Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/suspend.h>
27#include <linux/fault-inject.h>
28#include <linux/random.h>
29#include <linux/slab.h>
30
31#include <linux/mmc/card.h>
32#include <linux/mmc/host.h>
33#include <linux/mmc/mmc.h>
34#include <linux/mmc/sd.h>
35
36#include "core.h"
37#include "bus.h"
38#include "host.h"
39#include "sdio_bus.h"
40
41#include "mmc_ops.h"
42#include "sd_ops.h"
43#include "sdio_ops.h"
44
45/* If the device is not responding */
46#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
47
48/*
49 * Background operations can take a long time, depending on the housekeeping
50 * operations the card has to perform.
51 */
52#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
53
54static struct workqueue_struct *workqueue;
55static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
56
57/*
58 * Enabling software CRCs on the data blocks can be a significant (30%)
59 * performance cost, and for other reasons may not always be desired.
60 * So we allow it it to be disabled.
61 */
62bool use_spi_crc = 1;
63module_param(use_spi_crc, bool, 0);
64
65/*
66 * We normally treat cards as removed during suspend if they are not
67 * known to be on a non-removable bus, to avoid the risk of writing
68 * back data to a different card after resume. Allow this to be
69 * overridden if necessary.
70 */
71#ifdef CONFIG_MMC_UNSAFE_RESUME
72bool mmc_assume_removable;
73#else
74bool mmc_assume_removable = 1;
75#endif
76EXPORT_SYMBOL(mmc_assume_removable);
77module_param_named(removable, mmc_assume_removable, bool, 0644);
78MODULE_PARM_DESC(
79 removable,
80 "MMC/SD cards are removable and may be removed during suspend");
81
82/*
83 * Internal function. Schedule delayed work in the MMC work queue.
84 */
85static int mmc_schedule_delayed_work(struct delayed_work *work,
86 unsigned long delay)
87{
88 return queue_delayed_work(workqueue, work, delay);
89}
90
91/*
92 * Internal function. Flush all scheduled work from the MMC work queue.
93 */
94static void mmc_flush_scheduled_work(void)
95{
96 flush_workqueue(workqueue);
97}
98
99#ifdef CONFIG_FAIL_MMC_REQUEST
100
101/*
102 * Internal function. Inject random data errors.
103 * If mmc_data is NULL no errors are injected.
104 */
105static void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
107{
108 struct mmc_command *cmd = mrq->cmd;
109 struct mmc_data *data = mrq->data;
110 static const int data_errors[] = {
111 -ETIMEDOUT,
112 -EILSEQ,
113 -EIO,
114 };
115
116 if (!data)
117 return;
118
119 if (cmd->error || data->error ||
120 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
121 return;
122
123 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
124 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
125}
126
127#else /* CONFIG_FAIL_MMC_REQUEST */
128
129static inline void mmc_should_fail_request(struct mmc_host *host,
130 struct mmc_request *mrq)
131{
132}
133
134#endif /* CONFIG_FAIL_MMC_REQUEST */
135
136/**
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
140 *
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
143 */
144void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145{
146 struct mmc_command *cmd = mrq->cmd;
147 int err = cmd->error;
148
149 if (err && cmd->retries && mmc_host_is_spi(host)) {
150 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
151 cmd->retries = 0;
152 }
153
154 if (err && cmd->retries && !mmc_card_removed(host->card)) {
155 /*
156 * Request starter must handle retries - see
157 * mmc_wait_for_req_done().
158 */
159 if (mrq->done)
160 mrq->done(mrq);
161 } else {
162 mmc_should_fail_request(host, mrq);
163
164 led_trigger_event(host->led, LED_OFF);
165
166 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
167 mmc_hostname(host), cmd->opcode, err,
168 cmd->resp[0], cmd->resp[1],
169 cmd->resp[2], cmd->resp[3]);
170
171 if (mrq->data) {
172 pr_debug("%s: %d bytes transferred: %d\n",
173 mmc_hostname(host),
174 mrq->data->bytes_xfered, mrq->data->error);
175 }
176
177 if (mrq->stop) {
178 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
179 mmc_hostname(host), mrq->stop->opcode,
180 mrq->stop->error,
181 mrq->stop->resp[0], mrq->stop->resp[1],
182 mrq->stop->resp[2], mrq->stop->resp[3]);
183 }
184
185 if (mrq->done)
186 mrq->done(mrq);
187
188 mmc_host_clk_release(host);
189 }
190}
191
192EXPORT_SYMBOL(mmc_request_done);
193
194static void
195mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
196{
197#ifdef CONFIG_MMC_DEBUG
198 unsigned int i, sz;
199 struct scatterlist *sg;
200#endif
201
202 if (mrq->sbc) {
203 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
204 mmc_hostname(host), mrq->sbc->opcode,
205 mrq->sbc->arg, mrq->sbc->flags);
206 }
207
208 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
209 mmc_hostname(host), mrq->cmd->opcode,
210 mrq->cmd->arg, mrq->cmd->flags);
211
212 if (mrq->data) {
213 pr_debug("%s: blksz %d blocks %d flags %08x "
214 "tsac %d ms nsac %d\n",
215 mmc_hostname(host), mrq->data->blksz,
216 mrq->data->blocks, mrq->data->flags,
217 mrq->data->timeout_ns / 1000000,
218 mrq->data->timeout_clks);
219 }
220
221 if (mrq->stop) {
222 pr_debug("%s: CMD%u arg %08x flags %08x\n",
223 mmc_hostname(host), mrq->stop->opcode,
224 mrq->stop->arg, mrq->stop->flags);
225 }
226
227 WARN_ON(!host->claimed);
228
229 mrq->cmd->error = 0;
230 mrq->cmd->mrq = mrq;
231 if (mrq->data) {
232 BUG_ON(mrq->data->blksz > host->max_blk_size);
233 BUG_ON(mrq->data->blocks > host->max_blk_count);
234 BUG_ON(mrq->data->blocks * mrq->data->blksz >
235 host->max_req_size);
236
237#ifdef CONFIG_MMC_DEBUG
238 sz = 0;
239 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
240 sz += sg->length;
241 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
242#endif
243
244 mrq->cmd->data = mrq->data;
245 mrq->data->error = 0;
246 mrq->data->mrq = mrq;
247 if (mrq->stop) {
248 mrq->data->stop = mrq->stop;
249 mrq->stop->error = 0;
250 mrq->stop->mrq = mrq;
251 }
252 }
253 mmc_host_clk_hold(host);
254 led_trigger_event(host->led, LED_FULL);
255 host->ops->request(host, mrq);
256}
257
258/**
259 * mmc_start_bkops - start BKOPS for supported cards
260 * @card: MMC card to start BKOPS
261 * @form_exception: A flag to indicate if this function was
262 * called due to an exception raised by the card
263 *
264 * Start background operations whenever requested.
265 * When the urgent BKOPS bit is set in a R1 command response
266 * then background operations should be started immediately.
267*/
268void mmc_start_bkops(struct mmc_card *card, bool from_exception)
269{
270 int err;
271 int timeout;
272 bool use_busy_signal;
273
274 BUG_ON(!card);
275
276 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
277 return;
278
279 err = mmc_read_bkops_status(card);
280 if (err) {
281 pr_err("%s: Failed to read bkops status: %d\n",
282 mmc_hostname(card->host), err);
283 return;
284 }
285
286 if (!card->ext_csd.raw_bkops_status)
287 return;
288
289 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
290 from_exception)
291 return;
292
293 mmc_claim_host(card->host);
294 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
295 timeout = MMC_BKOPS_MAX_TIMEOUT;
296 use_busy_signal = true;
297 } else {
298 timeout = 0;
299 use_busy_signal = false;
300 }
301
302 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
303 EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
304 if (err) {
305 pr_warn("%s: Error %d starting bkops\n",
306 mmc_hostname(card->host), err);
307 goto out;
308 }
309
310 /*
311 * For urgent bkops status (LEVEL_2 and more)
312 * bkops executed synchronously, otherwise
313 * the operation is in progress
314 */
315 if (!use_busy_signal)
316 mmc_card_set_doing_bkops(card);
317out:
318 mmc_release_host(card->host);
319}
320EXPORT_SYMBOL(mmc_start_bkops);
321
322static void mmc_wait_done(struct mmc_request *mrq)
323{
324 complete(&mrq->completion);
325}
326
327static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
328{
329 init_completion(&mrq->completion);
330 mrq->done = mmc_wait_done;
331 if (mmc_card_removed(host->card)) {
332 mrq->cmd->error = -ENOMEDIUM;
333 complete(&mrq->completion);
334 return -ENOMEDIUM;
335 }
336 mmc_start_request(host, mrq);
337 return 0;
338}
339
340static void mmc_wait_for_req_done(struct mmc_host *host,
341 struct mmc_request *mrq)
342{
343 struct mmc_command *cmd;
344
345 while (1) {
346 wait_for_completion(&mrq->completion);
347
348 cmd = mrq->cmd;
349 if (!cmd->error || !cmd->retries ||
350 mmc_card_removed(host->card))
351 break;
352
353 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
354 mmc_hostname(host), cmd->opcode, cmd->error);
355 cmd->retries--;
356 cmd->error = 0;
357 host->ops->request(host, mrq);
358 }
359}
360
361/**
362 * mmc_pre_req - Prepare for a new request
363 * @host: MMC host to prepare command
364 * @mrq: MMC request to prepare for
365 * @is_first_req: true if there is no previous started request
366 * that may run in parellel to this call, otherwise false
367 *
368 * mmc_pre_req() is called in prior to mmc_start_req() to let
369 * host prepare for the new request. Preparation of a request may be
370 * performed while another request is running on the host.
