at v3.7 58 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/mm_types.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/bit_spinlock.h> 19#include <linux/shrinker.h> 20 21struct mempolicy; 22struct anon_vma; 23struct anon_vma_chain; 24struct file_ra_state; 25struct user_struct; 26struct writeback_control; 27 28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 29extern unsigned long max_mapnr; 30#endif 31 32extern unsigned long num_physpages; 33extern unsigned long totalram_pages; 34extern void * high_memory; 35extern int page_cluster; 36 37#ifdef CONFIG_SYSCTL 38extern int sysctl_legacy_va_layout; 39#else 40#define sysctl_legacy_va_layout 0 41#endif 42 43#include <asm/page.h> 44#include <asm/pgtable.h> 45#include <asm/processor.h> 46 47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 48 49/* to align the pointer to the (next) page boundary */ 50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 51 52/* 53 * Linux kernel virtual memory manager primitives. 54 * The idea being to have a "virtual" mm in the same way 55 * we have a virtual fs - giving a cleaner interface to the 56 * mm details, and allowing different kinds of memory mappings 57 * (from shared memory to executable loading to arbitrary 58 * mmap() functions). 59 */ 60 61extern struct kmem_cache *vm_area_cachep; 62 63#ifndef CONFIG_MMU 64extern struct rb_root nommu_region_tree; 65extern struct rw_semaphore nommu_region_sem; 66 67extern unsigned int kobjsize(const void *objp); 68#endif 69 70/* 71 * vm_flags in vm_area_struct, see mm_types.h. 72 */ 73#define VM_NONE 0x00000000 74 75#define VM_READ 0x00000001 /* currently active flags */ 76#define VM_WRITE 0x00000002 77#define VM_EXEC 0x00000004 78#define VM_SHARED 0x00000008 79 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 82#define VM_MAYWRITE 0x00000020 83#define VM_MAYEXEC 0x00000040 84#define VM_MAYSHARE 0x00000080 85 86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 89 90#define VM_LOCKED 0x00002000 91#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 92 93 /* Used by sys_madvise() */ 94#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 95#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 96 97#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 98#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 99#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 100#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 101#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 102#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 103#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 104#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 105 106#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 107#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 108#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 109#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 110 111#if defined(CONFIG_X86) 112# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 113#elif defined(CONFIG_PPC) 114# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 115#elif defined(CONFIG_PARISC) 116# define VM_GROWSUP VM_ARCH_1 117#elif defined(CONFIG_IA64) 118# define VM_GROWSUP VM_ARCH_1 119#elif !defined(CONFIG_MMU) 120# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 121#endif 122 123#ifndef VM_GROWSUP 124# define VM_GROWSUP VM_NONE 125#endif 126 127/* Bits set in the VMA until the stack is in its final location */ 128#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 129 130#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 131#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 132#endif 133 134#ifdef CONFIG_STACK_GROWSUP 135#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 136#else 137#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 138#endif 139 140#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 141#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 142#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 143#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 144#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 145 146/* 147 * Special vmas that are non-mergable, non-mlock()able. 148 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 149 */ 150#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 151 152/* 153 * mapping from the currently active vm_flags protection bits (the 154 * low four bits) to a page protection mask.. 155 */ 156extern pgprot_t protection_map[16]; 157 158#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 159#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 160#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 161#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 162#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 163#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 164#define FAULT_FLAG_TRIED 0x40 /* second try */ 165 166/* 167 * vm_fault is filled by the the pagefault handler and passed to the vma's 168 * ->fault function. The vma's ->fault is responsible for returning a bitmask 169 * of VM_FAULT_xxx flags that give details about how the fault was handled. 170 * 171 * pgoff should be used in favour of virtual_address, if possible. If pgoff 172 * is used, one may implement ->remap_pages to get nonlinear mapping support. 173 */ 174struct vm_fault { 175 unsigned int flags; /* FAULT_FLAG_xxx flags */ 176 pgoff_t pgoff; /* Logical page offset based on vma */ 177 void __user *virtual_address; /* Faulting virtual address */ 178 179 struct page *page; /* ->fault handlers should return a 180 * page here, unless VM_FAULT_NOPAGE 181 * is set (which is also implied by 182 * VM_FAULT_ERROR). 183 */ 184}; 185 186/* 187 * These are the virtual MM functions - opening of an area, closing and 188 * unmapping it (needed to keep files on disk up-to-date etc), pointer 189 * to the functions called when a no-page or a wp-page exception occurs. 190 */ 191struct vm_operations_struct { 192 void (*open)(struct vm_area_struct * area); 193 void (*close)(struct vm_area_struct * area); 194 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 195 196 /* notification that a previously read-only page is about to become 197 * writable, if an error is returned it will cause a SIGBUS */ 198 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 199 200 /* called by access_process_vm when get_user_pages() fails, typically 201 * for use by special VMAs that can switch between memory and hardware 202 */ 203 int (*access)(struct vm_area_struct *vma, unsigned long addr, 204 void *buf, int len, int write); 205#ifdef CONFIG_NUMA 206 /* 207 * set_policy() op must add a reference to any non-NULL @new mempolicy 208 * to hold the policy upon return. Caller should pass NULL @new to 209 * remove a policy and fall back to surrounding context--i.e. do not 210 * install a MPOL_DEFAULT policy, nor the task or system default 211 * mempolicy. 212 */ 213 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 214 215 /* 216 * get_policy() op must add reference [mpol_get()] to any policy at 217 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 218 * in mm/mempolicy.c will do this automatically. 219 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 220 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 221 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 222 * must return NULL--i.e., do not "fallback" to task or system default 223 * policy. 