at v3.7 36 kB view raw
1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/completion.h> 44#include <linux/debugobjects.h> 45#include <linux/bug.h> 46#include <linux/compiler.h> 47 48#ifdef CONFIG_RCU_TORTURE_TEST 49extern int rcutorture_runnable; /* for sysctl */ 50#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 51 52#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 53extern void rcutorture_record_test_transition(void); 54extern void rcutorture_record_progress(unsigned long vernum); 55extern void do_trace_rcu_torture_read(char *rcutorturename, 56 struct rcu_head *rhp); 57#else 58static inline void rcutorture_record_test_transition(void) 59{ 60} 61static inline void rcutorture_record_progress(unsigned long vernum) 62{ 63} 64#ifdef CONFIG_RCU_TRACE 65extern void do_trace_rcu_torture_read(char *rcutorturename, 66 struct rcu_head *rhp); 67#else 68#define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0) 69#endif 70#endif 71 72#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 73#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 74#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 75#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 76 77/* Exported common interfaces */ 78 79#ifdef CONFIG_PREEMPT_RCU 80 81/** 82 * call_rcu() - Queue an RCU callback for invocation after a grace period. 83 * @head: structure to be used for queueing the RCU updates. 84 * @func: actual callback function to be invoked after the grace period 85 * 86 * The callback function will be invoked some time after a full grace 87 * period elapses, in other words after all pre-existing RCU read-side 88 * critical sections have completed. However, the callback function 89 * might well execute concurrently with RCU read-side critical sections 90 * that started after call_rcu() was invoked. RCU read-side critical 91 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 92 * and may be nested. 93 */ 94extern void call_rcu(struct rcu_head *head, 95 void (*func)(struct rcu_head *head)); 96 97#else /* #ifdef CONFIG_PREEMPT_RCU */ 98 99/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 100#define call_rcu call_rcu_sched 101 102#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 103 104/** 105 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 106 * @head: structure to be used for queueing the RCU updates. 107 * @func: actual callback function to be invoked after the grace period 108 * 109 * The callback function will be invoked some time after a full grace 110 * period elapses, in other words after all currently executing RCU 111 * read-side critical sections have completed. call_rcu_bh() assumes 112 * that the read-side critical sections end on completion of a softirq 113 * handler. This means that read-side critical sections in process 114 * context must not be interrupted by softirqs. This interface is to be 115 * used when most of the read-side critical sections are in softirq context. 116 * RCU read-side critical sections are delimited by : 117 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 118 * OR 119 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 120 * These may be nested. 121 */ 122extern void call_rcu_bh(struct rcu_head *head, 123 void (*func)(struct rcu_head *head)); 124 125/** 126 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 127 * @head: structure to be used for queueing the RCU updates. 128 * @func: actual callback function to be invoked after the grace period 129 * 130 * The callback function will be invoked some time after a full grace 131 * period elapses, in other words after all currently executing RCU 132 * read-side critical sections have completed. call_rcu_sched() assumes 133 * that the read-side critical sections end on enabling of preemption 134 * or on voluntary preemption. 135 * RCU read-side critical sections are delimited by : 136 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 137 * OR 138 * anything that disables preemption. 139 * These may be nested. 