);
205#ifdef CONFIG_NUMA
206 /*
207 * set_policy() op must add a reference to any non-NULL @new mempolicy
208 * to hold the policy upon return. Caller should pass NULL @new to
209 * remove a policy and fall back to surrounding context--i.e. do not
210 * install a MPOL_DEFAULT policy, nor the task or system default
211 * mempolicy.
212 */
213 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
214
215 /*
216 * get_policy() op must add reference [mpol_get()] to any policy at
217 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
218 * in mm/mempolicy.c will do this automatically.
219 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
220 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
221 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
222 * must return NULL--i.e., do not "fallback" to task or system default
223 * policy.
224 */
225 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
226 unsigned long addr);
227 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
228 const nodemask_t *to, unsigned long flags);
229#endif
230 /* called by sys_remap_file_pages() to populate non-linear mapping */
231 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
232 unsigned long size, pgoff_t pgoff);
233};
234
235struct mmu_gather;
236struct inode;
237
238#define page_private(page) ((page)->private)
239#define set_page_private(page, v) ((page)->private = (v))
240
241/* It's valid only if the page is free path or free_list */
242static inline void set_freepage_migratetype(struct page *page, int migratetype)
243{
244 page->index = migratetype;
245}
246
247/* It's valid only if the page is free path or free_list */
248static inline int get_freepage_migratetype(struct page *page)
249{
250 return page->index;
251}
252
253/*
254 * FIXME: take this include out, include page-flags.h in
255 * files which need it (119 of them)
256 */
257#include <linux/page-flags.h>
258#include <linux/huge_mm.h>
259
260/*
261 * Methods to modify the page usage count.
262 *
263 * What counts for a page usage:
264 * - cache mapping (page->mapping)
265 * - private data (page->private)
266 * - page mapped in a task's page tables, each mapping
267 * is counted separately
268 *
269 * Also, many kernel routines increase the page count before a critical
270 * routine so they can be sure the page doesn't go away from under them.
271 */
272
273/*
274 * Drop a ref, return true if the refcount fell to zero (the page has no users)
275 */
276static inline int put_page_testzero(struct page *page)
277{
278 VM_BUG_ON(atomic_read(&page->_count) == 0);
279 return atomic_dec_and_test(&page->_count);
280}
281
282/*
283 * Try to grab a ref unless the page has a refcount of zero, return false if
284 * that is the case.
285 */
286static inline int get_page_unless_zero(struct page *page)
287{
288 return atomic_inc_not_zero(&page->_count);
289}
290
291extern int page_is_ram(unsigned long pfn);
292
293/* Support for virtually mapped pages */
294struct page *vmalloc_to_page(const void *addr);
295unsigned long vmalloc_to_pfn(const void *addr);
296
297/*
298 * Determine if an address is within the vmalloc range
299 *
300 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
301 * is no special casing required.
302 */
303static inline int is_vmalloc_addr(const void *x)
304{
305#ifdef CONFIG_MMU
306 unsigned long addr = (unsigned long)x;
307
308 return addr >= VMALLOC_START && addr < VMALLOC_END;
309#else
310 return 0;
311#endif
312}
313#ifdef CONFIG_MMU
314extern int is_vmalloc_or_module_addr(const void *x);
315#else
316static inline int is_vmalloc_or_module_addr(const void *x)
317{
318 return 0;
319}
320#endif
321
322static inline void compound_lock(struct page *page)
323{
324#ifdef CONFIG_TRANSPARENT_HUGEPAGE
325 VM_BUG_ON(PageSlab(page));
326 bit_spin_lock(PG_compound_lock, &page->flags);
327#endif
328}
329
330static inline void compound_unlock(struct page *page)
331{
332#ifdef CONFIG_TRANSPARENT_HUGEPAGE
333 VM_BUG_ON(PageSlab(page));
334 bit_spin_unlock(PG_compound_lock, &page->flags);
335#endif
336}
337
338static inline unsigned long compound_lock_irqsave(struct page *page)
339{
340 unsigned long uninitialized_var(flags);
341#ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 local_irq_save(flags);
343 compound_lock(page);
344#endif
345 return flags;
346}
347
348static inline void compound_unlock_irqrestore(struct page *page,
349 unsigned long flags)
350{
351#ifdef CONFIG_TRANSPARENT_HUGEPAGE
352 compound_unlock(page);
353 local_irq_restore(flags);
354#endif
355}
356
357static inline struct page *compound_head(struct page *page)
358{
359 if (unlikely(PageTail(page)))
360 return page->first_page;
361 return page;
362}
363
364/*
365 * The atomic page->_mapcount, starts from -1: so that transitions
366 * both from it and to it can be tracked, using atomic_inc_and_test
367 * and atomic_add_negative(-1).
368 */
369static inline void reset_page_mapcount(struct page *page)
370{
371 atomic_set(&(page)->_mapcount, -1);
372}
373
374static inline int page_mapcount(struct page *page)
375{
376 return atomic_read(&(page)->_mapcount) + 1;
377}
378
379static inline int page_count(struct page *page)
380{
381 return atomic_read(&compound_head(page)->_count);
382}
383
384static inline void get_huge_page_tail(struct page *page)
385{
386 /*
387 * __split_huge_page_refcount() cannot run
388 * from under us.
389 */
390 VM_BUG_ON(page_mapcount(page) < 0);
391 VM_BUG_ON(atomic_read(&page->_count) != 0);
392 atomic_inc(&page->_mapcount);
393}
394
395extern bool __get_page_tail(struct page *page);
396
397static inline void get_page(struct page *page)
398{
399 if (unlikely(PageTail(page)))
400 if (likely(__get_page_tail(page)))
401 return;
402 /*
403 * Getting a normal page or the head of a compound page
404 * requires to already have an elevated page->_count.
