at v3.7 1736 lines 41 kB view raw
1/* 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * GNU General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public Licens 14 * along with this program; if not, write to the Free Software 15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 16 * 17 */ 18#include <linux/mm.h> 19#include <linux/swap.h> 20#include <linux/bio.h> 21#include <linux/blkdev.h> 22#include <linux/iocontext.h> 23#include <linux/slab.h> 24#include <linux/init.h> 25#include <linux/kernel.h> 26#include <linux/export.h> 27#include <linux/mempool.h> 28#include <linux/workqueue.h> 29#include <linux/cgroup.h> 30#include <scsi/sg.h> /* for struct sg_iovec */ 31 32#include <trace/events/block.h> 33 34/* 35 * Test patch to inline a certain number of bi_io_vec's inside the bio 36 * itself, to shrink a bio data allocation from two mempool calls to one 37 */ 38#define BIO_INLINE_VECS 4 39 40static mempool_t *bio_split_pool __read_mostly; 41 42/* 43 * if you change this list, also change bvec_alloc or things will 44 * break badly! cannot be bigger than what you can fit into an 45 * unsigned short 46 */ 47#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } 48static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { 49 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), 50}; 51#undef BV 52 53/* 54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by 55 * IO code that does not need private memory pools. 56 */ 57struct bio_set *fs_bio_set; 58EXPORT_SYMBOL(fs_bio_set); 59 60/* 61 * Our slab pool management 62 */ 63struct bio_slab { 64 struct kmem_cache *slab; 65 unsigned int slab_ref; 66 unsigned int slab_size; 67 char name[8]; 68}; 69static DEFINE_MUTEX(bio_slab_lock); 70static struct bio_slab *bio_slabs; 71static unsigned int bio_slab_nr, bio_slab_max; 72 73static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) 74{ 75 unsigned int sz = sizeof(struct bio) + extra_size; 76 struct kmem_cache *slab = NULL; 77 struct bio_slab *bslab, *new_bio_slabs; 78 unsigned int new_bio_slab_max; 79 unsigned int i, entry = -1; 80 81 mutex_lock(&bio_slab_lock); 82 83 i = 0; 84 while (i < bio_slab_nr) { 85 bslab = &bio_slabs[i]; 86 87 if (!bslab->slab && entry == -1) 88 entry = i; 89 else if (bslab->slab_size == sz) { 90 slab = bslab->slab; 91 bslab->slab_ref++; 92 break; 93 } 94 i++; 95 } 96 97 if (slab) 98 goto out_unlock; 99 100 if (bio_slab_nr == bio_slab_max && entry == -1) { 101 new_bio_slab_max = bio_slab_max << 1; 102 new_bio_slabs = krealloc(bio_slabs, 103 new_bio_slab_max * sizeof(struct bio_slab), 104 GFP_KERNEL); 105 if (!new_bio_slabs) 106 goto out_unlock; 107 bio_slab_max = new_bio_slab_max; 108 bio_slabs = new_bio_slabs; 109 } 110 if (entry == -1) 111 entry = bio_slab_nr++; 112 113 bslab = &bio_slabs[entry]; 114 115 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); 116 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL); 117 if (!slab) 118 goto out_unlock; 119 120 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry); 121 bslab->slab = slab; 122 bslab->slab_ref = 1; 123 bslab->slab_size = sz; 124out_unlock: 125 mutex_unlock(&bio_slab_lock); 126 return slab; 127} 128 129static void bio_put_slab(struct bio_set *bs) 130{ 131 struct bio_slab *bslab = NULL; 132 unsigned int i; 133 134 mutex_lock(&bio_slab_lock); 135 136 for (i = 0; i < bio_slab_nr; i++) { 137 if (bs->bio_slab == bio_slabs[i].slab) { 