Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/fs/ext4/ialloc.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
13 */
14
15#include <linux/time.h>
16#include <linux/fs.h>
17#include <linux/jbd2.h>
18#include <linux/stat.h>
19#include <linux/string.h>
20#include <linux/quotaops.h>
21#include <linux/buffer_head.h>
22#include <linux/random.h>
23#include <linux/bitops.h>
24#include <linux/blkdev.h>
25#include <asm/byteorder.h>
26
27#include "ext4.h"
28#include "ext4_jbd2.h"
29#include "xattr.h"
30#include "acl.h"
31
32#include <trace/events/ext4.h>
33
34/*
35 * ialloc.c contains the inodes allocation and deallocation routines
36 */
37
38/*
39 * The free inodes are managed by bitmaps. A file system contains several
40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
41 * block for inodes, N blocks for the inode table and data blocks.
42 *
43 * The file system contains group descriptors which are located after the
44 * super block. Each descriptor contains the number of the bitmap block and
45 * the free blocks count in the block.
46 */
47
48/*
49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
50 * need to use it within a single byte (to ensure we get endianness right).
51 * We can use memset for the rest of the bitmap as there are no other users.
52 */
53void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54{
55 int i;
56
57 if (start_bit >= end_bit)
58 return;
59
60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 ext4_set_bit(i, bitmap);
63 if (i < end_bit)
64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
65}
66
67/* Initializes an uninitialized inode bitmap */
68static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 struct buffer_head *bh,
70 ext4_group_t block_group,
71 struct ext4_group_desc *gdp)
72{
73 J_ASSERT_BH(bh, buffer_locked(bh));
74
75 /* If checksum is bad mark all blocks and inodes use to prevent
76 * allocation, essentially implementing a per-group read-only flag. */
77 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
78 ext4_error(sb, "Checksum bad for group %u", block_group);
79 ext4_free_group_clusters_set(sb, gdp, 0);
80 ext4_free_inodes_set(sb, gdp, 0);
81 ext4_itable_unused_set(sb, gdp, 0);
82 memset(bh->b_data, 0xff, sb->s_blocksize);
83 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
84 EXT4_INODES_PER_GROUP(sb) / 8);
85 return 0;
86 }
87
88 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
89 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
90 bh->b_data);
91 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
92 EXT4_INODES_PER_GROUP(sb) / 8);
93 ext4_group_desc_csum_set(sb, block_group, gdp);
94
95 return EXT4_INODES_PER_GROUP(sb);
96}
97
98void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
99{
100 if (uptodate) {
101 set_buffer_uptodate(bh);
102 set_bitmap_uptodate(bh);
103 }
104 unlock_buffer(bh);
105 put_bh(bh);
106}
107
108/*
109 * Read the inode allocation bitmap for a given block_group, reading
110 * into the specified slot in the superblock's bitmap cache.
111 *
112 * Return buffer_head of bitmap on success or NULL.
113 */
114static struct buffer_head *
115ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
116{
117 struct ext4_group_desc *desc;
118 struct buffer_head *bh = NULL;
119 ext4_fsblk_t bitmap_blk;
120
121 desc = ext4_get_group_desc(sb, block_group, NULL);
122 if (!desc)
123 return NULL;
124
125 bitmap_blk = ext4_inode_bitmap(sb, desc);
126 bh = sb_getblk(sb, bitmap_blk);
127 if (unlikely(!bh)) {
128 ext4_error(sb, "Cannot read inode bitmap - "
129 "block_group = %u, inode_bitmap = %llu",
130 block_group, bitmap_blk);
131 return NULL;
132 }
133 if (bitmap_uptodate(bh))
134 goto verify;
135
136 lock_buffer(bh);
137 if (bitmap_uptodate(bh)) {
138 unlock_buffer(bh);
139 goto verify;
140 }
141
142 ext4_lock_group(sb, block_group);
143 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
144 ext4_init_inode_bitmap(sb, bh, block_group, desc);
145 set_bitmap_uptodate(bh);
146 set_buffer_uptodate(bh);
147 set_buffer_verified(bh);
148 ext4_unlock_group(sb, block_group);
149 unlock_buffer(bh);
150 return bh;
151 }
152 ext4_unlock_group(sb, block_group);
153
154 if (buffer_uptodate(bh)) {
155 /*
156 * if not uninit if bh is uptodate,
157 * bitmap is also uptodate
158 */
159 set_bitmap_uptodate(bh);
160 unlock_buffer(bh);
161 goto verify;
162 }
163 /*
164 * submit the buffer_head for reading
165 */
166 trace_ext4_load_inode_bitmap(sb, block_group);
167 bh->b_end_io = ext4_end_bitmap_read;
168 get_bh(bh);
169 submit_bh(READ, bh);
170 wait_on_buffer(bh);
171 if (!buffer_uptodate(bh)) {
172 put_bh(bh);
173 ext4_error(sb, "Cannot read inode bitmap - "
174 "block_group = %u, inode_bitmap = %llu",
175 block_group, bitmap_blk);
176 return NULL;
177 }
178
179verify:
180 ext4_lock_group(sb, block_group);
181 if (!buffer_verified(bh) &&
182 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
183 EXT4_INODES_PER_GROUP(sb) / 8)) {
184 ext4_unlock_group(sb, block_group);
185 put_bh(bh);
186 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
187 "inode_bitmap = %llu", block_group, bitmap_blk);
188 return NULL;
189 }
190 ext4_unlock_group(sb, block_group);
191 set_buffer_verified(bh);
192 return bh;
193}
194
195/*
196 * NOTE! When we get the inode, we're the only people
197 * that have access to it, and as such there are no
198 * race conditions we have to worry about. The inode
199 * is not on the hash-lists, and it cannot be reached
200 * through the filesystem because the directory entry
201 * has been deleted earlier.