140 */ 141extern void call_rcu_sched(struct rcu_head *head, 142 void (*func)(struct rcu_head *rcu)); 143 144extern void synchronize_sched(void); 145 146#ifdef CONFIG_PREEMPT_RCU 147 148extern void __rcu_read_lock(void); 149extern void __rcu_read_unlock(void); 150extern void rcu_read_unlock_special(struct task_struct *t); 151void synchronize_rcu(void); 152 153/* 154 * Defined as a macro as it is a very low level header included from 155 * areas that don't even know about current. This gives the rcu_read_lock() 156 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 157 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 158 */ 159#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 160 161#else /* #ifdef CONFIG_PREEMPT_RCU */ 162 163static inline void __rcu_read_lock(void) 164{ 165 preempt_disable(); 166} 167 168static inline void __rcu_read_unlock(void) 169{ 170 preempt_enable(); 171} 172 173static inline void synchronize_rcu(void) 174{ 175 synchronize_sched(); 176} 177 178static inline int rcu_preempt_depth(void) 179{ 180 return 0; 181} 182 183#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 184 185/* Internal to kernel */ 186extern void rcu_sched_qs(int cpu); 187extern void rcu_bh_qs(int cpu); 188extern void rcu_check_callbacks(int cpu, int user); 189struct notifier_block; 190extern void rcu_idle_enter(void); 191extern void rcu_idle_exit(void); 192extern void rcu_irq_enter(void); 193extern void rcu_irq_exit(void); 194 195#ifdef CONFIG_RCU_USER_QS 196extern void rcu_user_enter(void); 197extern void rcu_user_exit(void); 198extern void rcu_user_enter_after_irq(void); 199extern void rcu_user_exit_after_irq(void); 200extern void rcu_user_hooks_switch(struct task_struct *prev, 201 struct task_struct *next); 202#else 203static inline void rcu_user_enter(void) { } 204static inline void rcu_user_exit(void) { } 205static inline void rcu_user_enter_after_irq(void) { } 206static inline void rcu_user_exit_after_irq(void) { } 207#endif /* CONFIG_RCU_USER_QS */ 208 209extern void exit_rcu(void); 210 211/** 212 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 213 * @a: Code that RCU needs to pay attention to. 214 * 215 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 216 * in the inner idle loop, that is, between the rcu_idle_enter() and 217 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 218 * critical sections. However, things like powertop need tracepoints 219 * in the inner idle loop. 220 * 221 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 222 * will tell RCU that it needs to pay attending, invoke its argument 223 * (in this example, a call to the do_something_with_RCU() function), 224 * and then tell RCU to go back to ignoring this CPU. It is permissible 225 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 226 * quite limited. If deeper nesting is required, it will be necessary 227 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 228 */ 229#define RCU_NONIDLE(a) \ 230 do { \ 231 rcu_irq_enter(); \ 232 do { a; } while (0); \ 233 rcu_irq_exit(); \ 234 } while (0) 235 236/* 237 * Infrastructure to implement the synchronize_() primitives in 238 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 239 */ 240 241typedef void call_rcu_func_t(struct rcu_head *head, 242 void (*func)(struct rcu_head *head)); 243void wait_rcu_gp(call_rcu_func_t crf); 244 245#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 246#include <linux/rcutree.h> 247#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU) 248#include <linux/rcutiny.h> 249#else 250#error "Unknown RCU implementation specified to kernel configuration" 251#endif 252 253/* 254 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 255 * initialization and destruction of rcu_head on the stack. rcu_head structures 256 * allocated dynamically in the heap or defined statically don't need any 257 * initialization. 258 */ 259#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 260extern void init_rcu_head_on_stack(struct rcu_head *head); 261extern void destroy_rcu_head_on_stack(struct rcu_head *head); 262#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 263static inline void init_rcu_head_on_stack(struct rcu_head *head) 264{ 265} 266 267static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 268{ 269} 270#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 271 272#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) 273extern int rcu_is_cpu_idle(void); 274#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) */ 275 276#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 277bool rcu_lockdep_current_cpu_online(void); 278#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 279static inline bool rcu_lockdep_current_cpu_online(void) 280{ 281 return 1; 282} 283#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 284 285#ifdef CONFIG_DEBUG_LOCK_ALLOC 286 287static inline void rcu_lock_acquire(struct lockdep_map *map) 288{ 289 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_); 290} 291 292static inline void rcu_lock_release(struct lockdep_map *map) 293{ 294 lock_release(map, 1, _THIS_IP_); 295} 296 297extern struct lockdep_map rcu_lock_map; 298extern struct lockdep_map rcu_bh_lock_map; 299extern struct lockdep_map rcu_sched_lock_map; 300extern int debug_lockdep_rcu_enabled(void); 301 302/** 303 * rcu_read_lock_held() - might we be in RCU read-side critical section? 