Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/pm_qos.h>
29#include <linux/timer.h>
30#include <linux/bug.h>
31#include <linux/delay.h>
32#include <linux/atomic.h>
33#include <asm/cache.h>
34#include <asm/byteorder.h>
35
36#include <linux/percpu.h>
37#include <linux/rculist.h>
38#include <linux/dmaengine.h>
39#include <linux/workqueue.h>
40#include <linux/dynamic_queue_limits.h>
41
42#include <linux/ethtool.h>
43#include <net/net_namespace.h>
44#include <net/dsa.h>
45#ifdef CONFIG_DCB
46#include <net/dcbnl.h>
47#endif
48#include <net/netprio_cgroup.h>
49
50#include <linux/netdev_features.h>
51#include <linux/neighbour.h>
52#include <uapi/linux/netdevice.h>
53
54struct netpoll_info;
55struct device;
56struct phy_device;
57/* 802.11 specific */
58struct wireless_dev;
59 /* source back-compat hooks */
60#define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63/* hardware address assignment types */
64#define NET_ADDR_PERM 0 /* address is permanent (default) */
65#define NET_ADDR_RANDOM 1 /* address is generated randomly */
66#define NET_ADDR_STOLEN 2 /* address is stolen from other device */
67
68/* Backlog congestion levels */
69#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70#define NET_RX_DROP 1 /* packet dropped */
71
72/*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously, in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), all
86 * others are propagated to higher layers.
87 */
88
89/* qdisc ->enqueue() return codes. */
90#define NET_XMIT_SUCCESS 0x00
91#define NET_XMIT_DROP 0x01 /* skb dropped */
92#define NET_XMIT_CN 0x02 /* congestion notification */
93#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102/* Driver transmit return codes */
103#define NETDEV_TX_MASK 0xf0
104
105enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110};
111typedef enum netdev_tx netdev_tx_t;
112
113/*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117static inline bool dev_xmit_complete(int rc)
118{
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129}
130
131/*
132 * Compute the worst case header length according to the protocols
133 * used.
134 */
135
136#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
137# if defined(CONFIG_MAC80211_MESH)
138# define LL_MAX_HEADER 128
139# else
140# define LL_MAX_HEADER 96
141# endif
142#elif IS_ENABLED(CONFIG_TR)
143# define LL_MAX_HEADER 48
144#else
145# define LL_MAX_HEADER 32
146#endif
147
148#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
149 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
150#define MAX_HEADER LL_MAX_HEADER
151#else
152#define MAX_HEADER (LL_MAX_HEADER + 48)
153#endif
154
155/*
156 * Old network device statistics. Fields are native words
157 * (unsigned long) so they can be read and written atomically.
158 */
159
160struct net_device_stats {
161 unsigned long rx_packets;
162 unsigned long tx_packets;
163 unsigned long rx_bytes;
164 unsigned long tx_bytes;
165 unsigned long rx_errors;
166 unsigned long tx_errors;
167 unsigned long rx_dropped;
168 unsigned long tx_dropped;
169 unsigned long multicast;
170 unsigned long collisions;
171 unsigned long rx_length_errors;
172 unsigned long rx_over_errors;
173 unsigned long rx_crc_errors;
174 unsigned long rx_frame_errors;
175 unsigned long rx_fifo_errors;
176 unsigned long rx_missed_errors;
177 unsigned long tx_aborted_errors;
178 unsigned long tx_carrier_errors;
179 unsigned long tx_fifo_errors;
180 unsigned long tx_heartbeat_errors;
181 unsigned long tx_window_errors;
182 unsigned long rx_compressed;
183 unsigned long tx_compressed;
184};
185
186
187#include <linux/cache.h>
188#include <linux/skbuff.h>
189
190#ifdef CONFIG_RPS
191#include <linux/static_key.h>
192extern struct static_key rps_needed;
193#endif
194
195struct neighbour;
196struct neigh_parms;
197struct sk_buff;
198
199struct netdev_hw_addr {
200 struct list_head list;
201 unsigned char addr[MAX_ADDR_LEN];
202 unsigned char type;
203#define NETDEV_HW_ADDR_T_LAN 1
204#define NETDEV_HW_ADDR_T_SAN 2
205#define NETDEV_HW_ADDR_T_SLAVE 3
206#define NETDEV_HW_ADDR_T_UNICAST 4
207#define NETDEV_HW_ADDR_T_MULTICAST 5
208 bool synced;
209 bool global_use;
210 int refcount;
211 struct rcu_head rcu_head;
212};
213
214struct netdev_hw_addr_list {
215 struct list_head list;
216 int count;
217};
218
219#define netdev_hw_addr_list_count(l) ((l)->count)
220#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221#define netdev_hw_addr_list_for_each(ha, l) \
222 list_for_each_entry(ha, &(l)->list, list)
223
224#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226#define netdev_for_each_uc_addr(ha, dev) \
227 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
228
229#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
231#define netdev_for_each_mc_addr(ha, dev) \
232 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
233
234struct hh_cache {
235 u16 hh_len;
236 u16 __pad;
237 seqlock_t hh_lock;
238
239 /* cached hardware header; allow for machine alignment needs. */
240#define HH_DATA_MOD 16
241#define HH_DATA_OFF(__len) \
242 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
243#define HH_DATA_ALIGN(__len) \
244 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246};
247
248/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
249 * Alternative is:
250 * dev->hard_header_len ? (dev->hard_header_len +
251 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252 *
253 * We could use other alignment values, but we must maintain the
254 * relationship HH alignment <= LL alignment.
255 */
256#define LL_RESERVED_SPACE(dev) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
259 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260
261struct header_ops {
262 int (*create) (struct sk_buff *skb, struct net_device *dev,
263 unsigned short type, const void *daddr,
264 const void *saddr, unsigned int len);
265 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
266 int (*rebuild)(struct sk_buff *skb);
267 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
268 void (*cache_update)(struct hh_cache *hh,
269 const struct net_device *dev,
270 const unsigned char *haddr);
271};
272
273/* These flag bits are private to the generic network queueing
274 * layer, they may not be explicitly referenced by any other
275 * code.
276 */
277
278enum netdev_state_t {
279 __LINK_STATE_START,
280 __LINK_STATE_PRESENT,
281 __LINK_STATE_NOCARRIER,
282 __LINK_STATE_LINKWATCH_PENDING,
283 __LINK_STATE_DORMANT,
284};
285
286
287/*
288 * This structure holds at boot time configured netdevice settings. They
289 * are then used in the device probing.
290 */
291struct netdev_boot_setup {
292 char name[IFNAMSIZ];
293 struct ifmap map;
294};
295#define NETDEV_BOOT_SETUP_MAX 8
296
297extern int __init netdev_boot_setup(char *str);
298
299/*
300 * Structure for NAPI scheduling similar to tasklet but with weighting
301 */
302struct napi_struct {
303 /* The poll_list must only be managed by the entity which
304 * changes the state of the NAPI_STATE_SCHED bit. This means
305 * whoever atomically sets that bit can add this napi_struct
306 * to the per-cpu poll_list, and whoever clears that bit
307 * can remove from the list right before clearing the bit.
308 */
309 struct list_head poll_list;
310
311 unsigned long state;
312 int weight;
313 unsigned int gro_count;
314 int (*poll)(struct napi_struct *, int);
315#ifdef CONFIG_NETPOLL
316 spinlock_t poll_lock;
317 int poll_owner;
318#endif
319 struct net_device *dev;
320 struct sk_buff *gro_list;
321 struct sk_buff *skb;
322 struct list_head dev_list;
323};
324
325enum {
326 NAPI_STATE_SCHED, /* Poll is scheduled */
327 NAPI_STATE_DISABLE, /* Disable pending */
328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329};
330
331enum gro_result {
332 GRO_MERGED,
333 GRO_MERGED_FREE,
334 GRO_HELD,
335 GRO_NORMAL,
336 GRO_DROP,
337};
338typedef enum gro_result gro_result_t;
339
340/*
341 * enum rx_handler_result - Possible return values for rx_handlers.
342 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
343 * further.
344 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
345 * case skb->dev was changed by rx_handler.
346 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
347 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
348 *
349 * rx_handlers are functions called from inside __netif_receive_skb(), to do
350 * special processing of the skb, prior to delivery to protocol handlers.
351 *
352 * Currently, a net_device can only have a single rx_handler registered. Trying
353 * to register a second rx_handler will return -EBUSY.
354 *
355 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
356 * To unregister a rx_handler on a net_device, use
357 * netdev_rx_handler_unregister().
358 *
359 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
360 * do with the skb.
361 *
362 * If the rx_handler consumed to skb in some way, it should return
363 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
364 * the skb to be delivered in some other ways.
365 *
366 * If the rx_handler changed skb->dev, to divert the skb to another
367 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
368 * new device will be called if it exists.
369 *
370 * If the rx_handler consider the skb should be ignored, it should return
371 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
372 * are registred on exact device (ptype->dev == skb->dev).
373 *
374 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
375 * delivered, it should return RX_HANDLER_PASS.
376 *
377 * A device without a registered rx_handler will behave as if rx_handler
378 * returned RX_HANDLER_PASS.
379 */
380
381enum rx_handler_result {
382 RX_HANDLER_CONSUMED,
383 RX_HANDLER_ANOTHER,
384 RX_HANDLER_EXACT,
385 RX_HANDLER_PASS,
386};
387typedef enum rx_handler_result rx_handler_result_t;
388typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
389
390extern void __napi_schedule(struct napi_struct *n);
391
392static inline bool napi_disable_pending(struct napi_struct *n)
393{
394 return test_bit(NAPI_STATE_DISABLE, &n->state);
395}
396
397/**
398 * napi_schedule_prep - check if napi can be scheduled
399 * @n: napi context
400 *
401 * Test if NAPI routine is already running, and if not mark
402 * it as running. This is used as a condition variable
403 * insure only one NAPI poll instance runs. We also make
404 * sure there is no pending NAPI disable.
405 */
406static inline bool napi_schedule_prep(struct napi_struct *n)
407{
408 return !napi_disable_pending(n) &&
409 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
410}
411
412/**
413 * napi_schedule - schedule NAPI poll
414 * @n: napi context
415 *
416 * Schedule NAPI poll routine to be called if it is not already
417 * running.
