at v3.8-rc2 88 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/pm_qos.h> 29#include <linux/timer.h> 30#include <linux/bug.h> 31#include <linux/delay.h> 32#include <linux/atomic.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#include <net/dsa.h> 45#ifdef CONFIG_DCB 46#include <net/dcbnl.h> 47#endif 48#include <net/netprio_cgroup.h> 49 50#include <linux/netdev_features.h> 51#include <linux/neighbour.h> 52#include <uapi/linux/netdevice.h> 53 54struct netpoll_info; 55struct device; 56struct phy_device; 57/* 802.11 specific */ 58struct wireless_dev; 59 /* source back-compat hooks */ 60#define SET_ETHTOOL_OPS(netdev,ops) \ 61 ( (netdev)->ethtool_ops = (ops) ) 62 63/* hardware address assignment types */ 64#define NET_ADDR_PERM 0 /* address is permanent (default) */ 65#define NET_ADDR_RANDOM 1 /* address is generated randomly */ 66#define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 67 68/* Backlog congestion levels */ 69#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 70#define NET_RX_DROP 1 /* packet dropped */ 71 72/* 73 * Transmit return codes: transmit return codes originate from three different 74 * namespaces: 75 * 76 * - qdisc return codes 77 * - driver transmit return codes 78 * - errno values 79 * 80 * Drivers are allowed to return any one of those in their hard_start_xmit() 81 * function. Real network devices commonly used with qdiscs should only return 82 * the driver transmit return codes though - when qdiscs are used, the actual 83 * transmission happens asynchronously, so the value is not propagated to 84 * higher layers. Virtual network devices transmit synchronously, in this case 85 * the driver transmit return codes are consumed by dev_queue_xmit(), all 86 * others are propagated to higher layers. 87 */ 88 89/* qdisc ->enqueue() return codes. */ 90#define NET_XMIT_SUCCESS 0x00 91#define NET_XMIT_DROP 0x01 /* skb dropped */ 92#define NET_XMIT_CN 0x02 /* congestion notification */ 93#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 94#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 95 96/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 97 * indicates that the device will soon be dropping packets, or already drops 98 * some packets of the same priority; prompting us to send less aggressively. */ 99#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 100#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 101 102/* Driver transmit return codes */ 103#define NETDEV_TX_MASK 0xf0 104 105enum netdev_tx { 106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 107 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 110}; 111typedef enum netdev_tx netdev_tx_t; 112 113/* 114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 116 */ 117static inline bool dev_xmit_complete(int rc) 118{ 119 /* 120 * Positive cases with an skb consumed by a driver: 121 * - successful transmission (rc == NETDEV_TX_OK) 122 * - error while transmitting (rc < 0) 123 * - error while queueing to a different device (rc & NET_XMIT_MASK) 124 */ 125 if (likely(rc < NET_XMIT_MASK)) 126 return true; 127 128 return false; 129} 130 131/* 132 * Compute the worst case header length according to the protocols 133 * used. 134 */ 135 136#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 137# if defined(CONFIG_MAC80211_MESH) 138# define LL_MAX_HEADER 128 139# else 140# define LL_MAX_HEADER 96 141# endif 142#elif IS_ENABLED(CONFIG_TR) 143# define LL_MAX_HEADER 48 144#else 145# define LL_MAX_HEADER 32 146#endif 147 148#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 149 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 150#define MAX_HEADER LL_MAX_HEADER 151#else 152#define MAX_HEADER (LL_MAX_HEADER + 48) 153#endif 154 155/* 156 * Old network device statistics. Fields are native words 157 * (unsigned long) so they can be read and written atomically. 158 */ 159 160struct net_device_stats { 161 unsigned long rx_packets; 162 unsigned long tx_packets; 163 unsigned long rx_bytes; 164 unsigned long tx_bytes; 165 unsigned long rx_errors; 166 unsigned long tx_errors; 167 unsigned long rx_dropped; 168 unsigned long tx_dropped; 169 unsigned long multicast; 170 unsigned long collisions; 171 unsigned long rx_length_errors; 172 unsigned long rx_over_errors; 173 unsigned long rx_crc_errors; 174 unsigned long rx_frame_errors; 175 unsigned long rx_fifo_errors; 176 unsigned long rx_missed_errors; 177 unsigned long tx_aborted_errors; 178 unsigned long tx_carrier_errors; 179 unsigned long tx_fifo_errors; 180 unsigned long tx_heartbeat_errors; 181 unsigned long tx_window_errors; 182 unsigned long rx_compressed; 183 unsigned long tx_compressed; 184}; 185 186 187#include <linux/cache.h> 188#include <linux/skbuff.h> 189 190#ifdef CONFIG_RPS 191#include <linux/static_key.h> 192extern struct static_key rps_needed; 193#endif 194 195struct neighbour; 196struct neigh_parms; 197struct sk_buff; 198 199struct netdev_hw_addr { 200 struct list_head list; 201 unsigned char addr[MAX_ADDR_LEN]; 202 unsigned char type; 203#define NETDEV_HW_ADDR_T_LAN 1 204#define NETDEV_HW_ADDR_T_SAN 2 205#define NETDEV_HW_ADDR_T_SLAVE 3 206#define NETDEV_HW_ADDR_T_UNICAST 4 207#define NETDEV_HW_ADDR_T_MULTICAST 5 208 bool synced; 209 bool global_use; 210 int refcount; 211 struct rcu_head rcu_head; 212}; 213 214struct netdev_hw_addr_list { 215 struct list_head list; 216 int count; 217}; 218 219#define netdev_hw_addr_list_count(l) ((l)->count) 220#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 221#define netdev_hw_addr_list_for_each(ha, l) \ 222 list_for_each_entry(ha, &(l)->list, list) 223 224#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 225#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 226#define netdev_for_each_uc_addr(ha, dev) \ 227 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 228 229#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 230#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 231#define netdev_for_each_mc_addr(ha, dev) \ 232 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 233 234struct hh_cache { 235 u16 hh_len; 236 u16 __pad; 237 seqlock_t hh_lock; 238 239 /* cached hardware header; allow for machine alignment needs. */ 240#define HH_DATA_MOD 16 241#define HH_DATA_OFF(__len) \ 242 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 243#define HH_DATA_ALIGN(__len) \ 244 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 245 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 246}; 247 248/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 249 * Alternative is: 250 * dev->hard_header_len ? (dev->hard_header_len + 251 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 252 * 253 * We could use other alignment values, but we must maintain the 254 * relationship HH alignment <= LL alignment. 255 */ 256#define LL_RESERVED_SPACE(dev) \ 257 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 258#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 259 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 260 261struct header_ops { 262 int (*create) (struct sk_buff *skb, struct net_device *dev, 263 unsigned short type, const void *daddr, 264 const void *saddr, unsigned int len); 265 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 266 int (*rebuild)(struct sk_buff *skb); 267 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 268 void (*cache_update)(struct hh_cache *hh, 269 const struct net_device *dev, 270 const unsigned char *haddr); 271}; 272 273/* These flag bits are private to the generic network queueing 274 * layer, they may not be explicitly referenced by any other 275 * code. 276 */ 277 278enum netdev_state_t { 279 __LINK_STATE_START, 280 __LINK_STATE_PRESENT, 281 __LINK_STATE_NOCARRIER, 282 __LINK_STATE_LINKWATCH_PENDING, 283 __LINK_STATE_DORMANT, 284}; 285 286 287/* 288 * This structure holds at boot time configured netdevice settings. They 289 * are then used in the device probing. 290 */ 291struct netdev_boot_setup { 292 char name[IFNAMSIZ]; 293 struct ifmap map; 294}; 295#define NETDEV_BOOT_SETUP_MAX 8 296 297extern int __init netdev_boot_setup(char *str); 298 299/* 300 * Structure for NAPI scheduling similar to tasklet but with weighting 301 */ 302struct napi_struct { 303 /* The poll_list must only be managed by the entity which 304 * changes the state of the NAPI_STATE_SCHED bit. This means 305 * whoever atomically sets that bit can add this napi_struct 306 * to the per-cpu poll_list, and whoever clears that bit 307 * can remove from the list right before clearing the bit. 308 */ 309 struct list_head poll_list; 310 311 unsigned long state; 312 int weight; 313 unsigned int gro_count; 314 int (*poll)(struct napi_struct *, int); 315#ifdef CONFIG_NETPOLL 316 spinlock_t poll_lock; 317 int poll_owner; 318#endif 319 struct net_device *dev; 320 struct sk_buff *gro_list; 321 struct sk_buff *skb; 322 struct list_head dev_list; 323}; 324 325enum { 326 NAPI_STATE_SCHED, /* Poll is scheduled */ 327 NAPI_STATE_DISABLE, /* Disable pending */ 328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 329}; 330 331enum gro_result { 332 GRO_MERGED, 333 GRO_MERGED_FREE, 334 GRO_HELD, 335 GRO_NORMAL, 336 GRO_DROP, 337}; 338typedef enum gro_result gro_result_t; 339 340/* 341 * enum rx_handler_result - Possible return values for rx_handlers. 342 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 343 * further. 344 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 345 * case skb->dev was changed by rx_handler. 346 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 347 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 348 * 349 * rx_handlers are functions called from inside __netif_receive_skb(), to do 350 * special processing of the skb, prior to delivery to protocol handlers. 351 * 352 * Currently, a net_device can only have a single rx_handler registered. Trying 353 * to register a second rx_handler will return -EBUSY. 354 * 355 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 356 * To unregister a rx_handler on a net_device, use 357 * netdev_rx_handler_unregister(). 358 * 359 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 360 * do with the skb. 361 * 362 * If the rx_handler consumed to skb in some way, it should return 363 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 364 * the skb to be delivered in some other ways. 365 * 366 * If the rx_handler changed skb->dev, to divert the skb to another 367 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 368 * new device will be called if it exists. 369 * 370 * If the rx_handler consider the skb should be ignored, it should return 371 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 372 * are registered on exact device (ptype->dev == skb->dev). 373 * 374 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 375 * delivered, it should return RX_HANDLER_PASS. 376 * 377 * A device without a registered rx_handler will behave as if rx_handler 378 * returned RX_HANDLER_PASS. 379 */ 380 381enum rx_handler_result { 382 RX_HANDLER_CONSUMED, 383 RX_HANDLER_ANOTHER, 384 RX_HANDLER_EXACT, 385 RX_HANDLER_PASS, 386}; 387typedef enum rx_handler_result rx_handler_result_t; 388typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 389 390extern void __napi_schedule(struct napi_struct *n); 391 392static inline bool napi_disable_pending(struct napi_struct *n) 393{ 394 return test_bit(NAPI_STATE_DISABLE, &n->state); 395} 396 397/** 398 * napi_schedule_prep - check if napi can be scheduled 399 * @n: napi context 400 * 401 * Test if NAPI routine is already running, and if not mark 402 * it as running. This is used as a condition variable 403 * insure only one NAPI poll instance runs. We also make 404 * sure there is no pending NAPI disable. 