405 */
406 VM_BUG_ON(atomic_read(&page->_count) <= 0);
407 atomic_inc(&page->_count);
408}
409
410static inline struct page *virt_to_head_page(const void *x)
411{
412 struct page *page = virt_to_page(x);
413 return compound_head(page);
414}
415
416/*
417 * Setup the page count before being freed into the page allocator for
418 * the first time (boot or memory hotplug)
419 */
420static inline void init_page_count(struct page *page)
421{
422 atomic_set(&page->_count, 1);
423}
424
425/*
426 * PageBuddy() indicate that the page is free and in the buddy system
427 * (see mm/page_alloc.c).
428 *
429 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
430 * -2 so that an underflow of the page_mapcount() won't be mistaken
431 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
432 * efficiently by most CPU architectures.
433 */
434#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
435
436static inline int PageBuddy(struct page *page)
437{
438 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
439}
440
441static inline void __SetPageBuddy(struct page *page)
442{
443 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
444 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
445}
446
447static inline void __ClearPageBuddy(struct page *page)
448{
449 VM_BUG_ON(!PageBuddy(page));
450 atomic_set(&page->_mapcount, -1);
451}
452
453void put_page(struct page *page);
454void put_pages_list(struct list_head *pages);
455
456void split_page(struct page *page, unsigned int order);
457int split_free_page(struct page *page);
458int capture_free_page(struct page *page, int alloc_order, int migratetype);
459
460/*
461 * Compound pages have a destructor function. Provide a
462 * prototype for that function and accessor functions.
463 * These are _only_ valid on the head of a PG_compound page.
464 */
465typedef void compound_page_dtor(struct page *);
466
467static inline void set_compound_page_dtor(struct page *page,
468 compound_page_dtor *dtor)
469{
470 page[1].lru.next = (void *)dtor;
471}
472
473static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
474{
475 return (compound_page_dtor *)page[1].lru.next;
476}
477
478static inline int compound_order(struct page *page)
479{
480 if (!PageHead(page))
481 return 0;
482 return (unsigned long)page[1].lru.prev;
483}
484
485static inline int compound_trans_order(struct page *page)
486{
487 int order;
488 unsigned long flags;
489
490 if (!PageHead(page))
491 return 0;
492
493 flags = compound_lock_irqsave(page);
494 order = compound_order(page);
495 compound_unlock_irqrestore(page, flags);
496 return order;
497}
498
499static inline void set_compound_order(struct page *page, unsigned long order)
500{
501 page[1].lru.prev = (void *)order;
502}
503
504#ifdef CONFIG_MMU
505/*
506 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
507 * servicing faults for write access. In the normal case, do always want
508 * pte_mkwrite. But get_user_pages can cause write faults for mappings
509 * that do not have writing enabled, when used by access_process_vm.
510 */
511static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
512{
513 if (likely(vma->vm_flags & VM_WRITE))
514 pte = pte_mkwrite(pte);
515 return pte;
516}
517#endif
518
519/*
520 * Multiple processes may "see" the same page. E.g. for untouched
521 * mappings of /dev/null, all processes see the same page full of
522 * zeroes, and text pages of executables and shared libraries have
523 * only one copy in memory, at most, normally.
524 *
525 * For the non-reserved pages, page_count(page) denotes a reference count.
526 * page_count() == 0 means the page is free. page->lru is then used for
527 * freelist management in the buddy allocator.
528 * page_count() > 0 means the page has been allocated.
529 *
530 * Pages are allocated by the slab allocator in order to provide memory
531 * to kmalloc and kmem_cache_alloc. In this case, the management of the
532 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
533 * unless a particular usage is carefully commented. (the responsibility of
534 * freeing the kmalloc memory is the caller's, of course).
535 *
536 * A page may be used by anyone else who does a __get_free_page().
537 * In this case, page_count still tracks the references, and should only
538 * be used through the normal accessor functions. The top bits of page->flags
539 * and page->virtual store page management information, but all other fields
540 * are unused and could be used privately, carefully. The management of this
541 * page is the responsibility of the one who allocated it, and those who have
542 * subsequently been given references to it.
543 *
544 * The other pages (we may call them "pagecache pages") are completely
545 * managed by the Linux memory manager: I/O, buffers, swapping etc.
546 * The following discussion applies only to them.
547 *
548 * A pagecache page contains an opaque `private' member, which belongs to the
549 * page's address_space. Usually, this is the address of a circular list of
550 * the page's disk buffers. PG_private must be set to tell the VM to call
551 * into the filesystem to release these pages.
552 *
553 * A page may belong to an inode's memory mapping. In this case, page->mapping
554 * is the pointer to the inode, and page->index is the file offset of the page,
555 * in units of PAGE_CACHE_SIZE.
556 *
557 * If pagecache pages are not associated with an inode, they are said to be
558 * anonymous pages. These may become associated with the swapcache, and in that
559 * case PG_swapcache is set, and page->private is an offset into the swapcache.
560 *
561 * In either case (swapcache or inode backed), the pagecache itself holds one
562 * reference to the page. Setting PG_private should also increment the
563 * refcount. The each user mapping also has a reference to the page.
564 *
565 * The pagecache pages are stored in a per-mapping radix tree, which is
566 * rooted at mapping->page_tree, and indexed by offset.
567 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
568 * lists, we instead now tag pages as dirty/writeback in the radix tree.
569 *
570 * All pagecache pages may be subject to I/O:
571 * - inode pages may need to be read from disk,
572 * - inode pages which have been modified and are MAP_SHARED may need
573 * to be written back to the inode on disk,
574 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
575 * modified may need to be swapped out to swap space and (later) to be read
576 * back into memory.
577 */
578
579/*
580 * The zone field is never updated after free_area_init_core()
581 * sets it, so none of the operations on it need to be atomic.
