at v3.7 16 kB view raw
1#ifndef _LINUX_PAGEMAP_H 2#define _LINUX_PAGEMAP_H 3 4/* 5 * Copyright 1995 Linus Torvalds 6 */ 7#include <linux/mm.h> 8#include <linux/fs.h> 9#include <linux/list.h> 10#include <linux/highmem.h> 11#include <linux/compiler.h> 12#include <asm/uaccess.h> 13#include <linux/gfp.h> 14#include <linux/bitops.h> 15#include <linux/hardirq.h> /* for in_interrupt() */ 16#include <linux/hugetlb_inline.h> 17 18/* 19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page 20 * allocation mode flags. 21 */ 22enum mapping_flags { 23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */ 24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */ 25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */ 26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */ 27}; 28 29static inline void mapping_set_error(struct address_space *mapping, int error) 30{ 31 if (unlikely(error)) { 32 if (error == -ENOSPC) 33 set_bit(AS_ENOSPC, &mapping->flags); 34 else 35 set_bit(AS_EIO, &mapping->flags); 36 } 37} 38 39static inline void mapping_set_unevictable(struct address_space *mapping) 40{ 41 set_bit(AS_UNEVICTABLE, &mapping->flags); 42} 43 44static inline void mapping_clear_unevictable(struct address_space *mapping) 45{ 46 clear_bit(AS_UNEVICTABLE, &mapping->flags); 47} 48 49static inline int mapping_unevictable(struct address_space *mapping) 50{ 51 if (mapping) 52 return test_bit(AS_UNEVICTABLE, &mapping->flags); 53 return !!mapping; 54} 55 56static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 57{ 58 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK; 59} 60 61/* 62 * This is non-atomic. Only to be used before the mapping is activated. 63 * Probably needs a barrier... 64 */ 65static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 66{ 67 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) | 68 (__force unsigned long)mask; 69} 70 71/* 72 * The page cache can done in larger chunks than 73 * one page, because it allows for more efficient 74 * throughput (it can then be mapped into user 75 * space in smaller chunks for same flexibility). 76 * 77 * Or rather, it _will_ be done in larger chunks. 78 */ 79#define PAGE_CACHE_SHIFT PAGE_SHIFT 80#define PAGE_CACHE_SIZE PAGE_SIZE 81#define PAGE_CACHE_MASK PAGE_MASK 82#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK) 83 84#define page_cache_get(page) get_page(page) 85#define page_cache_release(page) put_page(page) 86void release_pages(struct page **pages, int nr, int cold); 87 88/* 89 * speculatively take a reference to a page. 90 * If the page is free (_count == 0), then _count is untouched, and 0 91 * is returned. Otherwise, _count is incremented by 1 and 1 is returned. 92 * 93 * This function must be called inside the same rcu_read_lock() section as has 94 * been used to lookup the page in the pagecache radix-tree (or page table): 95 * this allows allocators to use a synchronize_rcu() to stabilize _count. 96 * 97 * Unless an RCU grace period has passed, the count of all pages coming out 98 * of the allocator must be considered unstable. page_count may return higher 99 * than expected, and put_page must be able to do the right thing when the 100 * page has been finished with, no matter what it is subsequently allocated 101 * for (because put_page is what is used here to drop an invalid speculative 102 * reference). 103 * 104 * This is the interesting part of the lockless pagecache (and lockless 105 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 106 * has the following pattern: 107 * 1. find page in radix tree 108 * 2. conditionally increment refcount 109 * 3. check the page is still in pagecache (if no, goto 1) 110 * 111 * Remove-side that cares about stability of _count (eg. reclaim) has the 112 * following (with tree_lock held for write): 113 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 114 * B. remove page from pagecache 115 * C. free the page 116 * 117 * There are 2 critical interleavings that matter: 118 * - 2 runs before A: in this case, A sees elevated refcount and bails out 119 * - A runs before 2: in this case, 2 sees zero refcount and retries; 120 * subsequently, B will complete and 1 will find no page, causing the 121 * lookup to return NULL. 122 * 123 * It is possible that between 1 and 2, the page is removed then the exact same 124 * page is inserted into the same position in pagecache. That's OK: the 125 * old find_get_page using tree_lock could equally have run before or after 126 * such a re-insertion, depending on order that locks are granted. 