418 */
419static inline void napi_schedule(struct napi_struct *n)
420{
421 if (napi_schedule_prep(n))
422 __napi_schedule(n);
423}
424
425/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
426static inline bool napi_reschedule(struct napi_struct *napi)
427{
428 if (napi_schedule_prep(napi)) {
429 __napi_schedule(napi);
430 return true;
431 }
432 return false;
433}
434
435/**
436 * napi_complete - NAPI processing complete
437 * @n: napi context
438 *
439 * Mark NAPI processing as complete.
440 */
441extern void __napi_complete(struct napi_struct *n);
442extern void napi_complete(struct napi_struct *n);
443
444/**
445 * napi_disable - prevent NAPI from scheduling
446 * @n: napi context
447 *
448 * Stop NAPI from being scheduled on this context.
449 * Waits till any outstanding processing completes.
450 */
451static inline void napi_disable(struct napi_struct *n)
452{
453 set_bit(NAPI_STATE_DISABLE, &n->state);
454 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
455 msleep(1);
456 clear_bit(NAPI_STATE_DISABLE, &n->state);
457}
458
459/**
460 * napi_enable - enable NAPI scheduling
461 * @n: napi context
462 *
463 * Resume NAPI from being scheduled on this context.
464 * Must be paired with napi_disable.
465 */
466static inline void napi_enable(struct napi_struct *n)
467{
468 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
469 smp_mb__before_clear_bit();
470 clear_bit(NAPI_STATE_SCHED, &n->state);
471}
472
473#ifdef CONFIG_SMP
474/**
475 * napi_synchronize - wait until NAPI is not running
476 * @n: napi context
477 *
478 * Wait until NAPI is done being scheduled on this context.
479 * Waits till any outstanding processing completes but
480 * does not disable future activations.
481 */
482static inline void napi_synchronize(const struct napi_struct *n)
483{
484 while (test_bit(NAPI_STATE_SCHED, &n->state))
485 msleep(1);
486}
487#else
488# define napi_synchronize(n) barrier()
489#endif
490
491enum netdev_queue_state_t {
492 __QUEUE_STATE_DRV_XOFF,
493 __QUEUE_STATE_STACK_XOFF,
494 __QUEUE_STATE_FROZEN,
495#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
496 (1 << __QUEUE_STATE_STACK_XOFF))
497#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
498 (1 << __QUEUE_STATE_FROZEN))
499};
500/*
501 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
502 * netif_tx_* functions below are used to manipulate this flag. The
503 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
504 * queue independently. The netif_xmit_*stopped functions below are called
505 * to check if the queue has been stopped by the driver or stack (either
506 * of the XOFF bits are set in the state). Drivers should not need to call
507 * netif_xmit*stopped functions, they should only be using netif_tx_*.
508 */
509
510struct netdev_queue {
511/*
512 * read mostly part
513 */
514 struct net_device *dev;
515 struct Qdisc *qdisc;
516 struct Qdisc *qdisc_sleeping;
517#ifdef CONFIG_SYSFS
518 struct kobject kobj;
519#endif
520#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
521 int numa_node;
522#endif
523/*
524 * write mostly part
525 */
526 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
527 int xmit_lock_owner;
528 /*
529 * please use this field instead of dev->trans_start
530 */
531 unsigned long trans_start;
532
533 /*
534 * Number of TX timeouts for this queue
535 * (/sys/class/net/DEV/Q/trans_timeout)
536 */
537 unsigned long trans_timeout;
538
539 unsigned long state;
540
541#ifdef CONFIG_BQL
542 struct dql dql;
543#endif
544} ____cacheline_aligned_in_smp;
545
546static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
547{
548#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
549 return q->numa_node;
550#else
551 return NUMA_NO_NODE;
552#endif
553}
554
555static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
556{
557#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
558 q->numa_node = node;
559#endif
560}
561
562#ifdef CONFIG_RPS
563/*
564 * This structure holds an RPS map which can be of variable length. The
565 * map is an array of CPUs.
566 */
567struct rps_map {
568 unsigned int len;
569 struct rcu_head rcu;
570 u16 cpus[0];
571};
572#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
573
574/*
575 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
576 * tail pointer for that CPU's input queue at the time of last enqueue, and
577 * a hardware filter index.
578 */
579struct rps_dev_flow {
580 u16 cpu;
581 u16 filter;
582 unsigned int last_qtail;
583};
584#define RPS_NO_FILTER 0xffff
585
586/*
587 * The rps_dev_flow_table structure contains a table of flow mappings.
588 */
589struct rps_dev_flow_table {
590 unsigned int mask;
591 struct rcu_head rcu;
592 struct work_struct free_work;
593 struct rps_dev_flow flows[0];
594};
595#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
596 ((_num) * sizeof(struct rps_dev_flow)))
597
598/*
599 * The rps_sock_flow_table contains mappings of flows to the last CPU
600 * on which they were processed by the application (set in recvmsg).
601 */
602struct rps_sock_flow_table {
603 unsigned int mask;
604 u16 ents[0];
605};
606#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
607 ((_num) * sizeof(u16)))
608
609#define RPS_NO_CPU 0xffff
610
611static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
612 u32 hash)
613{
614 if (table && hash) {
615 unsigned int cpu, index = hash & table->mask;
616
617 /* We only give a hint, preemption can change cpu under us */
618 cpu = raw_smp_processor_id();
619
620 if (table->ents[index] != cpu)
621 table->ents[index] = cpu;
622 }
623}
624
625static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
626 u32 hash)
627{
628 if (table && hash)
629 table->ents[hash & table->mask] = RPS_NO_CPU;
630}
631
632extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
633
634#ifdef CONFIG_RFS_ACCEL
635extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
636 u32 flow_id, u16 filter_id);
637#endif
638
639/* This structure contains an instance of an RX queue. */
640struct netdev_rx_queue {
641 struct rps_map __rcu *rps_map;
642 struct rps_dev_flow_table __rcu *rps_flow_table;
643 struct kobject kobj;
644 struct net_device *dev;
645} ____cacheline_aligned_in_smp;
646#endif /* CONFIG_RPS */
647
648#ifdef CONFIG_XPS
649/*
650 * This structure holds an XPS map which can be of variable length. The
651 * map is an array of queues.
652 */
653struct xps_map {
654 unsigned int len;
655 unsigned int alloc_len;
656 struct rcu_head rcu;
657 u16 queues[0];
658};
659#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
660#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
661 / sizeof(u16))
662
663/*
664 * This structure holds all XPS maps for device. Maps are indexed by CPU.
665 */
666struct xps_dev_maps {
667 struct rcu_head rcu;
668 struct xps_map __rcu *cpu_map[0];
669};
670#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
671 (nr_cpu_ids * sizeof(struct xps_map *)))
672#endif /* CONFIG_XPS */
673
674#define TC_MAX_QUEUE 16
675#define TC_BITMASK 15
676/* HW offloaded queuing disciplines txq count and offset maps */
677struct netdev_tc_txq {
678 u16 count;
679 u16 offset;
680};
681
682#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
683/*
684 * This structure is to hold information about the device
685 * configured to run FCoE protocol stack.
686 */
687struct netdev_fcoe_hbainfo {
688 char manufacturer[64];
689 char serial_number[64];
690 char hardware_version[64];
691 char driver_version[64];
692 char optionrom_version[64];
693 char firmware_version[64];
694 char model[256];
695 char model_description[256];
696};
697#endif
698
699/*
700 * This structure defines the management hooks for network devices.
701 * The following hooks can be defined; unless noted otherwise, they are
702 * optional and can be filled with a null pointer.
703 *
704 * int (*ndo_init)(struct net_device *dev);
705 * This function is called once when network device is registered.
706 * The network device can use this to any late stage initializaton
707 * or semantic validattion. It can fail with an error code which will
708 * be propogated back to register_netdev
709 *
710 * void (*ndo_uninit)(struct net_device *dev);
711 * This function is called when device is unregistered or when registration
712 * fails. It is not called if init fails.
713 *
714 * int (*ndo_open)(struct net_device *dev);
715 * This function is called when network device transistions to the up
716 * state.
717 *
718 * int (*ndo_stop)(struct net_device *dev);
719 * This function is called when network device transistions to the down
720 * state.
721 *
722 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
723 * struct net_device *dev);
724 * Called when a packet needs to be transmitted.
725 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
726 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
727 * Required can not be NULL.
728 *
729 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
730 * Called to decide which queue to when device supports multiple
731 * transmit queues.
732 *
733 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
734 * This function is called to allow device receiver to make
735 * changes to configuration when multicast or promiscious is enabled.
736 *
737 * void (*ndo_set_rx_mode)(struct net_device *dev);
738 * This function is called device changes address list filtering.
739 * If driver handles unicast address filtering, it should set
740 * IFF_UNICAST_FLT to its priv_flags.
741 *
742 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
743 * This function is called when the Media Access Control address
744 * needs to be changed. If this interface is not defined, the
745 * mac address can not be changed.
746 *
747 * int (*ndo_validate_addr)(struct net_device *dev);
748 * Test if Media Access Control address is valid for the device.
749 *
750 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
751 * Called when a user request an ioctl which can't be handled by
752 * the generic interface code. If not defined ioctl's return
753 * not supported error code.
754 *
755 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
756 * Used to set network devices bus interface parameters. This interface
757 * is retained for legacy reason, new devices should use the bus
758 * interface (PCI) for low level management.
759 *
760 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
761 * Called when a user wants to change the Maximum Transfer Unit
762 * of a device. If not defined, any request to change MTU will
763 * will return an error.
764 *
765 * void (*ndo_tx_timeout)(struct net_device *dev);
766 * Callback uses when the transmitter has not made any progress
767 * for dev->watchdog ticks.
768 *
769 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
770 * struct rtnl_link_stats64 *storage);
771 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
772 * Called when a user wants to get the network device usage
773 * statistics. Drivers must do one of the following:
774 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
775 * rtnl_link_stats64 structure passed by the caller.
776 * 2. Define @ndo_get_stats to update a net_device_stats structure
777 * (which should normally be dev->stats) and return a pointer to
778 * it. The structure may be changed asynchronously only if each
779 * field is written atomically.
780 * 3. Update dev->stats asynchronously and atomically, and define
781 * neither operation.
782 *
783 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
784 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
785 * this function is called when a VLAN id is registered.
786 *
787 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
788 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
789 * this function is called when a VLAN id is unregistered.
790 *
791 * void (*ndo_poll_controller)(struct net_device *dev);
792 *
793 * SR-IOV management functions.
