at v3.7 16 kB view raw
1#ifndef _ASM_GENERIC_PGTABLE_H 2#define _ASM_GENERIC_PGTABLE_H 3 4#ifndef __ASSEMBLY__ 5#ifdef CONFIG_MMU 6 7#include <linux/mm_types.h> 8#include <linux/bug.h> 9 10#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 11extern int ptep_set_access_flags(struct vm_area_struct *vma, 12 unsigned long address, pte_t *ptep, 13 pte_t entry, int dirty); 14#endif 15 16#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 17extern int pmdp_set_access_flags(struct vm_area_struct *vma, 18 unsigned long address, pmd_t *pmdp, 19 pmd_t entry, int dirty); 20#endif 21 22#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 23static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 24 unsigned long address, 25 pte_t *ptep) 26{ 27 pte_t pte = *ptep; 28 int r = 1; 29 if (!pte_young(pte)) 30 r = 0; 31 else 32 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 33 return r; 34} 35#endif 36 37#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 38#ifdef CONFIG_TRANSPARENT_HUGEPAGE 39static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 40 unsigned long address, 41 pmd_t *pmdp) 42{ 43 pmd_t pmd = *pmdp; 44 int r = 1; 45 if (!pmd_young(pmd)) 46 r = 0; 47 else 48 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 49 return r; 50} 51#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 52static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 53 unsigned long address, 54 pmd_t *pmdp) 55{ 56 BUG(); 57 return 0; 58} 59#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 60#endif 61 62#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 63int ptep_clear_flush_young(struct vm_area_struct *vma, 64 unsigned long address, pte_t *ptep); 65#endif 66 67#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 68int pmdp_clear_flush_young(struct vm_area_struct *vma, 69 unsigned long address, pmd_t *pmdp); 70#endif 71 72#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 73static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 74 unsigned long address, 75 pte_t *ptep) 76{ 77 pte_t pte = *ptep; 78 pte_clear(mm, address, ptep); 79 return pte; 80} 81#endif 82 83#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR 84#ifdef CONFIG_TRANSPARENT_HUGEPAGE 85static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, 86 unsigned long address, 87 pmd_t *pmdp) 88{ 89 pmd_t pmd = *pmdp; 90 pmd_clear(pmdp); 91 return pmd; 92} 93#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 94#endif 95 96#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 97static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 98 unsigned long address, pte_t *ptep, 99 int full) 100{ 101 pte_t pte; 102 pte = ptep_get_and_clear(mm, address, ptep); 103 return pte; 104} 105#endif 106 107/* 108 * Some architectures may be able to avoid expensive synchronization 109 * primitives when modifications are made to PTE's which are already 110 * not present, or in the process of an address space destruction. 111 */ 112#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 113static inline void pte_clear_not_present_full(struct mm_struct *mm, 114 unsigned long address, 115 pte_t *ptep, 116 int full) 117{ 118 pte_clear(mm, address, ptep); 119} 120#endif 121 122#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 123extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 124 unsigned long address, 125 pte_t *ptep); 126#endif 127 128#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH 129extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, 130 unsigned long address, 131 pmd_t *pmdp); 132#endif 133 134#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 135struct mm_struct; 136static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 137{ 138 pte_t old_pte = *ptep; 139 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 140} 141#endif 142 143#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 144#ifdef CONFIG_TRANSPARENT_HUGEPAGE 145static inline void pmdp_set_wrprotect(struct mm_struct *mm, 146 unsigned long address, pmd_t *pmdp) 147{ 148 pmd_t old_pmd = *pmdp; 149 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 150} 151#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 152static inline void pmdp_set_wrprotect(struct mm_struct *mm, 153 unsigned long address, pmd_t *pmdp) 154{ 155 BUG(); 156} 157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 158#endif 159 160#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH 161extern void