304 * 305 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 306 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 307 * this assumes we are in an RCU read-side critical section unless it can 308 * prove otherwise. This is useful for debug checks in functions that 309 * require that they be called within an RCU read-side critical section. 310 * 311 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 312 * and while lockdep is disabled. 313 * 314 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 315 * occur in the same context, for example, it is illegal to invoke 316 * rcu_read_unlock() in process context if the matching rcu_read_lock() 317 * was invoked from within an irq handler. 318 * 319 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 320 * offline from an RCU perspective, so check for those as well. 321 */ 322static inline int rcu_read_lock_held(void) 323{ 324 if (!debug_lockdep_rcu_enabled()) 325 return 1; 326 if (rcu_is_cpu_idle()) 327 return 0; 328 if (!rcu_lockdep_current_cpu_online()) 329 return 0; 330 return lock_is_held(&rcu_lock_map); 331} 332 333/* 334 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file 335 * hell. 336 */ 337extern int rcu_read_lock_bh_held(void); 338 339/** 340 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 341 * 342 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 343 * RCU-sched read-side critical section. In absence of 344 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 345 * critical section unless it can prove otherwise. Note that disabling 346 * of preemption (including disabling irqs) counts as an RCU-sched 347 * read-side critical section. This is useful for debug checks in functions 348 * that required that they be called within an RCU-sched read-side 349 * critical section. 350 * 351 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 352 * and while lockdep is disabled. 353 * 354 * Note that if the CPU is in the idle loop from an RCU point of 355 * view (ie: that we are in the section between rcu_idle_enter() and 356 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 357 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 358 * that are in such a section, considering these as in extended quiescent 359 * state, so such a CPU is effectively never in an RCU read-side critical 360 * section regardless of what RCU primitives it invokes. This state of 361 * affairs is required --- we need to keep an RCU-free window in idle 362 * where the CPU may possibly enter into low power mode. This way we can 363 * notice an extended quiescent state to other CPUs that started a grace 364 * period. Otherwise we would delay any grace period as long as we run in 365 * the idle task. 366 * 367 * Similarly, we avoid claiming an SRCU read lock held if the current 368 * CPU is offline. 369 */ 370#ifdef CONFIG_PREEMPT_COUNT 371static inline int rcu_read_lock_sched_held(void) 372{ 373 int lockdep_opinion = 0; 374 375 if (!debug_lockdep_rcu_enabled()) 376 return 1; 377 if (rcu_is_cpu_idle()) 378 return 0; 379 if (!rcu_lockdep_current_cpu_online()) 380 return 0; 381 if (debug_locks) 382 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 383 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 384} 385#else /* #ifdef CONFIG_PREEMPT_COUNT */ 386static inline int rcu_read_lock_sched_held(void) 387{ 388 return 1; 389} 390#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 391 392#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 393 394# define rcu_lock_acquire(a) do { } while (0) 395# define rcu_lock_release(a) do { } while (0) 396 397static inline int rcu_read_lock_held(void) 398{ 399 return 1; 400} 401 402static inline int rcu_read_lock_bh_held(void) 403{ 404 return 1; 405} 406 407#ifdef CONFIG_PREEMPT_COUNT 408static inline int rcu_read_lock_sched_held(void) 409{ 410 return preempt_count() != 0 || irqs_disabled(); 411} 412#else /* #ifdef CONFIG_PREEMPT_COUNT */ 413static inline int