224 */ 225 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 226 unsigned long addr); 227 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 228 const nodemask_t *to, unsigned long flags); 229#endif 230 /* called by sys_remap_file_pages() to populate non-linear mapping */ 231 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 232 unsigned long size, pgoff_t pgoff); 233}; 234 235struct mmu_gather; 236struct inode; 237 238#define page_private(page) ((page)->private) 239#define set_page_private(page, v) ((page)->private = (v)) 240 241/* It's valid only if the page is free path or free_list */ 242static inline void set_freepage_migratetype(struct page *page, int migratetype) 243{ 244 page->index = migratetype; 245} 246 247/* It's valid only if the page is free path or free_list */ 248static inline int get_freepage_migratetype(struct page *page) 249{ 250 return page->index; 251} 252 253/* 254 * FIXME: take this include out, include page-flags.h in 255 * files which need it (119 of them) 256 */ 257#include <linux/page-flags.h> 258#include <linux/huge_mm.h> 259 260/* 261 * Methods to modify the page usage count. 262 * 263 * What counts for a page usage: 264 * - cache mapping (page->mapping) 265 * - private data (page->private) 266 * - page mapped in a task's page tables, each mapping 267 * is counted separately 268 * 269 * Also, many kernel routines increase the page count before a critical 270 * routine so they can be sure the page doesn't go away from under them. 271 */ 272 273/* 274 * Drop a ref, return true if the refcount fell to zero (the page has no users) 275 */ 276static inline int put_page_testzero(struct page *page) 277{ 278 VM_BUG_ON(atomic_read(&page->_count) == 0); 279 return atomic_dec_and_test(&page->_count); 280} 281 282/* 283 * Try to grab a ref unless the page has a refcount of zero, return false if 284 * that is the case. 285 */ 286static inline int get_page_unless_zero(struct page *page) 287{ 288 return atomic_inc_not_zero(&page->_count); 289} 290 291extern int page_is_ram(unsigned long pfn); 292 293/* Support for virtually mapped pages */ 294struct page *vmalloc_to_page(const void *addr); 295unsigned long vmalloc_to_pfn(const void *addr); 296 297/* 298 * Determine if an address is within the vmalloc range 299 * 300 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 301 * is no special casing required. 302 */ 303static inline int is_vmalloc_addr(const void *x) 304{ 305#ifdef CONFIG_MMU 306 unsigned long addr = (unsigned long)x; 307 308 return addr >= VMALLOC_START && addr < VMALLOC_END; 309#else 310 return 0; 311#endif 312} 313#ifdef CONFIG_MMU 314extern int is_vmalloc_or_module_addr(const void *x); 315#else 316static inline int is_vmalloc_or_module_addr(const void *x) 317{ 318 return 0; 319} 320#endif 321 322static inline void compound_lock(struct page *page) 323{ 324#ifdef CONFIG_TRANSPARENT_HUGEPAGE 325 VM_BUG_ON(PageSlab(page)); 326 bit_spin_lock(PG_compound_lock, &page->flags); 327#endif 328} 329 330static inline void compound_unlock(struct page *page) 331{ 332#ifdef CONFIG_TRANSPARENT_HUGEPAGE 333 VM_BUG_ON(PageSlab(page)); 334 bit_spin_unlock(PG_compound_lock, &page->flags); 335#endif 336} 337 338static inline unsigned long compound_lock_irqsave(struct page *page) 339{ 340 unsigned long uninitialized_var(flags); 341#ifdef CONFIG_TRANSPARENT_HUGEPAGE 342 local_irq_save(flags); 343 compound_lock(page); 344#endif 345 return flags; 346} 347 348static inline void compound_unlock_irqrestore(struct page *page, 349 unsigned long flags) 350{ 351#ifdef CONFIG_TRANSPARENT_HUGEPAGE 352 compound_unlock(page); 353 local_irq_restore(flags); 354#endif 355} 356 357static inline struct page *compound_head(struct page *page) 358{ 359 if (unlikely(PageTail(page))) 360 return page->first_page; 361 return page; 362} 363 364/* 365 * The atomic page->_mapcount, starts from -1: so that transitions 366 * both from it and to it can be tracked, using atomic_inc_and_test 367 * and atomic_add_negative(-1). 368 */ 369static inline void reset_page_mapcount(struct page *page) 370{ 371 atomic_set(&(page)->_mapcount, -1); 372} 373 374static inline int page_mapcount(struct page *page) 375{ 376 return atomic_read(&(page)->_mapcount) + 1; 377} 378 379static inline int page_count(struct page *page) 380{ 381 return atomic_read(&compound_head(page)->_count); 382} 383 384static inline void get_huge_page_tail(struct page *page) 385{ 386 /* 387 * __split_huge_page_refcount() cannot run 388 * from under us. 389 */ 390 VM_BUG_ON(page_mapcount(page) < 0); 391 VM_BUG_ON(atomic_read(&page->_count) != 0); 392 atomic_inc(&page->_mapcount); 393} 394 395extern bool __get_page_tail(struct page *page); 396 397static inline void get_page(struct page *page) 398{ 399 if (unlikely(PageTail(page))) 400 if (likely(__get_page_tail(page))) 401 return; 402 /* 403 * Getting a normal page or the head of a compound page 404 * requires to already have an elevated page->_count. 405 */ 406 VM_BUG_ON(atomic_read(&page->_count) <= 0); 407 atomic_inc(&page->_count); 408} 409 410static inline struct page *virt_to_head_page(const void *x) 411{ 412 struct page *page = virt_to_page(x); 413 return compound_head(page); 414} 415 416/* 417 * Setup the page count before being freed into the page allocator for 418 * the first time (boot or memory hotplug) 419 */ 420static inline void init_page_count(struct page *page) 421{ 422 atomic_set(&page->_count, 1); 423} 424 425/* 426 * PageBuddy() indicate that the page is free and in the buddy system 427 * (see mm/page_alloc.c). 428 * 429 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 430 * -2 so that an underflow of the page_mapcount() won't be mistaken 431 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 432 * efficiently by most CPU architectures. 433 */ 434#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 435 436static inline int PageBuddy(struct page *page) 437{ 438 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 439} 440 441static inline void __SetPageBuddy(struct page *page) 442{ 443 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 444 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 445} 446 447static inline void __ClearPageBuddy(struct page *page) 448{ 449 VM_BUG_ON(!PageBuddy(page)); 450 atomic_set(&page->_mapcount, -1); 451} 452 453void put_page(struct page *page); 454void put_pages_list(struct list_head *pages); 455 456void split_page(struct page *page, unsigned int order); 457int split_free_page(struct page *page); 458int capture_free_page(struct page *page, int alloc_order, int migratetype); 459 460/* 461 * Compound pages have a destructor function. Provide a 462 * prototype for that function and accessor functions. 