371 */
372static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
373 bool is_first_req)
374{
375 if (host->ops->pre_req) {
376 mmc_host_clk_hold(host);
377 host->ops->pre_req(host, mrq, is_first_req);
378 mmc_host_clk_release(host);
379 }
380}
381
382/**
383 * mmc_post_req - Post process a completed request
384 * @host: MMC host to post process command
385 * @mrq: MMC request to post process for
386 * @err: Error, if non zero, clean up any resources made in pre_req
387 *
388 * Let the host post process a completed request. Post processing of
389 * a request may be performed while another reuqest is running.
390 */
391static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
392 int err)
393{
394 if (host->ops->post_req) {
395 mmc_host_clk_hold(host);
396 host->ops->post_req(host, mrq, err);
397 mmc_host_clk_release(host);
398 }
399}
400
401/**
402 * mmc_start_req - start a non-blocking request
403 * @host: MMC host to start command
404 * @areq: async request to start
405 * @error: out parameter returns 0 for success, otherwise non zero
406 *
407 * Start a new MMC custom command request for a host.
408 * If there is on ongoing async request wait for completion
409 * of that request and start the new one and return.
410 * Does not wait for the new request to complete.
411 *
412 * Returns the completed request, NULL in case of none completed.
413 * Wait for the an ongoing request (previoulsy started) to complete and
414 * return the completed request. If there is no ongoing request, NULL
415 * is returned without waiting. NULL is not an error condition.
416 */
417struct mmc_async_req *mmc_start_req(struct mmc_host *host,
418 struct mmc_async_req *areq, int *error)
419{
420 int err = 0;
421 int start_err = 0;
422 struct mmc_async_req *data = host->areq;
423
424 /* Prepare a new request */
425 if (areq)
426 mmc_pre_req(host, areq->mrq, !host->areq);
427
428 if (host->areq) {
429 mmc_wait_for_req_done(host, host->areq->mrq);
430 err = host->areq->err_check(host->card, host->areq);
431 /*
432 * Check BKOPS urgency for each R1 response
433 */
434 if (host->card && mmc_card_mmc(host->card) &&
435 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
436 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
437 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
438 mmc_start_bkops(host->card, true);
439 }
440
441 if (!err && areq)
442 start_err = __mmc_start_req(host, areq->mrq);
443
444 if (host->areq)
445 mmc_post_req(host, host->areq->mrq, 0);
446
447 /* Cancel a prepared request if it was not started. */
448 if ((err || start_err) && areq)
449 mmc_post_req(host, areq->mrq, -EINVAL);
450
451 if (err)
452 host->areq = NULL;
453 else
454 host->areq = areq;
455
456 if (error)
457 *error = err;
458 return data;
459}
460EXPORT_SYMBOL(mmc_start_req);
461
462/**
463 * mmc_wait_for_req - start a request and wait for completion
464 * @host: MMC host to start command
465 * @mrq: MMC request to start
466 *
467 * Start a new MMC custom command request for a host, and wait
468 * for the command to complete. Does not attempt to parse the
469 * response.
470 */
471void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
472{
473 __mmc_start_req(host, mrq);
474 mmc_wait_for_req_done(host, mrq);
475}
476EXPORT_SYMBOL(mmc_wait_for_req);
477
478/**
479 * mmc_interrupt_hpi - Issue for High priority Interrupt
480 * @card: the MMC card associated with the HPI transfer
481 *
482 * Issued High Priority Interrupt, and check for card status
483 * until out-of prg-state.
484 */
485int mmc_interrupt_hpi(struct mmc_card *card)
486{
487 int err;
488 u32 status;
489 unsigned long prg_wait;
490
491 BUG_ON(!card);
492
493 if (!card->ext_csd.hpi_en) {
494 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
495 return 1;
496 }
497
498 mmc_claim_host(card->host);
499 err = mmc_send_status(card, &status);
500 if (err) {
501 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
502 goto out;
503 }
504
505 switch (R1_CURRENT_STATE(status)) {
506 case R1_STATE_IDLE:
507 case R1_STATE_READY:
508 case R1_STATE_STBY:
509 case R1_STATE_TRAN:
510 /*
511 * In idle and transfer states, HPI is not needed and the caller
512 * can issue the next intended command immediately
513 */
514 goto out;
515 case R1_STATE_PRG:
516 break;
517 default:
518 /* In all other states, it's illegal to issue HPI */
519 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
520 mmc_hostname(card->host), R1_CURRENT_STATE(status));
521 err = -EINVAL;
522 goto out;
523 }
524
525 err = mmc_send_hpi_cmd(card, &status);
526 if (err)
527 goto out;
528
529 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
530 do {
531 err = mmc_send_status(card, &status);
532
533 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
534 break;
535 if (time_after(jiffies, prg_wait))
536 err = -ETIMEDOUT;
537 } while (!err);
538
539out:
540 mmc_release_host(card->host);
541 return err;
542}
543EXPORT_SYMBOL(mmc_interrupt_hpi);
544
545/**
546 * mmc_wait_for_cmd - start a command and wait for completion
547 * @host: MMC host to start command
548 * @cmd: MMC command to start
549 * @retries: maximum number of retries
550 *
551 * Start a new MMC command for a host, and wait for the command
552 * to complete. Return any error that occurred while the command
553 * was executing. Do not attempt to parse the response.
554 */
555int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
556{
557 struct mmc_request mrq = {NULL};
558
559 WARN_ON(!host->claimed);
560
561 memset(cmd->resp, 0, sizeof(cmd->resp));
562 cmd->retries = retries;
563
564 mrq.cmd = cmd;
565 cmd->data = NULL;
566
567 mmc_wait_for_req(host, &mrq);
568
569 return cmd->error;
570}
571
572EXPORT_SYMBOL(mmc_wait_for_cmd);
573
574/**
575 * mmc_stop_bkops - stop ongoing BKOPS
576 * @card: MMC card to check BKOPS
577 *
578 * Send HPI command to stop ongoing background operations to
579 * allow rapid servicing of foreground operations, e.g. read/
580 * writes. Wait until the card comes out of the programming state
581 * to avoid errors in servicing read/write requests.
582 */
583int mmc_stop_bkops(struct mmc_card *card)
584{
585 int err = 0;
586
587 BUG_ON(!card);
588 err = mmc_interrupt_hpi(card);
589
590 /*
591 * If err is EINVAL, we can't issue an HPI.
592 * It should complete the BKOPS.
593 */
594 if (!err || (err == -EINVAL)) {
595 mmc_card_clr_doing_bkops(card);
596 err = 0;
597 }
598
599 return err;
600}
601EXPORT_SYMBOL(mmc_stop_bkops);
602
603int mmc_read_bkops_status(struct mmc_card *card)
604{
605 int err;
606 u8 *ext_csd;
607
608 /*
609 * In future work, we should consider storing the entire ext_csd.
610 */
611 ext_csd = kmalloc(512, GFP_KERNEL);
612 if (!ext_csd) {
613 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
614 mmc_hostname(card->host));
615 return -ENOMEM;
616 }
617
618 mmc_claim_host(card->host);
619 err = mmc_send_ext_csd(card, ext_csd);
620 mmc_release_host(card->host);
621 if (err)
622 goto out;
623
624 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
625 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
626out:
627 kfree(ext_csd);
628 return err;
629}
630EXPORT_SYMBOL(mmc_read_bkops_status);
631
632/**
633 * mmc_set_data_timeout - set the timeout for a data command
634 * @data: data phase for command
635 * @card: the MMC card associated with the data transfer
636 *
637 * Computes the data timeout parameters according to the
638 * correct algorithm given the card type.
639 */
640void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
641{
642 unsigned int mult;
643
644 /*
645 * SDIO cards only define an upper 1 s limit on access.
646 */
647 if (mmc_card_sdio(card)) {
648 data->timeout_ns = 1000000000;
649 data->timeout_clks = 0;
650 return;
651 }
652
653 /*
654 * SD cards use a 100 multiplier rather than 10
655 */
656 mult = mmc_card_sd(card) ? 100 : 10;
657
658 /*
659 * Scale up the multiplier (and therefore the timeout) by
660 * the r2w factor for writes.
661 */
662 if (data->flags & MMC_DATA_WRITE)
663 mult <<= card->csd.r2w_factor;
664
665 data->timeout_ns = card->csd.tacc_ns * mult;
666 data->timeout_clks = card->csd.tacc_clks * mult;
667
668 /*
669 * SD cards also have an upper limit on the timeout.
670 */
671 if (mmc_card_sd(card)) {
672 unsigned int timeout_us, limit_us;
673
674 timeout_us = data->timeout_ns / 1000;
675 if (mmc_host_clk_rate(card->host))
676 timeout_us += data->timeout_clks * 1000 /
677 (mmc_host_clk_rate(card->host) / 1000);
678
679 if (data->flags & MMC_DATA_WRITE)
680 /*
681 * The MMC spec "It is strongly recommended
682 * for hosts to implement more than 500ms
683 * timeout value even if the card indicates
684 * the 250ms maximum busy length." Even the
685 * previous value of 300ms is known to be
686 * insufficient for some cards.
687 */
688 limit_us = 3000000;
689 else
690 limit_us = 100000;
691
692 /*
693 * SDHC cards always use these fixed values.
694 */
695 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
696 data->timeout_ns = limit_us * 1000;
697 data->timeout_clks = 0;
698 }
699 }
700
701 /*
702 * Some cards require longer data read timeout than indicated in CSD.
