at v3.7 39 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <generated/bounds.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_RECLAIMABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_RESERVE = MIGRATE_PCPTYPES, 44#ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59#endif 60 MIGRATE_ISOLATE, /* can't allocate from here */ 61 MIGRATE_TYPES 62}; 63 64#ifdef CONFIG_CMA 65# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 66# define cma_wmark_pages(zone) zone->min_cma_pages 67#else 68# define is_migrate_cma(migratetype) false 69# define cma_wmark_pages(zone) 0 70#endif 71 72#define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76extern int page_group_by_mobility_disabled; 77 78static inline int get_pageblock_migratetype(struct page *page) 79{ 80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 81} 82 83struct free_area { 84 struct list_head free_list[MIGRATE_TYPES]; 85 unsigned long nr_free; 86}; 87 88struct pglist_data; 89 90/* 91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 92 * So add a wild amount of padding here to ensure that they fall into separate 93 * cachelines. There are very few zone structures in the machine, so space 94 * consumption is not a concern here. 95 */ 96#if defined(CONFIG_SMP) 97struct zone_padding { 98 char x[0]; 99} ____cacheline_internodealigned_in_smp; 100#define ZONE_PADDING(name) struct zone_padding name; 101#else 102#define ZONE_PADDING(name) 103#endif 104 105enum zone_stat_item { 106 /* First 128 byte cacheline (assuming 64 bit words) */ 107 NR_FREE_PAGES, 108 NR_LRU_BASE, 109 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 110 NR_ACTIVE_ANON, /* " " " " " */ 111 NR_INACTIVE_FILE, /* " " " " " */ 112 NR_ACTIVE_FILE, /* " " " " " */ 113 NR_UNEVICTABLE, /* " " " " " */ 114 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 115 NR_ANON_PAGES, /* Mapped anonymous pages */ 116 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 117 only modified from process context */ 118 NR_FILE_PAGES, 119 NR_FILE_DIRTY, 120 NR_WRITEBACK, 121 NR_SLAB_RECLAIMABLE, 122 NR_SLAB_UNRECLAIMABLE, 123 NR_PAGETABLE, /* used for pagetables */ 124 NR_KERNEL_STACK, 125 /* Second 128 byte cacheline */ 126 NR_UNSTABLE_NFS, /* NFS unstable pages */ 127 NR_BOUNCE, 128 NR_VMSCAN_WRITE, 129 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 130 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 131 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 132 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 133 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 134 NR_DIRTIED, /* page dirtyings since bootup */ 135 NR_WRITTEN, /* page writings since bootup */ 136#ifdef CONFIG_NUMA 137 NUMA_HIT, /* allocated in intended node */ 138 NUMA_MISS, /* allocated in non intended node */ 139 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 141 NUMA_LOCAL, /* allocation from local node */ 142 NUMA_OTHER, /* allocation from other node */ 143#endif 144 NR_ANON_TRANSPARENT_HUGEPAGES, 145 NR_FREE_CMA_PAGES, 146 NR_VM_ZONE_STAT_ITEMS }; 147 148/* 149 * We do arithmetic on the LRU lists in various places in the code, 150 * so it is important to keep the active lists LRU_ACTIVE higher in 151 * the array than the corresponding inactive lists, and to keep 152 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 153 * 154 * This has to be kept in sync with the statistics in zone_stat_item 155 * above and the descriptions in vmstat_text in mm/vmstat.c 156 */ 157#define LRU_BASE 0 158#define LRU_ACTIVE 1 159#define LRU_FILE 2 160 161enum lru_list { 162 LRU_INACTIVE_ANON = LRU_BASE, 163 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 164 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 165 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 166 LRU_UNEVICTABLE, 167 NR_LRU_LISTS 168}; 169 170#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 171 172#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 173 174static inline int is_file_lru(enum lru_list lru) 175{ 176 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 177} 178 179static inline int is_active_lru(enum lru_list lru) 180{ 181 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 182} 183 184static inline int is_unevictable_lru(enum lru_list lru) 185{ 186 return (lru == LRU_UNEVICTABLE); 187} 188 189struct zone_reclaim_stat { 190 /* 191 * The pageout code in vmscan.c keeps track of how many of the 192 * mem/swap backed and file backed pages are referenced. 