138 bslab = &bio_slabs[i]; 139 break; 140 } 141 } 142 143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 144 goto out; 145 146 WARN_ON(!bslab->slab_ref); 147 148 if (--bslab->slab_ref) 149 goto out; 150 151 kmem_cache_destroy(bslab->slab); 152 bslab->slab = NULL; 153 154out: 155 mutex_unlock(&bio_slab_lock); 156} 157 158unsigned int bvec_nr_vecs(unsigned short idx) 159{ 160 return bvec_slabs[idx].nr_vecs; 161} 162 163void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx) 164{ 165 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); 166 167 if (idx == BIOVEC_MAX_IDX) 168 mempool_free(bv, bs->bvec_pool); 169 else { 170 struct biovec_slab *bvs = bvec_slabs + idx; 171 172 kmem_cache_free(bvs->slab, bv); 173 } 174} 175 176struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, 177 struct bio_set *bs) 178{ 179 struct bio_vec *bvl; 180 181 /* 182 * see comment near bvec_array define! 183 */ 184 switch (nr) { 185 case 1: 186 *idx = 0; 187 break; 188 case 2 ... 4: 189 *idx = 1; 190 break; 191 case 5 ... 16: 192 *idx = 2; 193 break; 194 case 17 ... 64: 195 *idx = 3; 196 break; 197 case 65 ... 128: 198 *idx = 4; 199 break; 200 case 129 ... BIO_MAX_PAGES: 201 *idx = 5; 202 break; 203 default: 204 return NULL; 205 } 206 207 /* 208 * idx now points to the pool we want to allocate from. only the 209 * 1-vec entry pool is mempool backed. 210 */ 211 if (*idx == BIOVEC_MAX_IDX) { 212fallback: 213 bvl = mempool_alloc(bs->bvec_pool, gfp_mask); 214 } else { 215 struct biovec_slab *bvs = bvec_slabs + *idx; 216 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); 217 218 /* 219 * Make this allocation restricted and don't dump info on 220 * allocation failures, since we'll fallback to the mempool 221 * in case of failure. 222 */ 223 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 224 225 /* 226 * Try a slab allocation. If this fails and __GFP_WAIT 227 * is set, retry with the 1-entry mempool 228 */ 229 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); 230 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { 231 *idx = BIOVEC_MAX_IDX; 232 goto fallback; 233 } 234 } 235 236 return bvl; 237} 238 239static void __bio_free(struct bio *bio) 240{ 241 bio_disassociate_task(bio); 242 243 if (bio_integrity(bio)) 244 bio_integrity_free(bio); 245} 246 247static void bio_free(struct bio *bio) 248{ 249 struct bio_set *bs = bio->bi_pool; 250 void *p; 251 252 __bio_free(bio); 253 254 if (bs) { 255 if (bio_has_allocated_vec(bio)) 256 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio)); 257 258 /* 259 * If we have front padding, adjust the bio pointer before freeing 260 */ 261 p = bio; 262 p -= bs->front_pad; 263 264 mempool_free(p, bs->bio_pool); 265 } else { 266 /* Bio was allocated by bio_kmalloc() */ 267 kfree(bio); 268 } 269} 270 271void bio_init(struct bio *bio) 272{ 273 memset(bio, 0, sizeof(*bio)); 274 bio->bi_flags = 1 << BIO_UPTODATE; 275 atomic_set(&bio->bi_cnt, 1); 276} 277EXPORT_SYMBOL(bio_init); 278 279/** 280 * bio_reset - reinitialize a bio 281 * @bio: bio to reset 282 * 283 * Description: 284 * After calling bio_reset(), @bio will be in the same state as a freshly 285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are 286 * preserved are the ones that are initialized by bio_alloc_bioset(). See 287 * comment in struct bio. 288 */ 289void bio_reset(struct bio *bio) 290{ 291 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); 292 293 __bio_free(bio); 294 295 memset(bio, 0, BIO_RESET_BYTES); 296 bio->bi_flags = flags|(1 << BIO_UPTODATE); 297} 298EXPORT_SYMBOL(bio_reset); 299 300/** 301 * bio_alloc_bioset - allocate a bio for I/O 302 * @gfp_mask: the GFP_ mask given to the slab allocator 303 * @nr_iovecs: number of iovecs to pre-allocate 304 * @bs: the bio_set to allocate from. 305 * 306 * Description: 307 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is 308 * backed by the @bs's mempool. 