pmdp_splitting_flush(struct vm_area_struct *vma, 162 unsigned long address, pmd_t *pmdp); 163#endif 164 165#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 166extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable); 167#endif 168 169#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 170extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm); 171#endif 172 173#ifndef __HAVE_ARCH_PMDP_INVALIDATE 174extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 175 pmd_t *pmdp); 176#endif 177 178#ifndef __HAVE_ARCH_PTE_SAME 179static inline int pte_same(pte_t pte_a, pte_t pte_b) 180{ 181 return pte_val(pte_a) == pte_val(pte_b); 182} 183#endif 184 185#ifndef __HAVE_ARCH_PMD_SAME 186#ifdef CONFIG_TRANSPARENT_HUGEPAGE 187static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 188{ 189 return pmd_val(pmd_a) == pmd_val(pmd_b); 190} 191#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 192static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 193{ 194 BUG(); 195 return 0; 196} 197#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 198#endif 199 200#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY 201#define page_test_and_clear_dirty(pfn, mapped) (0) 202#endif 203 204#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY 205#define pte_maybe_dirty(pte) pte_dirty(pte) 206#else 207#define pte_maybe_dirty(pte) (1) 208#endif 209 210#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG 211#define page_test_and_clear_young(pfn) (0) 212#endif 213 214#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 215#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 216#endif 217 218#ifndef __HAVE_ARCH_MOVE_PTE 219#define move_pte(pte, prot, old_addr, new_addr) (pte) 220#endif 221 222#ifndef flush_tlb_fix_spurious_fault 223#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 224#endif 225 226#ifndef pgprot_noncached 227#define pgprot_noncached(prot) (prot) 228#endif 229 230#ifndef pgprot_writecombine 231#define pgprot_writecombine pgprot_noncached 232#endif 233 234/* 235 * When walking page tables, get the address of the next boundary, 236 * or the end address of the range if that comes earlier. Although no 237 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 238 */ 239 240#define pgd_addr_end(addr, end) \ 241({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 242 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 243}) 244 245#ifndef pud_addr_end 246#define pud_addr_end(addr, end) \ 247({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 248 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 249}) 250#endif 251 252#ifndef pmd_addr_end 253#define pmd_addr_end(addr, end) \ 254({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 255 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 256}) 257#endif 258 259/* 260 * When walking page tables, we usually want to skip any p?d_none entries; 261 * and any p?d_bad entries - reporting the error before resetting to none. 262 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 263 */ 264void pgd_clear_bad(pgd_t *); 265void pud_clear_bad(pud_t *); 266void pmd_clear_bad(pmd_t *); 267 268static inline int pgd_none_or_clear_bad(pgd_t *pgd) 269{ 270 if (pgd_none(*pgd)) 271 return 1; 272 if (unlikely(pgd_bad(*pgd))) { 273 pgd_clear_bad(pgd); 274 return 1; 275 } 276 return 0; 277} 278 279static inline int pud_none_or_clear_bad(pud_t *pud) 280{ 281 if (pud_none(*pud)) 282 return 1; 283 if (unlikely(pud_bad(*pud))) { 284 pud_clear_bad(pud); 285 return 1; 286 } 287 return 0; 288} 289 290static inline int pmd_none_or_clear_bad(pmd_t *pmd) 291{ 292 if (pmd_none(*pmd)) 293 return 1; 294 if (unlikely(pmd_bad(*pmd))) { 295 pmd_clear_bad(pmd); 296 return 1; 297 } 298 return 0; 299} 300 301static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, 302 unsigned long addr, 303 pte_t *ptep) 304{ 305 /* 306 * Get the current pte state, but zero it out to make it 307 * non-present, preventing the hardware from asynchronously 308 * updating it. 309 */ 310 return ptep_get_and_clear(mm, addr, ptep); 311} 312 313static inline void __ptep_modify_prot_commit(struct mm_struct *mm, 314 unsigned long addr, 315 pte_t *ptep, pte_t pte) 316{ 317 /* 318 * The pte is non-present, so there's no hardware state to 319 * preserve. 