202 *
203 * HOWEVER: we must make sure that we get no aliases,
204 * which means that we have to call "clear_inode()"
205 * _before_ we mark the inode not in use in the inode
206 * bitmaps. Otherwise a newly created file might use
207 * the same inode number (not actually the same pointer
208 * though), and then we'd have two inodes sharing the
209 * same inode number and space on the harddisk.
210 */
211void ext4_free_inode(handle_t *handle, struct inode *inode)
212{
213 struct super_block *sb = inode->i_sb;
214 int is_directory;
215 unsigned long ino;
216 struct buffer_head *bitmap_bh = NULL;
217 struct buffer_head *bh2;
218 ext4_group_t block_group;
219 unsigned long bit;
220 struct ext4_group_desc *gdp;
221 struct ext4_super_block *es;
222 struct ext4_sb_info *sbi;
223 int fatal = 0, err, count, cleared;
224
225 if (!sb) {
226 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
227 "nonexistent device\n", __func__, __LINE__);
228 return;
229 }
230 if (atomic_read(&inode->i_count) > 1) {
231 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
232 __func__, __LINE__, inode->i_ino,
233 atomic_read(&inode->i_count));
234 return;
235 }
236 if (inode->i_nlink) {
237 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
238 __func__, __LINE__, inode->i_ino, inode->i_nlink);
239 return;
240 }
241 sbi = EXT4_SB(sb);
242
243 ino = inode->i_ino;
244 ext4_debug("freeing inode %lu\n", ino);
245 trace_ext4_free_inode(inode);
246
247 /*
248 * Note: we must free any quota before locking the superblock,
249 * as writing the quota to disk may need the lock as well.
250 */
251 dquot_initialize(inode);
252 ext4_xattr_delete_inode(handle, inode);
253 dquot_free_inode(inode);
254 dquot_drop(inode);
255
256 is_directory = S_ISDIR(inode->i_mode);
257
258 /* Do this BEFORE marking the inode not in use or returning an error */
259 ext4_clear_inode(inode);
260
261 es = EXT4_SB(sb)->s_es;
262 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
263 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
264 goto error_return;
265 }
266 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
267 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
268 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
269 if (!bitmap_bh)
270 goto error_return;
271
272 BUFFER_TRACE(bitmap_bh, "get_write_access");
273 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
274 if (fatal)
275 goto error_return;
276
277 fatal = -ESRCH;
278 gdp = ext4_get_group_desc(sb, block_group, &bh2);
279 if (gdp) {
280 BUFFER_TRACE(bh2, "get_write_access");
281 fatal = ext4_journal_get_write_access(handle, bh2);
282 }
283 ext4_lock_group(sb, block_group);
284 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
285 if (fatal || !cleared) {
286 ext4_unlock_group(sb, block_group);
287 goto out;
288 }
289
290 count = ext4_free_inodes_count(sb, gdp) + 1;
291 ext4_free_inodes_set(sb, gdp, count);
292 if (is_directory) {
293 count = ext4_used_dirs_count(sb, gdp) - 1;
294 ext4_used_dirs_set(sb, gdp, count);
295 percpu_counter_dec(&sbi->s_dirs_counter);
296 }
297 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
298 EXT4_INODES_PER_GROUP(sb) / 8);
299 ext4_group_desc_csum_set(sb, block_group, gdp);
300 ext4_unlock_group(sb, block_group);
301
302 percpu_counter_inc(&sbi->s_freeinodes_counter);
303 if (sbi->s_log_groups_per_flex) {
304 ext4_group_t f = ext4_flex_group(sbi, block_group);
305
306 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
307 if (is_directory)
308 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
309 }
310 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
311 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
312out:
313 if (cleared) {
314 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
315 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
316 if (!fatal)
317 fatal = err;
318 } else
319 ext4_error(sb, "bit already cleared for inode %lu", ino);
320
321error_return:
322 brelse(bitmap_bh);
323 ext4_std_error(sb, fatal);
324}
325
326struct orlov_stats {
327 __u32 free_inodes;
328 __u32 free_clusters;
329 __u32 used_dirs;
330};
331
332/*
333 * Helper function for Orlov's allocator; returns critical information
334 * for a particular block group or flex_bg. If flex_size is 1, then g
335 * is a block group number; otherwise it is flex_bg number.