rcu_read_lock_sched_held(void) 414{ 415 return 1; 416} 417#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 418 419#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 420 421#ifdef CONFIG_PROVE_RCU 422 423extern int rcu_my_thread_group_empty(void); 424 425/** 426 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 427 * @c: condition to check 428 * @s: informative message 429 */ 430#define rcu_lockdep_assert(c, s) \ 431 do { \ 432 static bool __section(.data.unlikely) __warned; \ 433 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 434 __warned = true; \ 435 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 436 } \ 437 } while (0) 438 439#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 440static inline void rcu_preempt_sleep_check(void) 441{ 442 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 443 "Illegal context switch in RCU read-side critical section"); 444} 445#else /* #ifdef CONFIG_PROVE_RCU */ 446static inline void rcu_preempt_sleep_check(void) 447{ 448} 449#endif /* #else #ifdef CONFIG_PROVE_RCU */ 450 451#define rcu_sleep_check() \ 452 do { \ 453 rcu_preempt_sleep_check(); \ 454 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \ 455 "Illegal context switch in RCU-bh" \ 456 " read-side critical section"); \ 457 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \ 458 "Illegal context switch in RCU-sched"\ 459 " read-side critical section"); \ 460 } while (0) 461 462#else /* #ifdef CONFIG_PROVE_RCU */ 463 464#define rcu_lockdep_assert(c, s) do { } while (0) 465#define rcu_sleep_check() do { } while (0) 466 467#endif /* #else #ifdef CONFIG_PROVE_RCU */ 468 469/* 470 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 471 * and rcu_assign_pointer(). Some of these could be folded into their 472 * callers, but they are left separate in order to ease introduction of 473 * multiple flavors of pointers to match the multiple flavors of RCU 474 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 475 * the future. 476 */ 477 478#ifdef __CHECKER__ 479#define rcu_dereference_sparse(p, space) \ 480 ((void)(((typeof(*p) space *)p) == p)) 481#else /* #ifdef __CHECKER__ */ 482#define rcu_dereference_sparse(p, space) 483#endif /* #else #ifdef __CHECKER__ */ 484 485#define __rcu_access_pointer(p, space) \ 486 ({ \ 487 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 488 rcu_dereference_sparse(p, space); \ 489 ((typeof(*p) __force __kernel *)(_________p1)); \ 490 }) 491#define __rcu_dereference_check(p, c, space) \ 492 ({ \ 493 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 494 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \ 495 " usage"); \ 496 rcu_dereference_sparse(p, space); \ 497 smp_read_barrier_depends(); \ 498 ((typeof(*p) __force __kernel *)(_________p1)); \ 499 }) 500#define __rcu_dereference_protected(p, c, space) \ 501 ({ \ 502 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \ 503 " usage"); \ 504 rcu_dereference_sparse(p, space); \ 505 ((typeof(*p) __force __kernel *)(p)); \ 506 }) 507 508#define __rcu_access_index(p, space) \ 509 ({ \ 510 typeof(p) _________p1 = ACCESS_ONCE(p); \ 511 rcu_dereference_sparse(p, space); \ 512 (_________p1); \ 513 }) 514#define __rcu_dereference_index_check(p, c) \ 515 ({ \ 516 typeof(p) _________p1 = ACCESS_ONCE(p); \ 517 rcu_lockdep_assert(c, \ 518 "suspicious rcu_dereference_index_check()" \ 519 " usage"); \ 520 smp_read_barrier_depends(); \ 521 (_________p1); \ 522 }) 523#define __rcu_assign_pointer(p, v, space) \ 524 do { \ 525 smp_wmb(); \ 526 (p) = (typeof(*v) __force space *)(v); \ 527 } while (0) 528 529 530/** 531 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 532 * @p: The pointer to read 533 * 534 * Return the value of the specified RCU-protected pointer, but omit the 535 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 536 * when the value of this pointer is accessed, but the pointer is not 537 * dereferenced, for example, when testing an RCU-protected pointer against 538 * NULL. Although rcu_access_pointer() may also be used in cases where 539 * update-side locks prevent the value of the pointer from changing, you 540 * should instead use rcu_dereference_protected() for this use case. 541 * 542 * It is also permissible to use rcu_access_pointer() when read-side 543 * access to the pointer was removed at least one grace period ago, as 544 * is the case in the context of the RCU callback that is freeing up 545 * the data, or after a synchronize_rcu() returns. This can be useful 546 * when tearing down multi-linked structures after a grace period 547 * has elapsed. 