405 */ 406static inline bool napi_schedule_prep(struct napi_struct *n) 407{ 408 return !napi_disable_pending(n) && 409 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 410} 411 412/** 413 * napi_schedule - schedule NAPI poll 414 * @n: napi context 415 * 416 * Schedule NAPI poll routine to be called if it is not already 417 * running. 418 */ 419static inline void napi_schedule(struct napi_struct *n) 420{ 421 if (napi_schedule_prep(n)) 422 __napi_schedule(n); 423} 424 425/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 426static inline bool napi_reschedule(struct napi_struct *napi) 427{ 428 if (napi_schedule_prep(napi)) { 429 __napi_schedule(napi); 430 return true; 431 } 432 return false; 433} 434 435/** 436 * napi_complete - NAPI processing complete 437 * @n: napi context 438 * 439 * Mark NAPI processing as complete. 440 */ 441extern void __napi_complete(struct napi_struct *n); 442extern void napi_complete(struct napi_struct *n); 443 444/** 445 * napi_disable - prevent NAPI from scheduling 446 * @n: napi context 447 * 448 * Stop NAPI from being scheduled on this context. 449 * Waits till any outstanding processing completes. 450 */ 451static inline void napi_disable(struct napi_struct *n) 452{ 453 set_bit(NAPI_STATE_DISABLE, &n->state); 454 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 455 msleep(1); 456 clear_bit(NAPI_STATE_DISABLE, &n->state); 457} 458 459/** 460 * napi_enable - enable NAPI scheduling 461 * @n: napi context 462 * 463 * Resume NAPI from being scheduled on this context. 464 * Must be paired with napi_disable. 465 */ 466static inline void napi_enable(struct napi_struct *n) 467{ 468 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 469 smp_mb__before_clear_bit(); 470 clear_bit(NAPI_STATE_SCHED, &n->state); 471} 472 473#ifdef CONFIG_SMP 474/** 475 * napi_synchronize - wait until NAPI is not running 476 * @n: napi context 477 * 478 * Wait until NAPI is done being scheduled on this context. 479 * Waits till any outstanding processing completes but 480 * does not disable future activations. 481 */ 482static inline void napi_synchronize(const struct napi_struct *n) 483{ 484 while (test_bit(NAPI_STATE_SCHED, &n->state)) 485 msleep(1); 486} 487#else 488# define napi_synchronize(n) barrier() 489#endif 490 491enum netdev_queue_state_t { 492 __QUEUE_STATE_DRV_XOFF, 493 __QUEUE_STATE_STACK_XOFF, 494 __QUEUE_STATE_FROZEN, 495#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 496 (1 << __QUEUE_STATE_STACK_XOFF)) 497#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 498 (1 << __QUEUE_STATE_FROZEN)) 499}; 500/* 501 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 502 * netif_tx_* functions below are used to manipulate this flag. The 503 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 504 * queue independently. The netif_xmit_*stopped functions below are called 505 * to check if the queue has been stopped by the driver or stack (either 506 * of the XOFF bits are set in the state). Drivers should not need to call 507 * netif_xmit*stopped functions, they should only be using netif_tx_*. 508 */ 509 510struct netdev_queue { 511/* 512 * read mostly part 513 */ 514 struct net_device *dev; 515 struct Qdisc *qdisc; 516 struct Qdisc *qdisc_sleeping; 517#ifdef CONFIG_SYSFS 518 struct kobject kobj; 519#endif 520#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 521 int numa_node; 522#endif 523/* 524 * write mostly part 525 */ 526 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 527 int xmit_lock_owner; 528 /* 529 * please use this field instead of dev->trans_start 530 */ 531 unsigned long trans_start; 532 533 /* 534 * Number of TX timeouts for this queue 535 * (/sys/class/net/DEV/Q/trans_timeout) 536 */ 537 unsigned long trans_timeout; 538 539 unsigned long state; 540 541#ifdef CONFIG_BQL 542 struct dql dql; 543#endif 544} ____cacheline_aligned_in_smp; 545 546static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 547{ 548#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 549 return q->numa_node; 550#else 551 return NUMA_NO_NODE; 552#endif 553} 554 555static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 556{ 557#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 558 q->numa_node = node; 559#endif 560} 561 562#ifdef CONFIG_RPS 563/* 564 * This structure holds an RPS map which can be of variable length. The 565 * map is an array of CPUs. 566 */ 567struct rps_map { 568 unsigned int len; 569 struct rcu_head rcu; 570 u16 cpus[0]; 571}; 572#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 573 574/* 575 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 576 * tail pointer for that CPU's input queue at the time of last enqueue, and 577 * a hardware filter index. 578 */ 579struct rps_dev_flow { 580 u16 cpu; 581 u16 filter; 582 unsigned int last_qtail; 583}; 584#define RPS_NO_FILTER 0xffff 585 586/* 587 * The rps_dev_flow_table structure contains a table of flow mappings. 588 */ 589struct rps_dev_flow_table { 590 unsigned int mask; 591 struct rcu_head rcu; 592 struct work_struct free_work; 593 struct rps_dev_flow flows[0]; 594}; 595#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 596 ((_num) * sizeof(struct rps_dev_flow))) 597 598/* 599 * The rps_sock_flow_table contains mappings of flows to the last CPU 600 * on which they were processed by the application (set in recvmsg). 601 */ 602struct rps_sock_flow_table { 603 unsigned int mask; 604 u16 ents[0]; 605}; 606#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 607 ((_num) * sizeof(u16))) 608 609#define RPS_NO_CPU 0xffff 610 611static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 612 u32 hash) 613{ 614 if (table && hash) { 615 unsigned int cpu, index = hash & table->mask; 616 617 /* We only give a hint, preemption can change cpu under us */ 618 cpu = raw_smp_processor_id(); 619 620 if (table->ents[index] != cpu) 621 table->ents[index] = cpu; 622 } 623} 624 625static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 626 u32 hash) 627{ 628 if (table && hash) 629 table->ents[hash & table->mask] = RPS_NO_CPU; 630} 631 632extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 633 634#ifdef CONFIG_RFS_ACCEL 635extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 636 u32 flow_id, u16 filter_id); 637#endif 638 639/* This structure contains an instance of an RX queue. */ 640struct netdev_rx_queue { 641 struct rps_map __rcu *rps_map; 642 struct rps_dev_flow_table __rcu *rps_flow_table; 643 struct kobject kobj; 644 struct net_device *dev; 645} ____cacheline_aligned_in_smp; 646#endif /* CONFIG_RPS */ 647 648#ifdef CONFIG_XPS 649/* 650 * This structure holds an XPS map which can be of variable length. The 651 * map is an array of queues. 652 */ 653struct xps_map { 654 unsigned int len; 655 unsigned int alloc_len; 656 struct rcu_head rcu; 657 u16 queues[0]; 658}; 659#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 660#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 661 / sizeof(u16)) 662 663/* 664 * This structure holds all XPS maps for device. Maps are indexed by CPU. 665 */ 666struct xps_dev_maps { 667 struct rcu_head rcu; 668 struct xps_map __rcu *cpu_map[0]; 669}; 670#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 671 (nr_cpu_ids * sizeof(struct xps_map *))) 672#endif /* CONFIG_XPS */ 673 674#define TC_MAX_QUEUE 16 675#define TC_BITMASK 15 676/* HW offloaded queuing disciplines txq count and offset maps */ 677struct netdev_tc_txq { 678 u16 count; 679 u16 offset; 680}; 681 682#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 683/* 684 * This structure is to hold information about the device 685 * configured to run FCoE protocol stack. 686 */ 687struct netdev_fcoe_hbainfo { 688 char manufacturer[64]; 689 char serial_number[64]; 690 char hardware_version[64]; 691 char driver_version[64]; 692 char optionrom_version[64]; 693 char firmware_version[64]; 694 char model[256]; 695 char model_description[256]; 696}; 697#endif 698 699/* 700 * This structure defines the management hooks for network devices. 701 * The following hooks can be defined; unless noted otherwise, they are 702 * optional and can be filled with a null pointer. 703 * 704 * int (*ndo_init)(struct net_device *dev); 705 * This function is called once when network device is registered. 706 * The network device can use this to any late stage initializaton 707 * or semantic validattion. It can fail with an error code which will 708 * be propogated back to register_netdev 709 * 710 * void (*ndo_uninit)(struct net_device *dev); 711 * This function is called when device is unregistered or when registration 712 * fails. It is not called if init fails. 713 * 714 * int (*ndo_open)(struct net_device *dev); 715 * This function is called when network device transistions to the up 716 * state. 717 * 718 * int (*ndo_stop)(struct net_device *dev); 719 * This function is called when network device transistions to the down 720 * state. 721 * 722 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 723 * struct net_device *dev); 724 * Called when a packet needs to be transmitted. 725 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 726 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 727 * Required can not be NULL. 728 * 729 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 730 * Called to decide which queue to when device supports multiple 731 * transmit queues. 732 * 733 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 734 * This function is called to allow device receiver to make 735 * changes to configuration when multicast or promiscious is enabled. 736 * 737 * void (*ndo_set_rx_mode)(struct net_device *dev); 738 * This function is called device changes address list filtering. 739 * If driver handles unicast address filtering, it should set 740 * IFF_UNICAST_FLT to its priv_flags. 741 * 742 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 743 * This function is called when the Media Access Control address 744 * needs to be changed. If this interface is not defined, the 745 * mac address can not be changed. 746 * 747 * int (*ndo_validate_addr)(struct net_device *dev); 748 * Test if Media Access Control address is valid for the device. 749 * 750 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 751 * Called when a user request an ioctl which can't be handled by 752 * the generic interface code. If not defined ioctl's return 753 * not supported error code. 754 * 755 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 756 * Used to set network devices bus interface parameters. This interface 757 * is retained for legacy reason, new devices should use the bus 758 * interface (PCI) for low level management. 759 * 760 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 761 * Called when a user wants to change the Maximum Transfer Unit 762 * of a device. If not defined, any request to change MTU will 763 * will return an error. 764 * 765 * void (*ndo_tx_timeout)(struct net_device *dev); 766 * Callback uses when the transmitter has not made any progress 767 * for dev->watchdog ticks. 768 * 769 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 770 * struct rtnl_link_stats64 *storage); 771 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 772 * Called when a user wants to get the network device usage 773 * statistics. Drivers must do one of the following: 774 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 775 * rtnl_link_stats64 structure passed by the caller. 