336 */
337static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
338 int flex_size, struct orlov_stats *stats)
339{
340 struct ext4_group_desc *desc;
341 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
342
343 if (flex_size > 1) {
344 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
345 stats->free_clusters = atomic_read(&flex_group[g].free_clusters);
346 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
347 return;
348 }
349
350 desc = ext4_get_group_desc(sb, g, NULL);
351 if (desc) {
352 stats->free_inodes = ext4_free_inodes_count(sb, desc);
353 stats->free_clusters = ext4_free_group_clusters(sb, desc);
354 stats->used_dirs = ext4_used_dirs_count(sb, desc);
355 } else {
356 stats->free_inodes = 0;
357 stats->free_clusters = 0;
358 stats->used_dirs = 0;
359 }
360}
361
362/*
363 * Orlov's allocator for directories.
364 *
365 * We always try to spread first-level directories.
366 *
367 * If there are blockgroups with both free inodes and free blocks counts
368 * not worse than average we return one with smallest directory count.
369 * Otherwise we simply return a random group.
370 *
371 * For the rest rules look so:
372 *
373 * It's OK to put directory into a group unless
374 * it has too many directories already (max_dirs) or
375 * it has too few free inodes left (min_inodes) or
376 * it has too few free blocks left (min_blocks) or
377 * Parent's group is preferred, if it doesn't satisfy these
378 * conditions we search cyclically through the rest. If none
379 * of the groups look good we just look for a group with more
380 * free inodes than average (starting at parent's group).
381 */
382
383static int find_group_orlov(struct super_block *sb, struct inode *parent,
384 ext4_group_t *group, umode_t mode,
385 const struct qstr *qstr)
386{
387 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
388 struct ext4_sb_info *sbi = EXT4_SB(sb);
389 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
390 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
391 unsigned int freei, avefreei, grp_free;
392 ext4_fsblk_t freeb, avefreec;
393 unsigned int ndirs;
394 int max_dirs, min_inodes;
395 ext4_grpblk_t min_clusters;
396 ext4_group_t i, grp, g, ngroups;
397 struct ext4_group_desc *desc;
398 struct orlov_stats stats;
399 int flex_size = ext4_flex_bg_size(sbi);
400 struct dx_hash_info hinfo;
401
402 ngroups = real_ngroups;
403 if (flex_size > 1) {
404 ngroups = (real_ngroups + flex_size - 1) >>
405 sbi->s_log_groups_per_flex;
406 parent_group >>= sbi->s_log_groups_per_flex;
407 }
408
409 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
410 avefreei = freei / ngroups;
411 freeb = EXT4_C2B(sbi,
412 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
413 avefreec = freeb;
414 do_div(avefreec, ngroups);
415 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
416
417 if (S_ISDIR(mode) &&
418 ((parent == sb->s_root->d_inode) ||
419 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
420 int best_ndir = inodes_per_group;
421 int ret = -1;
422
423 if (qstr) {
424 hinfo.hash_version = DX_HASH_HALF_MD4;
425 hinfo.seed = sbi->s_hash_seed;
426 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
427 grp = hinfo.hash;
428 } else
429 get_random_bytes(&grp, sizeof(grp));
430 parent_group = (unsigned)grp % ngroups;
431 for (i = 0; i < ngroups; i++) {
432 g = (parent_group + i) % ngroups;
433 get_orlov_stats(sb, g, flex_size, &stats);
434 if (!stats.free_inodes)
435 continue;
436 if (stats.used_dirs >= best_ndir)
437 continue;
438 if (stats.free_inodes < avefreei)
439 continue;
440 if (stats.free_clusters < avefreec)
441 continue;
442 grp = g;
443 ret = 0;
444 best_ndir = stats.used_dirs;
445 }
446 if (ret)
447 goto fallback;
448 found_flex_bg:
449 if (flex_size == 1) {
450 *group = grp;
451 return 0;
452 }
453
454 /*
455 * We pack inodes at the beginning of the flexgroup's
456 * inode tables. Block allocation decisions will do
457 * something similar, although regular files will
458 * start at 2nd block group of the flexgroup. See
459 * ext4_ext_find_goal() and ext4_find_near().