193 * The higher the rotated/scanned ratio, the more valuable 194 * that cache is. 195 * 196 * The anon LRU stats live in [0], file LRU stats in [1] 197 */ 198 unsigned long recent_rotated[2]; 199 unsigned long recent_scanned[2]; 200}; 201 202struct lruvec { 203 struct list_head lists[NR_LRU_LISTS]; 204 struct zone_reclaim_stat reclaim_stat; 205#ifdef CONFIG_MEMCG 206 struct zone *zone; 207#endif 208}; 209 210/* Mask used at gathering information at once (see memcontrol.c) */ 211#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 212#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 213#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 214 215/* Isolate clean file */ 216#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 217/* Isolate unmapped file */ 218#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 219/* Isolate for asynchronous migration */ 220#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 221/* Isolate unevictable pages */ 222#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 223 224/* LRU Isolation modes. */ 225typedef unsigned __bitwise__ isolate_mode_t; 226 227enum zone_watermarks { 228 WMARK_MIN, 229 WMARK_LOW, 230 WMARK_HIGH, 231 NR_WMARK 232}; 233 234#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 235#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 236#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 237 238struct per_cpu_pages { 239 int count; /* number of pages in the list */ 240 int high; /* high watermark, emptying needed */ 241 int batch; /* chunk size for buddy add/remove */ 242 243 /* Lists of pages, one per migrate type stored on the pcp-lists */ 244 struct list_head lists[MIGRATE_PCPTYPES]; 245}; 246 247struct per_cpu_pageset { 248 struct per_cpu_pages pcp; 249#ifdef CONFIG_NUMA 250 s8 expire; 251#endif 252#ifdef CONFIG_SMP 253 s8 stat_threshold; 254 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 255#endif 256}; 257 258#endif /* !__GENERATING_BOUNDS.H */ 259 260enum zone_type { 261#ifdef CONFIG_ZONE_DMA 262 /* 263 * ZONE_DMA is used when there are devices that are not able 264 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 265 * carve out the portion of memory that is needed for these devices. 266 * The range is arch specific. 267 * 268 * Some examples 269 * 270 * Architecture Limit 271 * --------------------------- 272 * parisc, ia64, sparc <4G 273 * s390 <2G 274 * arm Various 275 * alpha Unlimited or 0-16MB. 276 * 277 * i386, x86_64 and multiple other arches 278 * <16M. 279 */ 280 ZONE_DMA, 281#endif 282#ifdef CONFIG_ZONE_DMA32 283 /* 284 * x86_64 needs two ZONE_DMAs because it supports devices that are 285 * only able to do DMA to the lower 16M but also 32 bit devices that 286 * can only do DMA areas below 4G. 287 */ 288 ZONE_DMA32, 289#endif 290 /* 291 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 292 * performed on pages in ZONE_NORMAL if the DMA devices support 293 * transfers to all addressable memory. 294 */ 295 ZONE_NORMAL, 296#ifdef CONFIG_HIGHMEM 297 /* 298 * A memory area that is only addressable by the kernel through 299 * mapping portions into its own address space. This is for example 300 * used by i386 to allow the kernel to address the memory beyond 301 * 900MB. The kernel will set up special mappings (page 302 * table entries on i386) for each page that the kernel needs to 303 * access. 304 */ 305 ZONE_HIGHMEM, 306#endif 307 ZONE_MOVABLE, 308 __MAX_NR_ZONES 309}; 310 311#ifndef __GENERATING_BOUNDS_H 312 313/* 314 * When a memory allocation must conform to specific limitations (such 315 * as being suitable for DMA) the caller will pass in hints to the 316 * allocator in the gfp_mask, in the zone modifier bits. These bits 317 * are used to select a priority ordered list of memory zones which 318 * match the requested limits. See gfp_zone() in include/linux/gfp.h 319 */ 320 321#if MAX_NR_ZONES < 2 322#define ZONES_SHIFT 0 323#elif MAX_NR_ZONES <= 2 324#define ZONES_SHIFT 1 325#elif MAX_NR_ZONES <= 4 326#define ZONES_SHIFT 2 327#else 328#error ZONES_SHIFT -- too many zones configured adjust calculation 329#endif 330 331struct zone { 332 /* Fields commonly accessed by the page allocator */ 333 334 /* zone watermarks, access with *_wmark_pages(zone) macros */ 335 unsigned long watermark[NR_WMARK]; 336 337 /* 338 * When free pages are below this point, additional steps are taken 339 * when reading the number of free pages to avoid per-cpu counter 340 * drift allowing watermarks to be breached 341 */ 342 unsigned long percpu_drift_mark; 343 344 /* 345 * We don't know if the memory that we're going to allocate will be freeable 346 * or/and it will be released eventually, so to avoid totally wasting several 347 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 348 * to run OOM on the lower zones despite there's tons of freeable ram 349 * on the higher zones). This array is recalculated at runtime if the 350 * sysctl_lowmem_reserve_ratio sysctl changes. 351 */ 352 unsigned long lowmem_reserve[MAX_NR_ZONES]; 353 354 /* 355 * This is a per-zone reserve of pages that should not be 356 * considered dirtyable memory. 357 */ 358 unsigned long dirty_balance_reserve; 359 360#ifdef CONFIG_NUMA 361 int node; 362 /* 363 * zone reclaim becomes active if more unmapped pages exist. 