309 * 310 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be 311 * able to allocate a bio. This is due to the mempool guarantees. To make this 312 * work, callers must never allocate more than 1 bio at a time from this pool. 313 * Callers that need to allocate more than 1 bio must always submit the 314 * previously allocated bio for IO before attempting to allocate a new one. 315 * Failure to do so can cause deadlocks under memory pressure. 316 * 317 * RETURNS: 318 * Pointer to new bio on success, NULL on failure. 319 */ 320struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) 321{ 322 unsigned front_pad; 323 unsigned inline_vecs; 324 unsigned long idx = BIO_POOL_NONE; 325 struct bio_vec *bvl = NULL; 326 struct bio *bio; 327 void *p; 328 329 if (!bs) { 330 if (nr_iovecs > UIO_MAXIOV) 331 return NULL; 332 333 p = kmalloc(sizeof(struct bio) + 334 nr_iovecs * sizeof(struct bio_vec), 335 gfp_mask); 336 front_pad = 0; 337 inline_vecs = nr_iovecs; 338 } else { 339 p = mempool_alloc(bs->bio_pool, gfp_mask); 340 front_pad = bs->front_pad; 341 inline_vecs = BIO_INLINE_VECS; 342 } 343 344 if (unlikely(!p)) 345 return NULL; 346 347 bio = p + front_pad; 348 bio_init(bio); 349 350 if (nr_iovecs > inline_vecs) { 351 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs); 352 if (unlikely(!bvl)) 353 goto err_free; 354 } else if (nr_iovecs) { 355 bvl = bio->bi_inline_vecs; 356 } 357 358 bio->bi_pool = bs; 359 bio->bi_flags |= idx << BIO_POOL_OFFSET; 360 bio->bi_max_vecs = nr_iovecs; 361 bio->bi_io_vec = bvl; 362 return bio; 363 364err_free: 365 mempool_free(p, bs->bio_pool); 366 return NULL; 367} 368EXPORT_SYMBOL(bio_alloc_bioset); 369 370void zero_fill_bio(struct bio *bio) 371{ 372 unsigned long flags; 373 struct bio_vec *bv; 374 int i; 375 376 bio_for_each_segment(bv, bio, i) { 377 char *data = bvec_kmap_irq(bv, &flags); 378 memset(data, 0, bv->bv_len); 379 flush_dcache_page(bv->bv_page); 380 bvec_kunmap_irq(data, &flags); 381 } 382} 383EXPORT_SYMBOL(zero_fill_bio); 384 385/** 386 * bio_put - release a reference to a bio 387 * @bio: bio to release reference to 388 * 389 * Description: 390 * Put a reference to a &struct bio, either one you have gotten with 391 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it. 392 **/ 393void bio_put(struct bio *bio) 394{ 395 BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); 396 397 /* 398 * last put frees it 399 */ 400 if (atomic_dec_and_test(&bio->bi_cnt)) 401 bio_free(bio); 402} 403EXPORT_SYMBOL(bio_put); 404 405inline int bio_phys_segments(struct request_queue *q, struct bio *bio) 406{ 407 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) 408 blk_recount_segments(q, bio); 409 410 return bio->bi_phys_segments; 411} 412EXPORT_SYMBOL(bio_phys_segments); 413 414/** 415 * __bio_clone - clone a bio 416 * @bio: destination bio 417 * @bio_src: bio to clone 418 * 419 * Clone a &bio. Caller will