at v3.7 9.3 kB view raw
1#ifndef _LINUX_SLUB_DEF_H 2#define _LINUX_SLUB_DEF_H 3 4/* 5 * SLUB : A Slab allocator without object queues. 6 * 7 * (C) 2007 SGI, Christoph Lameter 8 */ 9#include <linux/types.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/workqueue.h> 13#include <linux/kobject.h> 14 15#include <linux/kmemleak.h> 16 17enum stat_item { 18 ALLOC_FASTPATH, /* Allocation from cpu slab */ 19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 20 FREE_FASTPATH, /* Free to cpu slub */ 21 FREE_SLOWPATH, /* Freeing not to cpu slab */ 22 FREE_FROZEN, /* Freeing to frozen slab */ 23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 28 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 29 FREE_SLAB, /* Slab freed to the page allocator */ 30 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 31 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 32 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 33 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 34 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 35 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 36 DEACTIVATE_BYPASS, /* Implicit deactivation */ 37 ORDER_FALLBACK, /* Number of times fallback was necessary */ 38 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */ 39 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */ 40 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 41 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 42 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 43 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 44 NR_SLUB_STAT_ITEMS }; 45 46struct kmem_cache_cpu { 47 void **freelist; /* Pointer to next available object */ 48 unsigned long tid; /* Globally unique transaction id */ 49 struct page *page; /* The slab from which we are allocating */ 50 struct page *partial; /* Partially allocated frozen slabs */ 51#ifdef CONFIG_SLUB_STATS 52 unsigned stat[NR_SLUB_STAT_ITEMS]; 53#endif 54}; 55 56struct kmem_cache_node { 57 spinlock_t list_lock; /* Protect partial list and nr_partial */ 58 unsigned long nr_partial; 59 struct list_head partial; 60#ifdef CONFIG_SLUB_DEBUG 61 atomic_long_t nr_slabs; 62 atomic_long_t total_objects; 63 struct list_head full; 64#endif 65}; 66 67/* 68 * Word size structure that can be atomically updated or read and that 69 * contains both the order and the number of objects that a slab of the 70 * given order would contain. 71 */ 72struct kmem_cache_order_objects { 73 unsigned long x; 74}; 75 76/* 77 * Slab cache management. 78 */ 79struct kmem_cache { 80 struct kmem_cache_cpu __percpu *cpu_slab; 81 /* Used for retriving partial slabs etc */ 82 unsigned long flags; 83 unsigned long min_partial; 84 int size; /* The size of an object including meta data */ 85 int object_size; /* The size of an object without meta data */ 86 int offset; /* Free pointer offset. */ 87 int cpu_partial; /* Number of per cpu partial objects to keep around */ 88 struct kmem_cache_order_objects oo; 89 90 /* Allocation and freeing of slabs */ 91 struct kmem_cache_order_objects max; 92 struct kmem_cache_order_objects min; 93 gfp_t allocflags; /* gfp flags to use on each alloc */ 94 int refcount; /* Refcount for slab cache destroy */ 95 void (*ctor)(void *); 96 int inuse; /* Offset to metadata */ 97 int align; /* Alignment */ 98 int reserved; /* Reserved bytes at the end of slabs */ 99 const char *name; /* Name (only for display!) */ 100 struct list_head list; /* List of slab caches */ 101#ifdef CONFIG_SYSFS 102 struct kobject kobj; /* For sysfs */ 103#endif 104 105#ifdef CONFIG_NUMA 106 /* 107 * Defragmentation by allocating from a remote node. 108 */ 109 int remote_node_defrag_ratio; 110#endif 111 struct kmem_cache_node *node[MAX_NUMNODES]; 112}; 113 114/* 115 * Kmalloc subsystem. 116 */ 117#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 118#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 119#else 120#define KMALLOC_MIN_SIZE 8 121#endif 122 123#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 124 125/* 126 * Maximum kmalloc object size handled by SLUB. Larger object allocations 127 * are passed through to the page allocator. The page allocator "fastpath" 128 * is relatively slow so we need this value sufficiently high so that 129 * performance critical objects are allocated through the SLUB fastpath. 130 * 131 * This should be dropped to PAGE_SIZE / 2 once the page allocator 132 * "fastpath" becomes competitive with the slab allocator fastpaths. 133 */ 134#define SLUB_MAX_SIZE (2 * PAGE_SIZE) 135 136#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2) 137 138#ifdef CONFIG_ZONE_DMA 139#define SLUB_DMA __GFP_DMA 140#else 141/* Disable DMA functionality */ 142#define SLUB_DMA (__force gfp_t)0 143#endif 144 145/* 146 * We keep the general caches in an array of slab caches that are used for 147 * 2^x bytes of allocations. 