582 */
583
584
585/*
586 * page->flags layout:
587 *
588 * There are three possibilities for how page->flags get
589 * laid out. The first is for the normal case, without
590 * sparsemem. The second is for sparsemem when there is
591 * plenty of space for node and section. The last is when
592 * we have run out of space and have to fall back to an
593 * alternate (slower) way of determining the node.
594 *
595 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
596 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
597 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
598 */
599#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
600#define SECTIONS_WIDTH SECTIONS_SHIFT
601#else
602#define SECTIONS_WIDTH 0
603#endif
604
605#define ZONES_WIDTH ZONES_SHIFT
606
607#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
608#define NODES_WIDTH NODES_SHIFT
609#else
610#ifdef CONFIG_SPARSEMEM_VMEMMAP
611#error "Vmemmap: No space for nodes field in page flags"
612#endif
613#define NODES_WIDTH 0
614#endif
615
616/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
617#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
618#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
619#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
620
621/*
622 * We are going to use the flags for the page to node mapping if its in
623 * there. This includes the case where there is no node, so it is implicit.
624 */
625#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
626#define NODE_NOT_IN_PAGE_FLAGS
627#endif
628
629/*
630 * Define the bit shifts to access each section. For non-existent
631 * sections we define the shift as 0; that plus a 0 mask ensures
632 * the compiler will optimise away reference to them.
633 */
634#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
635#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
636#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
637
638/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
639#ifdef NODE_NOT_IN_PAGE_FLAGS
640#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
641#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
642 SECTIONS_PGOFF : ZONES_PGOFF)
643#else
644#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
645#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
646 NODES_PGOFF : ZONES_PGOFF)
647#endif
648
649#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
650
651#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
652#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
653#endif
654
655#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
656#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
657#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
658#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
659
660static inline enum zone_type page_zonenum(const struct page *page)
661{
662 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
663}
664
665/*
666 * The identification function is only used by the buddy allocator for
667 * determining if two pages could be buddies. We are not really
668 * identifying a zone since we could be using a the section number
669 * id if we have not node id available in page flags.
670 * We guarantee only that it will return the same value for two
671 * combinable pages in a zone.
672 */
673static inline int page_zone_id(struct page *page)
674{
675 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
676}
677
678static inline int zone_to_nid(struct zone *zone)
679{
680#ifdef CONFIG_NUMA
681 return zone->node;
682#else
683 return 0;
684#endif
685}
686
687#ifdef NODE_NOT_IN_PAGE_FLAGS
688extern int page_to_nid(const struct page *page);
689#else
690static inline int page_to_nid(const struct page *page)
691{
692 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
693}
694#endif
695
696#ifdef CONFIG_NUMA_BALANCING
697static inline int page_xchg_last_nid(struct page *page, int nid)
698{
699 return xchg(&page->_last_nid, nid);
700}
701
702static inline int page_last_nid(struct page *page)
703{
704 return page->_last_nid;
705}
706static inline void reset_page_last_nid(struct page *page)
707{
708 page->_last_nid = -1;
709}
710#else
711static inline int page_xchg_last_nid(struct page *page, int nid)
712{
713 return page_to_nid(page);
714}
715
716static inline int page_last_nid(struct page *page)
717{
718 return page_to_nid(page);
719}
720
721static inline void reset_page_last_nid(struct page *page)
722{
723}
724#endif
725
726static inline struct zone *page_zone(const struct page *page)
727{
728 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
729}
730
731#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
732static inline void set_page_section(struct page *page, unsigned long section)
733{
734 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
735 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
736}
737
738static inline unsigned long page_to_section(const struct page *page)
739{
740 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
741}
742#endif
743
744static inline void set_page_zone(struct page *page, enum zone_type zone)
745{
746 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
747 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
748}
749
750static inline void set_page_node(struct page *page, unsigned long node)
751{
752 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
753 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
754}
755
756static inline void set_page_links(struct page *page, enum zone_type zone,
757 unsigned long node, unsigned long pfn)
758{
759 set_page_zone(page, zone);
760 set_page_node(page, node);
761#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
762 set_page_section(page, pfn_to_section_nr(pfn));
763#endif
764}
765
766/*
767 * Some inline functions in vmstat.h depend on page_zone()
768 */
769#include <linux/vmstat.h>
770
771static __always_inline void *lowmem_page_address(const struct page *page)
772{
773 return __va(PFN_PHYS(page_to_pfn(page)));
774}
775
776#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
777#define HASHED_PAGE_VIRTUAL
778#endif
779
780#if defined(WANT_PAGE_VIRTUAL)
781#define page_address(page) ((page)->virtual)
782#define set_page_address(page, address) \
783 do { \
784 (page)->virtual = (address); \
785 } while(0)
786#define page_address_init() do { } while(0)
787#endif
788
789#if defined(HASHED_PAGE_VIRTUAL)
790void *page_address(const struct page *page);
791void set_page_address(struct page *page, void *virtual);
792void page_address_init(void);
793#endif
794
795#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
796#define page_address(page) lowmem_page_address(page)
797#define set_page_address(page, address) do { } while(0)
798#define page_address_init() do { } while(0)
799#endif
800
801/*
802 * On an anonymous page mapped into a user virtual memory area,
803 * page->mapping points to its anon_vma, not to a struct address_space;
804 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
805 *
806 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
807 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
808 * and then page->mapping points, not to an anon_vma, but to a private
809 * structure which KSM associates with that merged page. See ksm.h.
810 *
811 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
812 *
813 * Please note that, confusingly, "page_mapping" refers to the inode
814 * address_space which maps the page from disk; whereas "page_mapped"
815 * refers to user virtual address space into which the page is mapped.