own the returned bio, but not 420 * the actual data it points to. Reference count of returned 421 * bio will be one. 422 */ 423void __bio_clone(struct bio *bio, struct bio *bio_src) 424{ 425 memcpy(bio->bi_io_vec, bio_src->bi_io_vec, 426 bio_src->bi_max_vecs * sizeof(struct bio_vec)); 427 428 /* 429 * most users will be overriding ->bi_bdev with a new target, 430 * so we don't set nor calculate new physical/hw segment counts here 431 */ 432 bio->bi_sector = bio_src->bi_sector; 433 bio->bi_bdev = bio_src->bi_bdev; 434 bio->bi_flags |= 1 << BIO_CLONED; 435 bio->bi_rw = bio_src->bi_rw; 436 bio->bi_vcnt = bio_src->bi_vcnt; 437 bio->bi_size = bio_src->bi_size; 438 bio->bi_idx = bio_src->bi_idx; 439} 440EXPORT_SYMBOL(__bio_clone); 441 442/** 443 * bio_clone_bioset - clone a bio 444 * @bio: bio to clone 445 * @gfp_mask: allocation priority 446 * @bs: bio_set to allocate from 447 * 448 * Like __bio_clone, only also allocates the returned bio 449 */ 450struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask, 451 struct bio_set *bs) 452{ 453 struct bio *b; 454 455 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs); 456 if (!b) 457 return NULL; 458 459 __bio_clone(b, bio); 460 461 if (bio_integrity(bio)) { 462 int ret; 463 464 ret = bio_integrity_clone(b, bio, gfp_mask); 465 466 if (ret < 0) { 467 bio_put(b); 468 return NULL; 469 } 470 } 471 472 return b; 473} 474EXPORT_SYMBOL(bio_clone_bioset); 475 476/** 477 * bio_get_nr_vecs - return approx number of vecs 478 * @bdev: I/O target 479 * 480 * Return the approximate number of pages we can send to this target. 481 * There's no guarantee that you will be able to fit this number of pages 482 * into a bio, it does not account for dynamic restrictions that vary 483 * on offset. 484 */ 485int bio_get_nr_vecs(struct block_device *bdev) 486{ 487 struct request_queue *q = bdev_get_queue(bdev); 488 int nr_pages; 489 490 nr_pages = min_t(unsigned, 491 queue_max_segments(q), 492 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1); 493 494 return min_t(unsigned, nr_pages, BIO_MAX_PAGES); 495 496} 497EXPORT_SYMBOL(bio_get_nr_vecs); 498 499static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page 500 *page, unsigned int len, unsigned int offset, 501 unsigned short max_sectors) 502{ 503 int retried_segments = 0; 504 struct bio_vec *bvec; 505 506 /* 507 * cloned bio must not modify vec list 508 */ 509 if (unlikely(bio_flagged(bio, BIO_CLONED))) 510 return 0; 511 512 if (((bio->bi_size + len) >> 9) > max_sectors) 513 return 0; 514 515 /* 516 * For filesystems with a blocksize smaller than the pagesize 517 * we will often be called with the same page as last time and 518 * a consecutive offset. Optimize this special case. 519 */ 520 if (bio->bi_vcnt > 0) { 521 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 522 523 if (page == prev->bv_page && 524 offset == prev->bv_offset + prev->bv_len) { 525 unsigned int prev_bv_len = prev->bv_len; 526 prev->bv_len += len; 527 528 if (q->merge_bvec_fn) { 529 struct bvec_merge_data bvm = { 530 /* prev_bvec is already charged in 531 bi_size, discharge it in order to 532 simulate merging updated prev_bvec 533 as new bvec. */ 534 .bi_bdev = bio->bi_bdev, 535 .bi_sector = bio->bi_sector, 536 .bi_size = bio->bi_size - prev_bv_len, 537 .bi_rw = bio->bi_rw, 538 }; 539 540 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) { 541 prev->bv_len -= len; 542 return 0; 543 } 544 } 545 546 goto done; 547 } 548 } 549 550 if (bio->bi_vcnt >= bio->bi_max_vecs) 551 return 0; 552 553 /* 554 * we might lose a segment or two here, but rather that than 555 * make this too complex. 