776 * 2. Define @ndo_get_stats to update a net_device_stats structure 777 * (which should normally be dev->stats) and return a pointer to 778 * it. The structure may be changed asynchronously only if each 779 * field is written atomically. 780 * 3. Update dev->stats asynchronously and atomically, and define 781 * neither operation. 782 * 783 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 784 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 785 * this function is called when a VLAN id is registered. 786 * 787 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 788 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 789 * this function is called when a VLAN id is unregistered. 790 * 791 * void (*ndo_poll_controller)(struct net_device *dev); 792 * 793 * SR-IOV management functions. 794 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 795 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 796 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 797 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 798 * int (*ndo_get_vf_config)(struct net_device *dev, 799 * int vf, struct ifla_vf_info *ivf); 800 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 801 * struct nlattr *port[]); 802 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 803 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 804 * Called to setup 'tc' number of traffic classes in the net device. This 805 * is always called from the stack with the rtnl lock held and netif tx 806 * queues stopped. This allows the netdevice to perform queue management 807 * safely. 808 * 809 * Fiber Channel over Ethernet (FCoE) offload functions. 810 * int (*ndo_fcoe_enable)(struct net_device *dev); 811 * Called when the FCoE protocol stack wants to start using LLD for FCoE 812 * so the underlying device can perform whatever needed configuration or 813 * initialization to support acceleration of FCoE traffic. 814 * 815 * int (*ndo_fcoe_disable)(struct net_device *dev); 816 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 817 * so the underlying device can perform whatever needed clean-ups to 818 * stop supporting acceleration of FCoE traffic. 819 * 820 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 821 * struct scatterlist *sgl, unsigned int sgc); 822 * Called when the FCoE Initiator wants to initialize an I/O that 823 * is a possible candidate for Direct Data Placement (DDP). The LLD can 824 * perform necessary setup and returns 1 to indicate the device is set up 825 * successfully to perform DDP on this I/O, otherwise this returns 0. 826 * 827 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 828 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 829 * indicated by the FC exchange id 'xid', so the underlying device can 830 * clean up and reuse resources for later DDP requests. 831 * 832 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 833 * struct scatterlist *sgl, unsigned int sgc); 834 * Called when the FCoE Target wants to initialize an I/O that 835 * is a possible candidate for Direct Data Placement (DDP). The LLD can 836 * perform necessary setup and returns 1 to indicate the device is set up 837 * successfully to perform DDP on this I/O, otherwise this returns 0. 838 * 839 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 840 * struct netdev_fcoe_hbainfo *hbainfo); 841 * Called when the FCoE Protocol stack wants information on the underlying 842 * device. This information is utilized by the FCoE protocol stack to 843 * register attributes with Fiber Channel management service as per the 844 * FC-GS Fabric Device Management Information(FDMI) specification. 845 * 846 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 847 * Called when the underlying device wants to override default World Wide 848 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 849 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 850 * protocol stack to use. 851 * 852 * RFS acceleration. 853 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 854 * u16 rxq_index, u32 flow_id); 855 * Set hardware filter for RFS. rxq_index is the target queue index; 856 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 857 * Return the filter ID on success, or a negative error code. 858 * 859 * Slave management functions (for bridge, bonding, etc). User should 860 * call netdev_set_master() to set dev->master properly. 861 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 862 * Called to make another netdev an underling. 863 * 864 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 865 * Called to release previously enslaved netdev. 866 * 867 * Feature/offload setting functions. 868 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 869 * netdev_features_t features); 870 * Adjusts the requested feature flags according to device-specific 871 * constraints, and returns the resulting flags. Must not modify 872 * the device state. 873 * 874 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 875 * Called to update device configuration to new features. Passed 876 * feature set might be less than what was returned by ndo_fix_features()). 877 * Must return >0 or -errno if it changed dev->features itself. 878 * 879 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 880 * struct net_device *dev, 881 * const unsigned char *addr, u16 flags) 882 * Adds an FDB entry to dev for addr. 883 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev, 884 * const unsigned char *addr) 885 * Deletes the FDB entry from dev coresponding to addr. 886 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 887 * struct net_device *dev, int idx) 888 * Used to add FDB entries to dump requests. Implementers should add 889 * entries to skb and update idx with the number of entries. 890 * 891 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh) 892 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 893 * struct net_device *dev) 894 */ 895struct net_device_ops { 896 int (*ndo_init)(struct net_device *dev); 897 void (*ndo_uninit)(struct net_device *dev); 898 int (*ndo_open)(struct net_device *dev); 899 int (*ndo_stop)(struct net_device *dev); 900 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 901 struct net_device *dev); 902 u16 (*ndo_select_queue)(struct net_device *dev, 903 struct sk_buff *skb); 904 void (*ndo_change_rx_flags)(struct net_device *dev, 905 int flags); 906 void (*ndo_set_rx_mode)(struct net_device *dev); 907 int (*ndo_set_mac_address)(struct net_device *dev, 908 void *addr); 909 int (*ndo_validate_addr)(struct net_device *dev); 910 int (*ndo_do_ioctl)(struct net_device *dev, 911 struct ifreq *ifr, int cmd); 912 int (*ndo_set_config)(struct net_device *dev, 913 struct ifmap *map); 914 int (*ndo_change_mtu)(struct net_device *dev, 915 int new_mtu); 916 int (*ndo_neigh_setup)(struct net_device *dev, 917 struct neigh_parms *); 918 void (*ndo_tx_timeout) (struct net_device *dev); 919 920 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 921 struct rtnl_link_stats64 *storage); 922 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 923 924 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 925 unsigned short vid); 926 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 927 unsigned short vid); 928#ifdef CONFIG_NET_POLL_CONTROLLER 929 void (*ndo_poll_controller)(struct net_device *dev); 930 int (*ndo_netpoll_setup)(struct net_device *dev, 931 struct netpoll_info *info, 932 gfp_t gfp); 933 void (*ndo_netpoll_cleanup)(struct net_device *dev); 934#endif 935 int (*ndo_set_vf_mac)(struct net_device *dev, 936 int queue, u8 *mac); 937 int (*ndo_set_vf_vlan)(struct net_device *dev, 938 int queue, u16 vlan, u8 qos); 939 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 940 int vf, int rate); 941 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 942 int vf, bool setting); 943 int (*ndo_get_vf_config)(struct net_device *dev, 944 int vf, 945 struct ifla_vf_info *ivf); 946 int (*ndo_set_vf_port)(struct net_device *dev, 947 int vf, 948 struct nlattr *port[]); 949 int (*ndo_get_vf_port)(struct net_device *dev, 950 int vf, struct sk_buff *skb); 951 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 952#if IS_ENABLED(CONFIG_FCOE) 953 int (*ndo_fcoe_enable)(struct net_device *dev); 954 int (*ndo_fcoe_disable)(struct net_device *dev); 955 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 956 u16 xid, 957 struct scatterlist *sgl, 958 unsigned int sgc); 959 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 960 u16 xid); 961 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 962 u16 xid, 963 struct scatterlist *sgl, 964 unsigned int sgc); 965 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 966 struct netdev_fcoe_hbainfo *hbainfo); 967#endif 968 969#if IS_ENABLED(CONFIG_LIBFCOE) 970#define NETDEV_FCOE_WWNN 0 971#define NETDEV_FCOE_WWPN 1 972 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 973 u64 *wwn, int type); 974#endif 975 976#ifdef CONFIG_RFS_ACCEL 977 int (*ndo_rx_flow_steer)(struct net_device *dev, 978 const struct sk_buff *skb, 979 u16 rxq_index, 980 u32 flow_id); 981#endif 982 int (*ndo_add_slave)(struct net_device *dev, 983 struct net_device *slave_dev); 984 int (*ndo_del_slave)(struct net_device *dev, 985 struct net_device *slave_dev); 986 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 987 netdev_features_t features); 988 int (*ndo_set_features)(struct net_device *dev, 989 netdev_features_t features); 990 int (*ndo_neigh_construct)(struct neighbour *n); 991 void (*ndo_neigh_destroy)(struct neighbour *n); 992 993 int (*ndo_fdb_add)(struct ndmsg *ndm, 994 struct nlattr *tb[], 995 struct net_device *dev, 996 const unsigned char *addr, 997 u16 flags); 998 int (*ndo_fdb_del)(struct ndmsg *ndm, 999 struct net_device *dev, 1000 const unsigned char *addr); 1001 int (*ndo_fdb_dump)(struct sk_buff *skb, 1002 struct netlink_callback *cb, 1003 struct net_device *dev, 1004 int idx); 1005 1006 int (*ndo_bridge_setlink)(struct net_device *dev, 1007 struct nlmsghdr *nlh); 1008 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1009 u32 pid, u32 seq, 1010 struct net_device *dev); 1011}; 1012 1013/* 1014 * The DEVICE structure. 1015 * Actually, this whole structure is a big mistake. It mixes I/O 1016 * data with strictly "high-level" data, and it has to know about 1017 * almost every data structure used in the INET module. 1018 * 1019 * FIXME: cleanup struct net_device such that network protocol info 1020 * moves out. 1021 */ 1022 1023struct net_device { 1024 1025 /* 1026 * This is the first field of the "visible" part of this structure 1027 * (i.e. as seen by users in the "Space.c" file). It is the name 1028 * of the interface. 