816 */
817#define PAGE_MAPPING_ANON 1
818#define PAGE_MAPPING_KSM 2
819#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
820
821extern struct address_space swapper_space;
822static inline struct address_space *page_mapping(struct page *page)
823{
824 struct address_space *mapping = page->mapping;
825
826 VM_BUG_ON(PageSlab(page));
827 if (unlikely(PageSwapCache(page)))
828 mapping = &swapper_space;
829 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
830 mapping = NULL;
831 return mapping;
832}
833
834/* Neutral page->mapping pointer to address_space or anon_vma or other */
835static inline void *page_rmapping(struct page *page)
836{
837 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
838}
839
840extern struct address_space *__page_file_mapping(struct page *);
841
842static inline
843struct address_space *page_file_mapping(struct page *page)
844{
845 if (unlikely(PageSwapCache(page)))
846 return __page_file_mapping(page);
847
848 return page->mapping;
849}
850
851static inline int PageAnon(struct page *page)
852{
853 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
854}
855
856/*
857 * Return the pagecache index of the passed page. Regular pagecache pages
858 * use ->index whereas swapcache pages use ->private
859 */
860static inline pgoff_t page_index(struct page *page)
861{
862 if (unlikely(PageSwapCache(page)))
863 return page_private(page);
864 return page->index;
865}
866
867extern pgoff_t __page_file_index(struct page *page);
868
869/*
870 * Return the file index of the page. Regular pagecache pages use ->index
871 * whereas swapcache pages use swp_offset(->private)
872 */
873static inline pgoff_t page_file_index(struct page *page)
874{
875 if (unlikely(PageSwapCache(page)))
876 return __page_file_index(page);
877
878 return page->index;
879}
880
881/*
882 * Return true if this page is mapped into pagetables.
883 */
884static inline int page_mapped(struct page *page)
885{
886 return atomic_read(&(page)->_mapcount) >= 0;
887}
888
889/*
890 * Different kinds of faults, as returned by handle_mm_fault().
891 * Used to decide whether a process gets delivered SIGBUS or
892 * just gets major/minor fault counters bumped up.
893 */
894
895#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
896
897#define VM_FAULT_OOM 0x0001
898#define VM_FAULT_SIGBUS 0x0002
899#define VM_FAULT_MAJOR 0x0004
900#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
901#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
902#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
903
904#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
905#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
906#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
907
908#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
909
910#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
911 VM_FAULT_HWPOISON_LARGE)
912
913/* Encode hstate index for a hwpoisoned large page */
914#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
915#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
916
917/*
918 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
919 */
920extern void pagefault_out_of_memory(void);
921
922#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
923
924/*
925 * Flags passed to show_mem() and show_free_areas() to suppress output in
926 * various contexts.
927 */
928#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
929
930extern void show_free_areas(unsigned int flags);
931extern bool skip_free_areas_node(unsigned int flags, int nid);
932
933int shmem_zero_setup(struct vm_area_struct *);
934
935extern int can_do_mlock(void);
936extern int user_shm_lock(size_t, struct user_struct *);
937extern void user_shm_unlock(size_t, struct user_struct *);
938
939/*
940 * Parameter block passed down to zap_pte_range in exceptional cases.
941 */
942struct zap_details {
943 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
944 struct address_space *check_mapping; /* Check page->mapping if set */
945 pgoff_t first_index; /* Lowest page->index to unmap */
946 pgoff_t last_index; /* Highest page->index to unmap */
947};
948
949struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
950 pte_t pte);
951
952int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
953 unsigned long size);
954void zap_page_range(struct vm_area_struct *vma, unsigned long address,
955 unsigned long size, struct zap_details *);
956void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
957 unsigned long start, unsigned long end);
958
959/**
960 * mm_walk - callbacks for walk_page_range
961 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
962 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
963 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
964 * this handler is required to be able to handle
965 * pmd_trans_huge() pmds. They may simply choose to
966 * split_huge_page() instead of handling it explicitly.
967 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
968 * @pte_hole: if set, called for each hole at all levels
969 * @hugetlb_entry: if set, called for each hugetlb entry
970 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
971 * is used.
972 *
973 * (see walk_page_range for more details)
974 */
975struct mm_walk {
976 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
977 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
978 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
979 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
980 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
981 int (*hugetlb_entry)(pte_t *, unsigned long,
982 unsigned long, unsigned long, struct mm_walk *);
983 struct mm_struct *mm;
984 void *private;
985};
986
987int walk_page_range(unsigned long addr, unsigned long end,
988 struct mm_walk *walk);
989void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
990 unsigned long end, unsigned long floor, unsigned long ceiling);
991int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
992 struct vm_area_struct *vma);
993void unmap_mapping_range(struct address_space *mapping,
994 loff_t const holebegin, loff_t const holelen, int even_cows);
995int follow_pfn(struct vm_area_struct *vma, unsigned long address,
996 unsigned long *pfn);
997int follow_phys(struct vm_area_struct *vma, unsigned long address,
998 unsigned int flags, unsigned long *prot, resource_size_t *phys);
999int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1000 void *buf, int len, int write);
1001
1002static inline void unmap_shared_mapping_range(struct address_space *mapping,
1003 loff_t const holebegin, loff_t const holelen)
1004{
1005 unmap_mapping_range(mapping, holebegin, holelen, 0);
1006}
1007
1008extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
1009extern void truncate_setsize(struct inode *inode, loff_t newsize);
1010void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1011int truncate_inode_page(struct address_space *mapping, struct page *page);
1012int generic_error_remove_page(struct address_space *mapping, struct page *page);
1013int invalidate_inode_page(struct page *page);
1014
1015#ifdef CONFIG_MMU
1016extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1017 unsigned long address, unsigned int flags);