794 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
795 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
796 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
797 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
798 * int (*ndo_get_vf_config)(struct net_device *dev,
799 * int vf, struct ifla_vf_info *ivf);
800 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
801 * struct nlattr *port[]);
802 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
803 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
804 * Called to setup 'tc' number of traffic classes in the net device. This
805 * is always called from the stack with the rtnl lock held and netif tx
806 * queues stopped. This allows the netdevice to perform queue management
807 * safely.
808 *
809 * Fiber Channel over Ethernet (FCoE) offload functions.
810 * int (*ndo_fcoe_enable)(struct net_device *dev);
811 * Called when the FCoE protocol stack wants to start using LLD for FCoE
812 * so the underlying device can perform whatever needed configuration or
813 * initialization to support acceleration of FCoE traffic.
814 *
815 * int (*ndo_fcoe_disable)(struct net_device *dev);
816 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
817 * so the underlying device can perform whatever needed clean-ups to
818 * stop supporting acceleration of FCoE traffic.
819 *
820 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
821 * struct scatterlist *sgl, unsigned int sgc);
822 * Called when the FCoE Initiator wants to initialize an I/O that
823 * is a possible candidate for Direct Data Placement (DDP). The LLD can
824 * perform necessary setup and returns 1 to indicate the device is set up
825 * successfully to perform DDP on this I/O, otherwise this returns 0.
826 *
827 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
828 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
829 * indicated by the FC exchange id 'xid', so the underlying device can
830 * clean up and reuse resources for later DDP requests.
831 *
832 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
833 * struct scatterlist *sgl, unsigned int sgc);
834 * Called when the FCoE Target wants to initialize an I/O that
835 * is a possible candidate for Direct Data Placement (DDP). The LLD can
836 * perform necessary setup and returns 1 to indicate the device is set up
837 * successfully to perform DDP on this I/O, otherwise this returns 0.
838 *
839 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
840 * struct netdev_fcoe_hbainfo *hbainfo);
841 * Called when the FCoE Protocol stack wants information on the underlying
842 * device. This information is utilized by the FCoE protocol stack to
843 * register attributes with Fiber Channel management service as per the
844 * FC-GS Fabric Device Management Information(FDMI) specification.
845 *
846 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
847 * Called when the underlying device wants to override default World Wide
848 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
849 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
850 * protocol stack to use.
851 *
852 * RFS acceleration.
853 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
854 * u16 rxq_index, u32 flow_id);
855 * Set hardware filter for RFS. rxq_index is the target queue index;
856 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
857 * Return the filter ID on success, or a negative error code.
858 *
859 * Slave management functions (for bridge, bonding, etc). User should
860 * call netdev_set_master() to set dev->master properly.
861 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
862 * Called to make another netdev an underling.
863 *
864 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
865 * Called to release previously enslaved netdev.
866 *
867 * Feature/offload setting functions.
868 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
869 * netdev_features_t features);
870 * Adjusts the requested feature flags according to device-specific
871 * constraints, and returns the resulting flags. Must not modify
872 * the device state.
873 *
874 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
875 * Called to update device configuration to new features. Passed
876 * feature set might be less than what was returned by ndo_fix_features()).
877 * Must return >0 or -errno if it changed dev->features itself.
878 *
879 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
880 * struct net_device *dev,
881 * const unsigned char *addr, u16 flags)
882 * Adds an FDB entry to dev for addr.
883 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
884 * const unsigned char *addr)
885 * Deletes the FDB entry from dev coresponding to addr.
886 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
887 * struct net_device *dev, int idx)
888 * Used to add FDB entries to dump requests. Implementers should add
889 * entries to skb and update idx with the number of entries.
890 */
891struct net_device_ops {
892 int (*ndo_init)(struct net_device *dev);
893 void (*ndo_uninit)(struct net_device *dev);
894 int (*ndo_open)(struct net_device *dev);
895 int (*ndo_stop)(struct net_device *dev);
896 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
897 struct net_device *dev);
898 u16 (*ndo_select_queue)(struct net_device *dev,
899 struct sk_buff *skb);
900 void (*ndo_change_rx_flags)(struct net_device *dev,
901 int flags);
902 void (*ndo_set_rx_mode)(struct net_device *dev);
903 int (*ndo_set_mac_address)(struct net_device *dev,
904 void *addr);
905 int (*ndo_validate_addr)(struct net_device *dev);
906 int (*ndo_do_ioctl)(struct net_device *dev,
907 struct ifreq *ifr, int cmd);
908 int (*ndo_set_config)(struct net_device *dev,
909 struct ifmap *map);
910 int (*ndo_change_mtu)(struct net_device *dev,
911 int new_mtu);
912 int (*ndo_neigh_setup)(struct net_device *dev,
913 struct neigh_parms *);
914 void (*ndo_tx_timeout) (struct net_device *dev);
915
916 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
917 struct rtnl_link_stats64 *storage);
918 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
919
920 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
921 unsigned short vid);
922 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
923 unsigned short vid);
924#ifdef CONFIG_NET_POLL_CONTROLLER
925 void (*ndo_poll_controller)(struct net_device *dev);
926 int (*ndo_netpoll_setup)(struct net_device *dev,
927 struct netpoll_info *info,
928 gfp_t gfp);
929 void (*ndo_netpoll_cleanup)(struct net_device *dev);
930#endif
931 int (*ndo_set_vf_mac)(struct net_device *dev,
932 int queue, u8 *mac);
933 int (*ndo_set_vf_vlan)(struct net_device *dev,
934 int queue, u16 vlan, u8 qos);
935 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
936 int vf, int rate);
937 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
938 int vf, bool setting);
939 int (*ndo_get_vf_config)(struct net_device *dev,
940 int vf,
941 struct ifla_vf_info *ivf);
942 int (*ndo_set_vf_port)(struct net_device *dev,
943 int vf,
944 struct nlattr *port[]);
945 int (*ndo_get_vf_port)(struct net_device *dev,
946 int vf, struct sk_buff *skb);
947 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
948#if IS_ENABLED(CONFIG_FCOE)
949 int (*ndo_fcoe_enable)(struct net_device *dev);
950 int (*ndo_fcoe_disable)(struct net_device *dev);
951 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
952 u16 xid,
953 struct scatterlist *sgl,
954 unsigned int sgc);
955 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
956 u16 xid);
957 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
958 u16 xid,
959 struct scatterlist *sgl,
960 unsigned int sgc);
961 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
962 struct netdev_fcoe_hbainfo *hbainfo);
963#endif
964
965#if IS_ENABLED(CONFIG_LIBFCOE)
966#define NETDEV_FCOE_WWNN 0
967#define NETDEV_FCOE_WWPN 1
968 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
969 u64 *wwn, int type);
970#endif
971
972#ifdef CONFIG_RFS_ACCEL
973 int (*ndo_rx_flow_steer)(struct net_device *dev,
974 const struct sk_buff *skb,
975 u16 rxq_index,
976 u32 flow_id);
977#endif
978 int (*ndo_add_slave)(struct net_device *dev,
979 struct net_device *slave_dev);
980 int (*ndo_del_slave)(struct net_device *dev,
981 struct net_device *slave_dev);
982 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
983 netdev_features_t features);
984 int (*ndo_set_features)(struct net_device *dev,
985 netdev_features_t features);
986 int (*ndo_neigh_construct)(struct neighbour *n);
987 void (*ndo_neigh_destroy)(struct neighbour *n);
988
989 int (*ndo_fdb_add)(struct ndmsg *ndm,
990 struct nlattr *tb[],
991 struct net_device *dev,
992 const unsigned char *addr,
993 u16 flags);
994 int (*ndo_fdb_del)(struct ndmsg *ndm,
995 struct net_device *dev,
996 const unsigned char *addr);
997 int (*ndo_fdb_dump)(struct sk_buff *skb,
998 struct netlink_callback *cb,
999 struct net_device *dev,
1000 int idx);
1001};
1002
1003/*
1004 * The DEVICE structure.
1005 * Actually, this whole structure is a big mistake. It mixes I/O
1006 * data with strictly "high-level" data, and it has to know about
1007 * almost every data structure used in the INET module.
1008 *
1009 * FIXME: cleanup struct net_device such that network protocol info
1010 * moves out.
1011 */
1012
1013struct net_device {
1014
1015 /*
1016 * This is the first field of the "visible" part of this structure
1017 * (i.e. as seen by users in the "Space.c" file). It is the name
1018 * of the interface.
1019 */
1020 char name[IFNAMSIZ];
1021
1022 /* device name hash chain, please keep it close to name[] */
1023 struct hlist_node name_hlist;
1024
1025 /* snmp alias */
1026 char *ifalias;
1027
1028 /*
1029 * I/O specific fields
1030 * FIXME: Merge these and struct ifmap into one
1031 */
1032 unsigned long mem_end; /* shared mem end */
1033 unsigned long mem_start; /* shared mem start */
1034 unsigned long base_addr; /* device I/O address */
1035 unsigned int irq; /* device IRQ number */
1036
1037 /*
1038 * Some hardware also needs these fields, but they are not
1039 * part of the usual set specified in Space.c.
1040 */
1041
1042 unsigned long state;
1043
1044 struct list_head dev_list;
1045 struct list_head napi_list;
1046 struct list_head unreg_list;
1047
1048 /* currently active device features */
1049 netdev_features_t features;
1050 /* user-changeable features */
1051 netdev_features_t hw_features;
1052 /* user-requested features */
1053 netdev_features_t wanted_features;
1054 /* mask of features inheritable by VLAN devices */
1055 netdev_features_t vlan_features;
1056
1057 /* Interface index. Unique device identifier */
1058 int ifindex;
1059 int iflink;
1060
1061 struct net_device_stats stats;
1062 atomic_long_t rx_dropped; /* dropped packets by core network
1063 * Do not use this in drivers.
1064 */
1065
1066#ifdef CONFIG_WIRELESS_EXT
1067 /* List of functions to handle Wireless Extensions (instead of ioctl).