460 */
461 grp *= flex_size;
462 for (i = 0; i < flex_size; i++) {
463 if (grp+i >= real_ngroups)
464 break;
465 desc = ext4_get_group_desc(sb, grp+i, NULL);
466 if (desc && ext4_free_inodes_count(sb, desc)) {
467 *group = grp+i;
468 return 0;
469 }
470 }
471 goto fallback;
472 }
473
474 max_dirs = ndirs / ngroups + inodes_per_group / 16;
475 min_inodes = avefreei - inodes_per_group*flex_size / 4;
476 if (min_inodes < 1)
477 min_inodes = 1;
478 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
479
480 /*
481 * Start looking in the flex group where we last allocated an
482 * inode for this parent directory
483 */
484 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
485 parent_group = EXT4_I(parent)->i_last_alloc_group;
486 if (flex_size > 1)
487 parent_group >>= sbi->s_log_groups_per_flex;
488 }
489
490 for (i = 0; i < ngroups; i++) {
491 grp = (parent_group + i) % ngroups;
492 get_orlov_stats(sb, grp, flex_size, &stats);
493 if (stats.used_dirs >= max_dirs)
494 continue;
495 if (stats.free_inodes < min_inodes)
496 continue;
497 if (stats.free_clusters < min_clusters)
498 continue;
499 goto found_flex_bg;
500 }
501
502fallback:
503 ngroups = real_ngroups;
504 avefreei = freei / ngroups;
505fallback_retry:
506 parent_group = EXT4_I(parent)->i_block_group;
507 for (i = 0; i < ngroups; i++) {
508 grp = (parent_group + i) % ngroups;
509 desc = ext4_get_group_desc(sb, grp, NULL);
510 if (desc) {
511 grp_free = ext4_free_inodes_count(sb, desc);
512 if (grp_free && grp_free >= avefreei) {
513 *group = grp;
514 return 0;
515 }
516 }
517 }
518
519 if (avefreei) {
520 /*
521 * The free-inodes counter is approximate, and for really small
522 * filesystems the above test can fail to find any blockgroups
523 */
524 avefreei = 0;
525 goto fallback_retry;
526 }
527
528 return -1;
529}
530
531static int find_group_other(struct super_block *sb, struct inode *parent,
532 ext4_group_t *group, umode_t mode)
533{
534 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
535 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
536 struct ext4_group_desc *desc;
537 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
538
539 /*
540 * Try to place the inode is the same flex group as its
541 * parent. If we can't find space, use the Orlov algorithm to
542 * find another flex group, and store that information in the
543 * parent directory's inode information so that use that flex
544 * group for future allocations.
545 */
546 if (flex_size > 1) {
547 int retry = 0;
548
549 try_again:
550 parent_group &= ~(flex_size-1);
551 last = parent_group + flex_size;
552 if (last > ngroups)
553 last = ngroups;
554 for (i = parent_group; i < last; i++) {
555 desc = ext4_get_group_desc(sb, i, NULL);
556 if (desc && ext4_free_inodes_count(sb, desc)) {
557 *group = i;
558 return 0;
559 }
560 }
561 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
562 retry = 1;
563 parent_group = EXT4_I(parent)->i_last_alloc_group;
564 goto try_again;
565 }
566 /*
567 * If this didn't work, use the Orlov search algorithm
568 * to find a new flex group; we pass in the mode to
569 * avoid the topdir algorithms.
570 */
571 *group = parent_group + flex_size;
572 if (*group > ngroups)
573 *group = 0;
574 return find_group_orlov(sb, parent, group, mode, NULL);
575 }
576
577 /*
578 * Try to place the inode in its parent directory
579 */
580 *group = parent_group;
581 desc = ext4_get_group_desc(sb, *group, NULL);
582 if (desc && ext4_free_inodes_count(sb, desc) &&
583 ext4_free_group_clusters(sb, desc))
584 return 0;
585
586 /*
587 * We're going to place this inode in a different blockgroup from its
588 * parent. We want to cause files in a common directory to all land in
589 * the same blockgroup. But we want files which are in a different
590 * directory which shares a blockgroup with our parent to land in a
591 * different blockgroup.
592 *
593 * So add our directory's i_ino into the starting point for the hash.
594 */
595 *group = (*group + parent->i_ino) % ngroups;
596
597 /*
598 * Use a quadratic hash to find a group with a free inode and some free
599 * blocks.