127 * 128 * Lookups racing against pagecache insertion isn't a big problem: either 1 129 * will find the page or it will not. Likewise, the old find_get_page could run 130 * either before the insertion or afterwards, depending on timing. 131 */ 132static inline int page_cache_get_speculative(struct page *page) 133{ 134 VM_BUG_ON(in_interrupt()); 135 136#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 137# ifdef CONFIG_PREEMPT_COUNT 138 VM_BUG_ON(!in_atomic()); 139# endif 140 /* 141 * Preempt must be disabled here - we rely on rcu_read_lock doing 142 * this for us. 143 * 144 * Pagecache won't be truncated from interrupt context, so if we have 145 * found a page in the radix tree here, we have pinned its refcount by 146 * disabling preempt, and hence no need for the "speculative get" that 147 * SMP requires. 148 */ 149 VM_BUG_ON(page_count(page) == 0); 150 atomic_inc(&page->_count); 151 152#else 153 if (unlikely(!get_page_unless_zero(page))) { 154 /* 155 * Either the page has been freed, or will be freed. 156 * In either case, retry here and the caller should 157 * do the right thing (see comments above). 158 */ 159 return 0; 160 } 161#endif 162 VM_BUG_ON(PageTail(page)); 163 164 return 1; 165} 166 167/* 168 * Same as above, but add instead of inc (could just be merged) 169 */ 170static inline int page_cache_add_speculative(struct page *page, int count) 171{ 172 VM_BUG_ON(in_interrupt()); 173 174#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 175# ifdef CONFIG_PREEMPT_COUNT 176 VM_BUG_ON(!in_atomic()); 177# endif 178 VM_BUG_ON(page_count(page) == 0); 179 atomic_add(count, &page->_count); 180 181#else 182 if (unlikely(!atomic_add_unless(&page->_count, count, 0))) 183 return 0; 184#endif 185 VM_BUG_ON(PageCompound(page) && page != compound_head(page)); 186 187 return 1; 188} 189 190static inline int page_freeze_refs(struct page *page, int count) 191{ 192 return likely(atomic_cmpxchg(&page->_count, count, 0) == count); 193} 194 195static inline void page_unfreeze_refs(struct page *page, int count) 196{ 197 VM_BUG_ON(page_count(page) != 0); 198 VM_BUG_ON(count == 0); 199 200 atomic_set(&page->_count, count); 201} 202 203#ifdef CONFIG_NUMA 204extern struct page *__page_cache_alloc(gfp_t gfp); 205#else 206static inline struct page *__page_cache_alloc(gfp_t gfp) 207{ 208 return alloc_pages(gfp, 0); 209} 210#endif 211 212static inline struct page *page_cache_alloc(struct address_space *x) 213{ 214 return __page_cache_alloc(mapping_gfp_mask(x)); 215} 216 217static inline struct page *page_cache_alloc_cold(struct address_space *x) 218{ 219 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 220} 221 222static inline struct page *page_cache_alloc_readahead(struct address_space *x) 223{ 224 return __page_cache_alloc(mapping_gfp_mask(x) | 225 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN); 226} 227 228typedef int filler_t(void *, struct page *); 229 230extern struct page * find_get_page(struct address_space *mapping, 231 pgoff_t index); 232extern struct page * find_lock_page(struct address_space *mapping, 233 pgoff_t index); 234extern struct page * find_or_create_page(struct address_space *mapping, 235 pgoff_t index, gfp_t gfp_mask); 236unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 237 unsigned int nr_pages, struct page **pages); 238unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 239 unsigned int nr_pages, struct page **pages); 240unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 241 int tag, unsigned int nr_pages, struct page **pages); 242 243struct page *grab_cache_page_write_begin(struct address_space *mapping, 244 pgoff_t index, unsigned flags); 245 246/* 247 * Returns locked page at given index in given cache, creating it if needed. 