1029 */ 1030 char name[IFNAMSIZ]; 1031 1032 /* device name hash chain, please keep it close to name[] */ 1033 struct hlist_node name_hlist; 1034 1035 /* snmp alias */ 1036 char *ifalias; 1037 1038 /* 1039 * I/O specific fields 1040 * FIXME: Merge these and struct ifmap into one 1041 */ 1042 unsigned long mem_end; /* shared mem end */ 1043 unsigned long mem_start; /* shared mem start */ 1044 unsigned long base_addr; /* device I/O address */ 1045 unsigned int irq; /* device IRQ number */ 1046 1047 /* 1048 * Some hardware also needs these fields, but they are not 1049 * part of the usual set specified in Space.c. 1050 */ 1051 1052 unsigned long state; 1053 1054 struct list_head dev_list; 1055 struct list_head napi_list; 1056 struct list_head unreg_list; 1057 1058 /* currently active device features */ 1059 netdev_features_t features; 1060 /* user-changeable features */ 1061 netdev_features_t hw_features; 1062 /* user-requested features */ 1063 netdev_features_t wanted_features; 1064 /* mask of features inheritable by VLAN devices */ 1065 netdev_features_t vlan_features; 1066 /* mask of features inherited by encapsulating devices 1067 * This field indicates what encapsulation offloads 1068 * the hardware is capable of doing, and drivers will 1069 * need to set them appropriately. 1070 */ 1071 netdev_features_t hw_enc_features; 1072 1073 /* Interface index. Unique device identifier */ 1074 int ifindex; 1075 int iflink; 1076 1077 struct net_device_stats stats; 1078 atomic_long_t rx_dropped; /* dropped packets by core network 1079 * Do not use this in drivers. 1080 */ 1081 1082#ifdef CONFIG_WIRELESS_EXT 1083 /* List of functions to handle Wireless Extensions (instead of ioctl). 1084 * See <net/iw_handler.h> for details. Jean II */ 1085 const struct iw_handler_def * wireless_handlers; 1086 /* Instance data managed by the core of Wireless Extensions. */ 1087 struct iw_public_data * wireless_data; 1088#endif 1089 /* Management operations */ 1090 const struct net_device_ops *netdev_ops; 1091 const struct ethtool_ops *ethtool_ops; 1092 1093 /* Hardware header description */ 1094 const struct header_ops *header_ops; 1095 1096 unsigned int flags; /* interface flags (a la BSD) */ 1097 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1098 * See if.h for definitions. */ 1099 unsigned short gflags; 1100 unsigned short padded; /* How much padding added by alloc_netdev() */ 1101 1102 unsigned char operstate; /* RFC2863 operstate */ 1103 unsigned char link_mode; /* mapping policy to operstate */ 1104 1105 unsigned char if_port; /* Selectable AUI, TP,..*/ 1106 unsigned char dma; /* DMA channel */ 1107 1108 unsigned int mtu; /* interface MTU value */ 1109 unsigned short type; /* interface hardware type */ 1110 unsigned short hard_header_len; /* hardware hdr length */ 1111 1112 /* extra head- and tailroom the hardware may need, but not in all cases 1113 * can this be guaranteed, especially tailroom. Some cases also use 1114 * LL_MAX_HEADER instead to allocate the skb. 1115 */ 1116 unsigned short needed_headroom; 1117 unsigned short needed_tailroom; 1118 1119 /* Interface address info. */ 1120 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1121 unsigned char addr_assign_type; /* hw address assignment type */ 1122 unsigned char addr_len; /* hardware address length */ 1123 unsigned char neigh_priv_len; 1124 unsigned short dev_id; /* for shared network cards */ 1125 1126 spinlock_t addr_list_lock; 1127 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1128 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1129 bool uc_promisc; 1130 unsigned int promiscuity; 1131 unsigned int allmulti; 1132 1133 1134 /* Protocol specific pointers */ 1135 1136#if IS_ENABLED(CONFIG_VLAN_8021Q) 1137 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1138#endif 1139#if IS_ENABLED(CONFIG_NET_DSA) 1140 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1141#endif 1142 void *atalk_ptr; /* AppleTalk link */ 1143 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1144 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1145 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1146 void *ax25_ptr; /* AX.25 specific data */ 1147 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1148 assign before registering */ 1149 1150/* 1151 * Cache lines mostly used on receive path (including eth_type_trans()) 1152 */ 1153 unsigned long last_rx; /* Time of last Rx 1154 * This should not be set in 1155 * drivers, unless really needed, 1156 * because network stack (bonding) 1157 * use it if/when necessary, to 1158 * avoid dirtying this cache line. 1159 */ 1160 1161 struct net_device *master; /* Pointer to master device of a group, 1162 * which this device is member of. 1163 */ 1164 1165 /* Interface address info used in eth_type_trans() */ 1166 unsigned char *dev_addr; /* hw address, (before bcast 1167 because most packets are 1168 unicast) */ 1169 1170 struct netdev_hw_addr_list dev_addrs; /* list of device 1171 hw addresses */ 1172 1173 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1174 1175#ifdef CONFIG_SYSFS 1176 struct kset *queues_kset; 1177#endif 1178 1179#ifdef CONFIG_RPS 1180 struct netdev_rx_queue *_rx; 1181 1182 /* Number of RX queues allocated at register_netdev() time */ 1183 unsigned int num_rx_queues; 1184 1185 /* Number of RX queues currently active in device */ 1186 unsigned int real_num_rx_queues; 1187 1188#ifdef CONFIG_RFS_ACCEL 1189 /* CPU reverse-mapping for RX completion interrupts, indexed 1190 * by RX queue number. Assigned by driver. This must only be 1191 * set if the ndo_rx_flow_steer operation is defined. */ 1192 struct cpu_rmap *rx_cpu_rmap; 1193#endif 1194#endif 1195 1196 rx_handler_func_t __rcu *rx_handler; 1197 void __rcu *rx_handler_data; 1198 1199 struct netdev_queue __rcu *ingress_queue; 1200 1201/* 1202 * Cache lines mostly used on transmit path 1203 */ 1204 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1205 1206 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1207 unsigned int num_tx_queues; 1208 1209 /* Number of TX queues currently active in device */ 1210 unsigned int real_num_tx_queues; 1211 1212 /* root qdisc from userspace point of view */ 1213 struct Qdisc *qdisc; 1214 1215 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1216 spinlock_t tx_global_lock; 1217 1218#ifdef CONFIG_XPS 1219 struct xps_dev_maps __rcu *xps_maps; 1220#endif 1221 1222 /* These may be needed for future network-power-down code. */ 1223 1224 /* 1225 * trans_start here is expensive for high speed devices on SMP, 1226 * please use netdev_queue->trans_start instead. 1227 */ 1228 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1229 1230 int watchdog_timeo; /* used by dev_watchdog() */ 1231 struct timer_list watchdog_timer; 1232 1233 /* Number of references to this device */ 1234 int __percpu *pcpu_refcnt; 1235 1236 /* delayed register/unregister */ 1237 struct list_head todo_list; 1238 /* device index hash chain */ 1239 struct hlist_node index_hlist; 1240 1241 struct list_head link_watch_list; 1242 1243 /* register/unregister state machine */ 1244 enum { NETREG_UNINITIALIZED=0, 1245 NETREG_REGISTERED, /* completed register_netdevice */ 1246 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1247 NETREG_UNREGISTERED, /* completed unregister todo */ 1248 NETREG_RELEASED, /* called free_netdev */ 1249 NETREG_DUMMY, /* dummy device for NAPI poll */ 1250 } reg_state:8; 1251 1252 bool dismantle; /* device is going do be freed */ 1253 1254 enum { 1255 RTNL_LINK_INITIALIZED, 1256 RTNL_LINK_INITIALIZING, 1257 } rtnl_link_state:16; 1258 1259 /* Called from unregister, can be used to call free_netdev */ 1260 void (*destructor)(struct net_device *dev); 1261 1262#ifdef CONFIG_NETPOLL 1263 struct netpoll_info *npinfo; 1264#endif 1265 1266#ifdef CONFIG_NET_NS 1267 /* Network namespace this network device is inside */ 1268 struct net *nd_net; 1269#endif 1270 1271 /* mid-layer private */ 1272 union { 1273 void *ml_priv; 1274 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1275 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1276 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1277 }; 1278 /* GARP */ 1279 struct garp_port __rcu *garp_port; 1280 1281 /* class/net/name entry */ 1282 struct device dev; 1283 /* space for optional device, statistics, and wireless sysfs groups */ 1284 const struct attribute_group *sysfs_groups[4]; 1285 1286 /* rtnetlink link ops */ 1287 const struct rtnl_link_ops *rtnl_link_ops; 1288 1289 /* for setting kernel sock attribute on TCP connection setup */ 1290#define GSO_MAX_SIZE 65536 1291 unsigned int gso_max_size; 1292#define GSO_MAX_SEGS 65535 1293 u16 gso_max_segs; 1294 1295#ifdef CONFIG_DCB 1296 /* Data Center Bridging netlink ops */ 1297 const struct dcbnl_rtnl_ops *dcbnl_ops; 1298#endif 1299 u8 num_tc; 1300 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1301 u8 prio_tc_map[TC_BITMASK + 1]; 1302 1303#if IS_ENABLED(CONFIG_FCOE) 1304 /* max exchange id for FCoE LRO by ddp */ 1305 unsigned int fcoe_ddp_xid; 1306#endif 1307#if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 1308 struct netprio_map __rcu *priomap; 1309#endif 1310 /* phy device may attach itself for hardware timestamping */ 1311 struct phy_device *phydev; 1312 1313 struct lock_class_key *qdisc_tx_busylock; 1314 1315 /* group the device belongs to */ 1316 int group; 1317 1318 struct pm_qos_request pm_qos_req; 1319}; 1320#define to_net_dev(d) container_of(d, struct net_device, dev) 1321 1322#define NETDEV_ALIGN 32 1323 1324static inline 1325int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1326{ 1327 return dev->prio_tc_map[prio & TC_BITMASK]; 1328} 1329 1330static inline 1331int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1332{ 1333 if (tc >= dev->num_tc) 1334 return -EINVAL; 1335 1336 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1337 return 0; 1338} 1339 1340static inline 1341void netdev_reset_tc(struct net_device *dev) 1342{ 1343 dev->num_tc = 0; 1344 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1345 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1346} 1347 1348static inline 1349int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1350{ 1351 if (tc >= dev->num_tc) 1352 return -EINVAL; 1353 1354 dev->tc_to_txq[tc].count = count; 1355 dev->tc_to_txq[tc].offset = offset; 1356 return 0; 1357} 1358 1359static inline 1360int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1361{ 1362 if (num_tc > TC_MAX_QUEUE) 1363 return -EINVAL; 1364 1365 dev->num_tc = num_tc; 1366 return 0; 1367} 1368 1369static inline 1370int netdev_get_num_tc(struct net_device *dev) 1371{ 1372 return dev->num_tc; 1373} 1374 1375static inline 1376struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1377 unsigned int index) 1378{ 1379 return &dev->_tx[index]; 1380} 1381 1382static inline void netdev_for_each_tx_queue(struct net_device *dev, 1383 void (*f)(struct net_device *, 1384 struct netdev_queue *, 1385 void *), 1386 void *arg) 1387{ 1388 unsigned int i; 1389 1390 for (i = 0; i < dev->num_tx_queues; i++) 1391 f(dev, &dev->_tx[i], arg); 1392} 1393 1394extern struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1395 struct sk_buff *skb); 1396 1397/* 1398 * Net namespace inlines 1399 */ 1400static inline 1401struct net *dev_net(const struct net_device *dev) 1402{ 1403 return read_pnet(&dev->nd_net); 1404} 1405 1406static inline 1407void dev_net_set(struct net_device *dev, struct net *net) 1408{ 1409#ifdef CONFIG_NET_NS 1410 release_net(dev->nd_net); 1411 dev->nd_net = hold_net(net); 1412#endif 1413} 1414 1415static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1416{ 1417#ifdef CONFIG_NET_DSA_TAG_DSA 1418 if (dev->dsa_ptr != NULL) 1419 return dsa_uses_dsa_tags(dev->dsa_ptr); 1420#endif 1421 1422 return 0; 1423} 1424 1425static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1426{ 1427#ifdef CONFIG_NET_DSA_TAG_TRAILER 1428 if (dev->dsa_ptr != NULL) 1429 return dsa_uses_trailer_tags(dev->dsa_ptr); 1430#endif 1431 1432 return 0; 1433} 1434 1435/** 1436 * netdev_priv - access network device private data 1437 * @dev: network device 1438 * 1439 * Get network device private data 1440 */ 1441static inline void *netdev_priv(const struct net_device *dev) 1442{ 1443 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1444} 1445 1446/* Set the sysfs physical device reference for the network logical device 1447 * if set prior to registration will cause a symlink during initialization. 