556 */ 557 558 while (bio->bi_phys_segments >= queue_max_segments(q)) { 559 560 if (retried_segments) 561 return 0; 562 563 retried_segments = 1; 564 blk_recount_segments(q, bio); 565 } 566 567 /* 568 * setup the new entry, we might clear it again later if we 569 * cannot add the page 570 */ 571 bvec = &bio->bi_io_vec[bio->bi_vcnt]; 572 bvec->bv_page = page; 573 bvec->bv_len = len; 574 bvec->bv_offset = offset; 575 576 /* 577 * if queue has other restrictions (eg varying max sector size 578 * depending on offset), it can specify a merge_bvec_fn in the 579 * queue to get further control 580 */ 581 if (q->merge_bvec_fn) { 582 struct bvec_merge_data bvm = { 583 .bi_bdev = bio->bi_bdev, 584 .bi_sector = bio->bi_sector, 585 .bi_size = bio->bi_size, 586 .bi_rw = bio->bi_rw, 587 }; 588 589 /* 590 * merge_bvec_fn() returns number of bytes it can accept 591 * at this offset 592 */ 593 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) { 594 bvec->bv_page = NULL; 595 bvec->bv_len = 0; 596 bvec->bv_offset = 0; 597 return 0; 598 } 599 } 600 601 /* If we may be able to merge these biovecs, force a recount */ 602 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) 603 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 604 605 bio->bi_vcnt++; 606 bio->bi_phys_segments++; 607 done: 608 bio->bi_size += len; 609 return len; 610} 611 612/** 613 * bio_add_pc_page - attempt to add page to bio 614 * @q: the target queue 615 * @bio: destination bio 616 * @page: page to add 617 * @len: vec entry length 618 * @offset: vec entry offset 619 * 620 * Attempt to add a page to the bio_vec maplist. This can fail for a 621 * number of reasons, such as the bio being full or target block device 622 * limitations. The target block device must allow bio's up to PAGE_SIZE, 623 * so it is always possible to add a single page to an empty bio. 624 * 625 * This should only be used by REQ_PC bios. 626 */ 627int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, 628 unsigned int len, unsigned int offset) 629{ 630 return __bio_add_page(q, bio, page, len, offset, 631 queue_max_hw_sectors(q)); 632} 633EXPORT_SYMBOL(bio_add_pc_page); 634 635/** 636 * bio_add_page - attempt to add page to bio 637 * @bio: destination bio 638 * @page: page to add 639 * @len: vec entry length 640 * @offset: vec entry offset 641 * 642 * Attempt to add a page to the bio_vec maplist. This can fail for a 643 * number of reasons, such as the bio being full or target block device 644 * limitations. The target block device must allow bio's up to PAGE_SIZE, 645 * so it is always possible to add a single page to an empty bio. 646 */ 647int bio_add_page(struct bio *bio, struct page *page, unsigned int len, 648 unsigned int offset) 649{ 650 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 651 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q)); 652} 653EXPORT_SYMBOL(bio_add_page); 654 655struct bio_map_data { 656 struct bio_vec *iovecs; 657 struct sg_iovec *sgvecs; 658 int nr_sgvecs; 659 int is_our_pages; 660}; 661 662static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, 663 struct sg_iovec *iov, int iov_count, 664 int is_our_pages) 665{ 666 