364 */ 365 unsigned long min_unmapped_pages; 366 unsigned long min_slab_pages; 367#endif 368 struct per_cpu_pageset __percpu *pageset; 369 /* 370 * free areas of different sizes 371 */ 372 spinlock_t lock; 373 int all_unreclaimable; /* All pages pinned */ 374#if defined CONFIG_COMPACTION || defined CONFIG_CMA 375 /* Set to true when the PG_migrate_skip bits should be cleared */ 376 bool compact_blockskip_flush; 377 378 /* pfns where compaction scanners should start */ 379 unsigned long compact_cached_free_pfn; 380 unsigned long compact_cached_migrate_pfn; 381#endif 382#ifdef CONFIG_MEMORY_HOTPLUG 383 /* see spanned/present_pages for more description */ 384 seqlock_t span_seqlock; 385#endif 386#ifdef CONFIG_CMA 387 /* 388 * CMA needs to increase watermark levels during the allocation 389 * process to make sure that the system is not starved. 390 */ 391 unsigned long min_cma_pages; 392#endif 393 struct free_area free_area[MAX_ORDER]; 394 395#ifndef CONFIG_SPARSEMEM 396 /* 397 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 398 * In SPARSEMEM, this map is stored in struct mem_section 399 */ 400 unsigned long *pageblock_flags; 401#endif /* CONFIG_SPARSEMEM */ 402 403#ifdef CONFIG_COMPACTION 404 /* 405 * On compaction failure, 1<<compact_defer_shift compactions 406 * are skipped before trying again. The number attempted since 407 * last failure is tracked with compact_considered. 408 */ 409 unsigned int compact_considered; 410 unsigned int compact_defer_shift; 411 int compact_order_failed; 412#endif 413 414 ZONE_PADDING(_pad1_) 415 416 /* Fields commonly accessed by the page reclaim scanner */ 417 spinlock_t lru_lock; 418 struct lruvec lruvec; 419 420 unsigned long pages_scanned; /* since last reclaim */ 421 unsigned long flags; /* zone flags, see below */ 422 423 /* Zone statistics */ 424 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 425 426 /* 427 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 428 * this zone's LRU. Maintained by the pageout code. 429 */ 430 unsigned int inactive_ratio; 431 432 433 ZONE_PADDING(_pad2_) 434 /* Rarely used or read-mostly fields */ 435 436 /* 437 * wait_table -- the array holding the hash table 438 * wait_table_hash_nr_entries -- the size of the hash table array 439 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 440 * 441 * The purpose of all these is to keep track of the people 442 * waiting for a page to become available and make them 443 * runnable again when possible. The trouble is that this 444 * consumes a lot of space, especially when so few things 445 * wait on pages at a given time. So instead of using 446 * per-page waitqueues, we use a waitqueue hash table. 447 * 448 * The bucket discipline is to sleep on the same queue when 449 * colliding and wake all in that wait queue when removing. 450 * When something wakes, it must check to be sure its page is 451 * truly available, a la thundering herd. The cost of a 452 * collision is great, but given the expected load of the 453 * table, they should be so rare as to be outweighed by the 454 * benefits from the saved space. 455 * 456 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 457 * primary users of these fields, and in mm/page_alloc.c 458 * free_area_init_core() performs the initialization of them. 459 */ 460 wait_queue_head_t * wait_table; 461 unsigned long wait_table_hash_nr_entries; 462 unsigned long wait_table_bits; 463 464 /* 465 * Discontig memory support fields. 466 */ 467 struct pglist_data *zone_pgdat; 468 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 469 unsigned long zone_start_pfn; 470 471 /* 472 * zone_start_pfn, spanned_pages and present_pages are all 473 * protected by span_seqlock. It is a seqlock because it has 474 * to be read outside of zone->lock, and it is done in the main 475 * allocator path. But, it is written quite infrequently. 476 * 477 * The lock is declared along with zone->lock because it is 478 * frequently read in proximity to zone->lock. It's good to 479 * give them a chance of being in the same cacheline. 480 */ 481 unsigned long spanned_pages; /* total size, including holes */ 482 unsigned long present_pages; /* amount of memory (excluding holes) */ 483 484 /* 485 * rarely used fields: 486 */ 487 const char *name; 488#ifdef CONFIG_MEMORY_ISOLATION 489 /* 490 * the number of MIGRATE_ISOLATE *pageblock*. 