320 */ 321 set_pte_at(mm, addr, ptep, pte); 322} 323 324#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 325/* 326 * Start a pte protection read-modify-write transaction, which 327 * protects against asynchronous hardware modifications to the pte. 328 * The intention is not to prevent the hardware from making pte 329 * updates, but to prevent any updates it may make from being lost. 330 * 331 * This does not protect against other software modifications of the 332 * pte; the appropriate pte lock must be held over the transation. 333 * 334 * Note that this interface is intended to be batchable, meaning that 335 * ptep_modify_prot_commit may not actually update the pte, but merely 336 * queue the update to be done at some later time. The update must be 337 * actually committed before the pte lock is released, however. 338 */ 339static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 340 unsigned long addr, 341 pte_t *ptep) 342{ 343 return __ptep_modify_prot_start(mm, addr, ptep); 344} 345 346/* 347 * Commit an update to a pte, leaving any hardware-controlled bits in 348 * the PTE unmodified. 349 */ 350static inline void ptep_modify_prot_commit(struct mm_struct *mm, 351 unsigned long addr, 352 pte_t *ptep, pte_t pte) 353{ 354 __ptep_modify_prot_commit(mm, addr, ptep, pte); 355} 356#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 357#endif /* CONFIG_MMU */ 358 359/* 360 * A facility to provide lazy MMU batching. This allows PTE updates and 361 * page invalidations to be delayed until a call to leave lazy MMU mode 362 * is issued. Some architectures may benefit from doing this, and it is 363 * beneficial for both shadow and direct mode hypervisors, which may batch 364 * the PTE updates which happen during this window. Note that using this 365 * interface requires that read hazards be removed from the code. A read 366 * hazard could result in the direct mode hypervisor case, since the actual 367 * write to the page tables may not yet have taken place, so reads though 368 * a raw PTE pointer after it has been modified are not guaranteed to be 369 * up to date. This mode can only be entered and left under the protection of 370 * the page table locks for all page tables which may be modified. In the UP 371 * case, this is required so that preemption is disabled, and in the SMP case, 372 * it must synchronize the delayed page table writes properly on other CPUs. 373 */ 374#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 375#define arch_enter_lazy_mmu_mode() do {} while (0) 376#define arch_leave_lazy_mmu_mode() do {} while (0) 377#define arch_flush_lazy_mmu_mode() do {} while (0) 378#endif 379 380/* 381 * A facility to provide batching of the reload of page tables and 382 * other process state with the actual context switch code for 383 * paravirtualized guests. By convention, only one of the batched 384 * update (lazy) modes (CPU, MMU) should be active at any given time, 385 * entry should never be nested, and entry and exits should always be 386 * paired. This is for sanity of maintaining and reasoning about the 387 * kernel code. In this case, the exit (end of the context switch) is 388 * in architecture-specific code, and so doesn't need a generic 389 * definition. 390 */ 391#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 392#define arch_start_context_switch(prev) do {} while (0) 393#endif 394 395#ifndef __HAVE_PFNMAP_TRACKING 396/* 397 * Interfaces that can be used by architecture code to keep track of 398 * memory type of pfn mappings specified by the remap_pfn_range, 399 * vm_insert_pfn. 400 */ 401 402/* 403 * track_pfn_remap is called when a _new_ pfn mapping is being established 404 * by remap_pfn_range() for physical range indicated by pfn and size. 405 */ 406static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 407 unsigned long pfn, unsigned long addr, 408 unsigned long size) 409{ 410 return 0; 411} 412 413/* 414 * track_pfn_insert is called when a _new_ single pfn is established 415 * by vm_insert_pfn(). 416 */ 417static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 418 unsigned long pfn) 419{ 420 return 0; 421} 422 423/* 424 * track_pfn_copy is called when vma that is covering the pfnmap gets 425 * copied through copy_page_range(). 426 */ 427static inline int track_pfn_copy(struct vm_area_struct *vma) 428{ 429 return 0; 430} 431 432/* 433 * untrack_pfn_vma is called while unmapping a pfnmap for a region. 434 * untrack can be called for a specific region indicated by pfn and size or 435 * can be for the entire vma (in which case pfn, size are zero). 