1448 */ 1449#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1450 1451/* Set the sysfs device type for the network logical device to allow 1452 * fin grained indentification of different network device types. For 1453 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1454 */ 1455#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1456 1457/** 1458 * netif_napi_add - initialize a napi context 1459 * @dev: network device 1460 * @napi: napi context 1461 * @poll: polling function 1462 * @weight: default weight 1463 * 1464 * netif_napi_add() must be used to initialize a napi context prior to calling 1465 * *any* of the other napi related functions. 1466 */ 1467void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1468 int (*poll)(struct napi_struct *, int), int weight); 1469 1470/** 1471 * netif_napi_del - remove a napi context 1472 * @napi: napi context 1473 * 1474 * netif_napi_del() removes a napi context from the network device napi list 1475 */ 1476void netif_napi_del(struct napi_struct *napi); 1477 1478struct napi_gro_cb { 1479 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1480 void *frag0; 1481 1482 /* Length of frag0. */ 1483 unsigned int frag0_len; 1484 1485 /* This indicates where we are processing relative to skb->data. */ 1486 int data_offset; 1487 1488 /* This is non-zero if the packet cannot be merged with the new skb. */ 1489 int flush; 1490 1491 /* Number of segments aggregated. */ 1492 u16 count; 1493 1494 /* This is non-zero if the packet may be of the same flow. */ 1495 u8 same_flow; 1496 1497 /* Free the skb? */ 1498 u8 free; 1499#define NAPI_GRO_FREE 1 1500#define NAPI_GRO_FREE_STOLEN_HEAD 2 1501 1502 /* jiffies when first packet was created/queued */ 1503 unsigned long age; 1504 1505 /* Used in ipv6_gro_receive() */ 1506 int proto; 1507 1508 /* used in skb_gro_receive() slow path */ 1509 struct sk_buff *last; 1510}; 1511 1512#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1513 1514struct packet_type { 1515 __be16 type; /* This is really htons(ether_type). */ 1516 struct net_device *dev; /* NULL is wildcarded here */ 1517 int (*func) (struct sk_buff *, 1518 struct net_device *, 1519 struct packet_type *, 1520 struct net_device *); 1521 bool (*id_match)(struct packet_type *ptype, 1522 struct sock *sk); 1523 void *af_packet_priv; 1524 struct list_head list; 1525}; 1526 1527struct offload_callbacks { 1528 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1529 netdev_features_t features); 1530 int (*gso_send_check)(struct sk_buff *skb); 1531 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1532 struct sk_buff *skb); 1533 int (*gro_complete)(struct sk_buff *skb); 1534}; 1535 1536struct packet_offload { 1537 __be16 type; /* This is really htons(ether_type). */ 1538 struct offload_callbacks callbacks; 1539 struct list_head list; 1540}; 1541 1542#include <linux/notifier.h> 1543 1544/* netdevice notifier chain. Please remember to update the rtnetlink 1545 * notification exclusion list in rtnetlink_event() when adding new 1546 * types. 1547 */ 1548#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1549#define NETDEV_DOWN 0x0002 1550#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1551 detected a hardware crash and restarted 1552 - we can use this eg to kick tcp sessions 1553 once done */ 1554#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1555#define NETDEV_REGISTER 0x0005 1556#define NETDEV_UNREGISTER 0x0006 1557#define NETDEV_CHANGEMTU 0x0007 1558#define NETDEV_CHANGEADDR 0x0008 1559#define NETDEV_GOING_DOWN 0x0009 1560#define NETDEV_CHANGENAME 0x000A 1561#define NETDEV_FEAT_CHANGE 0x000B 1562#define NETDEV_BONDING_FAILOVER 0x000C 1563#define NETDEV_PRE_UP 0x000D 1564#define NETDEV_PRE_TYPE_CHANGE 0x000E 1565#define NETDEV_POST_TYPE_CHANGE 0x000F 1566#define NETDEV_POST_INIT 0x0010 1567#define NETDEV_UNREGISTER_FINAL 0x0011 1568#define NETDEV_RELEASE 0x0012 1569#define NETDEV_NOTIFY_PEERS 0x0013 1570#define NETDEV_JOIN 0x0014 1571 1572extern int register_netdevice_notifier(struct notifier_block *nb); 1573extern int unregister_netdevice_notifier(struct notifier_block *nb); 1574extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1575 1576 1577extern rwlock_t dev_base_lock; /* Device list lock */ 1578 1579extern seqcount_t devnet_rename_seq; /* Device rename seq */ 1580 1581 1582#define for_each_netdev(net, d) \ 1583 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1584#define for_each_netdev_reverse(net, d) \ 1585 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1586#define for_each_netdev_rcu(net, d) \ 1587 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1588#define for_each_netdev_safe(net, d, n) \ 1589 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1590#define for_each_netdev_continue(net, d) \ 1591 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1592#define for_each_netdev_continue_rcu(net, d) \ 1593 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1594#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1595 1596static inline struct net_device *next_net_device(struct net_device *dev) 1597{ 1598 struct list_head *lh; 1599 struct net *net; 1600 1601 net = dev_net(dev); 1602 lh = dev->dev_list.next; 1603 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1604} 1605 1606static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1607{ 1608 struct list_head *lh; 1609 struct net *net; 1610 1611 net = dev_net(dev); 1612 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1613 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1614} 1615 1616static inline struct net_device *first_net_device(struct net *net) 1617{ 1618 return list_empty(&net->dev_base_head) ? NULL : 1619 net_device_entry(net->dev_base_head.next); 1620} 1621 1622static inline struct net_device *first_net_device_rcu(struct net *net) 1623{ 1624 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1625 1626 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1627} 1628 1629extern int netdev_boot_setup_check(struct net_device *dev); 1630extern unsigned long netdev_boot_base(const char *prefix, int unit); 1631extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1632 const char *hwaddr); 1633extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1634extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1635extern void dev_add_pack(struct packet_type *pt); 1636extern void dev_remove_pack(struct packet_type *pt); 1637extern void __dev_remove_pack(struct packet_type *pt); 1638extern void dev_add_offload(struct packet_offload *po); 1639extern void dev_remove_offload(struct packet_offload *po); 1640extern void __dev_remove_offload(struct packet_offload *po); 1641 1642extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1643 unsigned short mask); 1644extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1645extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1646extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1647extern int dev_alloc_name(struct net_device *dev, const char *name); 1648extern int dev_open(struct net_device *dev); 1649extern int dev_close(struct net_device *dev); 1650extern void dev_disable_lro(struct net_device *dev); 1651extern int dev_loopback_xmit(struct sk_buff *newskb); 1652extern int dev_queue_xmit(struct sk_buff *skb); 1653extern int register_netdevice(struct net_device *dev); 1654extern void unregister_netdevice_queue(struct net_device *dev, 1655 struct list_head *head); 1656extern void unregister_netdevice_many(struct list_head *head); 1657static inline void unregister_netdevice(struct net_device *dev) 1658{ 1659 unregister_netdevice_queue(dev, NULL); 1660} 1661 1662extern int netdev_refcnt_read(const struct net_device *dev); 1663extern void free_netdev(struct net_device *dev); 1664extern void synchronize_net(void); 1665extern int init_dummy_netdev(struct net_device *dev); 1666extern void netdev_resync_ops(struct net_device *dev); 1667 1668extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1669extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1670extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1671extern int dev_restart(struct net_device *dev); 1672#ifdef CONFIG_NETPOLL_TRAP 1673extern int netpoll_trap(void); 1674#endif 1675extern int skb_gro_receive(struct sk_buff **head, 1676 struct sk_buff *skb); 1677 1678static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1679{ 1680 return NAPI_GRO_CB(skb)->data_offset; 1681} 1682 1683static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1684{ 1685 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1686} 1687 1688static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1689{ 1690 NAPI_GRO_CB(skb)->data_offset += len; 1691} 1692 1693static inline void *skb_gro_header_fast(struct sk_buff *skb, 1694 unsigned int offset) 1695{ 1696 return NAPI_GRO_CB(skb)->frag0 + offset; 1697} 1698 1699static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1700{ 1701 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1702} 1703 1704static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1705 unsigned int offset) 1706{ 1707 if (!pskb_may_pull(skb, hlen)) 1708 return NULL; 1709 1710 NAPI_GRO_CB(skb)->frag0 = NULL; 1711 NAPI_GRO_CB(skb)->frag0_len = 0; 1712 return skb->data + offset; 1713} 1714 1715static inline void *skb_gro_mac_header(struct sk_buff *skb) 1716{ 1717 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1718} 1719 1720static inline void *skb_gro_network_header(struct sk_buff *skb) 1721{ 1722 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1723 skb_network_offset(skb); 1724} 1725 1726static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1727 unsigned short type, 1728 const void *daddr, const void *saddr, 1729 unsigned int len) 1730{ 1731 if (!dev->header_ops || !dev->header_ops->create) 1732 return 0; 1733 1734 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1735} 1736 1737static inline int dev_parse_header(const struct sk_buff *skb, 1738 unsigned char *haddr) 1739{ 1740 const struct net_device *dev = skb->dev; 1741 1742 if (!dev->header_ops || !dev->header_ops->parse) 1743 return 0; 1744 return dev->header_ops->parse(skb, haddr); 1745} 1746 1747typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1748extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1749static inline int unregister_gifconf(unsigned int family) 1750{ 1751 return register_gifconf(family, NULL); 1752} 1753 1754/* 1755 * Incoming packets are placed on per-cpu queues 1756 */ 1757struct softnet_data { 1758 struct Qdisc *output_queue; 1759 struct Qdisc **output_queue_tailp; 1760 struct list_head poll_list; 1761 struct sk_buff *completion_queue; 1762 struct sk_buff_head process_queue; 1763 1764 /* stats */ 1765 unsigned int processed; 1766 unsigned int time_squeeze; 1767 unsigned int cpu_collision; 1768 unsigned int received_rps; 1769 1770#ifdef CONFIG_RPS 1771 struct softnet_data *rps_ipi_list; 1772 1773 /* Elements below can be accessed between CPUs for RPS */ 1774 struct call_single_data csd ____cacheline_aligned_in_smp; 1775 struct softnet_data *rps_ipi_next; 1776 unsigned int cpu; 1777 unsigned int input_queue_head; 1778 unsigned int input_queue_tail; 1779#endif 1780 unsigned int dropped; 1781 struct sk_buff_head input_pkt_queue; 1782 struct napi_struct backlog; 1783}; 1784 1785static inline void input_queue_head_incr(struct softnet_data *sd) 1786{ 1787#ifdef CONFIG_RPS 1788 sd->input_queue_head++; 1789#endif 1790} 1791 1792static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1793 unsigned int *qtail) 1794{ 1795#ifdef CONFIG_RPS 1796 *qtail = ++sd->input_queue_tail; 1797#endif 1798} 1799 1800DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1801 1802extern void __netif_schedule(struct Qdisc *q); 1803 1804static inline void netif_schedule_queue(struct netdev_queue *txq) 1805{ 1806 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 1807 __netif_schedule(txq->qdisc); 1808} 1809 1810static inline void netif_tx_schedule_all(struct net_device *dev) 1811{ 1812 unsigned int i; 1813 1814 for (i = 0; i < dev->num_tx_queues; i++) 1815 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1816} 1817 1818static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1819{ 1820 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1821} 1822 1823/** 1824 * netif_start_queue - allow transmit 1825 * @dev: network device 1826 * 1827 * Allow upper layers to call the device hard_start_xmit routine. 