548 */ 549#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 550 551/** 552 * rcu_dereference_check() - rcu_dereference with debug checking 553 * @p: The pointer to read, prior to dereferencing 554 * @c: The conditions under which the dereference will take place 555 * 556 * Do an rcu_dereference(), but check that the conditions under which the 557 * dereference will take place are correct. Typically the conditions 558 * indicate the various locking conditions that should be held at that 559 * point. The check should return true if the conditions are satisfied. 560 * An implicit check for being in an RCU read-side critical section 561 * (rcu_read_lock()) is included. 562 * 563 * For example: 564 * 565 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 566 * 567 * could be used to indicate to lockdep that foo->bar may only be dereferenced 568 * if either rcu_read_lock() is held, or that the lock required to replace 569 * the bar struct at foo->bar is held. 570 * 571 * Note that the list of conditions may also include indications of when a lock 572 * need not be held, for example during initialisation or destruction of the 573 * target struct: 574 * 575 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 576 * atomic_read(&foo->usage) == 0); 577 * 578 * Inserts memory barriers on architectures that require them 579 * (currently only the Alpha), prevents the compiler from refetching 580 * (and from merging fetches), and, more importantly, documents exactly 581 * which pointers are protected by RCU and checks that the pointer is 582 * annotated as __rcu. 583 */ 584#define rcu_dereference_check(p, c) \ 585 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu) 586 587/** 588 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 589 * @p: The pointer to read, prior to dereferencing 590 * @c: The conditions under which the dereference will take place 591 * 592 * This is the RCU-bh counterpart to rcu_dereference_check(). 593 */ 594#define rcu_dereference_bh_check(p, c) \ 595 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu) 596 597/** 598 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 599 * @p: The pointer to read, prior to dereferencing 600 * @c: The conditions under which the dereference will take place 601 * 602 * This is the RCU-sched counterpart to rcu_dereference_check(). 603 */ 604#define rcu_dereference_sched_check(p, c) \ 605 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \ 606 __rcu) 607 608#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 609 610/** 611 * rcu_access_index() - fetch RCU index with no dereferencing 612 * @p: The index to read 613 * 614 * Return the value of the specified RCU-protected index, but omit the 615 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 616 * when the value of this index is accessed, but the index is not 617 * dereferenced, for example, when testing an RCU-protected index against 618 * -1. Although rcu_access_index() may also be used in cases where 619 * update-side locks prevent the value of the index from changing, you 620 * should instead use rcu_dereference_index_protected() for this use case. 621 */ 622#define rcu_access_index(p) __rcu_access_index((p), __rcu) 623 624/** 625 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking 626 * @p: The pointer to read, prior to dereferencing 627 * @c: The conditions under which the dereference will take place 628 * 629 * Similar to rcu_dereference_check(), but omits the sparse checking. 630 * This allows rcu_dereference_index_check() to be used on integers, 631 * which can then be used as array indices. Attempting to use 632 * rcu_dereference_check() on an integer will give compiler warnings 633 * because the sparse address-space mechanism relies on dereferencing 634 * the RCU-protected pointer. Dereferencing integers is not something 635 * that even gcc will put up with. 636 * 637 * Note that this function does not implicitly check for RCU read-side 638 * critical sections. If this function gains lots of uses, it might 639 * make sense to provide versions for each flavor of RCU, but it does 640 * not make sense as of early 2010. 