703 * Address this by setting the read timeout to a "reasonably high"
704 * value. For the cards tested, 300ms has proven enough. If necessary,
705 * this value can be increased if other problematic cards require this.
706 */
707 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
708 data->timeout_ns = 300000000;
709 data->timeout_clks = 0;
710 }
711
712 /*
713 * Some cards need very high timeouts if driven in SPI mode.
714 * The worst observed timeout was 900ms after writing a
715 * continuous stream of data until the internal logic
716 * overflowed.
717 */
718 if (mmc_host_is_spi(card->host)) {
719 if (data->flags & MMC_DATA_WRITE) {
720 if (data->timeout_ns < 1000000000)
721 data->timeout_ns = 1000000000; /* 1s */
722 } else {
723 if (data->timeout_ns < 100000000)
724 data->timeout_ns = 100000000; /* 100ms */
725 }
726 }
727}
728EXPORT_SYMBOL(mmc_set_data_timeout);
729
730/**
731 * mmc_align_data_size - pads a transfer size to a more optimal value
732 * @card: the MMC card associated with the data transfer
733 * @sz: original transfer size
734 *
735 * Pads the original data size with a number of extra bytes in
736 * order to avoid controller bugs and/or performance hits
737 * (e.g. some controllers revert to PIO for certain sizes).
738 *
739 * Returns the improved size, which might be unmodified.
740 *
741 * Note that this function is only relevant when issuing a
742 * single scatter gather entry.
743 */
744unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
745{
746 /*
747 * FIXME: We don't have a system for the controller to tell
748 * the core about its problems yet, so for now we just 32-bit
749 * align the size.
750 */
751 sz = ((sz + 3) / 4) * 4;
752
753 return sz;
754}
755EXPORT_SYMBOL(mmc_align_data_size);
756
757/**
758 * __mmc_claim_host - exclusively claim a host
759 * @host: mmc host to claim
760 * @abort: whether or not the operation should be aborted
761 *
762 * Claim a host for a set of operations. If @abort is non null and
763 * dereference a non-zero value then this will return prematurely with
764 * that non-zero value without acquiring the lock. Returns zero
765 * with the lock held otherwise.
766 */
767int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
768{
769 DECLARE_WAITQUEUE(wait, current);
770 unsigned long flags;
771 int stop;
772
773 might_sleep();
774
775 add_wait_queue(&host->wq, &wait);
776 spin_lock_irqsave(&host->lock, flags);
777 while (1) {
778 set_current_state(TASK_UNINTERRUPTIBLE);
779 stop = abort ? atomic_read(abort) : 0;
780 if (stop || !host->claimed || host->claimer == current)
781 break;
782 spin_unlock_irqrestore(&host->lock, flags);
783 schedule();
784 spin_lock_irqsave(&host->lock, flags);
785 }
786 set_current_state(TASK_RUNNING);
787 if (!stop) {
788 host->claimed = 1;
789 host->claimer = current;
790 host->claim_cnt += 1;
791 } else
792 wake_up(&host->wq);
793 spin_unlock_irqrestore(&host->lock, flags);
794 remove_wait_queue(&host->wq, &wait);
795 if (host->ops->enable && !stop && host->claim_cnt == 1)
796 host->ops->enable(host);
797 return stop;
798}
799
800EXPORT_SYMBOL(__mmc_claim_host);
801
802/**
803 * mmc_try_claim_host - try exclusively to claim a host
804 * @host: mmc host to claim
805 *
806 * Returns %1 if the host is claimed, %0 otherwise.
807 */
808int mmc_try_claim_host(struct mmc_host *host)
809{
810 int claimed_host = 0;
811 unsigned long flags;
812
813 spin_lock_irqsave(&host->lock, flags);
814 if (!host->claimed || host->claimer == current) {
815 host->claimed = 1;
816 host->claimer = current;
817 host->claim_cnt += 1;
818 claimed_host = 1;
819 }
820 spin_unlock_irqrestore(&host->lock, flags);
821 if (host->ops->enable && claimed_host && host->claim_cnt == 1)
822 host->ops->enable(host);
823 return claimed_host;
824}
825EXPORT_SYMBOL(mmc_try_claim_host);
826
827/**
828 * mmc_release_host - release a host
829 * @host: mmc host to release
830 *
831 * Release a MMC host, allowing others to claim the host
832 * for their operations.
833 */
834void mmc_release_host(struct mmc_host *host)
835{
836 unsigned long flags;
837
838 WARN_ON(!host->claimed);
839
840 if (host->ops->disable && host->claim_cnt == 1)
841 host->ops->disable(host);
842
843 spin_lock_irqsave(&host->lock, flags);
844 if (--host->claim_cnt) {
845 /* Release for nested claim */
846 spin_unlock_irqrestore(&host->lock, flags);
847 } else {
848 host->claimed = 0;
849 host->claimer = NULL;
850 spin_unlock_irqrestore(&host->lock, flags);
851 wake_up(&host->wq);
852 }
853}
854EXPORT_SYMBOL(mmc_release_host);
855
856/*
857 * Internal function that does the actual ios call to the host driver,
858 * optionally printing some debug output.
859 */
860static inline void mmc_set_ios(struct mmc_host *host)
861{
862 struct mmc_ios *ios = &host->ios;
863
864 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
865 "width %u timing %u\n",
866 mmc_hostname(host), ios->clock, ios->bus_mode,
867 ios->power_mode, ios->chip_select, ios->vdd,
868 ios->bus_width, ios->timing);
869
870 if (ios->clock > 0)
871 mmc_set_ungated(host);
872 host->ops->set_ios(host, ios);
873}
874
875/*
876 * Control chip select pin on a host.
877 */
878void mmc_set_chip_select(struct mmc_host *host, int mode)
879{
880 mmc_host_clk_hold(host);
881 host->ios.chip_select = mode;
882 mmc_set_ios(host);
883 mmc_host_clk_release(host);
884}
885
886/*
887 * Sets the host clock to the highest possible frequency that
888 * is below "hz".
889 */
890static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
891{
892 WARN_ON(hz < host->f_min);
893
894 if (hz > host->f_max)
895 hz = host->f_max;
896
897 host->ios.clock = hz;
898 mmc_set_ios(host);
899}
900
901void mmc_set_clock(struct mmc_host *host, unsigned int hz)
902{
903 mmc_host_clk_hold(host);
904 __mmc_set_clock(host, hz);
905 mmc_host_clk_release(host);
906}
907
908#ifdef CONFIG_MMC_CLKGATE
909/*
910 * This gates the clock by setting it to 0 Hz.
911 */
912void mmc_gate_clock(struct mmc_host *host)
913{
914 unsigned long flags;
915
916 spin_lock_irqsave(&host->clk_lock, flags);
917 host->clk_old = host->ios.clock;
918 host->ios.clock = 0;
919 host->clk_gated = true;
920 spin_unlock_irqrestore(&host->clk_lock, flags);
921 mmc_set_ios(host);
922}
923
924/*
925 * This restores the clock from gating by using the cached
926 * clock value.
927 */
928void mmc_ungate_clock(struct mmc_host *host)
929{
930 /*
931 * We should previously have gated the clock, so the clock shall
932 * be 0 here! The clock may however be 0 during initialization,
933 * when some request operations are performed before setting
934 * the frequency. When ungate is requested in that situation
935 * we just ignore the call.
936 */
937 if (host->clk_old) {
938 BUG_ON(host->ios.clock);
939 /* This call will also set host->clk_gated to false */
940 __mmc_set_clock(host, host->clk_old);
941 }
942}
943
944void mmc_set_ungated(struct mmc_host *host)
945{
946 unsigned long flags;
947
948 /*
949 * We've been given a new frequency while the clock is gated,
950 * so make sure we regard this as ungating it.
951 */
952 spin_lock_irqsave(&host->clk_lock, flags);
953 host->clk_gated = false;
954 spin_unlock_irqrestore(&host->clk_lock, flags);
955}
956
957#else
958void mmc_set_ungated(struct mmc_host *host)
959{
960}
961#endif
962
963/*
964 * Change the bus mode (open drain/push-pull) of a host.
965 */
966void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
967{
968 mmc_host_clk_hold(host);
969 host->ios.bus_mode = mode;
970 mmc_set_ios(host);
971 mmc_host_clk_release(host);
972}
973
974/*
975 * Change data bus width of a host.
976 */
977void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
978{
979 mmc_host_clk_hold(host);
980 host->ios.bus_width = width;
981 mmc_set_ios(host);
982 mmc_host_clk_release(host);
983}
984
985/**
986 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
987 * @vdd: voltage (mV)
988 * @low_bits: prefer low bits in boundary cases
989 *
990 * This function returns the OCR bit number according to the provided @vdd
991 * value. If conversion is not possible a negative errno value returned.
992 *
993 * Depending on the @low_bits flag the function prefers low or high OCR bits
994 * on boundary voltages. For example,
995 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
996 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
997 *
998 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
999 */
1000static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1001{
1002 const int max_bit = ilog2(MMC_VDD_35_36);
1003 int bit;
1004
1005 if (vdd < 1650 || vdd > 3600)
1006 return -EINVAL;
1007
1008 if (vdd >= 1650 && vdd <= 1950)
1009 return ilog2(MMC_VDD_165_195);
1010
1011 if (low_bits)
1012 vdd -= 1;
1013
1014 /* Base 2000 mV, step 100 mV, bit's base 8. */
1015 bit = (vdd - 2000) / 100 + 8;
1016 if (bit > max_bit)
1017 return max_bit;
1018 return bit;
1019}
1020
1021/**
1022 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1023 * @vdd_min: minimum voltage value (mV)
1024 * @vdd_max: maximum voltage value (mV)
1025 *
1026 * This function returns the OCR mask bits according to the provided @vdd_min
1027 * and @vdd_max values. If conversion is not possible the function returns 0.