1828 */ 1829static inline void netif_start_queue(struct net_device *dev) 1830{ 1831 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1832} 1833 1834static inline void netif_tx_start_all_queues(struct net_device *dev) 1835{ 1836 unsigned int i; 1837 1838 for (i = 0; i < dev->num_tx_queues; i++) { 1839 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1840 netif_tx_start_queue(txq); 1841 } 1842} 1843 1844static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1845{ 1846#ifdef CONFIG_NETPOLL_TRAP 1847 if (netpoll_trap()) { 1848 netif_tx_start_queue(dev_queue); 1849 return; 1850 } 1851#endif 1852 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 1853 __netif_schedule(dev_queue->qdisc); 1854} 1855 1856/** 1857 * netif_wake_queue - restart transmit 1858 * @dev: network device 1859 * 1860 * Allow upper layers to call the device hard_start_xmit routine. 1861 * Used for flow control when transmit resources are available. 1862 */ 1863static inline void netif_wake_queue(struct net_device *dev) 1864{ 1865 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1866} 1867 1868static inline void netif_tx_wake_all_queues(struct net_device *dev) 1869{ 1870 unsigned int i; 1871 1872 for (i = 0; i < dev->num_tx_queues; i++) { 1873 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1874 netif_tx_wake_queue(txq); 1875 } 1876} 1877 1878static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1879{ 1880 if (WARN_ON(!dev_queue)) { 1881 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1882 return; 1883 } 1884 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1885} 1886 1887/** 1888 * netif_stop_queue - stop transmitted packets 1889 * @dev: network device 1890 * 1891 * Stop upper layers calling the device hard_start_xmit routine. 1892 * Used for flow control when transmit resources are unavailable. 1893 */ 1894static inline void netif_stop_queue(struct net_device *dev) 1895{ 1896 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1897} 1898 1899static inline void netif_tx_stop_all_queues(struct net_device *dev) 1900{ 1901 unsigned int i; 1902 1903 for (i = 0; i < dev->num_tx_queues; i++) { 1904 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1905 netif_tx_stop_queue(txq); 1906 } 1907} 1908 1909static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1910{ 1911 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1912} 1913 1914/** 1915 * netif_queue_stopped - test if transmit queue is flowblocked 1916 * @dev: network device 1917 * 1918 * Test if transmit queue on device is currently unable to send. 1919 */ 1920static inline bool netif_queue_stopped(const struct net_device *dev) 1921{ 1922 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1923} 1924 1925static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 1926{ 1927 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 1928} 1929 1930static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 1931{ 1932 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 1933} 1934 1935static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 1936 unsigned int bytes) 1937{ 1938#ifdef CONFIG_BQL 1939 dql_queued(&dev_queue->dql, bytes); 1940 1941 if (likely(dql_avail(&dev_queue->dql) >= 0)) 1942 return; 1943 1944 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1945 1946 /* 1947 * The XOFF flag must be set before checking the dql_avail below, 1948 * because in netdev_tx_completed_queue we update the dql_completed 1949 * before checking the XOFF flag. 1950 */ 1951 smp_mb(); 1952 1953 /* check again in case another CPU has just made room avail */ 1954 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 1955 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1956#endif 1957} 1958 1959static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 1960{ 1961 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 1962} 1963 1964static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 1965 unsigned int pkts, unsigned int bytes) 1966{ 1967#ifdef CONFIG_BQL 1968 if (unlikely(!bytes)) 1969 return; 1970 1971 dql_completed(&dev_queue->dql, bytes); 1972 1973 /* 1974 * Without the memory barrier there is a small possiblity that 1975 * netdev_tx_sent_queue will miss the update and cause the queue to 1976 * be stopped forever 1977 */ 1978 smp_mb(); 1979 1980 if (dql_avail(&dev_queue->dql) < 0) 1981 return; 1982 1983 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 1984 netif_schedule_queue(dev_queue); 1985#endif 1986} 1987 1988static inline void netdev_completed_queue(struct net_device *dev, 1989 unsigned int pkts, unsigned int bytes) 1990{ 1991 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 1992} 1993 1994static inline void netdev_tx_reset_queue(struct netdev_queue *q) 1995{ 1996#ifdef CONFIG_BQL 1997 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 1998 dql_reset(&q->dql); 1999#endif 2000} 2001 2002static inline void netdev_reset_queue(struct net_device *dev_queue) 2003{ 2004 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2005} 2006 2007/** 2008 * netif_running - test if up 2009 * @dev: network device 2010 * 2011 * Test if the device has been brought up. 2012 */ 2013static inline bool netif_running(const struct net_device *dev) 2014{ 2015 return test_bit(__LINK_STATE_START, &dev->state); 2016} 2017 2018/* 2019 * Routines to manage the subqueues on a device. We only need start 2020 * stop, and a check if it's stopped. All other device management is 2021 * done at the overall netdevice level. 2022 * Also test the device if we're multiqueue. 2023 */ 2024 2025/** 2026 * netif_start_subqueue - allow sending packets on subqueue 2027 * @dev: network device 2028 * @queue_index: sub queue index 2029 * 2030 * Start individual transmit queue of a device with multiple transmit queues. 2031 */ 2032static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2033{ 2034 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2035 2036 netif_tx_start_queue(txq); 2037} 2038 2039/** 2040 * netif_stop_subqueue - stop sending packets on subqueue 2041 * @dev: network device 2042 * @queue_index: sub queue index 2043 * 2044 * Stop individual transmit queue of a device with multiple transmit queues. 2045 */ 2046static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2047{ 2048 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2049#ifdef CONFIG_NETPOLL_TRAP 2050 if (netpoll_trap()) 2051 return; 2052#endif 2053 netif_tx_stop_queue(txq); 2054} 2055 2056/** 2057 * netif_subqueue_stopped - test status of subqueue 2058 * @dev: network device 2059 * @queue_index: sub queue index 2060 * 2061 * Check individual transmit queue of a device with multiple transmit queues. 2062 */ 2063static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2064 u16 queue_index) 2065{ 2066 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2067 2068 return netif_tx_queue_stopped(txq); 2069} 2070 2071static inline bool netif_subqueue_stopped(const struct net_device *dev, 2072 struct sk_buff *skb) 2073{ 2074 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2075} 2076 2077/** 2078 * netif_wake_subqueue - allow sending packets on subqueue 2079 * @dev: network device 2080 * @queue_index: sub queue index 2081 * 2082 * Resume individual transmit queue of a device with multiple transmit queues. 2083 */ 2084static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2085{ 2086 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2087#ifdef CONFIG_NETPOLL_TRAP 2088 if (netpoll_trap()) 2089 return; 2090#endif 2091 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2092 __netif_schedule(txq->qdisc); 2093} 2094 2095/* 2096 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2097 * as a distribution range limit for the returned value. 2098 */ 2099static inline u16 skb_tx_hash(const struct net_device *dev, 2100 const struct sk_buff *skb) 2101{ 2102 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2103} 2104 2105/** 2106 * netif_is_multiqueue - test if device has multiple transmit queues 2107 * @dev: network device 2108 * 2109 * Check if device has multiple transmit queues 2110 */ 2111static inline bool netif_is_multiqueue(const struct net_device *dev) 2112{ 2113 return dev->num_tx_queues > 1; 2114} 2115 2116extern int netif_set_real_num_tx_queues(struct net_device *dev, 2117 unsigned int txq); 2118 2119#ifdef CONFIG_RPS 2120extern int netif_set_real_num_rx_queues(struct net_device *dev, 2121 unsigned int rxq); 2122#else 2123static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2124 unsigned int rxq) 2125{ 2126 return 0; 2127} 2128#endif 2129 2130static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2131 const struct net_device *from_dev) 2132{ 2133 int err; 2134 2135 err = netif_set_real_num_tx_queues(to_dev, 2136 from_dev->real_num_tx_queues); 2137 if (err) 2138 return err; 2139#ifdef CONFIG_RPS 2140 return netif_set_real_num_rx_queues(to_dev, 2141 from_dev->real_num_rx_queues); 2142#else 2143 return 0; 2144#endif 2145} 2146 2147#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2148extern int netif_get_num_default_rss_queues(void); 2149 2150/* Use this variant when it is known for sure that it 2151 * is executing from hardware interrupt context or with hardware interrupts 2152 * disabled. 2153 */ 2154extern void dev_kfree_skb_irq(struct sk_buff *skb); 2155 2156/* Use this variant in places where it could be invoked 2157 * from either hardware interrupt or other context, with hardware interrupts 2158 * either disabled or enabled. 