641 */ 642#define rcu_dereference_index_check(p, c) \ 643 __rcu_dereference_index_check((p), (c)) 644 645/** 646 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 647 * @p: The pointer to read, prior to dereferencing 648 * @c: The conditions under which the dereference will take place 649 * 650 * Return the value of the specified RCU-protected pointer, but omit 651 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This 652 * is useful in cases where update-side locks prevent the value of the 653 * pointer from changing. Please note that this primitive does -not- 654 * prevent the compiler from repeating this reference or combining it 655 * with other references, so it should not be used without protection 656 * of appropriate locks. 657 * 658 * This function is only for update-side use. Using this function 659 * when protected only by rcu_read_lock() will result in infrequent 660 * but very ugly failures. 661 */ 662#define rcu_dereference_protected(p, c) \ 663 __rcu_dereference_protected((p), (c), __rcu) 664 665 666/** 667 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 668 * @p: The pointer to read, prior to dereferencing 669 * 670 * This is a simple wrapper around rcu_dereference_check(). 671 */ 672#define rcu_dereference(p) rcu_dereference_check(p, 0) 673 674/** 675 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 676 * @p: The pointer to read, prior to dereferencing 677 * 678 * Makes rcu_dereference_check() do the dirty work. 679 */ 680#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 681 682/** 683 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 684 * @p: The pointer to read, prior to dereferencing 685 * 686 * Makes rcu_dereference_check() do the dirty work. 687 */ 688#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 689 690/** 691 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 692 * 693 * When synchronize_rcu() is invoked on one CPU while other CPUs 694 * are within RCU read-side critical sections, then the 695 * synchronize_rcu() is guaranteed to block until after all the other 696 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 697 * on one CPU while other CPUs are within RCU read-side critical 698 * sections, invocation of the corresponding RCU callback is deferred 699 * until after the all the other CPUs exit their critical sections. 700 * 701 * Note, however, that RCU callbacks are permitted to run concurrently 702 * with new RCU read-side critical sections. One way that this can happen 703 * is via the following sequence of events: (1) CPU 0 enters an RCU 704 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 705 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 706 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 707 * callback is invoked. This is legal, because the RCU read-side critical 708 * section that was running concurrently with the call_rcu() (and which 709 * therefore might be referencing something that the corresponding RCU 710 * callback would free up) has completed before the corresponding 711 * RCU callback is invoked. 712 * 713 * RCU read-side critical sections may be nested. Any deferred actions 714 * will be deferred until the outermost RCU read-side critical section 715 * completes. 716 * 717 * You can avoid reading and understanding the next paragraph by 718 * following this rule: don't put anything in an rcu_read_lock() RCU 719 * read-side critical section that would block in a !PREEMPT kernel. 720 * But if you want the full story, read on! 721 * 722 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it 723 * is illegal to block while in an RCU read-side critical section. In 724 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU) 725 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may 726 * be preempted, but explicit blocking is illegal. Finally, in preemptible 727 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds, 728 * RCU read-side critical sections may be preempted and they may also 729 * block, but only when acquiring spinlocks that are subject to priority 730 * inheritance. 731 */ 732static inline void rcu_read_lock(void) 733{ 734 __rcu_read_lock(); 735 __acquire(RCU); 736 rcu_lock_acquire(&rcu_lock_map); 737 rcu_lockdep_assert(!rcu_is_cpu_idle(), 738 "rcu_read_lock() used illegally while idle"); 739} 740 741/* 742 * So where is rcu_write_lock()? It does not exist, as there is no 743 * way for writers to lock out RCU readers. This is a feature, not 744 * a bug -- this property is what provides RCU's performance benefits. 