436 */ 437static inline void untrack_pfn(struct vm_area_struct *vma, 438 unsigned long pfn, unsigned long size) 439{ 440} 441#else 442extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 443 unsigned long pfn, unsigned long addr, 444 unsigned long size); 445extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 446 unsigned long pfn); 447extern int track_pfn_copy(struct vm_area_struct *vma); 448extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 449 unsigned long size); 450#endif 451 452#ifdef CONFIG_MMU 453 454#ifndef CONFIG_TRANSPARENT_HUGEPAGE 455static inline int pmd_trans_huge(pmd_t pmd) 456{ 457 return 0; 458} 459static inline int pmd_trans_splitting(pmd_t pmd) 460{ 461 return 0; 462} 463#ifndef __HAVE_ARCH_PMD_WRITE 464static inline int pmd_write(pmd_t pmd) 465{ 466 BUG(); 467 return 0; 468} 469#endif /* __HAVE_ARCH_PMD_WRITE */ 470#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 471 472#ifndef pmd_read_atomic 473static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 474{ 475 /* 476 * Depend on compiler for an atomic pmd read. NOTE: this is 477 * only going to work, if the pmdval_t isn't larger than 478 * an unsigned long. 479 */ 480 return *pmdp; 481} 482#endif 483 484/* 485 * This function is meant to be used by sites walking pagetables with 486 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 487 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 488 * into a null pmd and the transhuge page fault can convert a null pmd 489 * into an hugepmd or into a regular pmd (if the hugepage allocation 490 * fails). While holding the mmap_sem in read mode the pmd becomes 491 * stable and stops changing under us only if it's not null and not a 492 * transhuge pmd. When those races occurs and this function makes a 493 * difference vs the standard pmd_none_or_clear_bad, the result is 494 * undefined so behaving like if the pmd was none is safe (because it 495 * can return none anyway). The compiler level barrier() is critically 496 * important to compute the two checks atomically on the same pmdval. 497 * 498 * For 32bit kernels with a 64bit large pmd_t this automatically takes 499 * care of reading the pmd atomically to avoid SMP race conditions 500 * against pmd_populate() when the mmap_sem is hold for reading by the 501 * caller (a special atomic read not done by "gcc" as in the generic 502 * version above, is also needed when THP is disabled because the page 503 * fault can populate the pmd from under us). 504 */ 505static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 506{ 507 pmd_t pmdval = pmd_read_atomic(pmd); 508 /* 509 * The barrier will stabilize the pmdval in a register or on 510 * the stack so that it will stop changing under the code. 511 * 512 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 513 * pmd_read_atomic is allowed to return a not atomic pmdval 514 * (for example pointing to an hugepage that has never been 515 * mapped in the pmd). The below checks will only care about 516 * the low part of the pmd with 32bit PAE x86 anyway, with the 517 * exception of pmd_none(). So the important thing is that if 518 * the low part of the pmd is found null, the high part will 519 * be also null or the pmd_none() check below would be 520 * confused. 521 */ 522#ifdef CONFIG_TRANSPARENT_HUGEPAGE 523 barrier(); 524#endif 525 if (pmd_none(pmdval)) 526 return 1; 527 if (unlikely(pmd_bad(pmdval))) { 528 if (!pmd_trans_huge(pmdval)) 529 pmd_clear_bad(pmd); 530 return 1; 531 } 532 return 0; 533} 534 535/* 536 * This is a noop if Transparent Hugepage Support is not built into 537 * the kernel. Otherwise it is equivalent to 538 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 539 * places that already verified the pmd is not none and they want to 540 * walk ptes while holding the mmap sem in read mode (write mode don't 541 * need this). If THP is not enabled, the pmd can't go away under the 542 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 543 * run a pmd_trans_unstable before walking the ptes after 544 * split_huge_page_pmd returns (because it may have run when the pmd 545 * become null, but then a page fault can map in a THP and not a 546 * regular page). 547 */ 548static inline int pmd_trans_unstable(pmd_t *pmd) 549{ 550#ifdef CONFIG_TRANSPARENT_HUGEPAGE 551 return pmd_none_or_trans_huge_or_clear_bad(pmd); 552#else 553 return 0; 554#endif 555} 556 557#endif /* CONFIG_MMU */ 558 559#endif /* !__ASSEMBLY__ */ 560 561#endif /* _ASM_GENERIC_PGTABLE_H */