600 */
601 for (i = 1; i < ngroups; i <<= 1) {
602 *group += i;
603 if (*group >= ngroups)
604 *group -= ngroups;
605 desc = ext4_get_group_desc(sb, *group, NULL);
606 if (desc && ext4_free_inodes_count(sb, desc) &&
607 ext4_free_group_clusters(sb, desc))
608 return 0;
609 }
610
611 /*
612 * That failed: try linear search for a free inode, even if that group
613 * has no free blocks.
614 */
615 *group = parent_group;
616 for (i = 0; i < ngroups; i++) {
617 if (++*group >= ngroups)
618 *group = 0;
619 desc = ext4_get_group_desc(sb, *group, NULL);
620 if (desc && ext4_free_inodes_count(sb, desc))
621 return 0;
622 }
623
624 return -1;
625}
626
627/*
628 * There are two policies for allocating an inode. If the new inode is
629 * a directory, then a forward search is made for a block group with both
630 * free space and a low directory-to-inode ratio; if that fails, then of
631 * the groups with above-average free space, that group with the fewest
632 * directories already is chosen.
633 *
634 * For other inodes, search forward from the parent directory's block
635 * group to find a free inode.
636 */
637struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, umode_t mode,
638 const struct qstr *qstr, __u32 goal, uid_t *owner)
639{
640 struct super_block *sb;
641 struct buffer_head *inode_bitmap_bh = NULL;
642 struct buffer_head *group_desc_bh;
643 ext4_group_t ngroups, group = 0;
644 unsigned long ino = 0;
645 struct inode *inode;
646 struct ext4_group_desc *gdp = NULL;
647 struct ext4_inode_info *ei;
648 struct ext4_sb_info *sbi;
649 int ret2, err = 0;
650 struct inode *ret;
651 ext4_group_t i;
652 ext4_group_t flex_group;
653
654 /* Cannot create files in a deleted directory */
655 if (!dir || !dir->i_nlink)
656 return ERR_PTR(-EPERM);
657
658 sb = dir->i_sb;
659 ngroups = ext4_get_groups_count(sb);
660 trace_ext4_request_inode(dir, mode);
661 inode = new_inode(sb);
662 if (!inode)
663 return ERR_PTR(-ENOMEM);
664 ei = EXT4_I(inode);
665 sbi = EXT4_SB(sb);
666
667 if (!goal)
668 goal = sbi->s_inode_goal;
669
670 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
671 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
672 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
673 ret2 = 0;
674 goto got_group;
675 }
676
677 if (S_ISDIR(mode))
678 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
679 else
680 ret2 = find_group_other(sb, dir, &group, mode);
681
682got_group:
683 EXT4_I(dir)->i_last_alloc_group = group;
684 err = -ENOSPC;
685 if (ret2 == -1)
686 goto out;
687
688 /*
689 * Normally we will only go through one pass of this loop,
690 * unless we get unlucky and it turns out the group we selected
691 * had its last inode grabbed by someone else.
692 */
693 for (i = 0; i < ngroups; i++, ino = 0) {
694 err = -EIO;
695
696 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
697 if (!gdp)
698 goto fail;
699
700 /*
701 * Check free inodes count before loading bitmap.
702 */
703 if (ext4_free_inodes_count(sb, gdp) == 0) {
704 if (++group == ngroups)
705 group = 0;
706 continue;
707 }
708
709 brelse(inode_bitmap_bh);
710 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
711 if (!inode_bitmap_bh)
712 goto fail;
713
714repeat_in_this_group:
715 ino = ext4_find_next_zero_bit((unsigned long *)
716 inode_bitmap_bh->b_data,
717 EXT4_INODES_PER_GROUP(sb), ino);
718 if (ino >= EXT4_INODES_PER_GROUP(sb)) {
719 if (++group == ngroups)
720 group = 0;
721 continue;
722 }
723 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
724 ext4_error(sb, "reserved inode found cleared - "
725 "inode=%lu", ino + 1);
726 continue;
727 }
728 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
729 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
730 if (err)
731 goto fail;
732 ext4_lock_group(sb, group);
733 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
734 ext4_unlock_group(sb, group);
735 ino++; /* the inode bitmap is zero-based */
736 if (!ret2)
737 goto got; /* we grabbed the inode! */
738 if (ino < EXT4_INODES_PER_GROUP(sb))
739 goto repeat_in_this_group;
740 }
741 err = -ENOSPC;
742 goto out;
743
744got:
745 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
746 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
747 if (err)