1028 *
1029 * Notes wrt boundary cases:
1030 * This function sets the OCR bits for all boundary voltages, for example
1031 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1032 * MMC_VDD_34_35 mask.
1033 */
1034u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1035{
1036 u32 mask = 0;
1037
1038 if (vdd_max < vdd_min)
1039 return 0;
1040
1041 /* Prefer high bits for the boundary vdd_max values. */
1042 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1043 if (vdd_max < 0)
1044 return 0;
1045
1046 /* Prefer low bits for the boundary vdd_min values. */
1047 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1048 if (vdd_min < 0)
1049 return 0;
1050
1051 /* Fill the mask, from max bit to min bit. */
1052 while (vdd_max >= vdd_min)
1053 mask |= 1 << vdd_max--;
1054
1055 return mask;
1056}
1057EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1058
1059#ifdef CONFIG_REGULATOR
1060
1061/**
1062 * mmc_regulator_get_ocrmask - return mask of supported voltages
1063 * @supply: regulator to use
1064 *
1065 * This returns either a negative errno, or a mask of voltages that
1066 * can be provided to MMC/SD/SDIO devices using the specified voltage
1067 * regulator. This would normally be called before registering the
1068 * MMC host adapter.
1069 */
1070int mmc_regulator_get_ocrmask(struct regulator *supply)
1071{
1072 int result = 0;
1073 int count;
1074 int i;
1075
1076 count = regulator_count_voltages(supply);
1077 if (count < 0)
1078 return count;
1079
1080 for (i = 0; i < count; i++) {
1081 int vdd_uV;
1082 int vdd_mV;
1083
1084 vdd_uV = regulator_list_voltage(supply, i);
1085 if (vdd_uV <= 0)
1086 continue;
1087
1088 vdd_mV = vdd_uV / 1000;
1089 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1090 }
1091
1092 return result;
1093}
1094EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1095
1096/**
1097 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1098 * @mmc: the host to regulate
1099 * @supply: regulator to use
1100 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1101 *
1102 * Returns zero on success, else negative errno.
1103 *
1104 * MMC host drivers may use this to enable or disable a regulator using
1105 * a particular supply voltage. This would normally be called from the
1106 * set_ios() method.
1107 */
1108int mmc_regulator_set_ocr(struct mmc_host *mmc,
1109 struct regulator *supply,
1110 unsigned short vdd_bit)
1111{
1112 int result = 0;
1113 int min_uV, max_uV;
1114
1115 if (vdd_bit) {
1116 int tmp;
1117 int voltage;
1118
1119 /*
1120 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1121 * bits this regulator doesn't quite support ... don't
1122 * be too picky, most cards and regulators are OK with
1123 * a 0.1V range goof (it's a small error percentage).
1124 */
1125 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1126 if (tmp == 0) {
1127 min_uV = 1650 * 1000;
1128 max_uV = 1950 * 1000;
1129 } else {
1130 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1131 max_uV = min_uV + 100 * 1000;
1132 }
1133
1134 /*
1135 * If we're using a fixed/static regulator, don't call
1136 * regulator_set_voltage; it would fail.
1137 */
1138 voltage = regulator_get_voltage(supply);
1139
1140 if (regulator_count_voltages(supply) == 1)
1141 min_uV = max_uV = voltage;
1142
1143 if (voltage < 0)
1144 result = voltage;
1145 else if (voltage < min_uV || voltage > max_uV)
1146 result = regulator_set_voltage(supply, min_uV, max_uV);
1147 else
1148 result = 0;
1149
1150 if (result == 0 && !mmc->regulator_enabled) {
1151 result = regulator_enable(supply);
1152 if (!result)
1153 mmc->regulator_enabled = true;
1154 }
1155 } else if (mmc->regulator_enabled) {
1156 result = regulator_disable(supply);
1157 if (result == 0)
1158 mmc->regulator_enabled = false;
1159 }
1160
1161 if (result)
1162 dev_err(mmc_dev(mmc),
1163 "could not set regulator OCR (%d)\n", result);
1164 return result;
1165}
1166EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1167
1168int mmc_regulator_get_supply(struct mmc_host *mmc)
1169{
1170 struct device *dev = mmc_dev(mmc);
1171 struct regulator *supply;
1172 int ret;
1173
1174 supply = devm_regulator_get(dev, "vmmc");
1175 mmc->supply.vmmc = supply;
1176 mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1177
1178 if (IS_ERR(supply))
1179 return PTR_ERR(supply);
1180
1181 ret = mmc_regulator_get_ocrmask(supply);
1182 if (ret > 0)
1183 mmc->ocr_avail = ret;
1184 else
1185 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1186
1187 return 0;
1188}
1189EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1190
1191#endif /* CONFIG_REGULATOR */
1192
1193/*
1194 * Mask off any voltages we don't support and select
1195 * the lowest voltage
1196 */
1197u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1198{
1199 int bit;
1200
1201 ocr &= host->ocr_avail;
1202
1203 bit = ffs(ocr);
1204 if (bit) {
1205 bit -= 1;
1206
1207 ocr &= 3 << bit;
1208
1209 mmc_host_clk_hold(host);
1210 host->ios.vdd = bit;
1211 mmc_set_ios(host);
1212 mmc_host_clk_release(host);
1213 } else {
1214 pr_warning("%s: host doesn't support card's voltages\n",
1215 mmc_hostname(host));
1216 ocr = 0;
1217 }
1218
1219 return ocr;
1220}
1221
1222int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
1223{
1224 struct mmc_command cmd = {0};
1225 int err = 0;
1226
1227 BUG_ON(!host);
1228
1229 /*
1230 * Send CMD11 only if the request is to switch the card to
1231 * 1.8V signalling.
1232 */
1233 if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1234 cmd.opcode = SD_SWITCH_VOLTAGE;
1235 cmd.arg = 0;
1236 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1237
1238 err = mmc_wait_for_cmd(host, &cmd, 0);
1239 if (err)
1240 return err;
1241
1242 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1243 return -EIO;
1244 }
1245
1246 host->ios.signal_voltage = signal_voltage;
1247
1248 if (host->ops->start_signal_voltage_switch) {
1249 mmc_host_clk_hold(host);
1250 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1251 mmc_host_clk_release(host);
1252 }
1253
1254 return err;
1255}
1256
1257/*
1258 * Select timing parameters for host.
1259 */
1260void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1261{
1262 mmc_host_clk_hold(host);
1263 host->ios.timing = timing;
1264 mmc_set_ios(host);
1265 mmc_host_clk_release(host);
1266}
1267
1268/*
1269 * Select appropriate driver type for host.
1270 */
1271void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1272{
1273 mmc_host_clk_hold(host);
1274 host->ios.drv_type = drv_type;
1275 mmc_set_ios(host);
1276 mmc_host_clk_release(host);
1277}
1278
1279/*
1280 * Apply power to the MMC stack. This is a two-stage process.
1281 * First, we enable power to the card without the clock running.
1282 * We then wait a bit for the power to stabilise. Finally,
1283 * enable the bus drivers and clock to the card.
1284 *
1285 * We must _NOT_ enable the clock prior to power stablising.
1286 *
1287 * If a host does all the power sequencing itself, ignore the
1288 * initial MMC_POWER_UP stage.
1289 */
1290static void mmc_power_up(struct mmc_host *host)
1291{
1292 int bit;
1293
1294 if (host->ios.power_mode == MMC_POWER_ON)
1295 return;
1296
1297 mmc_host_clk_hold(host);
1298
1299 /* If ocr is set, we use it */
1300 if (host->ocr)
1301 bit = ffs(host->ocr) - 1;
1302 else
1303 bit = fls(host->ocr_avail) - 1;
1304
1305 host->ios.vdd = bit;
1306 if (mmc_host_is_spi(host))
1307 host->ios.chip_select = MMC_CS_HIGH;
1308 else
1309 host->ios.chip_select = MMC_CS_DONTCARE;
1310 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1311 host->ios.power_mode = MMC_POWER_UP;
1312 host->ios.bus_width = MMC_BUS_WIDTH_1;
1313 host->ios.timing = MMC_TIMING_LEGACY;
1314 mmc_set_ios(host);
1315
1316 /* Set signal voltage to 3.3V */
1317 mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, false);
1318
1319 /*
1320 * This delay should be sufficient to allow the power supply
1321 * to reach the minimum voltage.
1322 */
1323 mmc_delay(10);
1324
1325 host->ios.clock = host->f_init;
1326
1327 host->ios.power_mode = MMC_POWER_ON;
1328 mmc_set_ios(host);
1329
1330 /*
1331 * This delay must be at least 74 clock sizes, or 1 ms, or the
1332 * time required to reach a stable voltage.
1333 */
1334 mmc_delay(10);
1335
1336 mmc_host_clk_release(host);
1337}
1338
1339void mmc_power_off(struct mmc_host *host)
1340{
1341 if (host->ios.power_mode == MMC_POWER_OFF)
1342 return;
1343
1344 mmc_host_clk_hold(host);
1345
1346 host->ios.clock = 0;
1347 host->ios.vdd = 0;
1348
1349
1350 /*
1351 * Reset ocr mask to be the highest possible voltage supported for
1352 * this mmc host. This value will be used at next power up.