463 * These are _only_ valid on the head of a PG_compound page. 464 */ 465typedef void compound_page_dtor(struct page *); 466 467static inline void set_compound_page_dtor(struct page *page, 468 compound_page_dtor *dtor) 469{ 470 page[1].lru.next = (void *)dtor; 471} 472 473static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 474{ 475 return (compound_page_dtor *)page[1].lru.next; 476} 477 478static inline int compound_order(struct page *page) 479{ 480 if (!PageHead(page)) 481 return 0; 482 return (unsigned long)page[1].lru.prev; 483} 484 485static inline int compound_trans_order(struct page *page) 486{ 487 int order; 488 unsigned long flags; 489 490 if (!PageHead(page)) 491 return 0; 492 493 flags = compound_lock_irqsave(page); 494 order = compound_order(page); 495 compound_unlock_irqrestore(page, flags); 496 return order; 497} 498 499static inline void set_compound_order(struct page *page, unsigned long order) 500{ 501 page[1].lru.prev = (void *)order; 502} 503 504#ifdef CONFIG_MMU 505/* 506 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 507 * servicing faults for write access. In the normal case, do always want 508 * pte_mkwrite. But get_user_pages can cause write faults for mappings 509 * that do not have writing enabled, when used by access_process_vm. 510 */ 511static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 512{ 513 if (likely(vma->vm_flags & VM_WRITE)) 514 pte = pte_mkwrite(pte); 515 return pte; 516} 517#endif 518 519/* 520 * Multiple processes may "see" the same page. E.g. for untouched 521 * mappings of /dev/null, all processes see the same page full of 522 * zeroes, and text pages of executables and shared libraries have 523 * only one copy in memory, at most, normally. 524 * 525 * For the non-reserved pages, page_count(page) denotes a reference count. 526 * page_count() == 0 means the page is free. page->lru is then used for 527 * freelist management in the buddy allocator. 528 * page_count() > 0 means the page has been allocated. 529 * 530 * Pages are allocated by the slab allocator in order to provide memory 531 * to kmalloc and kmem_cache_alloc. In this case, the management of the 532 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 533 * unless a particular usage is carefully commented. (the responsibility of 534 * freeing the kmalloc memory is the caller's, of course). 535 * 536 * A page may be used by anyone else who does a __get_free_page(). 537 * In this case, page_count still tracks the references, and should only 538 * be used through the normal accessor functions. The top bits of page->flags 539 * and page->virtual store page management information, but all other fields 540 * are unused and could be used privately, carefully. The management of this 541 * page is the responsibility of the one who allocated it, and those who have 542 * subsequently been given references to it. 543 * 544 * The other pages (we may call them "pagecache pages") are completely 545 * managed by the Linux memory manager: I/O, buffers, swapping etc. 546 * The following discussion applies only to them. 547 * 548 * A pagecache page contains an opaque `private' member, which belongs to the 549 * page's address_space. Usually, this is the address of a circular list of 550 * the page's disk buffers. PG_private must be set to tell the VM to call 551 * into the filesystem to release these pages. 552 * 553 * A page may belong to an inode's memory mapping. In this case, page->mapping 554 * is the pointer to the inode, and page->index is the file offset of the page, 555 * in units of PAGE_CACHE_SIZE. 556 * 557 * If pagecache pages are not associated with an inode, they are said to be 558 * anonymous pages. These may become associated with the swapcache, and in that 559 * case PG_swapcache is set, and page->private is an offset into the swapcache. 560 * 561 * In either case (swapcache or inode backed), the pagecache itself holds one 562 * reference to the page. Setting PG_private should also increment the 563 * refcount. The each user mapping also has a reference to the page. 564 * 565 * The pagecache pages are stored in a per-mapping radix tree, which is 566 * rooted at mapping->page_tree, and indexed by offset. 567 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 568 * lists, we instead now tag pages as dirty/writeback in the radix tree. 569 * 570 * All pagecache pages may be subject to I/O: 571 * - inode pages may need to be read from disk, 572 * - inode pages which have been modified and are MAP_SHARED may need 573 * to be written back to the inode on disk, 574 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 575 * modified may need to be swapped out to swap space and (later) to be read 576 * back into memory. 577 */ 578 579/* 580 * The zone field is never updated after free_area_init_core() 581 * sets it, so none of the operations on it need to be atomic. 582 */ 583 584 585/* 586 * page->flags layout: 587 * 588 * There are three possibilities for how page->flags get 589 * laid out. The first is for the normal case, without 590 * sparsemem. The second is for sparsemem when there is 591 * plenty of space for node and section. The last is when 592 * we have run out of space and have to fall back to an 593 * alternate (slower) way of determining the node. 594 * 595 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 596 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 597 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 598 */ 599#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 600#define SECTIONS_WIDTH SECTIONS_SHIFT 601#else 602#define SECTIONS_WIDTH 0 603#endif 604 605#define ZONES_WIDTH ZONES_SHIFT 606 607#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 608#define NODES_WIDTH NODES_SHIFT 609#else 610#ifdef CONFIG_SPARSEMEM_VMEMMAP 611#error "Vmemmap: No space for nodes field in page flags" 612#endif 613#define NODES_WIDTH 0 614#endif 615 616/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 617#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 618#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 619#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 620 621/* 622 * We are going to use the flags for the page to node mapping if its in 623 * there. This includes the case where there is no node, so it is implicit. 624 */ 625#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 626#define NODE_NOT_IN_PAGE_FLAGS 627#endif 628 629/* 630 * Define the bit shifts to access each section. For non-existent 631 * sections we define the shift as 0; that plus a 0 mask ensures 632 * the compiler will optimise away reference to them. 633 */ 634#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 635#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 636#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 637 638/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 639#ifdef NODE_NOT_IN_PAGE_FLAGS 640#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 641#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 642 SECTIONS_PGOFF : ZONES_PGOFF) 643#else 644#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 645#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 646 NODES_PGOFF : ZONES_PGOFF) 647#endif 648 649#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 650 651#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 652#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 653#endif 654 655#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 656#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 657#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 658#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 659 660static inline enum zone_type page_zonenum(const struct page *page) 661{ 662 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 663} 664 665/* 666 * The identification function is only used by the buddy allocator for 667 * determining if two pages could be buddies. We are not really 668 * identifying a zone since we could be using a the section number 669 * id if we have not node id available in page flags. 