2159 */ 2160extern void dev_kfree_skb_any(struct sk_buff *skb); 2161 2162extern int netif_rx(struct sk_buff *skb); 2163extern int netif_rx_ni(struct sk_buff *skb); 2164extern int netif_receive_skb(struct sk_buff *skb); 2165extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2166 struct sk_buff *skb); 2167extern void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2168extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2169extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2170 2171static inline void napi_free_frags(struct napi_struct *napi) 2172{ 2173 kfree_skb(napi->skb); 2174 napi->skb = NULL; 2175} 2176 2177extern int netdev_rx_handler_register(struct net_device *dev, 2178 rx_handler_func_t *rx_handler, 2179 void *rx_handler_data); 2180extern void netdev_rx_handler_unregister(struct net_device *dev); 2181 2182extern bool dev_valid_name(const char *name); 2183extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2184extern int dev_ethtool(struct net *net, struct ifreq *); 2185extern unsigned int dev_get_flags(const struct net_device *); 2186extern int __dev_change_flags(struct net_device *, unsigned int flags); 2187extern int dev_change_flags(struct net_device *, unsigned int); 2188extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2189extern int dev_change_name(struct net_device *, const char *); 2190extern int dev_set_alias(struct net_device *, const char *, size_t); 2191extern int dev_change_net_namespace(struct net_device *, 2192 struct net *, const char *); 2193extern int dev_set_mtu(struct net_device *, int); 2194extern void dev_set_group(struct net_device *, int); 2195extern int dev_set_mac_address(struct net_device *, 2196 struct sockaddr *); 2197extern int dev_hard_start_xmit(struct sk_buff *skb, 2198 struct net_device *dev, 2199 struct netdev_queue *txq); 2200extern int dev_forward_skb(struct net_device *dev, 2201 struct sk_buff *skb); 2202 2203extern int netdev_budget; 2204 2205/* Called by rtnetlink.c:rtnl_unlock() */ 2206extern void netdev_run_todo(void); 2207 2208/** 2209 * dev_put - release reference to device 2210 * @dev: network device 2211 * 2212 * Release reference to device to allow it to be freed. 2213 */ 2214static inline void dev_put(struct net_device *dev) 2215{ 2216 this_cpu_dec(*dev->pcpu_refcnt); 2217} 2218 2219/** 2220 * dev_hold - get reference to device 2221 * @dev: network device 2222 * 2223 * Hold reference to device to keep it from being freed. 2224 */ 2225static inline void dev_hold(struct net_device *dev) 2226{ 2227 this_cpu_inc(*dev->pcpu_refcnt); 2228} 2229 2230/* Carrier loss detection, dial on demand. The functions netif_carrier_on 2231 * and _off may be called from IRQ context, but it is caller 2232 * who is responsible for serialization of these calls. 2233 * 2234 * The name carrier is inappropriate, these functions should really be 2235 * called netif_lowerlayer_*() because they represent the state of any 2236 * kind of lower layer not just hardware media. 2237 */ 2238 2239extern void linkwatch_init_dev(struct net_device *dev); 2240extern void linkwatch_fire_event(struct net_device *dev); 2241extern void linkwatch_forget_dev(struct net_device *dev); 2242 2243/** 2244 * netif_carrier_ok - test if carrier present 2245 * @dev: network device 2246 * 2247 * Check if carrier is present on device 2248 */ 2249static inline bool netif_carrier_ok(const struct net_device *dev) 2250{ 2251 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2252} 2253 2254extern unsigned long dev_trans_start(struct net_device *dev); 2255 2256extern void __netdev_watchdog_up(struct net_device *dev); 2257 2258extern void netif_carrier_on(struct net_device *dev); 2259 2260extern void netif_carrier_off(struct net_device *dev); 2261 2262/** 2263 * netif_dormant_on - mark device as dormant. 2264 * @dev: network device 2265 * 2266 * Mark device as dormant (as per RFC2863). 2267 * 2268 * The dormant state indicates that the relevant interface is not 2269 * actually in a condition to pass packets (i.e., it is not 'up') but is 2270 * in a "pending" state, waiting for some external event. For "on- 2271 * demand" interfaces, this new state identifies the situation where the 2272 * interface is waiting for events to place it in the up state. 2273 * 2274 */ 2275static inline void netif_dormant_on(struct net_device *dev) 2276{ 2277 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2278 linkwatch_fire_event(dev); 2279} 2280 2281/** 2282 * netif_dormant_off - set device as not dormant. 2283 * @dev: network device 2284 * 2285 * Device is not in dormant state. 2286 */ 2287static inline void netif_dormant_off(struct net_device *dev) 2288{ 2289 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2290 linkwatch_fire_event(dev); 2291} 2292 2293/** 2294 * netif_dormant - test if carrier present 2295 * @dev: network device 2296 * 2297 * Check if carrier is present on device 2298 */ 2299static inline bool netif_dormant(const struct net_device *dev) 2300{ 2301 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2302} 2303 2304 2305/** 2306 * netif_oper_up - test if device is operational 2307 * @dev: network device 2308 * 2309 * Check if carrier is operational 2310 */ 2311static inline bool netif_oper_up(const struct net_device *dev) 2312{ 2313 return (dev->operstate == IF_OPER_UP || 2314 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2315} 2316 2317/** 2318 * netif_device_present - is device available or removed 2319 * @dev: network device 2320 * 2321 * Check if device has not been removed from system. 2322 */ 2323static inline bool netif_device_present(struct net_device *dev) 2324{ 2325 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2326} 2327 2328extern void netif_device_detach(struct net_device *dev); 2329 2330extern void netif_device_attach(struct net_device *dev); 2331 2332/* 2333 * Network interface message level settings 2334 */ 2335 2336enum { 2337 NETIF_MSG_DRV = 0x0001, 2338 NETIF_MSG_PROBE = 0x0002, 2339 NETIF_MSG_LINK = 0x0004, 2340 NETIF_MSG_TIMER = 0x0008, 2341 NETIF_MSG_IFDOWN = 0x0010, 2342 NETIF_MSG_IFUP = 0x0020, 2343 NETIF_MSG_RX_ERR = 0x0040, 2344 NETIF_MSG_TX_ERR = 0x0080, 2345 NETIF_MSG_TX_QUEUED = 0x0100, 2346 NETIF_MSG_INTR = 0x0200, 2347 NETIF_MSG_TX_DONE = 0x0400, 2348 NETIF_MSG_RX_STATUS = 0x0800, 2349 NETIF_MSG_PKTDATA = 0x1000, 2350 NETIF_MSG_HW = 0x2000, 2351 NETIF_MSG_WOL = 0x4000, 2352}; 2353 2354#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2355#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2356#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2357#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2358#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2359#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2360#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2361#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2362#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2363#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2364#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2365#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2366#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2367#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2368#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2369 2370static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2371{ 2372 /* use default */ 2373 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2374 return default_msg_enable_bits; 2375 if (debug_value == 0) /* no output */ 2376 return 0; 2377 /* set low N bits */ 2378 return (1 << debug_value) - 1; 2379} 2380 2381static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2382{ 2383 spin_lock(&txq->_xmit_lock); 2384 txq->xmit_lock_owner = cpu; 2385} 2386 2387static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2388{ 2389 spin_lock_bh(&txq->_xmit_lock); 2390 txq->xmit_lock_owner = smp_processor_id(); 2391} 2392 2393static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2394{ 2395 bool ok = spin_trylock(&txq->_xmit_lock); 2396 if (likely(ok)) 2397 txq->xmit_lock_owner = smp_processor_id(); 2398 return ok; 2399} 2400 2401static inline void __netif_tx_unlock(struct netdev_queue *txq) 2402{ 2403 txq->xmit_lock_owner = -1; 2404 spin_unlock(&txq->_xmit_lock); 2405} 2406 2407static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2408{ 2409 txq->xmit_lock_owner = -1; 2410 spin_unlock_bh(&txq->_xmit_lock); 2411} 2412 2413static inline void txq_trans_update(struct netdev_queue *txq) 2414{ 2415 if (txq->xmit_lock_owner != -1) 2416 txq->trans_start = jiffies; 2417} 2418 2419/** 2420 * netif_tx_lock - grab network device transmit lock 2421 * @dev: network device 2422 * 2423 * Get network device transmit lock 2424 */ 2425static inline void netif_tx_lock(struct net_device *dev) 2426{ 2427 unsigned int i; 2428 int cpu; 2429 2430 spin_lock(&dev->tx_global_lock); 2431 cpu = smp_processor_id(); 2432 for (i = 0; i < dev->num_tx_queues; i++) { 2433 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2434 2435 /* We are the only thread of execution doing a 2436 * freeze, but we have to grab the _xmit_lock in 2437 * order to synchronize with threads which are in 2438 * the ->hard_start_xmit() handler and already 2439 * checked the frozen bit. 2440 */ 2441 __netif_tx_lock(txq, cpu); 2442 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2443 __netif_tx_unlock(txq); 2444 } 2445} 2446 2447static inline void netif_tx_lock_bh(struct net_device *dev) 2448{ 2449 local_bh_disable(); 2450 netif_tx_lock(dev); 2451} 2452 2453static inline void netif_tx_unlock(struct net_device *dev) 2454{ 2455 unsigned int i; 2456 2457 for (i = 0; i < dev->num_tx_queues; i++) { 2458 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2459 2460 /* No need to grab the _xmit_lock here. If the 2461 * queue is not stopped for another reason, we 2462 * force a schedule. 2463 */ 2464 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2465 netif_schedule_queue(txq); 2466 } 2467 spin_unlock(&dev->tx_global_lock); 2468} 2469 2470static inline void netif_tx_unlock_bh(struct net_device *dev) 2471{ 2472 netif_tx_unlock(dev); 2473 local_bh_enable(); 2474} 2475 2476#define HARD_TX_LOCK(dev, txq, cpu) { \ 2477 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2478 __netif_tx_lock(txq, cpu); \ 2479 } \ 2480} 2481 2482#define HARD_TX_UNLOCK(dev, txq) { \ 2483 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2484 __netif_tx_unlock(txq); \ 2485 } \ 2486} 2487 2488static inline void netif_tx_disable(struct net_device *dev) 2489{ 2490 unsigned int i; 2491 int cpu; 2492 2493 local_bh_disable(); 2494 cpu = smp_processor_id(); 2495 for (i = 0; i < dev->num_tx_queues; i++) { 2496 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2497 2498 __netif_tx_lock(txq, cpu); 2499 netif_tx_stop_queue(txq); 2500 __netif_tx_unlock(txq); 2501 } 2502 local_bh_enable(); 2503} 2504 2505static inline void netif_addr_lock(struct net_device *dev) 2506{ 2507 spin_lock(&dev->addr_list_lock); 2508} 2509 2510static inline void netif_addr_lock_nested(struct net_device *dev) 2511{ 2512 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2513} 2514 2515static inline void netif_addr_lock_bh(struct net_device *dev) 2516{ 2517 spin_lock_bh(&dev->addr_list_lock); 2518} 2519 2520static inline void netif_addr_unlock(struct net_device *dev) 2521{ 2522 spin_unlock(&dev->addr_list_lock); 2523} 2524 2525static inline void netif_addr_unlock_bh(struct net_device *dev) 2526{ 2527 spin_unlock_bh(&dev->addr_list_lock); 2528} 2529 2530/* 2531 * dev_addrs walker. Should be used only for read access. Call with 2532 * rcu_read_lock held. 2533 */ 2534#define for_each_dev_addr(dev, ha) \ 2535 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2536 2537/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2538 2539extern void ether_setup(struct net_device *dev); 2540 2541/* Support for loadable net-drivers */ 2542extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2543 void (*setup)(struct net_device *), 2544 unsigned int txqs, unsigned int rxqs); 2545#define alloc_netdev(sizeof_priv, name, setup) \ 2546 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2547 