1068 * See <net/iw_handler.h> for details. Jean II */
1069 const struct iw_handler_def * wireless_handlers;
1070 /* Instance data managed by the core of Wireless Extensions. */
1071 struct iw_public_data * wireless_data;
1072#endif
1073 /* Management operations */
1074 const struct net_device_ops *netdev_ops;
1075 const struct ethtool_ops *ethtool_ops;
1076
1077 /* Hardware header description */
1078 const struct header_ops *header_ops;
1079
1080 unsigned int flags; /* interface flags (a la BSD) */
1081 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1082 * See if.h for definitions. */
1083 unsigned short gflags;
1084 unsigned short padded; /* How much padding added by alloc_netdev() */
1085
1086 unsigned char operstate; /* RFC2863 operstate */
1087 unsigned char link_mode; /* mapping policy to operstate */
1088
1089 unsigned char if_port; /* Selectable AUI, TP,..*/
1090 unsigned char dma; /* DMA channel */
1091
1092 unsigned int mtu; /* interface MTU value */
1093 unsigned short type; /* interface hardware type */
1094 unsigned short hard_header_len; /* hardware hdr length */
1095
1096 /* extra head- and tailroom the hardware may need, but not in all cases
1097 * can this be guaranteed, especially tailroom. Some cases also use
1098 * LL_MAX_HEADER instead to allocate the skb.
1099 */
1100 unsigned short needed_headroom;
1101 unsigned short needed_tailroom;
1102
1103 /* Interface address info. */
1104 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1105 unsigned char addr_assign_type; /* hw address assignment type */
1106 unsigned char addr_len; /* hardware address length */
1107 unsigned char neigh_priv_len;
1108 unsigned short dev_id; /* for shared network cards */
1109
1110 spinlock_t addr_list_lock;
1111 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1112 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1113 bool uc_promisc;
1114 unsigned int promiscuity;
1115 unsigned int allmulti;
1116
1117
1118 /* Protocol specific pointers */
1119
1120#if IS_ENABLED(CONFIG_VLAN_8021Q)
1121 struct vlan_info __rcu *vlan_info; /* VLAN info */
1122#endif
1123#if IS_ENABLED(CONFIG_NET_DSA)
1124 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1125#endif
1126 void *atalk_ptr; /* AppleTalk link */
1127 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1128 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1129 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1130 void *ax25_ptr; /* AX.25 specific data */
1131 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1132 assign before registering */
1133
1134/*
1135 * Cache lines mostly used on receive path (including eth_type_trans())
1136 */
1137 unsigned long last_rx; /* Time of last Rx
1138 * This should not be set in
1139 * drivers, unless really needed,
1140 * because network stack (bonding)
1141 * use it if/when necessary, to
1142 * avoid dirtying this cache line.
1143 */
1144
1145 struct net_device *master; /* Pointer to master device of a group,
1146 * which this device is member of.
1147 */
1148
1149 /* Interface address info used in eth_type_trans() */
1150 unsigned char *dev_addr; /* hw address, (before bcast
1151 because most packets are
1152 unicast) */
1153
1154 struct netdev_hw_addr_list dev_addrs; /* list of device
1155 hw addresses */
1156
1157 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1158
1159#ifdef CONFIG_SYSFS
1160 struct kset *queues_kset;
1161#endif
1162
1163#ifdef CONFIG_RPS
1164 struct netdev_rx_queue *_rx;
1165
1166 /* Number of RX queues allocated at register_netdev() time */
1167 unsigned int num_rx_queues;
1168
1169 /* Number of RX queues currently active in device */
1170 unsigned int real_num_rx_queues;
1171
1172#ifdef CONFIG_RFS_ACCEL
1173 /* CPU reverse-mapping for RX completion interrupts, indexed
1174 * by RX queue number. Assigned by driver. This must only be
1175 * set if the ndo_rx_flow_steer operation is defined. */
1176 struct cpu_rmap *rx_cpu_rmap;
1177#endif
1178#endif
1179
1180 rx_handler_func_t __rcu *rx_handler;
1181 void __rcu *rx_handler_data;
1182
1183 struct netdev_queue __rcu *ingress_queue;
1184
1185/*
1186 * Cache lines mostly used on transmit path
1187 */
1188 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1189
1190 /* Number of TX queues allocated at alloc_netdev_mq() time */
1191 unsigned int num_tx_queues;
1192
1193 /* Number of TX queues currently active in device */
1194 unsigned int real_num_tx_queues;
1195
1196 /* root qdisc from userspace point of view */
1197 struct Qdisc *qdisc;
1198
1199 unsigned long tx_queue_len; /* Max frames per queue allowed */
1200 spinlock_t tx_global_lock;
1201
1202#ifdef CONFIG_XPS
1203 struct xps_dev_maps __rcu *xps_maps;
1204#endif
1205
1206 /* These may be needed for future network-power-down code. */
1207
1208 /*
1209 * trans_start here is expensive for high speed devices on SMP,
1210 * please use netdev_queue->trans_start instead.
1211 */
1212 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1213
1214 int watchdog_timeo; /* used by dev_watchdog() */
1215 struct timer_list watchdog_timer;
1216
1217 /* Number of references to this device */
1218 int __percpu *pcpu_refcnt;
1219
1220 /* delayed register/unregister */
1221 struct list_head todo_list;
1222 /* device index hash chain */
1223 struct hlist_node index_hlist;
1224
1225 struct list_head link_watch_list;
1226
1227 /* register/unregister state machine */
1228 enum { NETREG_UNINITIALIZED=0,
1229 NETREG_REGISTERED, /* completed register_netdevice */
1230 NETREG_UNREGISTERING, /* called unregister_netdevice */
1231 NETREG_UNREGISTERED, /* completed unregister todo */
1232 NETREG_RELEASED, /* called free_netdev */
1233 NETREG_DUMMY, /* dummy device for NAPI poll */
1234 } reg_state:8;
1235
1236 bool dismantle; /* device is going do be freed */
1237
1238 enum {
1239 RTNL_LINK_INITIALIZED,
1240 RTNL_LINK_INITIALIZING,
1241 } rtnl_link_state:16;
1242
1243 /* Called from unregister, can be used to call free_netdev */
1244 void (*destructor)(struct net_device *dev);
1245
1246#ifdef CONFIG_NETPOLL
1247 struct netpoll_info *npinfo;
1248#endif
1249
1250#ifdef CONFIG_NET_NS
1251 /* Network namespace this network device is inside */
1252 struct net *nd_net;
1253#endif
1254
1255 /* mid-layer private */
1256 union {
1257 void *ml_priv;
1258 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1259 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1260 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1261 };
1262 /* GARP */
1263 struct garp_port __rcu *garp_port;
1264
1265 /* class/net/name entry */
1266 struct device dev;
1267 /* space for optional device, statistics, and wireless sysfs groups */
1268 const struct attribute_group *sysfs_groups[4];
1269
1270 /* rtnetlink link ops */
1271 const struct rtnl_link_ops *rtnl_link_ops;
1272
1273 /* for setting kernel sock attribute on TCP connection setup */
1274#define GSO_MAX_SIZE 65536
1275 unsigned int gso_max_size;
1276#define GSO_MAX_SEGS 65535
1277 u16 gso_max_segs;
1278
1279#ifdef CONFIG_DCB
1280 /* Data Center Bridging netlink ops */
1281 const struct dcbnl_rtnl_ops *dcbnl_ops;
1282#endif
1283 u8 num_tc;
1284 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1285 u8 prio_tc_map[TC_BITMASK + 1];
1286
1287#if IS_ENABLED(CONFIG_FCOE)
1288 /* max exchange id for FCoE LRO by ddp */
1289 unsigned int fcoe_ddp_xid;
1290#endif
1291#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1292 struct netprio_map __rcu *priomap;
1293#endif
1294 /* phy device may attach itself for hardware timestamping */
1295 struct phy_device *phydev;
1296
1297 struct lock_class_key *qdisc_tx_busylock;
1298
1299 /* group the device belongs to */
1300 int group;
1301
1302 struct pm_qos_request pm_qos_req;
1303};
1304#define to_net_dev(d) container_of(d, struct net_device, dev)
1305
1306#define NETDEV_ALIGN 32
1307
1308static inline
1309int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1310{
1311 return dev->prio_tc_map[prio & TC_BITMASK];
1312}
1313
1314static inline
1315int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1316{
1317 if (tc >= dev->num_tc)
1318 return -EINVAL;
1319
1320 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1321 return 0;
1322}
1323
1324static inline
1325void netdev_reset_tc(struct net_device *dev)
1326{
1327 dev->num_tc = 0;
1328 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1329 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1330}
1331
1332static inline
1333int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1334{
1335 if (tc >= dev->num_tc)
1336 return -EINVAL;
1337
1338 dev->tc_to_txq[tc].count = count;
1339 dev->tc_to_txq[tc].offset = offset;
1340 return 0;
1341}
1342
1343static inline
1344int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1345{
1346 if (num_tc > TC_MAX_QUEUE)
1347 return -EINVAL;
1348
1349 dev->num_tc = num_tc;
1350 return 0;
1351}
1352
1353static inline
1354int netdev_get_num_tc(struct net_device *dev)
1355{
1356 return dev->num_tc;
1357}
1358
1359static inline
1360struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1361 unsigned int index)
1362{
1363 return &dev->_tx[index];
1364}
1365
1366static inline void netdev_for_each_tx_queue(struct net_device *dev,
1367 void (*f)(struct net_device *,
1368 struct netdev_queue *,
1369 void *),
1370 void *arg)
1371{
1372 unsigned int i;
1373
1374 for (i = 0; i < dev->num_tx_queues; i++)
1375 f(dev, &dev->_tx[i], arg);
1376}
1377
1378extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1379 struct sk_buff *skb);
1380
1381/*
1382 * Net namespace inlines
1383 */
1384static inline
1385struct net *dev_net(const struct net_device *dev)
1386{
1387 return read_pnet(&dev->nd_net);
1388}
1389
1390static inline
1391void dev_net_set(struct net_device *dev, struct net *net)
1392{
1393#ifdef CONFIG_NET_NS
1394 release_net(dev->nd_net);
1395 dev->nd_net = hold_net(net);
1396#endif
1397}
1398
1399static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1400{
1401#ifdef CONFIG_NET_DSA_TAG_DSA
1402 if (dev->dsa_ptr != NULL)
1403 return dsa_uses_dsa_tags(dev->dsa_ptr);
1404#endif
1405
1406 return 0;
1407}
1408
1409static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1410{
1411#ifdef CONFIG_NET_DSA_TAG_TRAILER
1412 if (dev->dsa_ptr != NULL)
1413 return dsa_uses_trailer_tags(dev->dsa_ptr);
1414#endif
1415
1416 return 0;
1417}
1418
1419/**
1420 * netdev_priv - access network device private data
1421 * @dev: network device
1422 *
1423 * Get network device private data
1424 */
1425static inline void *netdev_priv(const struct net_device *dev)
1426{
1427 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1428}
1429
1430/* Set the sysfs physical device reference for the network logical device
1431 * if set prior to registration will cause a symlink during initialization.