1353 */
1354 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1355
1356 if (!mmc_host_is_spi(host)) {
1357 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1358 host->ios.chip_select = MMC_CS_DONTCARE;
1359 }
1360 host->ios.power_mode = MMC_POWER_OFF;
1361 host->ios.bus_width = MMC_BUS_WIDTH_1;
1362 host->ios.timing = MMC_TIMING_LEGACY;
1363 mmc_set_ios(host);
1364
1365 /*
1366 * Some configurations, such as the 802.11 SDIO card in the OLPC
1367 * XO-1.5, require a short delay after poweroff before the card
1368 * can be successfully turned on again.
1369 */
1370 mmc_delay(1);
1371
1372 mmc_host_clk_release(host);
1373}
1374
1375/*
1376 * Cleanup when the last reference to the bus operator is dropped.
1377 */
1378static void __mmc_release_bus(struct mmc_host *host)
1379{
1380 BUG_ON(!host);
1381 BUG_ON(host->bus_refs);
1382 BUG_ON(!host->bus_dead);
1383
1384 host->bus_ops = NULL;
1385}
1386
1387/*
1388 * Increase reference count of bus operator
1389 */
1390static inline void mmc_bus_get(struct mmc_host *host)
1391{
1392 unsigned long flags;
1393
1394 spin_lock_irqsave(&host->lock, flags);
1395 host->bus_refs++;
1396 spin_unlock_irqrestore(&host->lock, flags);
1397}
1398
1399/*
1400 * Decrease reference count of bus operator and free it if
1401 * it is the last reference.
1402 */
1403static inline void mmc_bus_put(struct mmc_host *host)
1404{
1405 unsigned long flags;
1406
1407 spin_lock_irqsave(&host->lock, flags);
1408 host->bus_refs--;
1409 if ((host->bus_refs == 0) && host->bus_ops)
1410 __mmc_release_bus(host);
1411 spin_unlock_irqrestore(&host->lock, flags);
1412}
1413
1414/*
1415 * Assign a mmc bus handler to a host. Only one bus handler may control a
1416 * host at any given time.
1417 */
1418void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1419{
1420 unsigned long flags;
1421
1422 BUG_ON(!host);
1423 BUG_ON(!ops);
1424
1425 WARN_ON(!host->claimed);
1426
1427 spin_lock_irqsave(&host->lock, flags);
1428
1429 BUG_ON(host->bus_ops);
1430 BUG_ON(host->bus_refs);
1431
1432 host->bus_ops = ops;
1433 host->bus_refs = 1;
1434 host->bus_dead = 0;
1435
1436 spin_unlock_irqrestore(&host->lock, flags);
1437}
1438
1439/*
1440 * Remove the current bus handler from a host.
1441 */
1442void mmc_detach_bus(struct mmc_host *host)
1443{
1444 unsigned long flags;
1445
1446 BUG_ON(!host);
1447
1448 WARN_ON(!host->claimed);
1449 WARN_ON(!host->bus_ops);
1450
1451 spin_lock_irqsave(&host->lock, flags);
1452
1453 host->bus_dead = 1;
1454
1455 spin_unlock_irqrestore(&host->lock, flags);
1456
1457 mmc_bus_put(host);
1458}
1459
1460/**
1461 * mmc_detect_change - process change of state on a MMC socket
1462 * @host: host which changed state.
1463 * @delay: optional delay to wait before detection (jiffies)
1464 *
1465 * MMC drivers should call this when they detect a card has been
1466 * inserted or removed. The MMC layer will confirm that any
1467 * present card is still functional, and initialize any newly
1468 * inserted.
1469 */
1470void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1471{
1472#ifdef CONFIG_MMC_DEBUG
1473 unsigned long flags;
1474 spin_lock_irqsave(&host->lock, flags);
1475 WARN_ON(host->removed);
1476 spin_unlock_irqrestore(&host->lock, flags);
1477#endif
1478 host->detect_change = 1;
1479 mmc_schedule_delayed_work(&host->detect, delay);
1480}
1481
1482EXPORT_SYMBOL(mmc_detect_change);
1483
1484void mmc_init_erase(struct mmc_card *card)
1485{
1486 unsigned int sz;
1487
1488 if (is_power_of_2(card->erase_size))
1489 card->erase_shift = ffs(card->erase_size) - 1;
1490 else
1491 card->erase_shift = 0;
1492
1493 /*
1494 * It is possible to erase an arbitrarily large area of an SD or MMC
1495 * card. That is not desirable because it can take a long time
1496 * (minutes) potentially delaying more important I/O, and also the
1497 * timeout calculations become increasingly hugely over-estimated.
1498 * Consequently, 'pref_erase' is defined as a guide to limit erases
1499 * to that size and alignment.
1500 *
1501 * For SD cards that define Allocation Unit size, limit erases to one
1502 * Allocation Unit at a time. For MMC cards that define High Capacity
1503 * Erase Size, whether it is switched on or not, limit to that size.
1504 * Otherwise just have a stab at a good value. For modern cards it
1505 * will end up being 4MiB. Note that if the value is too small, it
1506 * can end up taking longer to erase.
1507 */
1508 if (mmc_card_sd(card) && card->ssr.au) {
1509 card->pref_erase = card->ssr.au;
1510 card->erase_shift = ffs(card->ssr.au) - 1;
1511 } else if (card->ext_csd.hc_erase_size) {
1512 card->pref_erase = card->ext_csd.hc_erase_size;
1513 } else {
1514 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1515 if (sz < 128)
1516 card->pref_erase = 512 * 1024 / 512;
1517 else if (sz < 512)
1518 card->pref_erase = 1024 * 1024 / 512;
1519 else if (sz < 1024)
1520 card->pref_erase = 2 * 1024 * 1024 / 512;
1521 else
1522 card->pref_erase = 4 * 1024 * 1024 / 512;
1523 if (card->pref_erase < card->erase_size)
1524 card->pref_erase = card->erase_size;
1525 else {
1526 sz = card->pref_erase % card->erase_size;
1527 if (sz)
1528 card->pref_erase += card->erase_size - sz;
1529 }
1530 }
1531}
1532
1533static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1534 unsigned int arg, unsigned int qty)
1535{
1536 unsigned int erase_timeout;
1537
1538 if (arg == MMC_DISCARD_ARG ||
1539 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1540 erase_timeout = card->ext_csd.trim_timeout;
1541 } else if (card->ext_csd.erase_group_def & 1) {
1542 /* High Capacity Erase Group Size uses HC timeouts */
1543 if (arg == MMC_TRIM_ARG)
1544 erase_timeout = card->ext_csd.trim_timeout;
1545 else
1546 erase_timeout = card->ext_csd.hc_erase_timeout;
1547 } else {
1548 /* CSD Erase Group Size uses write timeout */
1549 unsigned int mult = (10 << card->csd.r2w_factor);
1550 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1551 unsigned int timeout_us;
1552
1553 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1554 if (card->csd.tacc_ns < 1000000)
1555 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1556 else
1557 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1558
1559 /*
1560 * ios.clock is only a target. The real clock rate might be
1561 * less but not that much less, so fudge it by multiplying by 2.
1562 */
1563 timeout_clks <<= 1;
1564 timeout_us += (timeout_clks * 1000) /
1565 (mmc_host_clk_rate(card->host) / 1000);
1566
1567 erase_timeout = timeout_us / 1000;
1568
1569 /*
1570 * Theoretically, the calculation could underflow so round up
1571 * to 1ms in that case.
1572 */
1573 if (!erase_timeout)
1574 erase_timeout = 1;
1575 }
1576
1577 /* Multiplier for secure operations */
1578 if (arg & MMC_SECURE_ARGS) {
1579 if (arg == MMC_SECURE_ERASE_ARG)
1580 erase_timeout *= card->ext_csd.sec_erase_mult;
1581 else
1582 erase_timeout *= card->ext_csd.sec_trim_mult;
1583 }
1584
1585 erase_timeout *= qty;
1586
1587 /*
1588 * Ensure at least a 1 second timeout for SPI as per
1589 * 'mmc_set_data_timeout()'
1590 */
1591 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1592 erase_timeout = 1000;
1593
1594 return erase_timeout;
1595}
1596
1597static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1598 unsigned int arg,
1599 unsigned int qty)
1600{
1601 unsigned int erase_timeout;
1602
1603 if (card->ssr.erase_timeout) {
1604 /* Erase timeout specified in SD Status Register (SSR) */
1605 erase_timeout = card->ssr.erase_timeout * qty +
1606 card->ssr.erase_offset;
1607 } else {
1608 /*
1609 * Erase timeout not specified in SD Status Register (SSR) so
1610 * use 250ms per write block.
1611 */
1612 erase_timeout = 250 * qty;
1613 }
1614
1615 /* Must not be less than 1 second */
1616 if (erase_timeout < 1000)
1617 erase_timeout = 1000;
1618
1619 return erase_timeout;
1620}
1621
1622static unsigned int mmc_erase_timeout(struct mmc_card *card,
1623 unsigned int arg,
1624 unsigned int qty)
1625{
1626 if (mmc_card_sd(card))
1627 return mmc_sd_erase_timeout(card, arg, qty);
1628 else
1629 return mmc_mmc_erase_timeout(card, arg, qty);
1630}
1631
1632static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1633 unsigned int to, unsigned int arg)
1634{
1635 struct mmc_command cmd = {0};
1636 unsigned int qty = 0;
1637 unsigned long timeout;
1638 int err;
1639
1640 /*
1641 * qty is used to calculate the erase timeout which depends on how many
1642 * erase groups (or allocation units in SD terminology) are affected.