670 * We guarantee only that it will return the same value for two 671 * combinable pages in a zone. 672 */ 673static inline int page_zone_id(struct page *page) 674{ 675 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 676} 677 678static inline int zone_to_nid(struct zone *zone) 679{ 680#ifdef CONFIG_NUMA 681 return zone->node; 682#else 683 return 0; 684#endif 685} 686 687#ifdef NODE_NOT_IN_PAGE_FLAGS 688extern int page_to_nid(const struct page *page); 689#else 690static inline int page_to_nid(const struct page *page) 691{ 692 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 693} 694#endif 695 696static inline struct zone *page_zone(const struct page *page) 697{ 698 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 699} 700 701#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 702static inline void set_page_section(struct page *page, unsigned long section) 703{ 704 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 705 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 706} 707 708static inline unsigned long page_to_section(const struct page *page) 709{ 710 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 711} 712#endif 713 714static inline void set_page_zone(struct page *page, enum zone_type zone) 715{ 716 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 717 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 718} 719 720static inline void set_page_node(struct page *page, unsigned long node) 721{ 722 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 723 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 724} 725 726static inline void set_page_links(struct page *page, enum zone_type zone, 727 unsigned long node, unsigned long pfn) 728{ 729 set_page_zone(page, zone); 730 set_page_node(page, node); 731#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 732 set_page_section(page, pfn_to_section_nr(pfn)); 733#endif 734} 735 736/* 737 * Some inline functions in vmstat.h depend on page_zone() 738 */ 739#include <linux/vmstat.h> 740 741static __always_inline void *lowmem_page_address(const struct page *page) 742{ 743 return __va(PFN_PHYS(page_to_pfn(page))); 744} 745 746#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 747#define HASHED_PAGE_VIRTUAL 748#endif 749 750#if defined(WANT_PAGE_VIRTUAL) 751#define page_address(page) ((page)->virtual) 752#define set_page_address(page, address) \ 753 do { \ 754 (page)->virtual = (address); \ 755 } while(0) 756#define page_address_init() do { } while(0) 757#endif 758 759#if defined(HASHED_PAGE_VIRTUAL) 760void *page_address(const struct page *page); 761void set_page_address(struct page *page, void *virtual); 762void page_address_init(void); 763#endif 764 765#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 766#define page_address(page) lowmem_page_address(page) 767#define set_page_address(page, address) do { } while(0) 768#define page_address_init() do { } while(0) 769#endif 770 771/* 772 * On an anonymous page mapped into a user virtual memory area, 773 * page->mapping points to its anon_vma, not to a struct address_space; 774 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 775 * 776 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 777 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 778 * and then page->mapping points, not to an anon_vma, but to a private 779 * structure which KSM associates with that merged page. See ksm.h. 780 * 781 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 782 * 783 * Please note that, confusingly, "page_mapping" refers to the inode 784 * address_space which maps the page from disk; whereas "page_mapped" 785 * refers to user virtual address space into which the page is mapped. 786 */ 787#define PAGE_MAPPING_ANON 1 788#define PAGE_MAPPING_KSM 2 789#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 790 791extern struct address_space swapper_space; 792static inline struct address_space *page_mapping(struct page *page) 793{ 794 struct address_space *mapping = page->mapping; 795 796 VM_BUG_ON(PageSlab(page)); 797 if (unlikely(PageSwapCache(page))) 798 mapping = &swapper_space; 799 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 800 mapping = NULL; 801 return mapping; 802} 803 804/* Neutral page->mapping pointer to address_space or anon_vma or other */ 805static inline void *page_rmapping(struct page *page) 806{ 807 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 808} 809 810extern struct address_space *__page_file_mapping(struct page *); 811 812static inline 813struct address_space *page_file_mapping(struct page *page) 814{ 815 if (unlikely(PageSwapCache(page))) 816 return __page_file_mapping(page); 817 818 return page->mapping; 819} 820 821static inline int PageAnon(struct page *page) 822{ 823 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 824} 825 826/* 827 * Return the pagecache index of the passed page. Regular pagecache pages 828 * use ->index whereas swapcache pages use ->private 829 */ 830static inline pgoff_t page_index(struct page *page) 831{ 832 if (unlikely(PageSwapCache(page))) 833 return page_private(page); 834 return page->index; 835} 836 837extern pgoff_t __page_file_index(struct page *page); 838 839/* 840 * Return the file index of the page. Regular pagecache pages use ->index 841 * whereas swapcache pages use swp_offset(->private) 842 */ 843static inline pgoff_t page_file_index(struct page *page) 844{ 845 if (unlikely(PageSwapCache(page))) 846 return __page_file_index(page); 847 848 return page->index; 849} 850 851/* 852 * Return true if this page is mapped into pagetables. 853 */ 854static inline int page_mapped(struct page *page) 855{ 856 return atomic_read(&(page)->_mapcount) >= 0; 857} 858 859/* 860 * Different kinds of faults, as returned by handle_mm_fault(). 861 * Used to decide whether a process gets delivered SIGBUS or 862 * just gets major/minor fault counters bumped up. 863 */ 864 865#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 866 867#define VM_FAULT_OOM 0x0001 868#define VM_FAULT_SIGBUS 0x0002 869#define VM_FAULT_MAJOR 0x0004 870#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 871#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 872#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 873 874#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 875#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 876#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 877 878#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 879 880#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 881 VM_FAULT_HWPOISON_LARGE) 882 883/* Encode hstate index for a hwpoisoned large page */ 884#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 885#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 886 887/* 888 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 889 */ 890extern void pagefault_out_of_memory(void); 891 892#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 893 894/* 895 * Flags passed to show_mem() and show_free_areas() to suppress output in 896 * various contexts. 