1432 */
1433#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1434
1435/* Set the sysfs device type for the network logical device to allow
1436 * fin grained indentification of different network device types. For
1437 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1438 */
1439#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1440
1441/**
1442 * netif_napi_add - initialize a napi context
1443 * @dev: network device
1444 * @napi: napi context
1445 * @poll: polling function
1446 * @weight: default weight
1447 *
1448 * netif_napi_add() must be used to initialize a napi context prior to calling
1449 * *any* of the other napi related functions.
1450 */
1451void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1452 int (*poll)(struct napi_struct *, int), int weight);
1453
1454/**
1455 * netif_napi_del - remove a napi context
1456 * @napi: napi context
1457 *
1458 * netif_napi_del() removes a napi context from the network device napi list
1459 */
1460void netif_napi_del(struct napi_struct *napi);
1461
1462struct napi_gro_cb {
1463 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1464 void *frag0;
1465
1466 /* Length of frag0. */
1467 unsigned int frag0_len;
1468
1469 /* This indicates where we are processing relative to skb->data. */
1470 int data_offset;
1471
1472 /* This is non-zero if the packet cannot be merged with the new skb. */
1473 int flush;
1474
1475 /* Number of segments aggregated. */
1476 u16 count;
1477
1478 /* This is non-zero if the packet may be of the same flow. */
1479 u8 same_flow;
1480
1481 /* Free the skb? */
1482 u8 free;
1483#define NAPI_GRO_FREE 1
1484#define NAPI_GRO_FREE_STOLEN_HEAD 2
1485
1486 /* jiffies when first packet was created/queued */
1487 unsigned long age;
1488
1489 /* Used in ipv6_gro_receive() */
1490 int proto;
1491
1492 /* used in skb_gro_receive() slow path */
1493 struct sk_buff *last;
1494};
1495
1496#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1497
1498struct packet_type {
1499 __be16 type; /* This is really htons(ether_type). */
1500 struct net_device *dev; /* NULL is wildcarded here */
1501 int (*func) (struct sk_buff *,
1502 struct net_device *,
1503 struct packet_type *,
1504 struct net_device *);
1505 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1506 netdev_features_t features);
1507 int (*gso_send_check)(struct sk_buff *skb);
1508 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1509 struct sk_buff *skb);
1510 int (*gro_complete)(struct sk_buff *skb);
1511 bool (*id_match)(struct packet_type *ptype,
1512 struct sock *sk);
1513 void *af_packet_priv;
1514 struct list_head list;
1515};
1516
1517#include <linux/notifier.h>
1518
1519/* netdevice notifier chain. Please remember to update the rtnetlink
1520 * notification exclusion list in rtnetlink_event() when adding new
1521 * types.
1522 */
1523#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1524#define NETDEV_DOWN 0x0002
1525#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1526 detected a hardware crash and restarted
1527 - we can use this eg to kick tcp sessions
1528 once done */
1529#define NETDEV_CHANGE 0x0004 /* Notify device state change */
1530#define NETDEV_REGISTER 0x0005
1531#define NETDEV_UNREGISTER 0x0006
1532#define NETDEV_CHANGEMTU 0x0007
1533#define NETDEV_CHANGEADDR 0x0008
1534#define NETDEV_GOING_DOWN 0x0009
1535#define NETDEV_CHANGENAME 0x000A
1536#define NETDEV_FEAT_CHANGE 0x000B
1537#define NETDEV_BONDING_FAILOVER 0x000C
1538#define NETDEV_PRE_UP 0x000D
1539#define NETDEV_PRE_TYPE_CHANGE 0x000E
1540#define NETDEV_POST_TYPE_CHANGE 0x000F
1541#define NETDEV_POST_INIT 0x0010
1542#define NETDEV_UNREGISTER_FINAL 0x0011
1543#define NETDEV_RELEASE 0x0012
1544#define NETDEV_NOTIFY_PEERS 0x0013
1545#define NETDEV_JOIN 0x0014
1546
1547extern int register_netdevice_notifier(struct notifier_block *nb);
1548extern int unregister_netdevice_notifier(struct notifier_block *nb);
1549extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1550
1551
1552extern rwlock_t dev_base_lock; /* Device list lock */
1553
1554
1555#define for_each_netdev(net, d) \
1556 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1557#define for_each_netdev_reverse(net, d) \
1558 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1559#define for_each_netdev_rcu(net, d) \
1560 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1561#define for_each_netdev_safe(net, d, n) \
1562 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1563#define for_each_netdev_continue(net, d) \
1564 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1565#define for_each_netdev_continue_rcu(net, d) \
1566 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1567#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1568
1569static inline struct net_device *next_net_device(struct net_device *dev)
1570{
1571 struct list_head *lh;
1572 struct net *net;
1573
1574 net = dev_net(dev);
1575 lh = dev->dev_list.next;
1576 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1577}
1578
1579static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1580{
1581 struct list_head *lh;
1582 struct net *net;
1583
1584 net = dev_net(dev);
1585 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1586 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1587}
1588
1589static inline struct net_device *first_net_device(struct net *net)
1590{
1591 return list_empty(&net->dev_base_head) ? NULL :
1592 net_device_entry(net->dev_base_head.next);
1593}
1594
1595static inline struct net_device *first_net_device_rcu(struct net *net)
1596{
1597 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1598
1599 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1600}
1601
1602extern int netdev_boot_setup_check(struct net_device *dev);
1603extern unsigned long netdev_boot_base(const char *prefix, int unit);
1604extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1605 const char *hwaddr);
1606extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1607extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1608extern void dev_add_pack(struct packet_type *pt);
1609extern void dev_remove_pack(struct packet_type *pt);
1610extern void __dev_remove_pack(struct packet_type *pt);
1611
1612extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1613 unsigned short mask);
1614extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1615extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1616extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1617extern int dev_alloc_name(struct net_device *dev, const char *name);
1618extern int dev_open(struct net_device *dev);
1619extern int dev_close(struct net_device *dev);
1620extern void dev_disable_lro(struct net_device *dev);
1621extern int dev_loopback_xmit(struct sk_buff *newskb);
1622extern int dev_queue_xmit(struct sk_buff *skb);
1623extern int register_netdevice(struct net_device *dev);
1624extern void unregister_netdevice_queue(struct net_device *dev,
1625 struct list_head *head);
1626extern void unregister_netdevice_many(struct list_head *head);
1627static inline void unregister_netdevice(struct net_device *dev)
1628{
1629 unregister_netdevice_queue(dev, NULL);
1630}
1631
1632extern int netdev_refcnt_read(const struct net_device *dev);
1633extern void free_netdev(struct net_device *dev);
1634extern void synchronize_net(void);
1635extern int init_dummy_netdev(struct net_device *dev);
1636extern void netdev_resync_ops(struct net_device *dev);
1637
1638extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1639extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1640extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1641extern int dev_restart(struct net_device *dev);
1642#ifdef CONFIG_NETPOLL_TRAP
1643extern int netpoll_trap(void);
1644#endif
1645extern int skb_gro_receive(struct sk_buff **head,
1646 struct sk_buff *skb);
1647
1648static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1649{
1650 return NAPI_GRO_CB(skb)->data_offset;
1651}
1652
1653static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1654{
1655 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1656}
1657
1658static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1659{
1660 NAPI_GRO_CB(skb)->data_offset += len;
1661}
1662
1663static inline void *skb_gro_header_fast(struct sk_buff *skb,
1664 unsigned int offset)
1665{
1666 return NAPI_GRO_CB(skb)->frag0 + offset;
1667}
1668
1669static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1670{
1671 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1672}
1673
1674static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1675 unsigned int offset)
1676{
1677 if (!pskb_may_pull(skb, hlen))
1678 return NULL;
1679
1680 NAPI_GRO_CB(skb)->frag0 = NULL;
1681 NAPI_GRO_CB(skb)->frag0_len = 0;
1682 return skb->data + offset;
1683}
1684
1685static inline void *skb_gro_mac_header(struct sk_buff *skb)
1686{
1687 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1688}
1689
1690static inline void *skb_gro_network_header(struct sk_buff *skb)
1691{
1692 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1693 skb_network_offset(skb);
1694}
1695
1696static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1697 unsigned short type,
1698 const void *daddr, const void *saddr,
1699 unsigned int len)
1700{
1701 if (!dev->header_ops || !dev->header_ops->create)
1702 return 0;
1703
1704 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1705}
1706
1707static inline int dev_parse_header(const struct sk_buff *skb,
1708 unsigned char *haddr)
1709{
1710 const struct net_device *dev = skb->dev;
1711
1712 if (!dev->header_ops || !dev->header_ops->parse)
1713 return 0;
1714 return dev->header_ops->parse(skb, haddr);
1715}
1716
1717typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1718extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1719static inline int unregister_gifconf(unsigned int family)
1720{
1721 return register_gifconf(family, NULL);
1722}
1723
1724/*
1725 * Incoming packets are placed on per-cpu queues
1726 */
1727struct softnet_data {
1728 struct Qdisc *output_queue;
1729 struct Qdisc **output_queue_tailp;
1730 struct list_head poll_list;
1731 struct sk_buff *completion_queue;
1732 struct sk_buff_head process_queue;
1733
1734 /* stats */
1735 unsigned int processed;
1736 unsigned int time_squeeze;
1737 unsigned int cpu_collision;
1738 unsigned int received_rps;
1739
1740#ifdef CONFIG_RPS
1741 struct softnet_data *rps_ipi_list;
1742
1743 /* Elements below can be accessed between CPUs for RPS */
1744 struct call_single_data csd ____cacheline_aligned_in_smp;
1745 struct softnet_data *rps_ipi_next;
1746 unsigned int cpu;
1747 unsigned int input_queue_head;
1748 unsigned int input_queue_tail;
1749#endif
1750 unsigned int dropped;
1751 struct sk_buff_head input_pkt_queue;
1752 struct napi_struct backlog;
1753};
1754
1755static inline void input_queue_head_incr(struct softnet_data *sd)
1756{
1757#ifdef CONFIG_RPS
1758 sd->input_queue_head++;
1759#endif
1760}
1761
1762static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1763 unsigned int *qtail)
1764{
1765#ifdef CONFIG_RPS
1766 *qtail = ++sd->input_queue_tail;
1767#endif
1768}
1769
1770DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1771
1772extern void __netif_schedule(struct Qdisc *q);
1773
1774static inline void netif_schedule_queue(struct netdev_queue *txq)
1775{
1776 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1777 __netif_schedule(txq->qdisc);
1778}
1779
1780static inline void netif_tx_schedule_all(struct net_device *dev)
1781{
1782 unsigned int i;
1783
1784 for (i = 0; i < dev->num_tx_queues; i++)
1785 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1786}
1787
1788static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1789{
1790 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1791}
1792
1793/**
1794 * netif_start_queue - allow transmit
1795 * @dev: network device
1796 *
1797 * Allow upper layers to call the device hard_start_xmit routine.