491 * We need this for free page counting. Look at zone_watermark_ok_safe. 492 * It's protected by zone->lock 493 */ 494 int nr_pageblock_isolate; 495#endif 496} ____cacheline_internodealigned_in_smp; 497 498typedef enum { 499 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 500 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 501 ZONE_CONGESTED, /* zone has many dirty pages backed by 502 * a congested BDI 503 */ 504} zone_flags_t; 505 506static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 507{ 508 set_bit(flag, &zone->flags); 509} 510 511static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 512{ 513 return test_and_set_bit(flag, &zone->flags); 514} 515 516static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 517{ 518 clear_bit(flag, &zone->flags); 519} 520 521static inline int zone_is_reclaim_congested(const struct zone *zone) 522{ 523 return test_bit(ZONE_CONGESTED, &zone->flags); 524} 525 526static inline int zone_is_reclaim_locked(const struct zone *zone) 527{ 528 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 529} 530 531static inline int zone_is_oom_locked(const struct zone *zone) 532{ 533 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 534} 535 536/* 537 * The "priority" of VM scanning is how much of the queues we will scan in one 538 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 539 * queues ("queue_length >> 12") during an aging round. 540 */ 541#define DEF_PRIORITY 12 542 543/* Maximum number of zones on a zonelist */ 544#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 545 546#ifdef CONFIG_NUMA 547 548/* 549 * The NUMA zonelists are doubled because we need zonelists that restrict the 550 * allocations to a single node for GFP_THISNODE. 551 * 552 * [0] : Zonelist with fallback 553 * [1] : No fallback (GFP_THISNODE) 554 */ 555#define MAX_ZONELISTS 2 556 557 558/* 559 * We cache key information from each zonelist for smaller cache 560 * footprint when scanning for free pages in get_page_from_freelist(). 561 * 562 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 563 * up short of free memory since the last time (last_fullzone_zap) 564 * we zero'd fullzones. 565 * 2) The array z_to_n[] maps each zone in the zonelist to its node 566 * id, so that we can efficiently evaluate whether that node is 567 * set in the current tasks mems_allowed. 568 * 569 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 570 * indexed by a zones offset in the zonelist zones[] array. 571 * 572 * The get_page_from_freelist() routine does two scans. During the 573 * first scan, we skip zones whose corresponding bit in 'fullzones' 574 * is set or whose corresponding node in current->mems_allowed (which 575 * comes from cpusets) is not set. During the second scan, we bypass 576 * this zonelist_cache, to ensure we look methodically at each zone. 577 * 578 * Once per second, we zero out (zap) fullzones, forcing us to 579 * reconsider nodes that might have regained more free memory. 580 * The field last_full_zap is the time we last zapped fullzones. 581 * 582 * This mechanism reduces the amount of time we waste repeatedly 583 * reexaming zones for free memory when they just came up low on 584 * memory momentarilly ago. 585 * 586 * The zonelist_cache struct members logically belong in struct 587 * zonelist. However, the mempolicy zonelists constructed for 588 * MPOL_BIND are intentionally variable length (and usually much 589 * shorter). A general purpose mechanism for handling structs with 590 * multiple variable length members is more mechanism than we want 591 * here. We resort to some special case hackery instead. 592 * 593 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 594 * part because they are shorter), so we put the fixed length stuff 595 * at the front of the zonelist struct, ending in a variable length 596 * zones[], as is needed by MPOL_BIND. 597 * 598 * Then we put the optional zonelist cache on the end of the zonelist 599 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 600 * the fixed length portion at the front of the struct. This pointer 601 * both enables us to find the zonelist cache, and in the case of 602 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 603 * to know that the zonelist cache is not there. 604 * 605 * The end result is that struct zonelists come in two flavors: 606 * 1) The full, fixed length version, shown below, and 607 * 2) The custom zonelists for MPOL_BIND. 608 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 609 * 610 * Even though there may be multiple CPU cores on a node modifying 611 * fullzones or last_full_zap in the same zonelist_cache at the same 612 * time, we don't lock it. This is just hint data - if it is wrong now 613 * and then, the allocator will still function, perhaps a bit slower. 614 */ 615 616 617struct zonelist_cache { 618 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 619 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 620 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 621}; 622#else 623#define MAX_ZONELISTS 1 624struct zonelist_cache; 625#endif 626 627/* 628 * This struct contains information about a zone in a zonelist. It is stored 629 * here to avoid dereferences into large structures and lookups of tables 630 */ 631struct zoneref { 632 struct zone *zone; /* Pointer to actual zone */ 633 int zone_idx; /* zone_idx(zoneref->zone) */ 634}; 635 636/* 637 * One allocation request operates on a zonelist. A zonelist 638 * is a list of zones, the first one is the 'goal' of the 639 * allocation, the other zones are fallback zones, in decreasing 640 * priority. 