1018extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1019 unsigned long address, unsigned int fault_flags);
1020#else
1021static inline int handle_mm_fault(struct mm_struct *mm,
1022 struct vm_area_struct *vma, unsigned long address,
1023 unsigned int flags)
1024{
1025 /* should never happen if there's no MMU */
1026 BUG();
1027 return VM_FAULT_SIGBUS;
1028}
1029static inline int fixup_user_fault(struct task_struct *tsk,
1030 struct mm_struct *mm, unsigned long address,
1031 unsigned int fault_flags)
1032{
1033 /* should never happen if there's no MMU */
1034 BUG();
1035 return -EFAULT;
1036}
1037#endif
1038
1039extern int make_pages_present(unsigned long addr, unsigned long end);
1040extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1041extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1042 void *buf, int len, int write);
1043
1044int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1045 unsigned long start, int len, unsigned int foll_flags,
1046 struct page **pages, struct vm_area_struct **vmas,
1047 int *nonblocking);
1048int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1049 unsigned long start, int nr_pages, int write, int force,
1050 struct page **pages, struct vm_area_struct **vmas);
1051int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1052 struct page **pages);
1053struct kvec;
1054int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1055 struct page **pages);
1056int get_kernel_page(unsigned long start, int write, struct page **pages);
1057struct page *get_dump_page(unsigned long addr);
1058
1059extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1060extern void do_invalidatepage(struct page *page, unsigned long offset);
1061
1062int __set_page_dirty_nobuffers(struct page *page);
1063int __set_page_dirty_no_writeback(struct page *page);
1064int redirty_page_for_writepage(struct writeback_control *wbc,
1065 struct page *page);
1066void account_page_dirtied(struct page *page, struct address_space *mapping);
1067void account_page_writeback(struct page *page);
1068int set_page_dirty(struct page *page);
1069int set_page_dirty_lock(struct page *page);
1070int clear_page_dirty_for_io(struct page *page);
1071
1072/* Is the vma a continuation of the stack vma above it? */
1073static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1074{
1075 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1076}
1077
1078static inline int stack_guard_page_start(struct vm_area_struct *vma,
1079 unsigned long addr)
1080{
1081 return (vma->vm_flags & VM_GROWSDOWN) &&
1082 (vma->vm_start == addr) &&
1083 !vma_growsdown(vma->vm_prev, addr);
1084}
1085
1086/* Is the vma a continuation of the stack vma below it? */
1087static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1088{
1089 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1090}
1091
1092static inline int stack_guard_page_end(struct vm_area_struct *vma,
1093 unsigned long addr)
1094{
1095 return (vma->vm_flags & VM_GROWSUP) &&
1096 (vma->vm_end == addr) &&
1097 !vma_growsup(vma->vm_next, addr);
1098}
1099
1100extern pid_t
1101vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1102
1103extern unsigned long move_page_tables(struct vm_area_struct *vma,
1104 unsigned long old_addr, struct vm_area_struct *new_vma,
1105 unsigned long new_addr, unsigned long len,
1106 bool need_rmap_locks);
1107extern unsigned long do_mremap(unsigned long addr,
1108 unsigned long old_len, unsigned long new_len,
1109 unsigned long flags, unsigned long new_addr);
1110extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1111 unsigned long end, pgprot_t newprot,
1112 int dirty_accountable, int prot_numa);
1113extern int mprotect_fixup(struct vm_area_struct *vma,
1114 struct vm_area_struct **pprev, unsigned long start,
1115 unsigned long end, unsigned long newflags);
1116
1117/*
1118 * doesn't attempt to fault and will return short.
1119 */
1120int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1121 struct page **pages);
1122/*
1123 * per-process(per-mm_struct) statistics.
1124 */
1125static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1126{
1127 long val = atomic_long_read(&mm->rss_stat.count[member]);
1128
1129#ifdef SPLIT_RSS_COUNTING
1130 /*
1131 * counter is updated in asynchronous manner and may go to minus.
1132 * But it's never be expected number for users.
1133 */
1134 if (val < 0)
1135 val = 0;
1136#endif
1137 return (unsigned long)val;
1138}
1139
1140static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1141{
1142 atomic_long_add(value, &mm->rss_stat.count[member]);
1143}
1144
1145static inline void inc_mm_counter(struct mm_struct *mm, int member)
1146{
1147 atomic_long_inc(&mm->rss_stat.count[member]);
1148}
1149
1150static inline void dec_mm_counter(struct mm_struct *mm, int member)
1151{
1152 atomic_long_dec(&mm->rss_stat.count[member]);
1153}
1154
1155static inline unsigned long get_mm_rss(struct mm_struct *mm)
1156{
1157 return get_mm_counter(mm, MM_FILEPAGES) +
1158 get_mm_counter(mm, MM_ANONPAGES);
1159}
1160
1161static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1162{
1163 return max(mm->hiwater_rss, get_mm_rss(mm));
1164}
1165
1166static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1167{
1168 return max(mm->hiwater_vm, mm->total_vm);
1169}
1170
1171static inline void update_hiwater_rss(struct mm_struct *mm)
1172{
1173 unsigned long _rss = get_mm_rss(mm);
1174
1175 if ((mm)->hiwater_rss < _rss)
1176 (mm)->hiwater_rss = _rss;
1177}
1178
1179static inline void update_hiwater_vm(struct mm_struct *mm)
1180{
1181 if (mm->hiwater_vm < mm->total_vm)
1182 mm->hiwater_vm = mm->total_vm;
1183}
1184
1185static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1186 struct mm_struct *mm)
1187{
1188 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1189
1190 if (*maxrss < hiwater_rss)
1191 *maxrss = hiwater_rss;
1192}
1193
1194#if defined(SPLIT_RSS_COUNTING)
1195void sync_mm_rss(struct mm_struct *mm);
1196#else
1197static inline void sync_mm_rss(struct mm_struct *mm)
1198{
1199}
1200#endif
1201
1202int vma_wants_writenotify(struct vm_area_struct *vma);
1203
1204extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1205 spinlock_t **ptl);
1206static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1207 spinlock_t **ptl)
1208{
1209 pte_t *ptep;
1210 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1211 return ptep;
1212}
1213
1214#ifdef __PAGETABLE_PUD_FOLDED
1215static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1216 unsigned long address)
1217{
1218 return 0;
1219}
1220#else
1221int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1222#endif
1223
1224#ifdef __PAGETABLE_PMD_FOLDED
1225static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1226 unsigned long address)
1227{
1228 return 0;
1229}
1230#else
1231int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1232#endif
1233
1234int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1235 pmd_t *pmd, unsigned long address);
1236int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1237
1238/*
1239 * The following ifdef needed to get the 4level-fixup.h header to work.