1798 */
1799static inline void netif_start_queue(struct net_device *dev)
1800{
1801 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1802}
1803
1804static inline void netif_tx_start_all_queues(struct net_device *dev)
1805{
1806 unsigned int i;
1807
1808 for (i = 0; i < dev->num_tx_queues; i++) {
1809 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1810 netif_tx_start_queue(txq);
1811 }
1812}
1813
1814static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1815{
1816#ifdef CONFIG_NETPOLL_TRAP
1817 if (netpoll_trap()) {
1818 netif_tx_start_queue(dev_queue);
1819 return;
1820 }
1821#endif
1822 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1823 __netif_schedule(dev_queue->qdisc);
1824}
1825
1826/**
1827 * netif_wake_queue - restart transmit
1828 * @dev: network device
1829 *
1830 * Allow upper layers to call the device hard_start_xmit routine.
1831 * Used for flow control when transmit resources are available.
1832 */
1833static inline void netif_wake_queue(struct net_device *dev)
1834{
1835 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1836}
1837
1838static inline void netif_tx_wake_all_queues(struct net_device *dev)
1839{
1840 unsigned int i;
1841
1842 for (i = 0; i < dev->num_tx_queues; i++) {
1843 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1844 netif_tx_wake_queue(txq);
1845 }
1846}
1847
1848static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1849{
1850 if (WARN_ON(!dev_queue)) {
1851 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1852 return;
1853 }
1854 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1855}
1856
1857/**
1858 * netif_stop_queue - stop transmitted packets
1859 * @dev: network device
1860 *
1861 * Stop upper layers calling the device hard_start_xmit routine.
1862 * Used for flow control when transmit resources are unavailable.
1863 */
1864static inline void netif_stop_queue(struct net_device *dev)
1865{
1866 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1867}
1868
1869static inline void netif_tx_stop_all_queues(struct net_device *dev)
1870{
1871 unsigned int i;
1872
1873 for (i = 0; i < dev->num_tx_queues; i++) {
1874 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1875 netif_tx_stop_queue(txq);
1876 }
1877}
1878
1879static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1880{
1881 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1882}
1883
1884/**
1885 * netif_queue_stopped - test if transmit queue is flowblocked
1886 * @dev: network device
1887 *
1888 * Test if transmit queue on device is currently unable to send.
1889 */
1890static inline bool netif_queue_stopped(const struct net_device *dev)
1891{
1892 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1893}
1894
1895static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1896{
1897 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1898}
1899
1900static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1901{
1902 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1903}
1904
1905static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1906 unsigned int bytes)
1907{
1908#ifdef CONFIG_BQL
1909 dql_queued(&dev_queue->dql, bytes);
1910
1911 if (likely(dql_avail(&dev_queue->dql) >= 0))
1912 return;
1913
1914 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1915
1916 /*
1917 * The XOFF flag must be set before checking the dql_avail below,
1918 * because in netdev_tx_completed_queue we update the dql_completed
1919 * before checking the XOFF flag.
1920 */
1921 smp_mb();
1922
1923 /* check again in case another CPU has just made room avail */
1924 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1925 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1926#endif
1927}
1928
1929static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1930{
1931 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1932}
1933
1934static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1935 unsigned int pkts, unsigned int bytes)
1936{
1937#ifdef CONFIG_BQL
1938 if (unlikely(!bytes))
1939 return;
1940
1941 dql_completed(&dev_queue->dql, bytes);
1942
1943 /*
1944 * Without the memory barrier there is a small possiblity that
1945 * netdev_tx_sent_queue will miss the update and cause the queue to
1946 * be stopped forever
1947 */
1948 smp_mb();
1949
1950 if (dql_avail(&dev_queue->dql) < 0)
1951 return;
1952
1953 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1954 netif_schedule_queue(dev_queue);
1955#endif
1956}
1957
1958static inline void netdev_completed_queue(struct net_device *dev,
1959 unsigned int pkts, unsigned int bytes)
1960{
1961 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1962}
1963
1964static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1965{
1966#ifdef CONFIG_BQL
1967 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1968 dql_reset(&q->dql);
1969#endif
1970}
1971
1972static inline void netdev_reset_queue(struct net_device *dev_queue)
1973{
1974 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1975}
1976
1977/**
1978 * netif_running - test if up
1979 * @dev: network device
1980 *
1981 * Test if the device has been brought up.
1982 */
1983static inline bool netif_running(const struct net_device *dev)
1984{
1985 return test_bit(__LINK_STATE_START, &dev->state);
1986}
1987
1988/*
1989 * Routines to manage the subqueues on a device. We only need start
1990 * stop, and a check if it's stopped. All other device management is
1991 * done at the overall netdevice level.
1992 * Also test the device if we're multiqueue.
1993 */
1994
1995/**
1996 * netif_start_subqueue - allow sending packets on subqueue
1997 * @dev: network device
1998 * @queue_index: sub queue index
1999 *
2000 * Start individual transmit queue of a device with multiple transmit queues.
2001 */
2002static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2003{
2004 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2005
2006 netif_tx_start_queue(txq);
2007}
2008
2009/**
2010 * netif_stop_subqueue - stop sending packets on subqueue
2011 * @dev: network device
2012 * @queue_index: sub queue index
2013 *
2014 * Stop individual transmit queue of a device with multiple transmit queues.
2015 */
2016static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2017{
2018 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2019#ifdef CONFIG_NETPOLL_TRAP
2020 if (netpoll_trap())
2021 return;
2022#endif
2023 netif_tx_stop_queue(txq);
2024}
2025
2026/**
2027 * netif_subqueue_stopped - test status of subqueue
2028 * @dev: network device
2029 * @queue_index: sub queue index
2030 *
2031 * Check individual transmit queue of a device with multiple transmit queues.
2032 */
2033static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2034 u16 queue_index)
2035{
2036 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2037
2038 return netif_tx_queue_stopped(txq);
2039}
2040
2041static inline bool netif_subqueue_stopped(const struct net_device *dev,
2042 struct sk_buff *skb)
2043{
2044 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2045}
2046
2047/**
2048 * netif_wake_subqueue - allow sending packets on subqueue
2049 * @dev: network device
2050 * @queue_index: sub queue index
2051 *
2052 * Resume individual transmit queue of a device with multiple transmit queues.
2053 */
2054static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2055{
2056 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2057#ifdef CONFIG_NETPOLL_TRAP
2058 if (netpoll_trap())
2059 return;
2060#endif
2061 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2062 __netif_schedule(txq->qdisc);
2063}
2064
2065/*
2066 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2067 * as a distribution range limit for the returned value.
2068 */
2069static inline u16 skb_tx_hash(const struct net_device *dev,
2070 const struct sk_buff *skb)
2071{
2072 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2073}
2074
2075/**
2076 * netif_is_multiqueue - test if device has multiple transmit queues
2077 * @dev: network device
2078 *
2079 * Check if device has multiple transmit queues
2080 */
2081static inline bool netif_is_multiqueue(const struct net_device *dev)
2082{
2083 return dev->num_tx_queues > 1;
2084}
2085
2086extern int netif_set_real_num_tx_queues(struct net_device *dev,
2087 unsigned int txq);
2088
2089#ifdef CONFIG_RPS
2090extern int netif_set_real_num_rx_queues(struct net_device *dev,
2091 unsigned int rxq);
2092#else
2093static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2094 unsigned int rxq)
2095{
2096 return 0;
2097}
2098#endif
2099
2100static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2101 const struct net_device *from_dev)
2102{
2103 int err;
2104
2105 err = netif_set_real_num_tx_queues(to_dev,
2106 from_dev->real_num_tx_queues);
2107 if (err)
2108 return err;
2109#ifdef CONFIG_RPS
2110 return netif_set_real_num_rx_queues(to_dev,
2111 from_dev->real_num_rx_queues);
2112#else
2113 return 0;
2114#endif
2115}
2116
2117#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2118extern int netif_get_num_default_rss_queues(void);
2119
2120/* Use this variant when it is known for sure that it
2121 * is executing from hardware interrupt context or with hardware interrupts
2122 * disabled.
2123 */
2124extern void dev_kfree_skb_irq(struct sk_buff *skb);
2125
2126/* Use this variant in places where it could be invoked
2127 * from either hardware interrupt or other context, with hardware interrupts
2128 * either disabled or enabled.
2129 */
2130extern void dev_kfree_skb_any(struct sk_buff *skb);
2131
2132extern int netif_rx(struct sk_buff *skb);
2133extern int netif_rx_ni(struct sk_buff *skb);
2134extern int netif_receive_skb(struct sk_buff *skb);
2135extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2136 struct sk_buff *skb);
2137extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2138extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2139 struct sk_buff *skb);
2140extern void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2141extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2142extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2143 struct sk_buff *skb,
2144 gro_result_t ret);
2145extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2146
2147static inline void napi_free_frags(struct napi_struct *napi)
2148{
2149 kfree_skb(napi->skb);
2150 napi->skb = NULL;
2151}
2152
2153extern int netdev_rx_handler_register(struct net_device *dev,
2154 rx_handler_func_t *rx_handler,
2155 void *rx_handler_data);
2156extern void netdev_rx_handler_unregister(struct net_device *dev);
2157
2158extern bool dev_valid_name(const char *name);
2159extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2160extern int dev_ethtool(struct net *net, struct ifreq *);
2161extern unsigned int dev_get_flags(const struct net_device *);
2162extern int __dev_change_flags(struct net_device *, unsigned int flags);
2163extern int dev_change_flags(struct net_device *, unsigned int);
2164extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2165extern int dev_change_name(struct net_device *, const char *);
2166extern int dev_set_alias(struct net_device *, const char *, size_t);
2167extern int dev_change_net_namespace(struct net_device *,
2168 struct net *, const char *);
2169extern int dev_set_mtu(struct net_device *, int);
2170extern void dev_set_group(struct net_device *, int);
2171extern int dev_set_mac_address(struct net_device *,
2172 struct sockaddr *);
2173extern int dev_hard_start_xmit(struct sk_buff *skb,
2174 struct net_device *dev,
2175 struct netdev_queue *txq);
2176extern int dev_forward_skb(struct net_device *dev,
2177 struct sk_buff *skb);
2178
2179extern int netdev_budget;
2180
2181/* Called by rtnetlink.c:rtnl_unlock() */
2182extern void netdev_run_todo(void);
2183
2184/**
2185 * dev_put - release reference to device
2186 * @dev: network device
2187 *
2188 * Release reference to device to allow it to be freed.