641 * 642 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 643 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 644 * * 645 * To speed the reading of the zonelist, the zonerefs contain the zone index 646 * of the entry being read. Helper functions to access information given 647 * a struct zoneref are 648 * 649 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 650 * zonelist_zone_idx() - Return the index of the zone for an entry 651 * zonelist_node_idx() - Return the index of the node for an entry 652 */ 653struct zonelist { 654 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 655 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 656#ifdef CONFIG_NUMA 657 struct zonelist_cache zlcache; // optional ... 658#endif 659}; 660 661#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 662struct node_active_region { 663 unsigned long start_pfn; 664 unsigned long end_pfn; 665 int nid; 666}; 667#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 668 669#ifndef CONFIG_DISCONTIGMEM 670/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 671extern struct page *mem_map; 672#endif 673 674/* 675 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 676 * (mostly NUMA machines?) to denote a higher-level memory zone than the 677 * zone denotes. 678 * 679 * On NUMA machines, each NUMA node would have a pg_data_t to describe 680 * it's memory layout. 681 * 682 * Memory statistics and page replacement data structures are maintained on a 683 * per-zone basis. 684 */ 685struct bootmem_data; 686typedef struct pglist_data { 687 struct zone node_zones[MAX_NR_ZONES]; 688 struct zonelist node_zonelists[MAX_ZONELISTS]; 689 int nr_zones; 690#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 691 struct page *node_mem_map; 692#ifdef CONFIG_MEMCG 693 struct page_cgroup *node_page_cgroup; 694#endif 695#endif 696#ifndef CONFIG_NO_BOOTMEM 697 struct bootmem_data *bdata; 698#endif 699#ifdef CONFIG_MEMORY_HOTPLUG 700 /* 701 * Must be held any time you expect node_start_pfn, node_present_pages 702 * or node_spanned_pages stay constant. Holding this will also 703 * guarantee that any pfn_valid() stays that way. 704 * 705 * Nests above zone->lock and zone->size_seqlock. 706 */ 707 spinlock_t node_size_lock; 708#endif 709 unsigned long node_start_pfn; 710 unsigned long node_present_pages; /* total number of physical pages */ 711 unsigned long node_spanned_pages; /* total size of physical page 712 range, including holes */ 713 int node_id; 714 nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */ 715 wait_queue_head_t kswapd_wait; 716 wait_queue_head_t pfmemalloc_wait; 717 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */ 718 int kswapd_max_order; 719 enum zone_type classzone_idx; 720} pg_data_t; 721 722#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 723#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 724#ifdef CONFIG_FLAT_NODE_MEM_MAP 725#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 726#else 727#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 728#endif 729#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 730 731#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 732 733#define node_end_pfn(nid) ({\ 734 pg_data_t *__pgdat = NODE_DATA(nid);\ 735 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\ 736}) 737 738#include <linux/memory_hotplug.h> 739 740extern struct mutex zonelists_mutex; 741void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 742void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 743bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 744 int classzone_idx, int alloc_flags); 745bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 746 int classzone_idx, int alloc_flags); 747enum memmap_context { 748 MEMMAP_EARLY, 749 MEMMAP_HOTPLUG, 750}; 751extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 752 unsigned long size, 753 enum memmap_context context); 754 755extern void lruvec_init(struct lruvec *lruvec); 756 757static inline struct zone *lruvec_zone(struct lruvec *lruvec) 758{ 759#ifdef CONFIG_MEMCG 760 return lruvec->zone; 761#else 762 return container_of(lruvec, struct zone, lruvec); 763#endif 764} 765 766#ifdef CONFIG_HAVE_MEMORY_PRESENT 767void memory_present(int nid, unsigned long start, unsigned long end); 768#else 769static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 770#endif 771 772#ifdef CONFIG_HAVE_MEMORYLESS_NODES 773int local_memory_node(int node_id); 774#else 775static inline int local_memory_node(int node_id) { return node_id; }; 776#endif 777 778#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 779unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 780#endif 781 782/* 783 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 784 */ 785#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 786 787static inline int populated_zone(struct zone *zone) 788{ 789 return (!!zone->present_pages); 790} 791 792extern