897 */ 898#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 899 900extern void show_free_areas(unsigned int flags); 901extern bool skip_free_areas_node(unsigned int flags, int nid); 902 903int shmem_zero_setup(struct vm_area_struct *); 904 905extern int can_do_mlock(void); 906extern int user_shm_lock(size_t, struct user_struct *); 907extern void user_shm_unlock(size_t, struct user_struct *); 908 909/* 910 * Parameter block passed down to zap_pte_range in exceptional cases. 911 */ 912struct zap_details { 913 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 914 struct address_space *check_mapping; /* Check page->mapping if set */ 915 pgoff_t first_index; /* Lowest page->index to unmap */ 916 pgoff_t last_index; /* Highest page->index to unmap */ 917}; 918 919struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 920 pte_t pte); 921 922int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 923 unsigned long size); 924void zap_page_range(struct vm_area_struct *vma, unsigned long address, 925 unsigned long size, struct zap_details *); 926void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 927 unsigned long start, unsigned long end); 928 929/** 930 * mm_walk - callbacks for walk_page_range 931 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 932 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 933 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 934 * this handler is required to be able to handle 935 * pmd_trans_huge() pmds. They may simply choose to 936 * split_huge_page() instead of handling it explicitly. 937 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 938 * @pte_hole: if set, called for each hole at all levels 939 * @hugetlb_entry: if set, called for each hugetlb entry 940 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 941 * is used. 942 * 943 * (see walk_page_range for more details) 944 */ 945struct mm_walk { 946 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 947 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 948 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 949 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 950 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 951 int (*hugetlb_entry)(pte_t *, unsigned long, 952 unsigned long, unsigned long, struct mm_walk *); 953 struct mm_struct *mm; 954 void *private; 955}; 956 957int walk_page_range(unsigned long addr, unsigned long end, 958 struct mm_walk *walk); 959void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 960 unsigned long end, unsigned long floor, unsigned long ceiling); 961int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 962 struct vm_area_struct *vma); 963void unmap_mapping_range(struct address_space *mapping, 964 loff_t const holebegin, loff_t const holelen, int even_cows); 965int follow_pfn(struct vm_area_struct *vma, unsigned long address, 966 unsigned long *pfn); 967int follow_phys(struct vm_area_struct *vma, unsigned long address, 968 unsigned int flags, unsigned long *prot, resource_size_t *phys); 969int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 970 void *buf, int len, int write); 971 972static inline void unmap_shared_mapping_range(struct address_space *mapping, 973 loff_t const holebegin, loff_t const holelen) 974{ 975 unmap_mapping_range(mapping, holebegin, holelen, 0); 976} 977 978extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 979extern void truncate_setsize(struct inode *inode, loff_t newsize); 980extern int vmtruncate(struct inode *inode, loff_t offset); 981void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 982int truncate_inode_page(struct address_space *mapping, struct page *page); 983int generic_error_remove_page(struct address_space *mapping, struct page *page); 984int invalidate_inode_page(struct page *page); 985 986#ifdef CONFIG_MMU 987extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 988 unsigned long address, unsigned int flags); 989extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 990 unsigned long address, unsigned int fault_flags); 991#else 992static inline int handle_mm_fault(struct mm_struct *mm, 993 struct vm_area_struct *vma, unsigned long address, 994 unsigned int flags) 995{ 996 /* should never happen if there's no MMU */ 997 BUG(); 998 return VM_FAULT_SIGBUS; 999} 1000static inline int fixup_user_fault(struct task_struct *tsk, 1001 struct mm_struct *mm, unsigned long address, 1002 unsigned int fault_flags) 1003{ 1004 /* should never happen if there's no MMU */ 1005 BUG(); 1006 return -EFAULT; 1007} 1008#endif 1009 1010extern int make_pages_present(unsigned long addr, unsigned long end); 1011extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1012extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1013 void *buf, int len, int write); 1014 1015int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1016 unsigned long start, int len, unsigned int foll_flags, 1017 struct page **pages, struct vm_area_struct **vmas, 1018 int *nonblocking); 1019int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1020 unsigned long start, int nr_pages, int write, int force, 1021 struct page **pages, struct vm_area_struct **vmas); 1022int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1023 struct page **pages); 1024struct kvec; 1025int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1026 struct page **pages); 1027int get_kernel_page(unsigned long start, int write, struct page **pages); 1028struct page *get_dump_page(unsigned long addr); 1029 1030extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1031extern void do_invalidatepage(struct page *page, unsigned long offset); 1032 1033int __set_page_dirty_nobuffers(struct page *page); 1034int __set_page_dirty_no_writeback(struct page *page); 1035int redirty_page_for_writepage(struct writeback_control *wbc, 1036 struct page *page); 1037void account_page_dirtied(struct page *page, struct address_space *mapping); 1038void account_page_writeback(struct page *page); 1039int set_page_dirty(struct page *page); 1040int set_page_dirty_lock(struct page *page); 1041int clear_page_dirty_for_io(struct page *page); 1042 1043/* Is the vma a continuation of the stack vma above it? */ 1044static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1045{ 1046 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1047} 1048 1049static inline int stack_guard_page_start(struct vm_area_struct *vma, 1050 unsigned long addr) 1051{ 1052 return (vma->vm_flags & VM_GROWSDOWN) && 1053 (vma->vm_start == addr) && 1054 !vma_growsdown(vma->vm_prev, addr); 1055} 1056 1057/* Is the vma a continuation of the stack vma below it? */ 1058static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1059{ 1060 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1061} 1062 1063static inline int stack_guard_page_end(struct vm_area_struct *vma, 1064 unsigned long addr) 1065{ 1066 return (vma->vm_flags & VM_GROWSUP) && 1067 (vma->vm_end == addr) && 1068 !vma_growsup(vma->vm_next, addr); 1069} 1070 1071extern pid_t 1072vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1073 1074extern unsigned long move_page_tables(struct vm_area_struct *vma, 1075 unsigned long old_addr, struct vm_area_struct *new_vma, 1076 unsigned long new_addr, unsigned long len, 1077 bool need_rmap_locks); 1078extern unsigned long do_mremap(unsigned long addr, 1079 unsigned long old_len, unsigned long new_len, 1080 unsigned long flags, unsigned long new_addr); 1081extern int mprotect_fixup(struct vm_area_struct *vma, 1082 struct vm_area_struct **pprev, unsigned long start, 1083 unsigned long end, unsigned long newflags); 1084 1085/* 1086 * doesn't attempt to fault and will return short. 