1643 * We count erasing part of an erase group as one erase group.
1644 * For SD, the allocation units are always a power of 2. For MMC, the
1645 * erase group size is almost certainly also power of 2, but it does not
1646 * seem to insist on that in the JEDEC standard, so we fall back to
1647 * division in that case. SD may not specify an allocation unit size,
1648 * in which case the timeout is based on the number of write blocks.
1649 *
1650 * Note that the timeout for secure trim 2 will only be correct if the
1651 * number of erase groups specified is the same as the total of all
1652 * preceding secure trim 1 commands. Since the power may have been
1653 * lost since the secure trim 1 commands occurred, it is generally
1654 * impossible to calculate the secure trim 2 timeout correctly.
1655 */
1656 if (card->erase_shift)
1657 qty += ((to >> card->erase_shift) -
1658 (from >> card->erase_shift)) + 1;
1659 else if (mmc_card_sd(card))
1660 qty += to - from + 1;
1661 else
1662 qty += ((to / card->erase_size) -
1663 (from / card->erase_size)) + 1;
1664
1665 if (!mmc_card_blockaddr(card)) {
1666 from <<= 9;
1667 to <<= 9;
1668 }
1669
1670 if (mmc_card_sd(card))
1671 cmd.opcode = SD_ERASE_WR_BLK_START;
1672 else
1673 cmd.opcode = MMC_ERASE_GROUP_START;
1674 cmd.arg = from;
1675 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1676 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1677 if (err) {
1678 pr_err("mmc_erase: group start error %d, "
1679 "status %#x\n", err, cmd.resp[0]);
1680 err = -EIO;
1681 goto out;
1682 }
1683
1684 memset(&cmd, 0, sizeof(struct mmc_command));
1685 if (mmc_card_sd(card))
1686 cmd.opcode = SD_ERASE_WR_BLK_END;
1687 else
1688 cmd.opcode = MMC_ERASE_GROUP_END;
1689 cmd.arg = to;
1690 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1691 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1692 if (err) {
1693 pr_err("mmc_erase: group end error %d, status %#x\n",
1694 err, cmd.resp[0]);
1695 err = -EIO;
1696 goto out;
1697 }
1698
1699 memset(&cmd, 0, sizeof(struct mmc_command));
1700 cmd.opcode = MMC_ERASE;
1701 cmd.arg = arg;
1702 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1703 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1704 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1705 if (err) {
1706 pr_err("mmc_erase: erase error %d, status %#x\n",
1707 err, cmd.resp[0]);
1708 err = -EIO;
1709 goto out;
1710 }
1711
1712 if (mmc_host_is_spi(card->host))
1713 goto out;
1714
1715 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1716 do {
1717 memset(&cmd, 0, sizeof(struct mmc_command));
1718 cmd.opcode = MMC_SEND_STATUS;
1719 cmd.arg = card->rca << 16;
1720 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1721 /* Do not retry else we can't see errors */
1722 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1723 if (err || (cmd.resp[0] & 0xFDF92000)) {
1724 pr_err("error %d requesting status %#x\n",
1725 err, cmd.resp[0]);
1726 err = -EIO;
1727 goto out;
1728 }
1729
1730 /* Timeout if the device never becomes ready for data and
1731 * never leaves the program state.
1732 */
1733 if (time_after(jiffies, timeout)) {
1734 pr_err("%s: Card stuck in programming state! %s\n",
1735 mmc_hostname(card->host), __func__);
1736 err = -EIO;
1737 goto out;
1738 }
1739
1740 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1741 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1742out:
1743 return err;
1744}
1745
1746/**
1747 * mmc_erase - erase sectors.
1748 * @card: card to erase
1749 * @from: first sector to erase
1750 * @nr: number of sectors to erase
1751 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1752 *
1753 * Caller must claim host before calling this function.
1754 */
1755int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1756 unsigned int arg)
1757{
1758 unsigned int rem, to = from + nr;
1759
1760 if (!(card->host->caps & MMC_CAP_ERASE) ||
1761 !(card->csd.cmdclass & CCC_ERASE))
1762 return -EOPNOTSUPP;
1763
1764 if (!card->erase_size)
1765 return -EOPNOTSUPP;
1766
1767 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1768 return -EOPNOTSUPP;
1769
1770 if ((arg & MMC_SECURE_ARGS) &&
1771 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1772 return -EOPNOTSUPP;
1773
1774 if ((arg & MMC_TRIM_ARGS) &&
1775 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1776 return -EOPNOTSUPP;
1777
1778 if (arg == MMC_SECURE_ERASE_ARG) {
1779 if (from % card->erase_size || nr % card->erase_size)
1780 return -EINVAL;
1781 }
1782
1783 if (arg == MMC_ERASE_ARG) {
1784 rem = from % card->erase_size;
1785 if (rem) {
1786 rem = card->erase_size - rem;
1787 from += rem;
1788 if (nr > rem)
1789 nr -= rem;
1790 else
1791 return 0;
1792 }
1793 rem = nr % card->erase_size;
1794 if (rem)
1795 nr -= rem;
1796 }
1797
1798 if (nr == 0)
1799 return 0;
1800
1801 to = from + nr;
1802
1803 if (to <= from)
1804 return -EINVAL;
1805
1806 /* 'from' and 'to' are inclusive */
1807 to -= 1;
1808
1809 return mmc_do_erase(card, from, to, arg);
1810}
1811EXPORT_SYMBOL(mmc_erase);
1812
1813int mmc_can_erase(struct mmc_card *card)
1814{
1815 if ((card->host->caps & MMC_CAP_ERASE) &&
1816 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1817 return 1;
1818 return 0;
1819}
1820EXPORT_SYMBOL(mmc_can_erase);
1821
1822int mmc_can_trim(struct mmc_card *card)
1823{
1824 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1825 return 1;
1826 return 0;
1827}
1828EXPORT_SYMBOL(mmc_can_trim);
1829
1830int mmc_can_discard(struct mmc_card *card)
1831{
1832 /*
1833 * As there's no way to detect the discard support bit at v4.5
1834 * use the s/w feature support filed.
1835 */
1836 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1837 return 1;
1838 return 0;
1839}
1840EXPORT_SYMBOL(mmc_can_discard);
1841
1842int mmc_can_sanitize(struct mmc_card *card)
1843{
1844 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1845 return 0;
1846 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1847 return 1;
1848 return 0;
1849}
1850EXPORT_SYMBOL(mmc_can_sanitize);
1851
1852int mmc_can_secure_erase_trim(struct mmc_card *card)
1853{
1854 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1855 return 1;
1856 return 0;
1857}
1858EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1859
1860int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1861 unsigned int nr)
1862{
1863 if (!card->erase_size)
1864 return 0;
1865 if (from % card->erase_size || nr % card->erase_size)
1866 return 0;
1867 return 1;
1868}
1869EXPORT_SYMBOL(mmc_erase_group_aligned);
1870
1871static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1872 unsigned int arg)
1873{
1874 struct mmc_host *host = card->host;
1875 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1876 unsigned int last_timeout = 0;
1877
1878 if (card->erase_shift)
1879 max_qty = UINT_MAX >> card->erase_shift;
1880 else if (mmc_card_sd(card))
1881 max_qty = UINT_MAX;
1882 else
1883 max_qty = UINT_MAX / card->erase_size;
1884
1885 /* Find the largest qty with an OK timeout */
1886 do {
1887 y = 0;
1888 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1889 timeout = mmc_erase_timeout(card, arg, qty + x);
1890 if (timeout > host->max_discard_to)
1891 break;
1892 if (timeout < last_timeout)
1893 break;
1894 last_timeout = timeout;
1895 y = x;
1896 }
1897 qty += y;
1898 } while (y);
1899
1900 if (!qty)
1901 return 0;
1902
1903 if (qty == 1)
1904 return 1;
1905
1906 /* Convert qty to sectors */
1907 if (card->erase_shift)
1908 max_discard = --qty << card->erase_shift;
1909 else if (mmc_card_sd(card))
1910 max_discard = qty;
1911 else
1912 max_discard = --qty * card->erase_size;
1913
1914 return max_discard;
1915}
1916
1917unsigned int mmc_calc_max_discard(struct mmc_card *card)
1918{
1919 struct mmc_host *host = card->host;
1920 unsigned int max_discard, max_trim;
1921
1922 if (!host->max_discard_to)
1923 return UINT_MAX;
1924
1925 /*
1926 * Without erase_group_def set, MMC erase timeout depends on clock
1927 * frequence which can change. In that case, the best choice is
1928 * just the preferred erase size.