745 * Of course, writers must coordinate with each other. The normal 746 * spinlock primitives work well for this, but any other technique may be 747 * used as well. RCU does not care how the writers keep out of each 748 * others' way, as long as they do so. 749 */ 750 751/** 752 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 753 * 754 * See rcu_read_lock() for more information. 755 */ 756static inline void rcu_read_unlock(void) 757{ 758 rcu_lockdep_assert(!rcu_is_cpu_idle(), 759 "rcu_read_unlock() used illegally while idle"); 760 rcu_lock_release(&rcu_lock_map); 761 __release(RCU); 762 __rcu_read_unlock(); 763} 764 765/** 766 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 767 * 768 * This is equivalent of rcu_read_lock(), but to be used when updates 769 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 770 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 771 * softirq handler to be a quiescent state, a process in RCU read-side 772 * critical section must be protected by disabling softirqs. Read-side 773 * critical sections in interrupt context can use just rcu_read_lock(), 774 * though this should at least be commented to avoid confusing people 775 * reading the code. 776 * 777 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 778 * must occur in the same context, for example, it is illegal to invoke 779 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 780 * was invoked from some other task. 781 */ 782static inline void rcu_read_lock_bh(void) 783{ 784 local_bh_disable(); 785 __acquire(RCU_BH); 786 rcu_lock_acquire(&rcu_bh_lock_map); 787 rcu_lockdep_assert(!rcu_is_cpu_idle(), 788 "rcu_read_lock_bh() used illegally while idle"); 789} 790 791/* 792 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 793 * 794 * See rcu_read_lock_bh() for more information. 795 */ 796static inline void rcu_read_unlock_bh(void) 797{ 798 rcu_lockdep_assert(!rcu_is_cpu_idle(), 799 "rcu_read_unlock_bh() used illegally while idle"); 800 rcu_lock_release(&rcu_bh_lock_map); 801 __release(RCU_BH); 802 local_bh_enable(); 803} 804 805/** 806 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 807 * 808 * This is equivalent of rcu_read_lock(), but to be used when updates 809 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 810 * Read-side critical sections can also be introduced by anything that 811 * disables preemption, including local_irq_disable() and friends. 812 * 813 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 814 * must occur in the same context, for example, it is illegal to invoke 815 * rcu_read_unlock_sched() from process context if the matching 816 * rcu_read_lock_sched() was invoked from an NMI handler. 817 */ 818static inline void rcu_read_lock_sched(void) 819{ 820 preempt_disable(); 821 __acquire(RCU_SCHED); 822 rcu_lock_acquire(&rcu_sched_lock_map); 823 rcu_lockdep_assert(!rcu_is_cpu_idle(), 824 "rcu_read_lock_sched() used illegally while idle"); 825} 826 827/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 828static inline notrace void rcu_read_lock_sched_notrace(void) 829{ 830 preempt_disable_notrace(); 831 __acquire(RCU_SCHED); 832} 833 834/* 835 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 836 * 837 * See rcu_read_lock_sched for more information. 838 */ 839static inline void rcu_read_unlock_sched(void) 840{ 841 rcu_lockdep_assert(!rcu_is_cpu_idle(), 842 "rcu_read_unlock_sched() used illegally while idle"); 843 rcu_lock_release(&rcu_sched_lock_map); 844 __release(RCU_SCHED); 845 preempt_enable(); 846} 847 848/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 849static inline notrace void rcu_read_unlock_sched_notrace(void) 850{ 851 __release(RCU_SCHED); 852 preempt_enable_notrace(); 853} 854 855/** 856 * rcu_assign_pointer() - assign to RCU-protected pointer 857 * @p: pointer to assign to 858 * @v: value to assign (publish) 859 * 860 * Assigns the specified value to the specified RCU-protected 861 * pointer, ensuring that any concurrent RCU readers will see 862 * any prior initialization. 863 * 864 * Inserts memory barriers on architectures that require them 865 * (which is most of them), and also prevents the compiler from 866 * reordering the code that initializes the structure after the pointer 867 * assignment. More importantly, this call documents which pointers 868 * will be dereferenced by RCU read-side code. 869 * 870 * In some special cases, you may use RCU_INIT_POINTER() instead 871 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 872 * to the fact that it does not constrain either the CPU or the compiler. 