int movable_zone; 793 794static inline int zone_movable_is_highmem(void) 795{ 796#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 797 return movable_zone == ZONE_HIGHMEM; 798#else 799 return 0; 800#endif 801} 802 803static inline int is_highmem_idx(enum zone_type idx) 804{ 805#ifdef CONFIG_HIGHMEM 806 return (idx == ZONE_HIGHMEM || 807 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 808#else 809 return 0; 810#endif 811} 812 813static inline int is_normal_idx(enum zone_type idx) 814{ 815 return (idx == ZONE_NORMAL); 816} 817 818/** 819 * is_highmem - helper function to quickly check if a struct zone is a 820 * highmem zone or not. This is an attempt to keep references 821 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 822 * @zone - pointer to struct zone variable 823 */ 824static inline int is_highmem(struct zone *zone) 825{ 826#ifdef CONFIG_HIGHMEM 827 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 828 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 829 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 830 zone_movable_is_highmem()); 831#else 832 return 0; 833#endif 834} 835 836static inline int is_normal(struct zone *zone) 837{ 838 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 839} 840 841static inline int is_dma32(struct zone *zone) 842{ 843#ifdef CONFIG_ZONE_DMA32 844 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 845#else 846 return 0; 847#endif 848} 849 850static inline int is_dma(struct zone *zone) 851{ 852#ifdef CONFIG_ZONE_DMA 853 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 854#else 855 return 0; 856#endif 857} 858 859/* These two functions are used to setup the per zone pages min values */ 860struct ctl_table; 861int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 862 void __user *, size_t *, loff_t *); 863extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 864int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 865 void __user *, size_t *, loff_t *); 866int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 867 void __user *, size_t *, loff_t *); 868int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 869 void __user *, size_t *, loff_t *); 870int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 871 void __user *, size_t *, loff_t *); 872 873extern int numa_zonelist_order_handler(struct ctl_table *, int, 874 void __user *, size_t *, loff_t *); 875extern char numa_zonelist_order[]; 876#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 877 878#ifndef CONFIG_NEED_MULTIPLE_NODES 879 880extern struct pglist_data contig_page_data; 881#define NODE_DATA(nid) (&contig_page_data) 882#define NODE_MEM_MAP(nid) mem_map 883 884#else /* CONFIG_NEED_MULTIPLE_NODES */ 885 886#include <asm/mmzone.h> 887 888#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 889 890extern struct pglist_data *first_online_pgdat(void); 891extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 892extern struct zone *next_zone(struct zone *zone); 893 894/** 895 * for_each_online_pgdat - helper macro to iterate over all online nodes 896 * @pgdat - pointer to a pg_data_t variable 897 */ 898#define for_each_online_pgdat(pgdat) \ 899 for (pgdat = first_online_pgdat(); \ 900 pgdat; \ 901 pgdat = next_online_pgdat(pgdat)) 902/** 903 * for_each_zone - helper macro to iterate over all memory zones 904 * @zone - pointer to struct zone variable 905 * 906 * The user only needs to declare the zone variable, for_each_zone 907 * fills it in. 908 */ 909#define for_each_zone(zone) \ 910 for (zone = (first_online_pgdat())->node_zones; \ 911 zone; \ 912 zone = next_zone(zone)) 913 914#define for_each_populated_zone(zone) \ 915 for (zone = (first_online_pgdat())->node_zones; \ 916 zone; \ 917 zone = next_zone(zone)) \ 918 if (!populated_zone(zone)) \ 919 ; /* do nothing */ \ 920 else 921 922static inline struct zone *zonelist_zone(struct zoneref *zoneref) 923{ 924 return zoneref->zone; 925} 926 927static inline int zonelist_zone_idx(struct zoneref *zoneref) 928{ 929 return zoneref->zone_idx; 930} 931 932static inline int zonelist_node_idx(struct zoneref *zoneref) 933{ 934#ifdef CONFIG_NUMA 935 /* zone_to_nid not available in this context */ 936 return zoneref->zone->node; 937#else 938 return 0; 939#endif /* CONFIG_NUMA */ 940} 941 942/** 943 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 944 * @z - The cursor used as a starting point for the search 945 * @highest_zoneidx - The zone index of the highest zone to return 946 * @nodes - An optional nodemask to filter the zonelist with 947 * @zone - The first suitable zone found is returned via this parameter 948 * 949 * This function returns the next zone at or below a given zone index that is 950 * within the allowed nodemask using a cursor as the starting point for the 951 * search. The zoneref returned is a cursor that represents the current zone 952 * being examined. It should be advanced by one before calling 953 * next_zones_zonelist again. 