1240 * Remove it when 4level-fixup.h has been removed.
1241 */
1242#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1243static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1244{
1245 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1246 NULL: pud_offset(pgd, address);
1247}
1248
1249static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1250{
1251 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1252 NULL: pmd_offset(pud, address);
1253}
1254#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1255
1256#if USE_SPLIT_PTLOCKS
1257/*
1258 * We tuck a spinlock to guard each pagetable page into its struct page,
1259 * at page->private, with BUILD_BUG_ON to make sure that this will not
1260 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1261 * When freeing, reset page->mapping so free_pages_check won't complain.
1262 */
1263#define __pte_lockptr(page) &((page)->ptl)
1264#define pte_lock_init(_page) do { \
1265 spin_lock_init(__pte_lockptr(_page)); \
1266} while (0)
1267#define pte_lock_deinit(page) ((page)->mapping = NULL)
1268#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1269#else /* !USE_SPLIT_PTLOCKS */
1270/*
1271 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1272 */
1273#define pte_lock_init(page) do {} while (0)
1274#define pte_lock_deinit(page) do {} while (0)
1275#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1276#endif /* USE_SPLIT_PTLOCKS */
1277
1278static inline void pgtable_page_ctor(struct page *page)
1279{
1280 pte_lock_init(page);
1281 inc_zone_page_state(page, NR_PAGETABLE);
1282}
1283
1284static inline void pgtable_page_dtor(struct page *page)
1285{
1286 pte_lock_deinit(page);
1287 dec_zone_page_state(page, NR_PAGETABLE);
1288}
1289
1290#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1291({ \
1292 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1293 pte_t *__pte = pte_offset_map(pmd, address); \
1294 *(ptlp) = __ptl; \
1295 spin_lock(__ptl); \
1296 __pte; \
1297})
1298
1299#define pte_unmap_unlock(pte, ptl) do { \
1300 spin_unlock(ptl); \
1301 pte_unmap(pte); \
1302} while (0)
1303
1304#define pte_alloc_map(mm, vma, pmd, address) \
1305 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1306 pmd, address))? \
1307 NULL: pte_offset_map(pmd, address))
1308
1309#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1310 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1311 pmd, address))? \
1312 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1313
1314#define pte_alloc_kernel(pmd, address) \
1315 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1316 NULL: pte_offset_kernel(pmd, address))
1317
1318extern void free_area_init(unsigned long * zones_size);
1319extern void free_area_init_node(int nid, unsigned long * zones_size,
1320 unsigned long zone_start_pfn, unsigned long *zholes_size);
1321extern void free_initmem(void);
1322
1323#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1324/*
1325 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1326 * zones, allocate the backing mem_map and account for memory holes in a more
1327 * architecture independent manner. This is a substitute for creating the
1328 * zone_sizes[] and zholes_size[] arrays and passing them to
1329 * free_area_init_node()
1330 *
1331 * An architecture is expected to register range of page frames backed by
1332 * physical memory with memblock_add[_node]() before calling
1333 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1334 * usage, an architecture is expected to do something like
1335 *
1336 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1337 * max_highmem_pfn};
1338 * for_each_valid_physical_page_range()
1339 * memblock_add_node(base, size, nid)
1340 * free_area_init_nodes(max_zone_pfns);
1341 *
1342 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1343 * registered physical page range. Similarly
1344 * sparse_memory_present_with_active_regions() calls memory_present() for
1345 * each range when SPARSEMEM is enabled.