1087 */ 1088int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1089 struct page **pages); 1090/* 1091 * per-process(per-mm_struct) statistics. 1092 */ 1093static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1094{ 1095 long val = atomic_long_read(&mm->rss_stat.count[member]); 1096 1097#ifdef SPLIT_RSS_COUNTING 1098 /* 1099 * counter is updated in asynchronous manner and may go to minus. 1100 * But it's never be expected number for users. 1101 */ 1102 if (val < 0) 1103 val = 0; 1104#endif 1105 return (unsigned long)val; 1106} 1107 1108static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1109{ 1110 atomic_long_add(value, &mm->rss_stat.count[member]); 1111} 1112 1113static inline void inc_mm_counter(struct mm_struct *mm, int member) 1114{ 1115 atomic_long_inc(&mm->rss_stat.count[member]); 1116} 1117 1118static inline void dec_mm_counter(struct mm_struct *mm, int member) 1119{ 1120 atomic_long_dec(&mm->rss_stat.count[member]); 1121} 1122 1123static inline unsigned long get_mm_rss(struct mm_struct *mm) 1124{ 1125 return get_mm_counter(mm, MM_FILEPAGES) + 1126 get_mm_counter(mm, MM_ANONPAGES); 1127} 1128 1129static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1130{ 1131 return max(mm->hiwater_rss, get_mm_rss(mm)); 1132} 1133 1134static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1135{ 1136 return max(mm->hiwater_vm, mm->total_vm); 1137} 1138 1139static inline void update_hiwater_rss(struct mm_struct *mm) 1140{ 1141 unsigned long _rss = get_mm_rss(mm); 1142 1143 if ((mm)->hiwater_rss < _rss) 1144 (mm)->hiwater_rss = _rss; 1145} 1146 1147static inline void update_hiwater_vm(struct mm_struct *mm) 1148{ 1149 if (mm->hiwater_vm < mm->total_vm) 1150 mm->hiwater_vm = mm->total_vm; 1151} 1152 1153static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1154 struct mm_struct *mm) 1155{ 1156 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1157 1158 if (*maxrss < hiwater_rss) 1159 *maxrss = hiwater_rss; 1160} 1161 1162#if defined(SPLIT_RSS_COUNTING) 1163void sync_mm_rss(struct mm_struct *mm); 1164#else 1165static inline void sync_mm_rss(struct mm_struct *mm) 1166{ 1167} 1168#endif 1169 1170int vma_wants_writenotify(struct vm_area_struct *vma); 1171 1172extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1173 spinlock_t **ptl); 1174static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1175 spinlock_t **ptl) 1176{ 1177 pte_t *ptep; 1178 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1179 return ptep; 1180} 1181 1182#ifdef __PAGETABLE_PUD_FOLDED 1183static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1184 unsigned long address) 1185{ 1186 return 0; 1187} 1188#else 1189int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1190#endif 1191 1192#ifdef __PAGETABLE_PMD_FOLDED 1193static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1194 unsigned long address) 1195{ 1196 return 0; 1197} 1198#else 1199int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1200#endif 1201 1202int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1203 pmd_t *pmd, unsigned long address); 1204int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1205 1206/* 1207 * The following ifdef needed to get the 4level-fixup.h header to work. 1208 * Remove it when 4level-fixup.h has been removed. 1209 */ 1210#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1211static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1212{ 1213 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1214 NULL: pud_offset(pgd, address); 1215} 1216 1217static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1218{ 1219 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1220 NULL: pmd_offset(pud, address); 1221} 1222#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1223 1224#if USE_SPLIT_PTLOCKS 1225/* 1226 * We tuck a spinlock to guard each pagetable page into its struct page, 1227 * at page->private, with BUILD_BUG_ON to make sure that this will not 1228 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1229 * When freeing, reset page->mapping so free_pages_check won't complain. 1230 */ 1231#define __pte_lockptr(page) &((page)->ptl) 1232#define pte_lock_init(_page) do { \ 1233 spin_lock_init(__pte_lockptr(_page)); \ 1234} while (0) 1235#define pte_lock_deinit(page) ((page)->mapping = NULL) 1236#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1237#else /* !USE_SPLIT_PTLOCKS */ 1238/* 1239 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1240 */ 1241#define pte_lock_init(page) do {} while (0) 1242#define pte_lock_deinit(page) do {} while (0) 1243#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1244#endif /* USE_SPLIT_PTLOCKS */ 1245 1246static inline void pgtable_page_ctor(struct page *page) 1247{ 1248 pte_lock_init(page); 1249 inc_zone_page_state(page, NR_PAGETABLE); 1250} 1251 1252static inline void pgtable_page_dtor(struct page *page) 1253{ 1254 pte_lock_deinit(page); 1255 dec_zone_page_state(page, NR_PAGETABLE); 1256} 1257 1258#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1259({ \ 1260 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1261 pte_t *__pte = pte_offset_map(pmd, address); \ 1262 *(ptlp) = __ptl; \ 1263 spin_lock(__ptl); \ 1264 __pte; \ 1265}) 1266 1267#define pte_unmap_unlock(pte, ptl) do { \ 1268 spin_unlock(ptl); \ 1269 pte_unmap(pte); \ 1270} while (0) 1271 1272#define pte_alloc_map(mm, vma, pmd, address) \ 1273 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1274 pmd, address))? \ 1275 NULL: pte_offset_map(pmd, address)) 1276 1277#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1278 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1279 pmd, address))? \ 1280 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1281 1282#define pte_alloc_kernel(pmd, address) \ 1283 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1284 NULL: pte_offset_kernel(pmd, address)) 1285 1286extern void free_area_init(unsigned long * zones_size); 1287extern void free_area_init_node(int nid, unsigned long * zones_size, 1288 unsigned long zone_start_pfn, unsigned long *zholes_size); 1289extern void free_initmem(void); 1290 1291#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1292/* 1293 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1294 * zones, allocate the backing mem_map and account for memory holes in a more 1295 * architecture independent manner. This is a substitute for creating the 1296 * zone_sizes[] and zholes_size[] arrays and passing them to 1297 * free_area_init_node() 1298 * 1299 * An architecture is expected to register range of page frames backed by 1300 * physical memory with memblock_add[_node]() before calling 1301 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1302 * usage, an architecture is expected to do something like 1303 * 1304 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1305 * max_highmem_pfn}; 1306 * for_each_valid_physical_page_range() 1307 * memblock_add_node(base, size, nid) 1308 * free_area_init_nodes(max_zone_pfns); 1309 * 1310 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1311 * registered physical page range. Similarly 1312 * sparse_memory_present_with_active_regions() calls memory_present() for 1313 * each range when SPARSEMEM is enabled. 