2548#define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2549 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2550 2551extern int register_netdev(struct net_device *dev); 2552extern void unregister_netdev(struct net_device *dev); 2553 2554/* General hardware address lists handling functions */ 2555extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2556 struct netdev_hw_addr_list *from_list, 2557 int addr_len, unsigned char addr_type); 2558extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2559 struct netdev_hw_addr_list *from_list, 2560 int addr_len, unsigned char addr_type); 2561extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2562 struct netdev_hw_addr_list *from_list, 2563 int addr_len); 2564extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2565 struct netdev_hw_addr_list *from_list, 2566 int addr_len); 2567extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2568extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2569 2570/* Functions used for device addresses handling */ 2571extern int dev_addr_add(struct net_device *dev, const unsigned char *addr, 2572 unsigned char addr_type); 2573extern int dev_addr_del(struct net_device *dev, const unsigned char *addr, 2574 unsigned char addr_type); 2575extern int dev_addr_add_multiple(struct net_device *to_dev, 2576 struct net_device *from_dev, 2577 unsigned char addr_type); 2578extern int dev_addr_del_multiple(struct net_device *to_dev, 2579 struct net_device *from_dev, 2580 unsigned char addr_type); 2581extern void dev_addr_flush(struct net_device *dev); 2582extern int dev_addr_init(struct net_device *dev); 2583 2584/* Functions used for unicast addresses handling */ 2585extern int dev_uc_add(struct net_device *dev, const unsigned char *addr); 2586extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 2587extern int dev_uc_del(struct net_device *dev, const unsigned char *addr); 2588extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2589extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2590extern void dev_uc_flush(struct net_device *dev); 2591extern void dev_uc_init(struct net_device *dev); 2592 2593/* Functions used for multicast addresses handling */ 2594extern int dev_mc_add(struct net_device *dev, const unsigned char *addr); 2595extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 2596extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 2597extern int dev_mc_del(struct net_device *dev, const unsigned char *addr); 2598extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 2599extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2600extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2601extern void dev_mc_flush(struct net_device *dev); 2602extern void dev_mc_init(struct net_device *dev); 2603 2604/* Functions used for secondary unicast and multicast support */ 2605extern void dev_set_rx_mode(struct net_device *dev); 2606extern void __dev_set_rx_mode(struct net_device *dev); 2607extern int dev_set_promiscuity(struct net_device *dev, int inc); 2608extern int dev_set_allmulti(struct net_device *dev, int inc); 2609extern void netdev_state_change(struct net_device *dev); 2610extern void netdev_notify_peers(struct net_device *dev); 2611extern void netdev_features_change(struct net_device *dev); 2612/* Load a device via the kmod */ 2613extern void dev_load(struct net *net, const char *name); 2614extern void dev_mcast_init(void); 2615extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2616 struct rtnl_link_stats64 *storage); 2617extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 2618 const struct net_device_stats *netdev_stats); 2619 2620extern int netdev_max_backlog; 2621extern int netdev_tstamp_prequeue; 2622extern int weight_p; 2623extern int bpf_jit_enable; 2624extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2625extern int netdev_set_bond_master(struct net_device *dev, 2626 struct net_device *master); 2627extern int skb_checksum_help(struct sk_buff *skb); 2628extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, 2629 netdev_features_t features); 2630#ifdef CONFIG_BUG 2631extern void netdev_rx_csum_fault(struct net_device *dev); 2632#else 2633static inline void netdev_rx_csum_fault(struct net_device *dev) 2634{ 2635} 2636#endif 2637/* rx skb timestamps */ 2638extern void net_enable_timestamp(void); 2639extern void net_disable_timestamp(void); 2640 2641#ifdef CONFIG_PROC_FS 2642extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2643extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2644extern void dev_seq_stop(struct seq_file *seq, void *v); 2645#endif 2646 2647extern int netdev_class_create_file(struct class_attribute *class_attr); 2648extern void netdev_class_remove_file(struct class_attribute *class_attr); 2649 2650extern struct kobj_ns_type_operations net_ns_type_operations; 2651 2652extern const char *netdev_drivername(const struct net_device *dev); 2653 2654extern void linkwatch_run_queue(void); 2655 2656static inline netdev_features_t netdev_get_wanted_features( 2657 struct net_device *dev) 2658{ 2659 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2660} 2661netdev_features_t netdev_increment_features(netdev_features_t all, 2662 netdev_features_t one, netdev_features_t mask); 2663int __netdev_update_features(struct net_device *dev); 2664void netdev_update_features(struct net_device *dev); 2665void netdev_change_features(struct net_device *dev); 2666 2667void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2668 struct net_device *dev); 2669 2670netdev_features_t netif_skb_features(struct sk_buff *skb); 2671 2672static inline bool net_gso_ok(netdev_features_t features, int gso_type) 2673{ 2674 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 2675 2676 /* check flags correspondence */ 2677 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 2678 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 2679 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 2680 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 2681 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 2682 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 2683 2684 return (features & feature) == feature; 2685} 2686 2687static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 2688{ 2689 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2690 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2691} 2692 2693static inline bool netif_needs_gso(struct sk_buff *skb, 2694 netdev_features_t features) 2695{ 2696 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2697 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 2698 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 2699} 2700 2701static inline void netif_set_gso_max_size(struct net_device *dev, 2702 unsigned int size) 2703{ 2704 dev->gso_max_size = size; 2705} 2706 2707static inline bool netif_is_bond_slave(struct net_device *dev) 2708{ 2709 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2710} 2711 2712static inline bool netif_supports_nofcs(struct net_device *dev) 2713{ 2714 return dev->priv_flags & IFF_SUPP_NOFCS; 2715} 2716 2717extern struct pernet_operations __net_initdata loopback_net_ops; 2718 2719/* Logging, debugging and troubleshooting/diagnostic helpers. */ 2720 2721/* netdev_printk helpers, similar to dev_printk */ 2722 2723static inline const char *netdev_name(const struct net_device *dev) 2724{ 2725 if (dev->reg_state != NETREG_REGISTERED) 2726 return "(unregistered net_device)"; 2727 return dev->name; 2728} 2729 2730extern __printf(3, 4) 2731int netdev_printk(const char *level, const struct net_device *dev, 2732 const char *format, ...); 2733extern __printf(2, 3) 2734int netdev_emerg(const struct net_device *dev, const char *format, ...); 2735extern __printf(2, 3) 2736int netdev_alert(const struct net_device *dev, const char *format, ...); 2737extern __printf(2, 3) 2738int netdev_crit(const struct net_device *dev, const char *format, ...); 2739extern __printf(2, 3) 2740int netdev_err(const struct net_device *dev, const char *format, ...); 2741extern __printf(2, 3) 2742int netdev_warn(const struct net_device *dev, const char *format, ...); 2743extern __printf(2, 3) 2744int netdev_notice(const struct net_device *dev, const char *format, ...); 2745extern __printf(2, 3) 2746int netdev_info(const struct net_device *dev, const char *format, ...); 2747 2748#define MODULE_ALIAS_NETDEV(device) \ 2749 MODULE_ALIAS("netdev-" device) 2750 2751#if defined(CONFIG_DYNAMIC_DEBUG) 2752#define netdev_dbg(__dev, format, args...) \ 2753do { \ 2754 dynamic_netdev_dbg(__dev, format, ##args); \ 2755} while (0) 2756#elif defined(DEBUG) 2757#define netdev_dbg(__dev, format, args...) \ 2758 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2759#else 2760#define netdev_dbg(__dev, format, args...) \ 2761({ \ 2762 if (0) \ 2763 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2764 0; \ 2765}) 2766#endif 2767 2768#if defined(VERBOSE_DEBUG) 2769#define netdev_vdbg netdev_dbg 2770#else 2771 2772#define netdev_vdbg(dev, format, args...) \ 2773({ \ 2774 if (0) \ 2775 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2776 0; \ 2777}) 2778#endif 2779 2780/* 2781 * netdev_WARN() acts like dev_printk(), but with the key difference 2782 * of using a WARN/WARN_ON to get the message out, including the 2783 * file/line information and a backtrace. 2784 */ 2785#define netdev_WARN(dev, format, args...) \ 2786 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2787 2788/* netif printk helpers, similar to netdev_printk */ 2789 2790#define netif_printk(priv, type, level, dev, fmt, args...) \ 2791do { \ 2792 if (netif_msg_##type(priv)) \ 2793 netdev_printk(level, (dev), fmt, ##args); \ 2794} while (0) 2795 2796#define netif_level(level, priv, type, dev, fmt, args...) \ 2797do { \ 2798 if (netif_msg_##type(priv)) \ 2799 netdev_##level(dev, fmt, ##args); \ 2800} while (0) 2801 2802#define netif_emerg(priv, type, dev, fmt, args...) \ 2803 netif_level(emerg, priv, type, dev, fmt, ##args) 2804#define netif_alert(priv, type, dev, fmt, args...) \ 2805 netif_level(alert, priv, type, dev, fmt, ##args) 2806#define netif_crit(priv, type, dev, fmt, args...) \ 2807 netif_level(crit, priv, type, dev, fmt, ##args) 2808#define netif_err(priv, type, dev, fmt, args...) \ 2809 netif_level(err, priv, type, dev, fmt, ##args) 2810#define netif_warn(priv, type, dev, fmt, args...) \ 2811 netif_level(warn, priv, type, dev, fmt, ##args) 2812#define netif_notice(priv, type, dev, fmt, args...) \ 2813 netif_level(notice, priv, type, dev, fmt, ##args) 2814#define netif_info(priv, type, dev, fmt, args...) \ 2815 netif_level(info, priv, type, dev, fmt, ##args) 2816 2817#if defined(CONFIG_DYNAMIC_DEBUG) 2818#define netif_dbg(priv, type, netdev, format, args...) \ 2819do { \ 2820 if (netif_msg_##type(priv)) \ 2821 dynamic_netdev_dbg(netdev, format, ##args); \ 2822} while (0) 2823#elif defined(DEBUG) 2824#define netif_dbg(priv, type, dev, format, args...) \ 2825 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2826#else 2827#define netif_dbg(priv, type, dev, format, args...) \ 2828({ \ 2829 if (0) \ 2830 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2831 0; \ 2832}) 2833#endif 2834 2835#if defined(VERBOSE_DEBUG) 2836#define netif_vdbg netif_dbg 2837#else 2838#define netif_vdbg(priv, type, dev, format, args...) \ 2839({ \ 2840 if (0) \ 2841 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2842 0; \ 2843}) 2844#endif 2845 2846#endif /* _LINUX_NETDEVICE_H */