1346 *
1347 * See mm/page_alloc.c for more information on each function exposed by
1348 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1349 */
1350extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1351unsigned long node_map_pfn_alignment(void);
1352unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1353 unsigned long end_pfn);
1354extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1355 unsigned long end_pfn);
1356extern void get_pfn_range_for_nid(unsigned int nid,
1357 unsigned long *start_pfn, unsigned long *end_pfn);
1358extern unsigned long find_min_pfn_with_active_regions(void);
1359extern void free_bootmem_with_active_regions(int nid,
1360 unsigned long max_low_pfn);
1361extern void sparse_memory_present_with_active_regions(int nid);
1362
1363#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1364
1365#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1366 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1367static inline int __early_pfn_to_nid(unsigned long pfn)
1368{
1369 return 0;
1370}
1371#else
1372/* please see mm/page_alloc.c */
1373extern int __meminit early_pfn_to_nid(unsigned long pfn);
1374#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1375/* there is a per-arch backend function. */
1376extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1377#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1378#endif
1379
1380extern void set_dma_reserve(unsigned long new_dma_reserve);
1381extern void memmap_init_zone(unsigned long, int, unsigned long,
1382 unsigned long, enum memmap_context);
1383extern void setup_per_zone_wmarks(void);
1384extern int __meminit init_per_zone_wmark_min(void);
1385extern void mem_init(void);
1386extern void __init mmap_init(void);
1387extern void show_mem(unsigned int flags);
1388extern void si_meminfo(struct sysinfo * val);
1389extern void si_meminfo_node(struct sysinfo *val, int nid);
1390extern int after_bootmem;
1391
1392extern __printf(3, 4)
1393void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1394
1395extern void setup_per_cpu_pageset(void);
1396
1397extern void zone_pcp_update(struct zone *zone);
1398extern void zone_pcp_reset(struct zone *zone);
1399
1400/* nommu.c */
1401extern atomic_long_t mmap_pages_allocated;
1402extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1403
1404/* interval_tree.c */
1405void vma_interval_tree_insert(struct vm_area_struct *node,
1406 struct rb_root *root);
1407void vma_interval_tree_insert_after(struct vm_area_struct *node,
1408 struct vm_area_struct *prev,
1409 struct rb_root *root);
1410void vma_interval_tree_remove(struct vm_area_struct *node,
1411 struct rb_root *root);
1412struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1413 unsigned long start, unsigned long last);
1414struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1415 unsigned long start, unsigned long last);
1416
1417#define vma_interval_tree_foreach(vma, root, start, last) \
1418 for (vma = vma_interval_tree_iter_first(root, start, last); \
1419 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1420
1421static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1422 struct list_head *list)
1423{
1424 list_add_tail(&vma->shared.nonlinear, list);
1425}
1426
1427void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1428 struct rb_root *root);
1429void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1430 struct rb_root *root);
1431struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1432 struct rb_root *root, unsigned long start, unsigned long last);
1433struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1434 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1435#ifdef CONFIG_DEBUG_VM_RB
1436void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1437#endif
1438
1439#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1440 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1441 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1442
1443/* mmap.c */
1444extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1445extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1446 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1447extern struct vm_area_struct *vma_merge(struct mm_struct *,
1448 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1449 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1450 struct mempolicy *);
1451extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1452extern int split_vma(struct mm_struct *,
1453 struct vm_area_struct *, unsigned long addr, int new_below);
1454extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1455extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1456 struct rb_node **, struct rb_node *);
1457extern void unlink_file_vma(struct vm_area_struct *);
1458extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1459 unsigned long addr, unsigned long len, pgoff_t pgoff,
1460 bool *need_rmap_locks);
1461extern void exit_mmap(struct mm_struct *);
1462
1463extern int mm_take_all_locks(struct mm_struct *mm);
1464extern void mm_drop_all_locks(struct mm_struct *mm);
1465
1466extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1467extern struct file *get_mm_exe_file(struct mm_struct *mm);
1468
1469extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1470extern int install_special_mapping(struct mm_struct *mm,
1471 unsigned long addr, unsigned long len,
1472 unsigned long flags, struct page **pages);
1473
1474extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1475
1476extern unsigned long mmap_region(struct file *file, unsigned long addr,
1477 unsigned long len, unsigned long flags,
1478 vm_flags_t vm_flags, unsigned long pgoff);
1479extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1480 unsigned long, unsigned long,
1481 unsigned long, unsigned long);
1482extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1483
1484/* These take the mm semaphore themselves */
1485extern unsigned long vm_brk(unsigned long, unsigned long);
1486extern int vm_munmap(unsigned long, size_t);
1487extern unsigned long vm_mmap(struct file *, unsigned long,
1488 unsigned long, unsigned long,
1489 unsigned long, unsigned long);
1490
1491struct vm_unmapped_area_info {
1492#define VM_UNMAPPED_AREA_TOPDOWN 1
1493 unsigned long flags;
1494 unsigned long length;
1495 unsigned long low_limit;
1496 unsigned long high_limit;
1497 unsigned long align_mask;
1498 unsigned long align_offset;
1499};
1500
1501extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1502extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1503
1504/*
1505 * Search for an unmapped address range.
1506 *
1507 * We are looking for a range that:
1508 * - does not intersect with any VMA;
1509 * - is contained within the [low_limit, high_limit) interval;
1510 * - is at least the desired size.
1511 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1512 */
1513static inline unsigned long
1514vm_unmapped_area(struct vm_unmapped_area_info *info)
1515{
1516 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1517 return unmapped_area(info);
1518 else
1519 return unmapped_area_topdown(info);
1520}
1521
1522/* truncate.c */
1523extern void truncate_inode_pages(struct address_space *, loff_t);
1524extern void truncate_inode_pages_range(struct address_space *,
1525 loff_t lstart, loff_t lend);
1526
1527/* generic vm_area_ops exported for stackable file systems */
1528extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1529extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1530
1531/* mm/page-writeback.c */
1532int write_one_page(struct page *page, int wait);
1533void task_dirty_inc(struct task_struct *tsk);
1534
1535/* readahead.c */
1536#define VM_MAX_READAHEAD 128 /* kbytes */
1537#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1538
1539int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1540 pgoff_t offset, unsigned long nr_to_read);