748 goto fail;
749
750 /* We may have to initialize the block bitmap if it isn't already */
751 if (ext4_has_group_desc_csum(sb) &&
752 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
753 struct buffer_head *block_bitmap_bh;
754
755 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
756 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
757 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
758 if (err) {
759 brelse(block_bitmap_bh);
760 goto fail;
761 }
762
763 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
764 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
765 brelse(block_bitmap_bh);
766
767 /* recheck and clear flag under lock if we still need to */
768 ext4_lock_group(sb, group);
769 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
770 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
771 ext4_free_group_clusters_set(sb, gdp,
772 ext4_free_clusters_after_init(sb, group, gdp));
773 ext4_block_bitmap_csum_set(sb, group, gdp,
774 block_bitmap_bh);
775 ext4_group_desc_csum_set(sb, group, gdp);
776 }
777 ext4_unlock_group(sb, group);
778
779 if (err)
780 goto fail;
781 }
782
783 BUFFER_TRACE(group_desc_bh, "get_write_access");
784 err = ext4_journal_get_write_access(handle, group_desc_bh);
785 if (err)
786 goto fail;
787
788 /* Update the relevant bg descriptor fields */
789 if (ext4_has_group_desc_csum(sb)) {
790 int free;
791 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
792
793 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
794 ext4_lock_group(sb, group); /* while we modify the bg desc */
795 free = EXT4_INODES_PER_GROUP(sb) -
796 ext4_itable_unused_count(sb, gdp);
797 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
798 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
799 free = 0;
800 }
801 /*
802 * Check the relative inode number against the last used
803 * relative inode number in this group. if it is greater
804 * we need to update the bg_itable_unused count
805 */
806 if (ino > free)
807 ext4_itable_unused_set(sb, gdp,
808 (EXT4_INODES_PER_GROUP(sb) - ino));
809 up_read(&grp->alloc_sem);
810 } else {
811 ext4_lock_group(sb, group);
812 }
813
814 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
815 if (S_ISDIR(mode)) {
816 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
817 if (sbi->s_log_groups_per_flex) {
818 ext4_group_t f = ext4_flex_group(sbi, group);
819
820 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
821 }
822 }
823 if (ext4_has_group_desc_csum(sb)) {
824 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
825 EXT4_INODES_PER_GROUP(sb) / 8);
826 ext4_group_desc_csum_set(sb, group, gdp);
827 }
828 ext4_unlock_group(sb, group);
829
830 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
831 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
832 if (err)
833 goto fail;
834
835 percpu_counter_dec(&sbi->s_freeinodes_counter);
836 if (S_ISDIR(mode))
837 percpu_counter_inc(&sbi->s_dirs_counter);
838
839 if (sbi->s_log_groups_per_flex) {
840 flex_group = ext4_flex_group(sbi, group);
841 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
842 }
843 if (owner) {
844 inode->i_mode = mode;
845 i_uid_write(inode, owner[0]);
846 i_gid_write(inode, owner[1]);
847 } else if (test_opt(sb, GRPID)) {
848 inode->i_mode = mode;
849 inode->i_uid = current_fsuid();
850 inode->i_gid = dir->i_gid;
851 } else
852 inode_init_owner(inode, dir, mode);
853
854 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
855 /* This is the optimal IO size (for stat), not the fs block size */
856 inode->i_blocks = 0;
857 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
858 ext4_current_time(inode);
859
860 memset(ei->i_data, 0, sizeof(ei->i_data));
861 ei->i_dir_start_lookup = 0;
862 ei->i_disksize = 0;
863
864 /* Don't inherit extent flag from directory, amongst others. */
865 ei->i_flags =
866 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
867 ei->i_file_acl = 0;
868 ei->i_dtime = 0;
869 ei->i_block_group = group;
870 ei->i_last_alloc_group = ~0;
871
872 ext4_set_inode_flags(inode);
873 if (IS_DIRSYNC(inode))
874 ext4_handle_sync(handle);
875 if (insert_inode_locked(inode) < 0) {
876 /*
877 * Likely a bitmap corruption causing inode to be allocated
878 * twice.