954 */ 955struct zoneref *next_zones_zonelist(struct zoneref *z, 956 enum zone_type highest_zoneidx, 957 nodemask_t *nodes, 958 struct zone **zone); 959 960/** 961 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 962 * @zonelist - The zonelist to search for a suitable zone 963 * @highest_zoneidx - The zone index of the highest zone to return 964 * @nodes - An optional nodemask to filter the zonelist with 965 * @zone - The first suitable zone found is returned via this parameter 966 * 967 * This function returns the first zone at or below a given zone index that is 968 * within the allowed nodemask. The zoneref returned is a cursor that can be 969 * used to iterate the zonelist with next_zones_zonelist by advancing it by 970 * one before calling. 971 */ 972static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 973 enum zone_type highest_zoneidx, 974 nodemask_t *nodes, 975 struct zone **zone) 976{ 977 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 978 zone); 979} 980 981/** 982 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 983 * @zone - The current zone in the iterator 984 * @z - The current pointer within zonelist->zones being iterated 985 * @zlist - The zonelist being iterated 986 * @highidx - The zone index of the highest zone to return 987 * @nodemask - Nodemask allowed by the allocator 988 * 989 * This iterator iterates though all zones at or below a given zone index and 990 * within a given nodemask 991 */ 992#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 993 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 994 zone; \ 995 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 996 997/** 998 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 999 * @zone - The current zone in the iterator 1000 * @z - The current pointer within zonelist->zones being iterated 1001 * @zlist - The zonelist being iterated 1002 * @highidx - The zone index of the highest zone to return 1003 * 1004 * This iterator iterates though all zones at or below a given zone index. 1005 */ 1006#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1007 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1008 1009#ifdef CONFIG_SPARSEMEM 1010#include <asm/sparsemem.h> 1011#endif 1012 1013#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1014 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1015static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1016{ 1017 return 0; 1018} 1019#endif 1020 1021#ifdef CONFIG_FLATMEM 1022#define pfn_to_nid(pfn) (0) 1023#endif 1024 1025#ifdef CONFIG_SPARSEMEM 1026 1027/* 1028 * SECTION_SHIFT #bits space required to store a section # 1029 * 1030 * PA_SECTION_SHIFT physical address to/from section number 1031 * PFN_SECTION_SHIFT pfn to/from section number 1032 */ 1033#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 1034 1035#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1036#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1037 1038#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1039 1040#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1041#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1042 1043#define SECTION_BLOCKFLAGS_BITS \ 1044 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1045 1046#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1047#error Allocator MAX_ORDER exceeds SECTION_SIZE 1048#endif 1049 1050#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1051#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1052 1053#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1054#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1055 1056struct page; 1057struct page_cgroup; 1058struct mem_section { 1059 /* 1060 * This is, logically, a pointer to an array of struct 1061 * pages. However, it is stored with some other magic. 1062 * (see sparse.c::sparse_init_one_section()) 1063 * 1064 * Additionally during early boot we encode node id of 1065 * the location of the section here to guide allocation. 1066 * (see sparse.c::memory_present()) 1067 * 1068 * Making it a UL at least makes someone do a cast 1069 * before using it wrong. 1070 */ 1071 unsigned long section_mem_map; 1072 1073 /* See declaration of similar field in struct zone */ 1074 unsigned long *pageblock_flags; 1075#ifdef CONFIG_MEMCG 1076 /* 1077 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1078 * section. (see memcontrol.h/page_cgroup.h about this.) 1079 */ 1080 struct page_cgroup *page_cgroup; 1081 unsigned long pad; 1082#endif 1083}; 1084 1085#ifdef CONFIG_SPARSEMEM_EXTREME 1086#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1087#else 1088#define SECTIONS_PER_ROOT 1 1089#endif 1090 1091#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1092#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1093#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1094 1095#ifdef CONFIG_SPARSEMEM_EXTREME 1096extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1097#else 1098extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1099#endif 1100 1101static inline struct mem_section *__nr_to_section(unsigned long nr) 1102{ 1103 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1104 return NULL; 1105 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1106} 1107extern int __section_nr(struct mem_section* ms); 1108extern unsigned long usemap_size(void); 1109 1110/* 1111 * We use the lower bits of the mem_map pointer to store 1112 * a little bit of information. There should be at least 1113 * 3 bits here due to 32-bit alignment. 