1541
1542void page_cache_sync_readahead(struct address_space *mapping,
1543 struct file_ra_state *ra,
1544 struct file *filp,
1545 pgoff_t offset,
1546 unsigned long size);
1547
1548void page_cache_async_readahead(struct address_space *mapping,
1549 struct file_ra_state *ra,
1550 struct file *filp,
1551 struct page *pg,
1552 pgoff_t offset,
1553 unsigned long size);
1554
1555unsigned long max_sane_readahead(unsigned long nr);
1556unsigned long ra_submit(struct file_ra_state *ra,
1557 struct address_space *mapping,
1558 struct file *filp);
1559
1560/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1561extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1562
1563/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1564extern int expand_downwards(struct vm_area_struct *vma,
1565 unsigned long address);
1566#if VM_GROWSUP
1567extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1568#else
1569 #define expand_upwards(vma, address) do { } while (0)
1570#endif
1571
1572/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1573extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1574extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1575 struct vm_area_struct **pprev);
1576
1577/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1578 NULL if none. Assume start_addr < end_addr. */
1579static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1580{
1581 struct vm_area_struct * vma = find_vma(mm,start_addr);
1582
1583 if (vma && end_addr <= vma->vm_start)
1584 vma = NULL;
1585 return vma;
1586}
1587
1588static inline unsigned long vma_pages(struct vm_area_struct *vma)
1589{
1590 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1591}
1592
1593/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1594static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1595 unsigned long vm_start, unsigned long vm_end)
1596{
1597 struct vm_area_struct *vma = find_vma(mm, vm_start);
1598
1599 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1600 vma = NULL;
1601
1602 return vma;
1603}
1604
1605#ifdef CONFIG_MMU
1606pgprot_t vm_get_page_prot(unsigned long vm_flags);
1607#else
1608static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1609{
1610 return __pgprot(0);
1611}
1612#endif
1613
1614#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1615unsigned long change_prot_numa(struct vm_area_struct *vma,
1616 unsigned long start, unsigned long end);
1617#endif
1618
1619struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1620int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1621 unsigned long pfn, unsigned long size, pgprot_t);
1622int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1623int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1624 unsigned long pfn);
1625int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1626 unsigned long pfn);
1627
1628struct page *follow_page(struct vm_area_struct *, unsigned long address,
1629 unsigned int foll_flags);
1630#define FOLL_WRITE 0x01 /* check pte is writable */
1631#define FOLL_TOUCH 0x02 /* mark page accessed */
1632#define FOLL_GET 0x04 /* do get_page on page */
1633#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1634#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1635#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1636 * and return without waiting upon it */
1637#define FOLL_MLOCK 0x40 /* mark page as mlocked */
1638#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1639#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1640#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1641
1642typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1643 void *data);
1644extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1645 unsigned long size, pte_fn_t fn, void *data);
1646
1647#ifdef CONFIG_PROC_FS
1648void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1649#else
1650static inline void vm_stat_account(struct mm_struct *mm,
1651 unsigned long flags, struct file *file, long pages)
1652{
1653 mm->total_vm += pages;
1654}
1655#endif /* CONFIG_PROC_FS */
1656
1657#ifdef CONFIG_DEBUG_PAGEALLOC
1658extern void kernel_map_pages(struct page *page, int numpages, int enable);
1659#ifdef CONFIG_HIBERNATION
1660extern bool kernel_page_present(struct page *page);
1661#endif /* CONFIG_HIBERNATION */
1662#else
1663static inline void
1664kernel_map_pages(struct page *page, int numpages, int enable) {}
1665#ifdef CONFIG_HIBERNATION
1666static inline bool kernel_page_present(struct page *page) { return true; }
1667#endif /* CONFIG_HIBERNATION */
1668#endif
1669
1670extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1671#ifdef __HAVE_ARCH_GATE_AREA
1672int in_gate_area_no_mm(unsigned long addr);
1673int in_gate_area(struct mm_struct *mm, unsigned long addr);
1674#else
1675int in_gate_area_no_mm(unsigned long addr);
1676#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1677#endif /* __HAVE_ARCH_GATE_AREA */
1678
1679int drop_caches_sysctl_handler(struct ctl_table *, int,
1680 void __user *, size_t *, loff_t *);
1681unsigned long shrink_slab(struct shrink_control *shrink,
1682 unsigned long nr_pages_scanned,
1683 unsigned long lru_pages);
1684
1685#ifndef CONFIG_MMU
1686#define randomize_va_space 0
1687#else
1688extern int randomize_va_space;
1689#endif
1690
1691const char * arch_vma_name(struct vm_area_struct *vma);
1692void print_vma_addr(char *prefix, unsigned long rip);
1693
1694void sparse_mem_maps_populate_node(struct page **map_map,
1695 unsigned long pnum_begin,
1696 unsigned long pnum_end,
1697 unsigned long map_count,
1698 int nodeid);
1699
1700struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1701pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1702pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1703pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1704pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1705void *vmemmap_alloc_block(unsigned long size, int node);
1706void *vmemmap_alloc_block_buf(unsigned long size, int node);
1707void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1708int vmemmap_populate_basepages(struct page *start_page,
1709 unsigned long pages, int node);
1710int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1711void vmemmap_populate_print_last(void);
1712
1713
1714enum mf_flags {
1715 MF_COUNT_INCREASED = 1 << 0,
1716 MF_ACTION_REQUIRED = 1 << 1,
1717 MF_MUST_KILL = 1 << 2,
1718};
1719extern int memory_failure(unsigned long pfn, int trapno, int flags);
1720extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1721extern int unpoison_memory(unsigned long pfn);
1722extern int sysctl_memory_failure_early_kill;
1723extern int sysctl_memory_failure_recovery;
1724extern void shake_page(struct page *p, int access);
1725extern atomic_long_t mce_bad_pages;
1726extern int soft_offline_page(struct page *page, int flags);
1727
1728extern void dump_page(struct page *page);
1729
1730#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1731extern void clear_huge_page(struct page *page,
1732 unsigned long addr,
1733 unsigned int pages_per_huge_page);
1734extern void copy_user_huge_page(struct page *dst, struct page *src,
1735 unsigned long addr, struct vm_area_struct *vma,
1736 unsigned int pages_per_huge_page);
1737#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1738
1739#ifdef CONFIG_DEBUG_PAGEALLOC
1740extern unsigned int _debug_guardpage_minorder;
1741
1742static inline unsigned int debug_guardpage_minorder(void)
1743{
1744 return _debug_guardpage_minorder;
1745}
1746
1747static inline bool page_is_guard(struct page *page)
1748{
1749 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1750}
1751#else
1752static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1753static inline bool page_is_guard(struct page *page) { return false; }
1754#endif /* CONFIG_DEBUG_PAGEALLOC */
1755
1756#endif /* __KERNEL__ */
1757#endif /* _LINUX_MM_H */