873 * That said, using RCU_INIT_POINTER() when you should have used 874 * rcu_assign_pointer() is a very bad thing that results in 875 * impossible-to-diagnose memory corruption. So please be careful. 876 * See the RCU_INIT_POINTER() comment header for details. 877 */ 878#define rcu_assign_pointer(p, v) \ 879 __rcu_assign_pointer((p), (v), __rcu) 880 881/** 882 * RCU_INIT_POINTER() - initialize an RCU protected pointer 883 * 884 * Initialize an RCU-protected pointer in special cases where readers 885 * do not need ordering constraints on the CPU or the compiler. These 886 * special cases are: 887 * 888 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 889 * 2. The caller has taken whatever steps are required to prevent 890 * RCU readers from concurrently accessing this pointer -or- 891 * 3. The referenced data structure has already been exposed to 892 * readers either at compile time or via rcu_assign_pointer() -and- 893 * a. You have not made -any- reader-visible changes to 894 * this structure since then -or- 895 * b. It is OK for readers accessing this structure from its 896 * new location to see the old state of the structure. (For 897 * example, the changes were to statistical counters or to 898 * other state where exact synchronization is not required.) 899 * 900 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 901 * result in impossible-to-diagnose memory corruption. As in the structures 902 * will look OK in crash dumps, but any concurrent RCU readers might 903 * see pre-initialized values of the referenced data structure. So 904 * please be very careful how you use RCU_INIT_POINTER()!!! 905 * 906 * If you are creating an RCU-protected linked structure that is accessed 907 * by a single external-to-structure RCU-protected pointer, then you may 908 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 909 * pointers, but you must use rcu_assign_pointer() to initialize the 910 * external-to-structure pointer -after- you have completely initialized 911 * the reader-accessible portions of the linked structure. 912 */ 913#define RCU_INIT_POINTER(p, v) \ 914 do { \ 915 p = (typeof(*v) __force __rcu *)(v); \ 916 } while (0) 917 918/** 919 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 920 * 921 * GCC-style initialization for an RCU-protected pointer in a structure field. 922 */ 923#define RCU_POINTER_INITIALIZER(p, v) \ 924 .p = (typeof(*v) __force __rcu *)(v) 925 926/* 927 * Does the specified offset indicate that the corresponding rcu_head 928 * structure can be handled by kfree_rcu()? 929 */ 930#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 931 932/* 933 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 934 */ 935#define __kfree_rcu(head, offset) \ 936 do { \ 937 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 938 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \ 939 } while (0) 940 941/** 942 * kfree_rcu() - kfree an object after a grace period. 943 * @ptr: pointer to kfree 944 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 945 * 946 * Many rcu callbacks functions just call kfree() on the base structure. 947 * These functions are trivial, but their size adds up, and furthermore 948 * when they are used in a kernel module, that module must invoke the 949 * high-latency rcu_barrier() function at module-unload time. 950 * 951 * The kfree_rcu() function handles this issue. Rather than encoding a 952 * function address in the embedded rcu_head structure, kfree_rcu() instead 953 * encodes the offset of the rcu_head structure within the base structure. 954 * Because the functions are not allowed in the low-order 4096 bytes of 955 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 956 * If the offset is larger than 4095 bytes, a compile-time error will 957 * be generated in __kfree_rcu(). If this error is triggered, you can 958 * either fall back to use of call_rcu() or rearrange the structure to 959 * position the rcu_head structure into the first 4096 bytes. 960 * 961 * Note that the allowable offset might decrease in the future, for example, 962 * to allow something like kmem_cache_free_rcu(). 963 * 964 * The BUILD_BUG_ON check must not involve any function calls, hence the 965 * checks are done in macros here. 966 */ 967#define kfree_rcu(ptr, rcu_head) \ 968 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 969 970#endif /* __LINUX_RCUPDATE_H */