1929 */
1930 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1931 return card->pref_erase;
1932
1933 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1934 if (mmc_can_trim(card)) {
1935 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1936 if (max_trim < max_discard)
1937 max_discard = max_trim;
1938 } else if (max_discard < card->erase_size) {
1939 max_discard = 0;
1940 }
1941 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1942 mmc_hostname(host), max_discard, host->max_discard_to);
1943 return max_discard;
1944}
1945EXPORT_SYMBOL(mmc_calc_max_discard);
1946
1947int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1948{
1949 struct mmc_command cmd = {0};
1950
1951 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1952 return 0;
1953
1954 cmd.opcode = MMC_SET_BLOCKLEN;
1955 cmd.arg = blocklen;
1956 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1957 return mmc_wait_for_cmd(card->host, &cmd, 5);
1958}
1959EXPORT_SYMBOL(mmc_set_blocklen);
1960
1961int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
1962 bool is_rel_write)
1963{
1964 struct mmc_command cmd = {0};
1965
1966 cmd.opcode = MMC_SET_BLOCK_COUNT;
1967 cmd.arg = blockcount & 0x0000FFFF;
1968 if (is_rel_write)
1969 cmd.arg |= 1 << 31;
1970 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1971 return mmc_wait_for_cmd(card->host, &cmd, 5);
1972}
1973EXPORT_SYMBOL(mmc_set_blockcount);
1974
1975static void mmc_hw_reset_for_init(struct mmc_host *host)
1976{
1977 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1978 return;
1979 mmc_host_clk_hold(host);
1980 host->ops->hw_reset(host);
1981 mmc_host_clk_release(host);
1982}
1983
1984int mmc_can_reset(struct mmc_card *card)
1985{
1986 u8 rst_n_function;
1987
1988 if (!mmc_card_mmc(card))
1989 return 0;
1990 rst_n_function = card->ext_csd.rst_n_function;
1991 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1992 return 0;
1993 return 1;
1994}
1995EXPORT_SYMBOL(mmc_can_reset);
1996
1997static int mmc_do_hw_reset(struct mmc_host *host, int check)
1998{
1999 struct mmc_card *card = host->card;
2000
2001 if (!host->bus_ops->power_restore)
2002 return -EOPNOTSUPP;
2003
2004 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2005 return -EOPNOTSUPP;
2006
2007 if (!card)
2008 return -EINVAL;
2009
2010 if (!mmc_can_reset(card))
2011 return -EOPNOTSUPP;
2012
2013 mmc_host_clk_hold(host);
2014 mmc_set_clock(host, host->f_init);
2015
2016 host->ops->hw_reset(host);
2017
2018 /* If the reset has happened, then a status command will fail */
2019 if (check) {
2020 struct mmc_command cmd = {0};
2021 int err;
2022
2023 cmd.opcode = MMC_SEND_STATUS;
2024 if (!mmc_host_is_spi(card->host))
2025 cmd.arg = card->rca << 16;
2026 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2027 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2028 if (!err) {
2029 mmc_host_clk_release(host);
2030 return -ENOSYS;
2031 }
2032 }
2033
2034 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2035 if (mmc_host_is_spi(host)) {
2036 host->ios.chip_select = MMC_CS_HIGH;
2037 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2038 } else {
2039 host->ios.chip_select = MMC_CS_DONTCARE;
2040 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2041 }
2042 host->ios.bus_width = MMC_BUS_WIDTH_1;
2043 host->ios.timing = MMC_TIMING_LEGACY;
2044 mmc_set_ios(host);
2045
2046 mmc_host_clk_release(host);
2047
2048 return host->bus_ops->power_restore(host);
2049}
2050
2051int mmc_hw_reset(struct mmc_host *host)
2052{
2053 return mmc_do_hw_reset(host, 0);
2054}
2055EXPORT_SYMBOL(mmc_hw_reset);
2056
2057int mmc_hw_reset_check(struct mmc_host *host)
2058{
2059 return mmc_do_hw_reset(host, 1);
2060}
2061EXPORT_SYMBOL(mmc_hw_reset_check);
2062
2063static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2064{
2065 host->f_init = freq;
2066
2067#ifdef CONFIG_MMC_DEBUG
2068 pr_info("%s: %s: trying to init card at %u Hz\n",
2069 mmc_hostname(host), __func__, host->f_init);
2070#endif
2071 mmc_power_up(host);
2072
2073 /*
2074 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2075 * do a hardware reset if possible.
2076 */
2077 mmc_hw_reset_for_init(host);
2078
2079 /*
2080 * sdio_reset sends CMD52 to reset card. Since we do not know
2081 * if the card is being re-initialized, just send it. CMD52
2082 * should be ignored by SD/eMMC cards.
2083 */
2084 sdio_reset(host);
2085 mmc_go_idle(host);
2086
2087 mmc_send_if_cond(host, host->ocr_avail);
2088
2089 /* Order's important: probe SDIO, then SD, then MMC */
2090 if (!mmc_attach_sdio(host))
2091 return 0;
2092 if (!mmc_attach_sd(host))
2093 return 0;
2094 if (!mmc_attach_mmc(host))
2095 return 0;
2096
2097 mmc_power_off(host);
2098 return -EIO;
2099}
2100
2101int _mmc_detect_card_removed(struct mmc_host *host)
2102{
2103 int ret;
2104
2105 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2106 return 0;
2107
2108 if (!host->card || mmc_card_removed(host->card))
2109 return 1;
2110
2111 ret = host->bus_ops->alive(host);
2112 if (ret) {
2113 mmc_card_set_removed(host->card);
2114 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2115 }
2116
2117 return ret;
2118}
2119
2120int mmc_detect_card_removed(struct mmc_host *host)
2121{
2122 struct mmc_card *card = host->card;
2123 int ret;
2124
2125 WARN_ON(!host->claimed);
2126
2127 if (!card)
2128 return 1;
2129
2130 ret = mmc_card_removed(card);
2131 /*
2132 * The card will be considered unchanged unless we have been asked to
2133 * detect a change or host requires polling to provide card detection.
2134 */
2135 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
2136 !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
2137 return ret;
2138
2139 host->detect_change = 0;
2140 if (!ret) {
2141 ret = _mmc_detect_card_removed(host);
2142 if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2143 /*
2144 * Schedule a detect work as soon as possible to let a
2145 * rescan handle the card removal.
2146 */
2147 cancel_delayed_work(&host->detect);
2148 mmc_detect_change(host, 0);
2149 }
2150 }
2151
2152 return ret;
2153}
2154EXPORT_SYMBOL(mmc_detect_card_removed);
2155
2156void mmc_rescan(struct work_struct *work)
2157{
2158 struct mmc_host *host =
2159 container_of(work, struct mmc_host, detect.work);
2160 int i;
2161
2162 if (host->rescan_disable)
2163 return;
2164
2165 /* If there is a non-removable card registered, only scan once */
2166 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2167 return;
2168 host->rescan_entered = 1;
2169
2170 mmc_bus_get(host);
2171
2172 /*
2173 * if there is a _removable_ card registered, check whether it is
2174 * still present
2175 */
2176 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2177 && !(host->caps & MMC_CAP_NONREMOVABLE))
2178 host->bus_ops->detect(host);
2179
2180 host->detect_change = 0;
2181
2182 /*
2183 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2184 * the card is no longer present.
2185 */
2186 mmc_bus_put(host);
2187 mmc_bus_get(host);
2188
2189 /* if there still is a card present, stop here */
2190 if (host->bus_ops != NULL) {
2191 mmc_bus_put(host);
2192 goto out;
2193 }
2194
2195 /*
2196 * Only we can add a new handler, so it's safe to
2197 * release the lock here.
2198 */
2199 mmc_bus_put(host);
2200
2201 if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2202 mmc_claim_host(host);
2203 mmc_power_off(host);
2204 mmc_release_host(host);
2205 goto out;
2206 }
2207
2208 mmc_claim_host(host);
2209 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2210 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2211 break;
2212 if (freqs[i] <= host->f_min)
2213 break;
2214 }
2215 mmc_release_host(host);
2216
2217 out:
2218 if (host->caps & MMC_CAP_NEEDS_POLL)
2219 mmc_schedule_delayed_work(&host->detect, HZ);
2220}
2221
2222void mmc_start_host(struct mmc_host *host)
2223{
2224 host->f_init = max(freqs[0], host->f_min);
2225 host->rescan_disable = 0;
2226 mmc_power_up(host);
2227 mmc_detect_change(host, 0);
2228}
2229
2230void mmc_stop_host(struct mmc_host *host)
2231{
2232#ifdef CONFIG_MMC_DEBUG
2233 unsigned long flags;
2234 spin_lock_irqsave(&host->lock, flags);
2235 host->removed = 1;
2236 spin_unlock_irqrestore(&host->lock, flags);
2237#endif
2238
2239 host->rescan_disable = 1;
2240 cancel_delayed_work_sync(&host->detect);
2241 mmc_flush_scheduled_work();
2242
2243 /* clear pm flags now and let card drivers set them as needed */
2244 host->pm_flags = 0;
2245
2246 mmc_bus_get(host);
2247 if (host->bus_ops && !host->bus_dead) {
2248 /* Calling bus_ops->remove() with a claimed host can deadlock */
2249 if (host->bus_ops->remove)
2250 host->bus_ops->remove(host);
2251
2252 mmc_claim_host(host);
2253 mmc_detach_bus(host);
2254 mmc_power_off(host);
2255 mmc_release_host(host);
2256 mmc_bus_put(host);
2257 return;
2258 }
2259 mmc_bus_put(host);
2260
2261 BUG_ON(host->card);
2262
2263 mmc_power_off(host);
2264}
2265
2266int mmc_power_save_host(struct mmc_host *host)
2267{
2268 int ret = 0;
2269
2270#ifdef CONFIG_MMC_DEBUG
2271 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2272#endif
2273
2274 mmc_bus_get(host);
2275
2276 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2277 mmc_bus_put(host);
2278 return -EINVAL;
2279 }
2280
2281 if (host->bus_ops->power_save)
2282 ret = host->bus_ops->power_save(host);
2283
2284 mmc_bus_put(host);
2285
2286 mmc_power_off(host);
2287
2288 return ret;
2289}
2290EXPORT_SYMBOL(mmc_power_save_host);
2291
2292int mmc_power_restore_host(struct mmc_host *host)
2293{
2294 int ret;
2295
2296#ifdef CONFIG_MMC_DEBUG
2297 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2298#endif
2299
2300 mmc_bus_get(host);
2301
2302 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2303 mmc_bus_put(host);
2304 return -EINVAL;
2305 }
2306
2307 mmc_power_up(host);
2308 ret = host->bus_ops->power_restore(host);
2309
2310 mmc_bus_put(host);
2311
2312 return ret;
2313}
2314EXPORT_SYMBOL(mmc_power_restore_host);
2315
2316int mmc_card_awake(struct mmc_host *host)
2317{
2318 int err = -ENOSYS;
2319
2320 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2321 return 0;
2322
2323 mmc_bus_get(host);
2324
2325 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2326 err = host->bus_ops->awake(host);
2327
2328 mmc_bus_put(host);
2329
2330 return err;
2331}
2332EXPORT_SYMBOL(mmc_card_awake);
2333
2334int mmc_card_sleep(struct mmc_host *host)
2335{
2336 int err = -ENOSYS;
2337
2338 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2339 return 0;
2340
2341 mmc_bus_get(host);
2342
2343 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2344 err = host->bus_ops->sleep(host);
2345
2346 mmc_bus_put(host);
2347
2348 return err;
2349}
2350EXPORT_SYMBOL(mmc_card_sleep);
2351
2352int mmc_card_can_sleep(struct mmc_host *host)
2353{
2354 struct mmc_card *card = host->card;
2355
2356 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2357 return 1;
2358 return 0;
2359}
2360EXPORT_SYMBOL(mmc_card_can_sleep);
2361
2362/*
2363 * Flush the cache to the non-volatile storage.