1314 * 1315 * See mm/page_alloc.c for more information on each function exposed by 1316 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1317 */ 1318extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1319unsigned long node_map_pfn_alignment(void); 1320unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1321 unsigned long end_pfn); 1322extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1323 unsigned long end_pfn); 1324extern void get_pfn_range_for_nid(unsigned int nid, 1325 unsigned long *start_pfn, unsigned long *end_pfn); 1326extern unsigned long find_min_pfn_with_active_regions(void); 1327extern void free_bootmem_with_active_regions(int nid, 1328 unsigned long max_low_pfn); 1329extern void sparse_memory_present_with_active_regions(int nid); 1330 1331#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1332 1333#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1334 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1335static inline int __early_pfn_to_nid(unsigned long pfn) 1336{ 1337 return 0; 1338} 1339#else 1340/* please see mm/page_alloc.c */ 1341extern int __meminit early_pfn_to_nid(unsigned long pfn); 1342#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1343/* there is a per-arch backend function. */ 1344extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1345#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1346#endif 1347 1348extern void set_dma_reserve(unsigned long new_dma_reserve); 1349extern void memmap_init_zone(unsigned long, int, unsigned long, 1350 unsigned long, enum memmap_context); 1351extern void setup_per_zone_wmarks(void); 1352extern int __meminit init_per_zone_wmark_min(void); 1353extern void mem_init(void); 1354extern void __init mmap_init(void); 1355extern void show_mem(unsigned int flags); 1356extern void si_meminfo(struct sysinfo * val); 1357extern void si_meminfo_node(struct sysinfo *val, int nid); 1358extern int after_bootmem; 1359 1360extern __printf(3, 4) 1361void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1362 1363extern void setup_per_cpu_pageset(void); 1364 1365extern void zone_pcp_update(struct zone *zone); 1366extern void zone_pcp_reset(struct zone *zone); 1367 1368/* nommu.c */ 1369extern atomic_long_t mmap_pages_allocated; 1370extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1371 1372/* interval_tree.c */ 1373void vma_interval_tree_insert(struct vm_area_struct *node, 1374 struct rb_root *root); 1375void vma_interval_tree_insert_after(struct vm_area_struct *node, 1376 struct vm_area_struct *prev, 1377 struct rb_root *root); 1378void vma_interval_tree_remove(struct vm_area_struct *node, 1379 struct rb_root *root); 1380struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1381 unsigned long start, unsigned long last); 1382struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1383 unsigned long start, unsigned long last); 1384 1385#define vma_interval_tree_foreach(vma, root, start, last) \ 1386 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1387 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1388 1389static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1390 struct list_head *list) 1391{ 1392 list_add_tail(&vma->shared.nonlinear, list); 1393} 1394 1395void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1396 struct rb_root *root); 1397void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1398 struct rb_root *root); 1399struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1400 struct rb_root *root, unsigned long start, unsigned long last); 1401struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1402 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1403#ifdef CONFIG_DEBUG_VM_RB 1404void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1405#endif 1406 1407#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1408 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1409 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1410 1411/* mmap.c */ 1412extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1413extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1414 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1415extern struct vm_area_struct *vma_merge(struct mm_struct *, 1416 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1417 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1418 struct mempolicy *); 1419extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1420extern int split_vma(struct mm_struct *, 1421 struct vm_area_struct *, unsigned long addr, int new_below); 1422extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1423extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1424 struct rb_node **, struct rb_node *); 1425extern void unlink_file_vma(struct vm_area_struct *); 1426extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1427 unsigned long addr, unsigned long len, pgoff_t pgoff, 1428 bool *need_rmap_locks); 1429extern void exit_mmap(struct mm_struct *); 1430 1431extern int mm_take_all_locks(struct mm_struct *mm); 1432extern void mm_drop_all_locks(struct mm_struct *mm); 1433 1434extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1435extern struct file *get_mm_exe_file(struct mm_struct *mm); 1436 1437extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1438extern int install_special_mapping(struct mm_struct *mm, 1439 unsigned long addr, unsigned long len, 1440 unsigned long flags, struct page **pages); 1441 1442extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1443 1444extern unsigned long mmap_region(struct file *file, unsigned long addr, 1445 unsigned long len, unsigned long flags, 1446 vm_flags_t vm_flags, unsigned long pgoff); 1447extern unsigned long do_mmap_pgoff(struct file *, unsigned long, 1448 unsigned long, unsigned long, 1449 unsigned long, unsigned long); 1450extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1451 1452/* These take the mm semaphore themselves */ 1453extern unsigned long vm_brk(unsigned long, unsigned long); 1454extern int vm_munmap(unsigned long, size_t); 1455extern unsigned long vm_mmap(struct file *, unsigned long, 1456 unsigned long, unsigned long, 1457 unsigned long, unsigned long); 1458 1459/* truncate.c */ 1460extern void truncate_inode_pages(struct address_space *, loff_t); 1461extern void truncate_inode_pages_range(struct address_space *, 1462 loff_t lstart, loff_t lend); 1463 1464/* generic vm_area_ops exported for stackable file systems */ 1465extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1466extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1467 1468/* mm/page-writeback.c */ 1469int write_one_page(struct page *page, int wait); 1470void task_dirty_inc(struct task_struct *tsk); 1471 1472/* readahead.c */ 1473#define VM_MAX_READAHEAD 128 /* kbytes */ 1474#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1475 1476int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1477 pgoff_t offset, unsigned long nr_to_read); 1478 1479void page_cache_sync_readahead(struct address_space *mapping, 1480 struct file_ra_state *ra, 1481 struct file *filp, 1482 pgoff_t offset, 1483 unsigned long size); 1484 1485void page_cache_async_readahead(struct address_space *mapping, 1486 struct file_ra_state *ra, 1487 struct file *filp, 