148 */ 149extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 150 151/* 152 * Sorry that the following has to be that ugly but some versions of GCC 153 * have trouble with constant propagation and loops. 154 */ 155static __always_inline int kmalloc_index(size_t size) 156{ 157 if (!size) 158 return 0; 159 160 if (size <= KMALLOC_MIN_SIZE) 161 return KMALLOC_SHIFT_LOW; 162 163 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 164 return 1; 165 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 166 return 2; 167 if (size <= 8) return 3; 168 if (size <= 16) return 4; 169 if (size <= 32) return 5; 170 if (size <= 64) return 6; 171 if (size <= 128) return 7; 172 if (size <= 256) return 8; 173 if (size <= 512) return 9; 174 if (size <= 1024) return 10; 175 if (size <= 2 * 1024) return 11; 176 if (size <= 4 * 1024) return 12; 177/* 178 * The following is only needed to support architectures with a larger page 179 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page 180 * size we would have to go up to 128k. 181 */ 182 if (size <= 8 * 1024) return 13; 183 if (size <= 16 * 1024) return 14; 184 if (size <= 32 * 1024) return 15; 185 if (size <= 64 * 1024) return 16; 186 if (size <= 128 * 1024) return 17; 187 if (size <= 256 * 1024) return 18; 188 if (size <= 512 * 1024) return 19; 189 if (size <= 1024 * 1024) return 20; 190 if (size <= 2 * 1024 * 1024) return 21; 191 BUG(); 192 return -1; /* Will never be reached */ 193 194/* 195 * What we really wanted to do and cannot do because of compiler issues is: 196 * int i; 197 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) 198 * if (size <= (1 << i)) 199 * return i; 200 */ 201} 202 203/* 204 * Find the slab cache for a given combination of allocation flags and size. 205 * 206 * This ought to end up with a global pointer to the right cache 207 * in kmalloc_caches. 208 */ 209static __always_inline struct kmem_cache *kmalloc_slab(size_t size) 210{ 211 int index = kmalloc_index(size); 212 213 if (index == 0) 214 return NULL; 215 216 return kmalloc_caches[index]; 217} 218 219void *kmem_cache_alloc(struct kmem_cache *, gfp_t); 220void *__kmalloc(size_t size, gfp_t flags); 221 222static __always_inline void * 223kmalloc_order(size_t size, gfp_t flags, unsigned int order) 224{ 225 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order); 226 kmemleak_alloc(ret, size, 1, flags); 227 return ret; 228} 229 230/** 231 * Calling this on allocated memory will check that the memory 232 * is expected to be in use, and print warnings if not. 233 */ 234#ifdef CONFIG_SLUB_DEBUG 235extern bool verify_mem_not_deleted(const void *x); 236#else 237static inline bool verify_mem_not_deleted(const void *x) 238{ 239 return true; 240} 241#endif 242 243#ifdef CONFIG_TRACING 244extern void * 245kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size); 246extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); 247#else 248static __always_inline void * 249kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 250{ 251 return kmem_cache_alloc(s, gfpflags); 252} 253 254static __always_inline void * 255kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 256{ 257 return kmalloc_order(size, flags, order); 258} 259#endif 260 261static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 262{ 263 unsigned int order = get_order(size); 264 return kmalloc_order_trace(size, flags, order); 265} 266 267static __always_inline void *kmalloc(size_t size, gfp_t flags) 268{ 269 if (__builtin_constant_p(size)) { 270 if (size > SLUB_MAX_SIZE) 271 return kmalloc_large(size, flags); 272 273 if (!(flags & SLUB_DMA)) { 274 struct kmem_cache *s = kmalloc_slab(size); 275 276 if (!s) 277 return ZERO_SIZE_PTR; 278 279 return kmem_cache_alloc_trace(s, flags, size); 280 } 281 } 282 return __kmalloc(size, flags); 283} 284 285#ifdef CONFIG_NUMA 286void *__kmalloc_node(size_t size, gfp_t flags, int node); 287void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); 288 289#ifdef CONFIG_TRACING 290extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 291 gfp_t gfpflags, 292 int node, size_t size); 293#else 294static __always_inline void * 295kmem_cache_alloc_node_trace(struct kmem_cache *s, 296 gfp_t gfpflags, 297 int node, size_t size) 298{ 299 return kmem_cache_alloc_node(s, gfpflags, node); 300} 301#endif 302 303static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 304{ 305 if (__builtin_constant_p(size) && 306 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) { 307 struct kmem_cache *s = kmalloc_slab(size); 308 309 if (!s) 310 return ZERO_SIZE_PTR; 311 312 return kmem_cache_alloc_node_trace(s, flags, node, size); 313 } 314 return __kmalloc_node(size, flags, node); 315} 316#endif 317 318#endif /* _LINUX_SLUB_DEF_H */