879 */
880 err = -EIO;
881 goto fail;
882 }
883 spin_lock(&sbi->s_next_gen_lock);
884 inode->i_generation = sbi->s_next_generation++;
885 spin_unlock(&sbi->s_next_gen_lock);
886
887 /* Precompute checksum seed for inode metadata */
888 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
889 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
890 __u32 csum;
891 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
892 __le32 inum = cpu_to_le32(inode->i_ino);
893 __le32 gen = cpu_to_le32(inode->i_generation);
894 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
895 sizeof(inum));
896 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
897 sizeof(gen));
898 }
899
900 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
901 ext4_set_inode_state(inode, EXT4_STATE_NEW);
902
903 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
904
905 ret = inode;
906 dquot_initialize(inode);
907 err = dquot_alloc_inode(inode);
908 if (err)
909 goto fail_drop;
910
911 err = ext4_init_acl(handle, inode, dir);
912 if (err)
913 goto fail_free_drop;
914
915 err = ext4_init_security(handle, inode, dir, qstr);
916 if (err)
917 goto fail_free_drop;
918
919 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
920 /* set extent flag only for directory, file and normal symlink*/
921 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
922 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
923 ext4_ext_tree_init(handle, inode);
924 }
925 }
926
927 if (ext4_handle_valid(handle)) {
928 ei->i_sync_tid = handle->h_transaction->t_tid;
929 ei->i_datasync_tid = handle->h_transaction->t_tid;
930 }
931
932 err = ext4_mark_inode_dirty(handle, inode);
933 if (err) {
934 ext4_std_error(sb, err);
935 goto fail_free_drop;
936 }
937
938 ext4_debug("allocating inode %lu\n", inode->i_ino);
939 trace_ext4_allocate_inode(inode, dir, mode);
940 goto really_out;
941fail:
942 ext4_std_error(sb, err);
943out:
944 iput(inode);
945 ret = ERR_PTR(err);
946really_out:
947 brelse(inode_bitmap_bh);
948 return ret;
949
950fail_free_drop:
951 dquot_free_inode(inode);
952
953fail_drop:
954 dquot_drop(inode);
955 inode->i_flags |= S_NOQUOTA;
956 clear_nlink(inode);
957 unlock_new_inode(inode);
958 iput(inode);
959 brelse(inode_bitmap_bh);
960 return ERR_PTR(err);
961}
962
963/* Verify that we are loading a valid orphan from disk */
964struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
965{
966 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
967 ext4_group_t block_group;
968 int bit;
969 struct buffer_head *bitmap_bh;
970 struct inode *inode = NULL;
971 long err = -EIO;
972
973 /* Error cases - e2fsck has already cleaned up for us */
974 if (ino > max_ino) {
975 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
976 goto error;
977 }
978
979 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
980 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
981 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
982 if (!bitmap_bh) {
983 ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
984 goto error;
985 }
986
987 /* Having the inode bit set should be a 100% indicator that this
988 * is a valid orphan (no e2fsck run on fs). Orphans also include
989 * inodes that were being truncated, so we can't check i_nlink==0.
990 */
991 if (!ext4_test_bit(bit, bitmap_bh->b_data))
992 goto bad_orphan;
993
994 inode = ext4_iget(sb, ino);
995 if (IS_ERR(inode))
996 goto iget_failed;
997
998 /*
999 * If the orphans has i_nlinks > 0 then it should be able to be
1000 * truncated, otherwise it won't be removed from the orphan list
1001 * during processing and an infinite loop will result.
1002 */
1003 if (inode->i_nlink && !ext4_can_truncate(inode))
1004 goto bad_orphan;
1005
1006 if (NEXT_ORPHAN(inode) > max_ino)
1007 goto bad_orphan;
1008 brelse(bitmap_bh);
1009 return inode;
1010
1011iget_failed:
1012 err = PTR_ERR(inode);
1013 inode = NULL;
1014bad_orphan:
1015 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1016 printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1017 bit, (unsigned long long)bitmap_bh->b_blocknr,
1018 ext4_test_bit(bit, bitmap_bh->b_data));
1019 printk(KERN_NOTICE "inode=%p\n", inode);
1020 if (inode) {
1021 printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1022 is_bad_inode(inode));
1023 printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1024 NEXT_ORPHAN(inode));
1025 printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1026 printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1027 /* Avoid freeing blocks if we got a bad deleted inode */
1028 if (inode->i_nlink == 0)
1029 inode->i_blocks = 0;
1030 iput(inode);
1031 }
1032 brelse(bitmap_bh);
1033error:
1034 return ERR_PTR(err);
1035}
1036
1037unsigned long ext4_count_free_inodes(struct super_block *sb)
1038{
1039 unsigned long desc_count;
1040 struct ext4_group_desc *gdp;
1041 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1042#ifdef EXT4FS_DEBUG