248 */ 249static inline struct page *grab_cache_page(struct address_space *mapping, 250 pgoff_t index) 251{ 252 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 253} 254 255extern struct page * grab_cache_page_nowait(struct address_space *mapping, 256 pgoff_t index); 257extern struct page * read_cache_page_async(struct address_space *mapping, 258 pgoff_t index, filler_t *filler, void *data); 259extern struct page * read_cache_page(struct address_space *mapping, 260 pgoff_t index, filler_t *filler, void *data); 261extern struct page * read_cache_page_gfp(struct address_space *mapping, 262 pgoff_t index, gfp_t gfp_mask); 263extern int read_cache_pages(struct address_space *mapping, 264 struct list_head *pages, filler_t *filler, void *data); 265 266static inline struct page *read_mapping_page_async( 267 struct address_space *mapping, 268 pgoff_t index, void *data) 269{ 270 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 271 return read_cache_page_async(mapping, index, filler, data); 272} 273 274static inline struct page *read_mapping_page(struct address_space *mapping, 275 pgoff_t index, void *data) 276{ 277 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 278 return read_cache_page(mapping, index, filler, data); 279} 280 281/* 282 * Return byte-offset into filesystem object for page. 283 */ 284static inline loff_t page_offset(struct page *page) 285{ 286 return ((loff_t)page->index) << PAGE_CACHE_SHIFT; 287} 288 289static inline loff_t page_file_offset(struct page *page) 290{ 291 return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT; 292} 293 294extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 295 unsigned long address); 296 297static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 298 unsigned long address) 299{ 300 pgoff_t pgoff; 301 if (unlikely(is_vm_hugetlb_page(vma))) 302 return linear_hugepage_index(vma, address); 303 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 304 pgoff += vma->vm_pgoff; 305 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT); 306} 307 308extern void __lock_page(struct page *page); 309extern int __lock_page_killable(struct page *page); 310extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 311 unsigned int flags); 312extern void unlock_page(struct page *page); 313 314static inline void __set_page_locked(struct page *page) 315{ 316 __set_bit(PG_locked, &page->flags); 317} 318 319static inline void __clear_page_locked(struct page *page) 320{ 321 __clear_bit(PG_locked, &page->flags); 322} 323 324static inline int trylock_page(struct page *page) 325{ 326 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 327} 328 329/* 330 * lock_page may only be called if we have the page's inode pinned. 331 */ 332static inline void lock_page(struct page *page) 333{ 334 might_sleep(); 335 if (!trylock_page(page)) 336 __lock_page(page); 337} 338 339/* 340 * lock_page_killable is like lock_page but can be interrupted by fatal 341 * signals. It returns 0 if it locked the page and -EINTR if it was 342 * killed while waiting. 343 */ 344static inline int lock_page_killable(struct page *page) 345{ 346 might_sleep(); 347 if (!trylock_page(page)) 348 return __lock_page_killable(page); 349 return 0; 350} 351 352/* 353 * lock_page_or_retry - Lock the page, unless this would block and the 354 * caller indicated that it can handle a retry. 355 */ 356static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 357 unsigned int flags) 358{ 359 might_sleep(); 360 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 361} 362 363/* 364 * This is exported only for wait_on_page_locked/wait_on_page_writeback. 365 * Never use this directly! 366 */ 367extern void wait_on_page_bit(struct page *page, int bit_nr); 368 369extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 370 371static inline int wait_on_page_locked_killable(struct page *page) 372{ 373 if (PageLocked(page)) 374 return wait_on_page_bit_killable(page, PG_locked); 375 return 0; 376} 377 378/* 379 * Wait for a page to be unlocked. 