1488 struct page *pg, 1489 pgoff_t offset, 1490 unsigned long size); 1491 1492unsigned long max_sane_readahead(unsigned long nr); 1493unsigned long ra_submit(struct file_ra_state *ra, 1494 struct address_space *mapping, 1495 struct file *filp); 1496 1497/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1498extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1499 1500/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1501extern int expand_downwards(struct vm_area_struct *vma, 1502 unsigned long address); 1503#if VM_GROWSUP 1504extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1505#else 1506 #define expand_upwards(vma, address) do { } while (0) 1507#endif 1508 1509/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1510extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1511extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1512 struct vm_area_struct **pprev); 1513 1514/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1515 NULL if none. Assume start_addr < end_addr. */ 1516static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1517{ 1518 struct vm_area_struct * vma = find_vma(mm,start_addr); 1519 1520 if (vma && end_addr <= vma->vm_start) 1521 vma = NULL; 1522 return vma; 1523} 1524 1525static inline unsigned long vma_pages(struct vm_area_struct *vma) 1526{ 1527 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1528} 1529 1530/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1531static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1532 unsigned long vm_start, unsigned long vm_end) 1533{ 1534 struct vm_area_struct *vma = find_vma(mm, vm_start); 1535 1536 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1537 vma = NULL; 1538 1539 return vma; 1540} 1541 1542#ifdef CONFIG_MMU 1543pgprot_t vm_get_page_prot(unsigned long vm_flags); 1544#else 1545static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1546{ 1547 return __pgprot(0); 1548} 1549#endif 1550 1551struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1552int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1553 unsigned long pfn, unsigned long size, pgprot_t); 1554int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1555int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1556 unsigned long pfn); 1557int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1558 unsigned long pfn); 1559 1560struct page *follow_page(struct vm_area_struct *, unsigned long address, 1561 unsigned int foll_flags); 1562#define FOLL_WRITE 0x01 /* check pte is writable */ 1563#define FOLL_TOUCH 0x02 /* mark page accessed */ 1564#define FOLL_GET 0x04 /* do get_page on page */ 1565#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1566#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1567#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1568 * and return without waiting upon it */ 1569#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1570#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1571#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1572 1573typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1574 void *data); 1575extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1576 unsigned long size, pte_fn_t fn, void *data); 1577 1578#ifdef CONFIG_PROC_FS 1579void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1580#else 1581static inline void vm_stat_account(struct mm_struct *mm, 1582 unsigned long flags, struct file *file, long pages) 1583{ 1584 mm->total_vm += pages; 1585} 1586#endif /* CONFIG_PROC_FS */ 1587 1588#ifdef CONFIG_DEBUG_PAGEALLOC 1589extern void kernel_map_pages(struct page *page, int numpages, int enable); 1590#ifdef CONFIG_HIBERNATION 1591extern bool kernel_page_present(struct page *page); 1592#endif /* CONFIG_HIBERNATION */ 1593#else 1594static inline void 1595kernel_map_pages(struct page *page, int numpages, int enable) {} 1596#ifdef CONFIG_HIBERNATION 1597static inline bool kernel_page_present(struct page *page) { return true; } 1598#endif /* CONFIG_HIBERNATION */ 1599#endif 1600 1601extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1602#ifdef __HAVE_ARCH_GATE_AREA 1603int in_gate_area_no_mm(unsigned long addr); 1604int in_gate_area(struct mm_struct *mm, unsigned long addr); 1605#else 1606int in_gate_area_no_mm(unsigned long addr); 1607#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1608#endif /* __HAVE_ARCH_GATE_AREA */ 1609 1610int drop_caches_sysctl_handler(struct ctl_table *, int, 1611 void __user *, size_t *, loff_t *); 1612unsigned long shrink_slab(struct shrink_control *shrink, 1613 unsigned long nr_pages_scanned, 1614 unsigned long lru_pages); 1615 1616#ifndef CONFIG_MMU 1617#define randomize_va_space 0 1618#else 1619extern int randomize_va_space; 1620#endif 1621 1622const char * arch_vma_name(struct vm_area_struct *vma); 1623void print_vma_addr(char *prefix, unsigned long rip); 1624 1625void sparse_mem_maps_populate_node(struct page **map_map, 1626 unsigned long pnum_begin, 1627 unsigned long pnum_end, 1628 unsigned long map_count, 1629 int nodeid); 1630 1631struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1632pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1633pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1634pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1635pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1636void *vmemmap_alloc_block(unsigned long size, int node); 1637void *vmemmap_alloc_block_buf(unsigned long size, int node); 1638void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1639int vmemmap_populate_basepages(struct page *start_page, 1640 unsigned long pages, int node); 1641int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1642void vmemmap_populate_print_last(void); 1643 1644 1645enum mf_flags { 1646 MF_COUNT_INCREASED = 1 << 0, 1647 MF_ACTION_REQUIRED = 1 << 1, 1648 MF_MUST_KILL = 1 << 2, 1649}; 1650extern int memory_failure(unsigned long pfn, int trapno, int flags); 1651extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1652extern int unpoison_memory(unsigned long pfn); 1653extern int sysctl_memory_failure_early_kill; 1654extern int sysctl_memory_failure_recovery; 1655extern void shake_page(struct page *p, int access); 1656extern atomic_long_t mce_bad_pages; 1657extern int soft_offline_page(struct page *page, int flags); 1658 1659extern void dump_page(struct page *page); 1660 1661#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1662extern void clear_huge_page(struct page *page, 1663 unsigned long addr, 1664 unsigned int pages_per_huge_page); 1665extern void copy_user_huge_page(struct page *dst, struct page *src, 1666 unsigned long addr, struct vm_area_struct *vma, 1667 unsigned int pages_per_huge_page); 1668#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1669 1670#ifdef CONFIG_DEBUG_PAGEALLOC 1671extern unsigned int _debug_guardpage_minorder; 1672 1673static inline unsigned int debug_guardpage_minorder(void) 1674{ 1675 return _debug_guardpage_minorder; 1676} 1677 1678static inline bool page_is_guard(struct page *page) 1679{ 1680 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1681} 1682#else 1683static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1684static inline bool page_is_guard(struct page *page) { return false; } 1685#endif /* CONFIG_DEBUG_PAGEALLOC */ 1686 1687#endif /* __KERNEL__ */ 1688#endif /* _LINUX_MM_H */