1114 */ 1115#define SECTION_MARKED_PRESENT (1UL<<0) 1116#define SECTION_HAS_MEM_MAP (1UL<<1) 1117#define SECTION_MAP_LAST_BIT (1UL<<2) 1118#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1119#define SECTION_NID_SHIFT 2 1120 1121static inline struct page *__section_mem_map_addr(struct mem_section *section) 1122{ 1123 unsigned long map = section->section_mem_map; 1124 map &= SECTION_MAP_MASK; 1125 return (struct page *)map; 1126} 1127 1128static inline int present_section(struct mem_section *section) 1129{ 1130 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1131} 1132 1133static inline int present_section_nr(unsigned long nr) 1134{ 1135 return present_section(__nr_to_section(nr)); 1136} 1137 1138static inline int valid_section(struct mem_section *section) 1139{ 1140 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1141} 1142 1143static inline int valid_section_nr(unsigned long nr) 1144{ 1145 return valid_section(__nr_to_section(nr)); 1146} 1147 1148static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1149{ 1150 return __nr_to_section(pfn_to_section_nr(pfn)); 1151} 1152 1153#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1154static inline int pfn_valid(unsigned long pfn) 1155{ 1156 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1157 return 0; 1158 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1159} 1160#endif 1161 1162static inline int pfn_present(unsigned long pfn) 1163{ 1164 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1165 return 0; 1166 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1167} 1168 1169/* 1170 * These are _only_ used during initialisation, therefore they 1171 * can use __initdata ... They could have names to indicate 1172 * this restriction. 1173 */ 1174#ifdef CONFIG_NUMA 1175#define pfn_to_nid(pfn) \ 1176({ \ 1177 unsigned long __pfn_to_nid_pfn = (pfn); \ 1178 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1179}) 1180#else 1181#define pfn_to_nid(pfn) (0) 1182#endif 1183 1184#define early_pfn_valid(pfn) pfn_valid(pfn) 1185void sparse_init(void); 1186#else 1187#define sparse_init() do {} while (0) 1188#define sparse_index_init(_sec, _nid) do {} while (0) 1189#endif /* CONFIG_SPARSEMEM */ 1190 1191#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1192bool early_pfn_in_nid(unsigned long pfn, int nid); 1193#else 1194#define early_pfn_in_nid(pfn, nid) (1) 1195#endif 1196 1197#ifndef early_pfn_valid 1198#define early_pfn_valid(pfn) (1) 1199#endif 1200 1201void memory_present(int nid, unsigned long start, unsigned long end); 1202unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1203 1204/* 1205 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1206 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1207 * pfn_valid_within() should be used in this case; we optimise this away 1208 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1209 */ 1210#ifdef CONFIG_HOLES_IN_ZONE 1211#define pfn_valid_within(pfn) pfn_valid(pfn) 1212#else 1213#define pfn_valid_within(pfn) (1) 1214#endif 1215 1216#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1217/* 1218 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1219 * associated with it or not. In FLATMEM, it is expected that holes always 1220 * have valid memmap as long as there is valid PFNs either side of the hole. 1221 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1222 * entire section. 1223 * 1224 * However, an ARM, and maybe other embedded architectures in the future 1225 * free memmap backing holes to save memory on the assumption the memmap is 1226 * never used. The page_zone linkages are then broken even though pfn_valid() 1227 * returns true. A walker of the full memmap must then do this additional 1228 * check to ensure the memmap they are looking at is sane by making sure 1229 * the zone and PFN linkages are still valid. This is expensive, but walkers 1230 * of the full memmap are extremely rare. 1231 */ 1232int memmap_valid_within(unsigned long pfn, 1233 struct page *page, struct zone *zone); 1234#else 1235static inline int memmap_valid_within(unsigned long pfn, 1236 struct page *page, struct zone *zone) 1237{ 1238 return 1; 1239} 1240#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1241 1242#endif /* !__GENERATING_BOUNDS.H */ 1243#endif /* !__ASSEMBLY__ */ 1244#endif /* _LINUX_MMZONE_H */