2189 */
2190static inline void dev_put(struct net_device *dev)
2191{
2192 this_cpu_dec(*dev->pcpu_refcnt);
2193}
2194
2195/**
2196 * dev_hold - get reference to device
2197 * @dev: network device
2198 *
2199 * Hold reference to device to keep it from being freed.
2200 */
2201static inline void dev_hold(struct net_device *dev)
2202{
2203 this_cpu_inc(*dev->pcpu_refcnt);
2204}
2205
2206/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2207 * and _off may be called from IRQ context, but it is caller
2208 * who is responsible for serialization of these calls.
2209 *
2210 * The name carrier is inappropriate, these functions should really be
2211 * called netif_lowerlayer_*() because they represent the state of any
2212 * kind of lower layer not just hardware media.
2213 */
2214
2215extern void linkwatch_init_dev(struct net_device *dev);
2216extern void linkwatch_fire_event(struct net_device *dev);
2217extern void linkwatch_forget_dev(struct net_device *dev);
2218
2219/**
2220 * netif_carrier_ok - test if carrier present
2221 * @dev: network device
2222 *
2223 * Check if carrier is present on device
2224 */
2225static inline bool netif_carrier_ok(const struct net_device *dev)
2226{
2227 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2228}
2229
2230extern unsigned long dev_trans_start(struct net_device *dev);
2231
2232extern void __netdev_watchdog_up(struct net_device *dev);
2233
2234extern void netif_carrier_on(struct net_device *dev);
2235
2236extern void netif_carrier_off(struct net_device *dev);
2237
2238/**
2239 * netif_dormant_on - mark device as dormant.
2240 * @dev: network device
2241 *
2242 * Mark device as dormant (as per RFC2863).
2243 *
2244 * The dormant state indicates that the relevant interface is not
2245 * actually in a condition to pass packets (i.e., it is not 'up') but is
2246 * in a "pending" state, waiting for some external event. For "on-
2247 * demand" interfaces, this new state identifies the situation where the
2248 * interface is waiting for events to place it in the up state.
2249 *
2250 */
2251static inline void netif_dormant_on(struct net_device *dev)
2252{
2253 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2254 linkwatch_fire_event(dev);
2255}
2256
2257/**
2258 * netif_dormant_off - set device as not dormant.
2259 * @dev: network device
2260 *
2261 * Device is not in dormant state.
2262 */
2263static inline void netif_dormant_off(struct net_device *dev)
2264{
2265 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2266 linkwatch_fire_event(dev);
2267}
2268
2269/**
2270 * netif_dormant - test if carrier present
2271 * @dev: network device
2272 *
2273 * Check if carrier is present on device
2274 */
2275static inline bool netif_dormant(const struct net_device *dev)
2276{
2277 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2278}
2279
2280
2281/**
2282 * netif_oper_up - test if device is operational
2283 * @dev: network device
2284 *
2285 * Check if carrier is operational
2286 */
2287static inline bool netif_oper_up(const struct net_device *dev)
2288{
2289 return (dev->operstate == IF_OPER_UP ||
2290 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2291}
2292
2293/**
2294 * netif_device_present - is device available or removed
2295 * @dev: network device
2296 *
2297 * Check if device has not been removed from system.
2298 */
2299static inline bool netif_device_present(struct net_device *dev)
2300{
2301 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2302}
2303
2304extern void netif_device_detach(struct net_device *dev);
2305
2306extern void netif_device_attach(struct net_device *dev);
2307
2308/*
2309 * Network interface message level settings
2310 */
2311
2312enum {
2313 NETIF_MSG_DRV = 0x0001,
2314 NETIF_MSG_PROBE = 0x0002,
2315 NETIF_MSG_LINK = 0x0004,
2316 NETIF_MSG_TIMER = 0x0008,
2317 NETIF_MSG_IFDOWN = 0x0010,
2318 NETIF_MSG_IFUP = 0x0020,
2319 NETIF_MSG_RX_ERR = 0x0040,
2320 NETIF_MSG_TX_ERR = 0x0080,
2321 NETIF_MSG_TX_QUEUED = 0x0100,
2322 NETIF_MSG_INTR = 0x0200,
2323 NETIF_MSG_TX_DONE = 0x0400,
2324 NETIF_MSG_RX_STATUS = 0x0800,
2325 NETIF_MSG_PKTDATA = 0x1000,
2326 NETIF_MSG_HW = 0x2000,
2327 NETIF_MSG_WOL = 0x4000,
2328};
2329
2330#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2331#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2332#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2333#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2334#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2335#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2336#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2337#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2338#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2339#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2340#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2341#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2342#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2343#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2344#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2345
2346static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2347{
2348 /* use default */
2349 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2350 return default_msg_enable_bits;
2351 if (debug_value == 0) /* no output */
2352 return 0;
2353 /* set low N bits */
2354 return (1 << debug_value) - 1;
2355}
2356
2357static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2358{
2359 spin_lock(&txq->_xmit_lock);
2360 txq->xmit_lock_owner = cpu;
2361}
2362
2363static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2364{
2365 spin_lock_bh(&txq->_xmit_lock);
2366 txq->xmit_lock_owner = smp_processor_id();
2367}
2368
2369static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2370{
2371 bool ok = spin_trylock(&txq->_xmit_lock);
2372 if (likely(ok))
2373 txq->xmit_lock_owner = smp_processor_id();
2374 return ok;
2375}
2376
2377static inline void __netif_tx_unlock(struct netdev_queue *txq)
2378{
2379 txq->xmit_lock_owner = -1;
2380 spin_unlock(&txq->_xmit_lock);
2381}
2382
2383static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2384{
2385 txq->xmit_lock_owner = -1;
2386 spin_unlock_bh(&txq->_xmit_lock);
2387}
2388
2389static inline void txq_trans_update(struct netdev_queue *txq)
2390{
2391 if (txq->xmit_lock_owner != -1)
2392 txq->trans_start = jiffies;
2393}
2394
2395/**
2396 * netif_tx_lock - grab network device transmit lock
2397 * @dev: network device
2398 *
2399 * Get network device transmit lock
2400 */
2401static inline void netif_tx_lock(struct net_device *dev)
2402{
2403 unsigned int i;
2404 int cpu;
2405
2406 spin_lock(&dev->tx_global_lock);
2407 cpu = smp_processor_id();
2408 for (i = 0; i < dev->num_tx_queues; i++) {
2409 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2410
2411 /* We are the only thread of execution doing a
2412 * freeze, but we have to grab the _xmit_lock in
2413 * order to synchronize with threads which are in
2414 * the ->hard_start_xmit() handler and already
2415 * checked the frozen bit.
2416 */
2417 __netif_tx_lock(txq, cpu);
2418 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2419 __netif_tx_unlock(txq);
2420 }
2421}
2422
2423static inline void netif_tx_lock_bh(struct net_device *dev)
2424{
2425 local_bh_disable();
2426 netif_tx_lock(dev);
2427}
2428
2429static inline void netif_tx_unlock(struct net_device *dev)
2430{
2431 unsigned int i;
2432
2433 for (i = 0; i < dev->num_tx_queues; i++) {
2434 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2435
2436 /* No need to grab the _xmit_lock here. If the
2437 * queue is not stopped for another reason, we
2438 * force a schedule.
2439 */
2440 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2441 netif_schedule_queue(txq);
2442 }
2443 spin_unlock(&dev->tx_global_lock);
2444}
2445
2446static inline void netif_tx_unlock_bh(struct net_device *dev)
2447{
2448 netif_tx_unlock(dev);
2449 local_bh_enable();
2450}
2451
2452#define HARD_TX_LOCK(dev, txq, cpu) { \
2453 if ((dev->features & NETIF_F_LLTX) == 0) { \
2454 __netif_tx_lock(txq, cpu); \
2455 } \
2456}
2457
2458#define HARD_TX_UNLOCK(dev, txq) { \
2459 if ((dev->features & NETIF_F_LLTX) == 0) { \
2460 __netif_tx_unlock(txq); \
2461 } \
2462}
2463
2464static inline void netif_tx_disable(struct net_device *dev)
2465{
2466 unsigned int i;
2467 int cpu;
2468
2469 local_bh_disable();
2470 cpu = smp_processor_id();
2471 for (i = 0; i < dev->num_tx_queues; i++) {
2472 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2473
2474 __netif_tx_lock(txq, cpu);
2475 netif_tx_stop_queue(txq);
2476 __netif_tx_unlock(txq);
2477 }
2478 local_bh_enable();
2479}
2480
2481static inline void netif_addr_lock(struct net_device *dev)
2482{
2483 spin_lock(&dev->addr_list_lock);
2484}
2485
2486static inline void netif_addr_lock_nested(struct net_device *dev)
2487{
2488 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2489}
2490
2491static inline void netif_addr_lock_bh(struct net_device *dev)
2492{
2493 spin_lock_bh(&dev->addr_list_lock);
2494}
2495
2496static inline void netif_addr_unlock(struct net_device *dev)
2497{
2498 spin_unlock(&dev->addr_list_lock);
2499}
2500
2501static inline void netif_addr_unlock_bh(struct net_device *dev)
2502{
2503 spin_unlock_bh(&dev->addr_list_lock);
2504}
2505
2506/*
2507 * dev_addrs walker. Should be used only for read access. Call with
2508 * rcu_read_lock held.