2364 */
2365int mmc_flush_cache(struct mmc_card *card)
2366{
2367 struct mmc_host *host = card->host;
2368 int err = 0;
2369
2370 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2371 return err;
2372
2373 if (mmc_card_mmc(card) &&
2374 (card->ext_csd.cache_size > 0) &&
2375 (card->ext_csd.cache_ctrl & 1)) {
2376 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2377 EXT_CSD_FLUSH_CACHE, 1, 0);
2378 if (err)
2379 pr_err("%s: cache flush error %d\n",
2380 mmc_hostname(card->host), err);
2381 }
2382
2383 return err;
2384}
2385EXPORT_SYMBOL(mmc_flush_cache);
2386
2387/*
2388 * Turn the cache ON/OFF.
2389 * Turning the cache OFF shall trigger flushing of the data
2390 * to the non-volatile storage.
2391 */
2392int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2393{
2394 struct mmc_card *card = host->card;
2395 unsigned int timeout;
2396 int err = 0;
2397
2398 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2399 mmc_card_is_removable(host))
2400 return err;
2401
2402 mmc_claim_host(host);
2403 if (card && mmc_card_mmc(card) &&
2404 (card->ext_csd.cache_size > 0)) {
2405 enable = !!enable;
2406
2407 if (card->ext_csd.cache_ctrl ^ enable) {
2408 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2409 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2410 EXT_CSD_CACHE_CTRL, enable, timeout);
2411 if (err)
2412 pr_err("%s: cache %s error %d\n",
2413 mmc_hostname(card->host),
2414 enable ? "on" : "off",
2415 err);
2416 else
2417 card->ext_csd.cache_ctrl = enable;
2418 }
2419 }
2420 mmc_release_host(host);
2421
2422 return err;
2423}
2424EXPORT_SYMBOL(mmc_cache_ctrl);
2425
2426#ifdef CONFIG_PM
2427
2428/**
2429 * mmc_suspend_host - suspend a host
2430 * @host: mmc host
2431 */
2432int mmc_suspend_host(struct mmc_host *host)
2433{
2434 int err = 0;
2435
2436 cancel_delayed_work(&host->detect);
2437 mmc_flush_scheduled_work();
2438
2439 err = mmc_cache_ctrl(host, 0);
2440 if (err)
2441 goto out;
2442
2443 mmc_bus_get(host);
2444 if (host->bus_ops && !host->bus_dead) {
2445 if (host->bus_ops->suspend) {
2446 if (mmc_card_doing_bkops(host->card)) {
2447 err = mmc_stop_bkops(host->card);
2448 if (err)
2449 goto out;
2450 }
2451 err = host->bus_ops->suspend(host);
2452 }
2453
2454 if (err == -ENOSYS || !host->bus_ops->resume) {
2455 /*
2456 * We simply "remove" the card in this case.
2457 * It will be redetected on resume. (Calling
2458 * bus_ops->remove() with a claimed host can
2459 * deadlock.)
2460 */
2461 if (host->bus_ops->remove)
2462 host->bus_ops->remove(host);
2463 mmc_claim_host(host);
2464 mmc_detach_bus(host);
2465 mmc_power_off(host);
2466 mmc_release_host(host);
2467 host->pm_flags = 0;
2468 err = 0;
2469 }
2470 }
2471 mmc_bus_put(host);
2472
2473 if (!err && !mmc_card_keep_power(host))
2474 mmc_power_off(host);
2475
2476out:
2477 return err;
2478}
2479
2480EXPORT_SYMBOL(mmc_suspend_host);
2481
2482/**
2483 * mmc_resume_host - resume a previously suspended host
2484 * @host: mmc host
2485 */
2486int mmc_resume_host(struct mmc_host *host)
2487{
2488 int err = 0;
2489
2490 mmc_bus_get(host);
2491 if (host->bus_ops && !host->bus_dead) {
2492 if (!mmc_card_keep_power(host)) {
2493 mmc_power_up(host);
2494 mmc_select_voltage(host, host->ocr);
2495 /*
2496 * Tell runtime PM core we just powered up the card,
2497 * since it still believes the card is powered off.
2498 * Note that currently runtime PM is only enabled
2499 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2500 */
2501 if (mmc_card_sdio(host->card) &&
2502 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2503 pm_runtime_disable(&host->card->dev);
2504 pm_runtime_set_active(&host->card->dev);
2505 pm_runtime_enable(&host->card->dev);
2506 }
2507 }
2508 BUG_ON(!host->bus_ops->resume);
2509 err = host->bus_ops->resume(host);
2510 if (err) {
2511 pr_warning("%s: error %d during resume "
2512 "(card was removed?)\n",
2513 mmc_hostname(host), err);
2514 err = 0;
2515 }
2516 }
2517 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2518 mmc_bus_put(host);
2519
2520 return err;
2521}
2522EXPORT_SYMBOL(mmc_resume_host);
2523
2524/* Do the card removal on suspend if card is assumed removeable
2525 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2526 to sync the card.
2527*/
2528int mmc_pm_notify(struct notifier_block *notify_block,
2529 unsigned long mode, void *unused)
2530{
2531 struct mmc_host *host = container_of(
2532 notify_block, struct mmc_host, pm_notify);
2533 unsigned long flags;
2534 int err = 0;
2535
2536 switch (mode) {
2537 case PM_HIBERNATION_PREPARE:
2538 case PM_SUSPEND_PREPARE:
2539 if (host->card && mmc_card_mmc(host->card) &&
2540 mmc_card_doing_bkops(host->card)) {
2541 err = mmc_stop_bkops(host->card);
2542 if (err) {
2543 pr_err("%s: didn't stop bkops\n",
2544 mmc_hostname(host));
2545 return err;
2546 }
2547 mmc_card_clr_doing_bkops(host->card);
2548 }
2549
2550 spin_lock_irqsave(&host->lock, flags);
2551 host->rescan_disable = 1;
2552 spin_unlock_irqrestore(&host->lock, flags);
2553 cancel_delayed_work_sync(&host->detect);
2554
2555 if (!host->bus_ops || host->bus_ops->suspend)
2556 break;
2557
2558 /* Calling bus_ops->remove() with a claimed host can deadlock */
2559 if (host->bus_ops->remove)
2560 host->bus_ops->remove(host);
2561
2562 mmc_claim_host(host);
2563 mmc_detach_bus(host);
2564 mmc_power_off(host);
2565 mmc_release_host(host);
2566 host->pm_flags = 0;
2567 break;
2568
2569 case PM_POST_SUSPEND:
2570 case PM_POST_HIBERNATION:
2571 case PM_POST_RESTORE:
2572
2573 spin_lock_irqsave(&host->lock, flags);
2574 host->rescan_disable = 0;
2575 spin_unlock_irqrestore(&host->lock, flags);
2576 mmc_detect_change(host, 0);
2577
2578 }
2579
2580 return 0;
2581}
2582#endif
2583
2584static int __init mmc_init(void)
2585{
2586 int ret;
2587
2588 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2589 if (!workqueue)
2590 return -ENOMEM;
2591
2592 ret = mmc_register_bus();
2593 if (ret)
2594 goto destroy_workqueue;
2595
2596 ret = mmc_register_host_class();
2597 if (ret)
2598 goto unregister_bus;
2599
2600 ret = sdio_register_bus();
2601 if (ret)
2602 goto unregister_host_class;
2603
2604 return 0;
2605
2606unregister_host_class:
2607 mmc_unregister_host_class();
2608unregister_bus:
2609 mmc_unregister_bus();
2610destroy_workqueue:
2611 destroy_workqueue(workqueue);
2612
2613 return ret;
2614}
2615
2616static void __exit mmc_exit(void)
2617{
2618 sdio_unregister_bus();
2619 mmc_unregister_host_class();
2620 mmc_unregister_bus();
2621 destroy_workqueue(workqueue);
2622}
2623
2624subsys_initcall(mmc_init);
2625module_exit(mmc_exit);
2626
2627MODULE_LICENSE("GPL");