380 * 381 * This must be called with the caller "holding" the page, 382 * ie with increased "page->count" so that the page won't 383 * go away during the wait.. 384 */ 385static inline void wait_on_page_locked(struct page *page) 386{ 387 if (PageLocked(page)) 388 wait_on_page_bit(page, PG_locked); 389} 390 391/* 392 * Wait for a page to complete writeback 393 */ 394static inline void wait_on_page_writeback(struct page *page) 395{ 396 if (PageWriteback(page)) 397 wait_on_page_bit(page, PG_writeback); 398} 399 400extern void end_page_writeback(struct page *page); 401 402/* 403 * Add an arbitrary waiter to a page's wait queue 404 */ 405extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter); 406 407/* 408 * Fault a userspace page into pagetables. Return non-zero on a fault. 409 * 410 * This assumes that two userspace pages are always sufficient. That's 411 * not true if PAGE_CACHE_SIZE > PAGE_SIZE. 412 */ 413static inline int fault_in_pages_writeable(char __user *uaddr, int size) 414{ 415 int ret; 416 417 if (unlikely(size == 0)) 418 return 0; 419 420 /* 421 * Writing zeroes into userspace here is OK, because we know that if 422 * the zero gets there, we'll be overwriting it. 423 */ 424 ret = __put_user(0, uaddr); 425 if (ret == 0) { 426 char __user *end = uaddr + size - 1; 427 428 /* 429 * If the page was already mapped, this will get a cache miss 430 * for sure, so try to avoid doing it. 431 */ 432 if (((unsigned long)uaddr & PAGE_MASK) != 433 ((unsigned long)end & PAGE_MASK)) 434 ret = __put_user(0, end); 435 } 436 return ret; 437} 438 439static inline int fault_in_pages_readable(const char __user *uaddr, int size) 440{ 441 volatile char c; 442 int ret; 443 444 if (unlikely(size == 0)) 445 return 0; 446 447 ret = __get_user(c, uaddr); 448 if (ret == 0) { 449 const char __user *end = uaddr + size - 1; 450 451 if (((unsigned long)uaddr & PAGE_MASK) != 452 ((unsigned long)end & PAGE_MASK)) { 453 ret = __get_user(c, end); 454 (void)c; 455 } 456 } 457 return ret; 458} 459 460/* 461 * Multipage variants of the above prefault helpers, useful if more than 462 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above 463 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the 464 * filemap.c hotpaths. 465 */ 466static inline int fault_in_multipages_writeable(char __user *uaddr, int size) 467{ 468 int ret = 0; 469 char __user *end = uaddr + size - 1; 470 471 if (unlikely(size == 0)) 472 return ret; 473 474 /* 475 * Writing zeroes into userspace here is OK, because we know that if 476 * the zero gets there, we'll be overwriting it. 477 */ 478 while (uaddr <= end) { 479 ret = __put_user(0, uaddr); 480 if (ret != 0) 481 return ret; 482 uaddr += PAGE_SIZE; 483 } 484 485 /* Check whether the range spilled into the next page. */ 486 if (((unsigned long)uaddr & PAGE_MASK) == 487 ((unsigned long)end & PAGE_MASK)) 488 ret = __put_user(0, end); 489 490 return ret; 491} 492 493static inline int fault_in_multipages_readable(const char __user *uaddr, 494 int size) 495{ 496 volatile char c; 497 int ret = 0; 498 const char __user *end = uaddr + size - 1; 499 500 if (unlikely(size == 0)) 501 return ret; 502 503 while (uaddr <= end) { 504 ret = __get_user(c, uaddr); 505 if (ret != 0) 506 return ret; 507 uaddr += PAGE_SIZE; 508 } 509 510 /* Check whether the range spilled into the next page. */ 511 if (((unsigned long)uaddr & PAGE_MASK) == 512 ((unsigned long)end & PAGE_MASK)) { 513 ret = __get_user(c, end); 514 (void)c; 515 } 516 517 return ret; 518} 519 520int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 521 pgoff_t index, gfp_t gfp_mask); 522int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 523 pgoff_t index, gfp_t gfp_mask); 524extern void delete_from_page_cache(struct page *page); 525extern void __delete_from_page_cache(struct page *page); 526int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 527 528/* 529 * Like add_to_page_cache_locked, but used to add newly allocated pages: 530 * the page is new, so we can just run __set_page_locked() against it. 531 */ 532static inline int add_to_page_cache(struct page *page, 533 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 534{ 535 int error; 536 537 __set_page_locked(page); 538 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 539 if (unlikely(error)) 540 __clear_page_locked(page); 541 return error; 542} 543 544#endif /* _LINUX_PAGEMAP_H */