2509 */
2510#define for_each_dev_addr(dev, ha) \
2511 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2512
2513/* These functions live elsewhere (drivers/net/net_init.c, but related) */
2514
2515extern void ether_setup(struct net_device *dev);
2516
2517/* Support for loadable net-drivers */
2518extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2519 void (*setup)(struct net_device *),
2520 unsigned int txqs, unsigned int rxqs);
2521#define alloc_netdev(sizeof_priv, name, setup) \
2522 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2523
2524#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2525 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2526
2527extern int register_netdev(struct net_device *dev);
2528extern void unregister_netdev(struct net_device *dev);
2529
2530/* General hardware address lists handling functions */
2531extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2532 struct netdev_hw_addr_list *from_list,
2533 int addr_len, unsigned char addr_type);
2534extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2535 struct netdev_hw_addr_list *from_list,
2536 int addr_len, unsigned char addr_type);
2537extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2538 struct netdev_hw_addr_list *from_list,
2539 int addr_len);
2540extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2541 struct netdev_hw_addr_list *from_list,
2542 int addr_len);
2543extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2544extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2545
2546/* Functions used for device addresses handling */
2547extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2548 unsigned char addr_type);
2549extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2550 unsigned char addr_type);
2551extern int dev_addr_add_multiple(struct net_device *to_dev,
2552 struct net_device *from_dev,
2553 unsigned char addr_type);
2554extern int dev_addr_del_multiple(struct net_device *to_dev,
2555 struct net_device *from_dev,
2556 unsigned char addr_type);
2557extern void dev_addr_flush(struct net_device *dev);
2558extern int dev_addr_init(struct net_device *dev);
2559
2560/* Functions used for unicast addresses handling */
2561extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2562extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2563extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2564extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2565extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2566extern void dev_uc_flush(struct net_device *dev);
2567extern void dev_uc_init(struct net_device *dev);
2568
2569/* Functions used for multicast addresses handling */
2570extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2571extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2572extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2573extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2574extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2575extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2576extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2577extern void dev_mc_flush(struct net_device *dev);
2578extern void dev_mc_init(struct net_device *dev);
2579
2580/* Functions used for secondary unicast and multicast support */
2581extern void dev_set_rx_mode(struct net_device *dev);
2582extern void __dev_set_rx_mode(struct net_device *dev);
2583extern int dev_set_promiscuity(struct net_device *dev, int inc);
2584extern int dev_set_allmulti(struct net_device *dev, int inc);
2585extern void netdev_state_change(struct net_device *dev);
2586extern void netdev_notify_peers(struct net_device *dev);
2587extern void netdev_features_change(struct net_device *dev);
2588/* Load a device via the kmod */
2589extern void dev_load(struct net *net, const char *name);
2590extern void dev_mcast_init(void);
2591extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2592 struct rtnl_link_stats64 *storage);
2593extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2594 const struct net_device_stats *netdev_stats);
2595
2596extern int netdev_max_backlog;
2597extern int netdev_tstamp_prequeue;
2598extern int weight_p;
2599extern int bpf_jit_enable;
2600extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2601extern int netdev_set_bond_master(struct net_device *dev,
2602 struct net_device *master);
2603extern int skb_checksum_help(struct sk_buff *skb);
2604extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2605 netdev_features_t features);
2606#ifdef CONFIG_BUG
2607extern void netdev_rx_csum_fault(struct net_device *dev);
2608#else
2609static inline void netdev_rx_csum_fault(struct net_device *dev)
2610{
2611}
2612#endif
2613/* rx skb timestamps */
2614extern void net_enable_timestamp(void);
2615extern void net_disable_timestamp(void);
2616
2617#ifdef CONFIG_PROC_FS
2618extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2619extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2620extern void dev_seq_stop(struct seq_file *seq, void *v);
2621#endif
2622
2623extern int netdev_class_create_file(struct class_attribute *class_attr);
2624extern void netdev_class_remove_file(struct class_attribute *class_attr);
2625
2626extern struct kobj_ns_type_operations net_ns_type_operations;
2627
2628extern const char *netdev_drivername(const struct net_device *dev);
2629
2630extern void linkwatch_run_queue(void);
2631
2632static inline netdev_features_t netdev_get_wanted_features(
2633 struct net_device *dev)
2634{
2635 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2636}
2637netdev_features_t netdev_increment_features(netdev_features_t all,
2638 netdev_features_t one, netdev_features_t mask);
2639int __netdev_update_features(struct net_device *dev);
2640void netdev_update_features(struct net_device *dev);
2641void netdev_change_features(struct net_device *dev);
2642
2643void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2644 struct net_device *dev);
2645
2646netdev_features_t netif_skb_features(struct sk_buff *skb);
2647
2648static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2649{
2650 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2651
2652 /* check flags correspondence */
2653 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2654 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2655 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2656 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2657 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2658 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2659
2660 return (features & feature) == feature;
2661}
2662
2663static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2664{
2665 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2666 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2667}
2668
2669static inline bool netif_needs_gso(struct sk_buff *skb,
2670 netdev_features_t features)
2671{
2672 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2673 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2674 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2675}
2676
2677static inline void netif_set_gso_max_size(struct net_device *dev,
2678 unsigned int size)
2679{
2680 dev->gso_max_size = size;
2681}
2682
2683static inline bool netif_is_bond_slave(struct net_device *dev)
2684{
2685 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2686}
2687
2688static inline bool netif_supports_nofcs(struct net_device *dev)
2689{
2690 return dev->priv_flags & IFF_SUPP_NOFCS;
2691}
2692
2693extern struct pernet_operations __net_initdata loopback_net_ops;
2694
2695/* Logging, debugging and troubleshooting/diagnostic helpers. */
2696
2697/* netdev_printk helpers, similar to dev_printk */
2698
2699static inline const char *netdev_name(const struct net_device *dev)
2700{
2701 if (dev->reg_state != NETREG_REGISTERED)
2702 return "(unregistered net_device)";
2703 return dev->name;
2704}
2705
2706extern __printf(3, 4)
2707int netdev_printk(const char *level, const struct net_device *dev,
2708 const char *format, ...);
2709extern __printf(2, 3)
2710int netdev_emerg(const struct net_device *dev, const char *format, ...);
2711extern __printf(2, 3)
2712int netdev_alert(const struct net_device *dev, const char *format, ...);
2713extern __printf(2, 3)
2714int netdev_crit(const struct net_device *dev, const char *format, ...);
2715extern __printf(2, 3)
2716int netdev_err(const struct net_device *dev, const char *format, ...);
2717extern __printf(2, 3)
2718int netdev_warn(const struct net_device *dev, const char *format, ...);
2719extern __printf(2, 3)
2720int netdev_notice(const struct net_device *dev, const char *format, ...);
2721extern __printf(2, 3)
2722int netdev_info(const struct net_device *dev, const char *format, ...);
2723
2724#define MODULE_ALIAS_NETDEV(device) \
2725 MODULE_ALIAS("netdev-" device)
2726
2727#if defined(CONFIG_DYNAMIC_DEBUG)
2728#define netdev_dbg(__dev, format, args...) \
2729do { \
2730 dynamic_netdev_dbg(__dev, format, ##args); \
2731} while (0)
2732#elif defined(DEBUG)
2733#define netdev_dbg(__dev, format, args...) \
2734 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2735#else
2736#define netdev_dbg(__dev, format, args...) \
2737({ \
2738 if (0) \
2739 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2740 0; \
2741})
2742#endif
2743
2744#if defined(VERBOSE_DEBUG)
2745#define netdev_vdbg netdev_dbg
2746#else
2747
2748#define netdev_vdbg(dev, format, args...) \
2749({ \
2750 if (0) \
2751 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2752 0; \
2753})
2754#endif
2755
2756/*
2757 * netdev_WARN() acts like dev_printk(), but with the key difference
2758 * of using a WARN/WARN_ON to get the message out, including the
2759 * file/line information and a backtrace.
2760 */
2761#define netdev_WARN(dev, format, args...) \
2762 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2763
2764/* netif printk helpers, similar to netdev_printk */
2765
2766#define netif_printk(priv, type, level, dev, fmt, args...) \
2767do { \
2768 if (netif_msg_##type(priv)) \
2769 netdev_printk(level, (dev), fmt, ##args); \
2770} while (0)
2771
2772#define netif_level(level, priv, type, dev, fmt, args...) \
2773do { \
2774 if (netif_msg_##type(priv)) \
2775 netdev_##level(dev, fmt, ##args); \
2776} while (0)
2777
2778#define netif_emerg(priv, type, dev, fmt, args...) \
2779 netif_level(emerg, priv, type, dev, fmt, ##args)
2780#define netif_alert(priv, type, dev, fmt, args...) \
2781 netif_level(alert, priv, type, dev, fmt, ##args)
2782#define netif_crit(priv, type, dev, fmt, args...) \
2783 netif_level(crit, priv, type, dev, fmt, ##args)
2784#define netif_err(priv, type, dev, fmt, args...) \
2785 netif_level(err, priv, type, dev, fmt, ##args)
2786#define netif_warn(priv, type, dev, fmt, args...) \
2787 netif_level(warn, priv, type, dev, fmt, ##args)
2788#define netif_notice(priv, type, dev, fmt, args...) \
2789 netif_level(notice, priv, type, dev, fmt, ##args)
2790#define netif_info(priv, type, dev, fmt, args...) \
2791 netif_level(info, priv, type, dev, fmt, ##args)
2792
2793#if defined(CONFIG_DYNAMIC_DEBUG)
2794#define netif_dbg(priv, type, netdev, format, args...) \
2795do { \
2796 if (netif_msg_##type(priv)) \
2797 dynamic_netdev_dbg(netdev, format, ##args); \
2798} while (0)
2799#elif defined(DEBUG)
2800#define netif_dbg(priv, type, dev, format, args...) \
2801 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2802#else
2803#define netif_dbg(priv, type, dev, format, args...) \
2804({ \
2805 if (0) \
2806 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2807 0; \
2808})
2809#endif
2810
2811#if defined(VERBOSE_DEBUG)
2812#define netif_vdbg netif_dbg
2813#else
2814#define netif_vdbg(priv, type, dev, format, args...) \
2815({ \
2816 if (0) \
2817 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2818 0; \
2819})
2820#endif
2821
2822#endif /* _LINUX_NETDEVICE_H */