1043 struct ext4_super_block *es;
1044 unsigned long bitmap_count, x;
1045 struct buffer_head *bitmap_bh = NULL;
1046
1047 es = EXT4_SB(sb)->s_es;
1048 desc_count = 0;
1049 bitmap_count = 0;
1050 gdp = NULL;
1051 for (i = 0; i < ngroups; i++) {
1052 gdp = ext4_get_group_desc(sb, i, NULL);
1053 if (!gdp)
1054 continue;
1055 desc_count += ext4_free_inodes_count(sb, gdp);
1056 brelse(bitmap_bh);
1057 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1058 if (!bitmap_bh)
1059 continue;
1060
1061 x = ext4_count_free(bitmap_bh->b_data,
1062 EXT4_INODES_PER_GROUP(sb) / 8);
1063 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1064 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1065 bitmap_count += x;
1066 }
1067 brelse(bitmap_bh);
1068 printk(KERN_DEBUG "ext4_count_free_inodes: "
1069 "stored = %u, computed = %lu, %lu\n",
1070 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1071 return desc_count;
1072#else
1073 desc_count = 0;
1074 for (i = 0; i < ngroups; i++) {
1075 gdp = ext4_get_group_desc(sb, i, NULL);
1076 if (!gdp)
1077 continue;
1078 desc_count += ext4_free_inodes_count(sb, gdp);
1079 cond_resched();
1080 }
1081 return desc_count;
1082#endif
1083}
1084
1085/* Called at mount-time, super-block is locked */
1086unsigned long ext4_count_dirs(struct super_block * sb)
1087{
1088 unsigned long count = 0;
1089 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1090
1091 for (i = 0; i < ngroups; i++) {
1092 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1093 if (!gdp)
1094 continue;
1095 count += ext4_used_dirs_count(sb, gdp);
1096 }
1097 return count;
1098}
1099
1100/*
1101 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1102 * inode table. Must be called without any spinlock held. The only place
1103 * where it is called from on active part of filesystem is ext4lazyinit
1104 * thread, so we do not need any special locks, however we have to prevent
1105 * inode allocation from the current group, so we take alloc_sem lock, to
1106 * block ext4_new_inode() until we are finished.
1107 */
1108int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1109 int barrier)
1110{
1111 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1112 struct ext4_sb_info *sbi = EXT4_SB(sb);
1113 struct ext4_group_desc *gdp = NULL;
1114 struct buffer_head *group_desc_bh;
1115 handle_t *handle;
1116 ext4_fsblk_t blk;
1117 int num, ret = 0, used_blks = 0;
1118
1119 /* This should not happen, but just to be sure check this */
1120 if (sb->s_flags & MS_RDONLY) {
1121 ret = 1;
1122 goto out;
1123 }
1124
1125 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1126 if (!gdp)
1127 goto out;
1128
1129 /*
1130 * We do not need to lock this, because we are the only one
1131 * handling this flag.
1132 */
1133 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1134 goto out;
1135
1136 handle = ext4_journal_start_sb(sb, 1);
1137 if (IS_ERR(handle)) {
1138 ret = PTR_ERR(handle);
1139 goto out;
1140 }
1141
1142 down_write(&grp->alloc_sem);
1143 /*
1144 * If inode bitmap was already initialized there may be some
1145 * used inodes so we need to skip blocks with used inodes in
1146 * inode table.
1147 */
1148 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1149 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1150 ext4_itable_unused_count(sb, gdp)),
1151 sbi->s_inodes_per_block);
1152
1153 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1154 ext4_error(sb, "Something is wrong with group %u: "
1155 "used itable blocks: %d; "
1156 "itable unused count: %u",
1157 group, used_blks,
1158 ext4_itable_unused_count(sb, gdp));
1159 ret = 1;
1160 goto err_out;
1161 }
1162
1163 blk = ext4_inode_table(sb, gdp) + used_blks;
1164 num = sbi->s_itb_per_group - used_blks;
1165
1166 BUFFER_TRACE(group_desc_bh, "get_write_access");
1167 ret = ext4_journal_get_write_access(handle,
1168 group_desc_bh);
1169 if (ret)
1170 goto err_out;
1171
1172 /*
1173 * Skip zeroout if the inode table is full. But we set the ZEROED
1174 * flag anyway, because obviously, when it is full it does not need
1175 * further zeroing.
1176 */
1177 if (unlikely(num == 0))
1178 goto skip_zeroout;
1179
1180 ext4_debug("going to zero out inode table in group %d\n",
1181 group);
1182 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1183 if (ret < 0)
1184 goto err_out;
1185 if (barrier)
1186 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1187
1188skip_zeroout:
1189 ext4_lock_group(sb, group);
1190 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1191 ext4_group_desc_csum_set(sb, group, gdp);
1192 ext4_unlock_group(sb, group);
1193
1194 BUFFER_TRACE(group_desc_bh,
1195 "call ext4_handle_dirty_metadata");
1196 ret = ext4_handle_dirty_metadata(handle, NULL,
1197 group_desc_bh);
1198
1199err_out:
1200 up_write(&grp->alloc_sem);
1201 ext4_journal_stop(handle);
1202out:
1203 return ret;
1204}