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt); 667 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); 668 bmd->nr_sgvecs = iov_count; 669 bmd->is_our_pages = is_our_pages; 670 bio->bi_private = bmd; 671} 672 673static void bio_free_map_data(struct bio_map_data *bmd) 674{ 675 kfree(bmd->iovecs); 676 kfree(bmd->sgvecs); 677 kfree(bmd); 678} 679 680static struct bio_map_data *bio_alloc_map_data(int nr_segs, 681 unsigned int iov_count, 682 gfp_t gfp_mask) 683{ 684 struct bio_map_data *bmd; 685 686 if (iov_count > UIO_MAXIOV) 687 return NULL; 688 689 bmd = kmalloc(sizeof(*bmd), gfp_mask); 690 if (!bmd) 691 return NULL; 692 693 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask); 694 if (!bmd->iovecs) { 695 kfree(bmd); 696 return NULL; 697 } 698 699 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask); 700 if (bmd->sgvecs) 701 return bmd; 702 703 kfree(bmd->iovecs); 704 kfree(bmd); 705 return NULL; 706} 707 708static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs, 709 struct sg_iovec *iov, int iov_count, 710 int to_user, int from_user, int do_free_page) 711{ 712 int ret = 0, i; 713 struct bio_vec *bvec; 714 int iov_idx = 0; 715 unsigned int iov_off = 0; 716 717 __bio_for_each_segment(bvec, bio, i, 0) { 718 char *bv_addr = page_address(bvec->bv_page); 719 unsigned int bv_len = iovecs[i].bv_len; 720 721 while (bv_len && iov_idx < iov_count) { 722 unsigned int bytes; 723 char __user *iov_addr; 724 725 bytes = min_t(unsigned int, 726 iov[iov_idx].iov_len - iov_off, bv_len); 727 iov_addr = iov[iov_idx].iov_base + iov_off; 728 729 if (!ret) { 730 if (to_user) 731 ret = copy_to_user(iov_addr, bv_addr, 732 bytes); 733 734 if (from_user) 735 ret = copy_from_user(bv_addr, iov_addr, 736 bytes); 737 738 if (ret) 739 ret = -EFAULT; 740 } 741 742 bv_len -= bytes; 743 bv_addr += bytes; 744 iov_addr += bytes; 745 iov_off += bytes; 746 747 if (iov[iov_idx].iov_len == iov_off) { 748 iov_idx++; 749 iov_off = 0; 750 } 751 } 752 753 if (do_free_page) 754 __free_page(bvec->bv_page); 755 } 756 757 return ret; 758} 759 760/** 761 * bio_uncopy_user - finish previously mapped bio 762 * @bio: bio being terminated 763 * 764 * Free pages allocated from bio_copy_user() and write back data 765 * to user space in case of a read. 766 */ 767int bio_uncopy_user(struct bio *bio) 768{ 769 struct bio_map_data *bmd = bio->bi_private; 770 int ret = 0; 771 772 if (!bio_flagged(bio, BIO_NULL_MAPPED)) 773 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, 774 bmd->nr_sgvecs, bio_data_dir(bio) == READ, 775 0, bmd->is_our_pages); 776 bio_free_map_data(bmd); 777 bio_put(bio); 778 return ret; 779} 780EXPORT_SYMBOL(bio_uncopy_user); 781 782/** 783 * bio_copy_user_iov - copy user data to bio 784 * @q: destination block queue 785 * @map_data: pointer to the rq_map_data holding pages (if necessary) 786 * @iov: the iovec. 787 * @iov_count: number of elements in the iovec 788 * @write_to_vm: bool indicating writing to pages or not 789 * @gfp_mask: memory allocation flags 790 * 791 * Prepares and returns a bio for indirect user io, bouncing data 792 * to/from kernel pages as necessary. Must be paired with 793 * call bio_uncopy_user() on io completion. 794 */ 795struct bio *bio_copy_user_iov(struct request_queue *q, 796 struct rq_map_data *map_data, 797 struct sg_iovec *iov, int iov_count, 798 int write_to_vm, gfp_t gfp_mask) 799{ 800 struct bio_map_data *bmd; 801 struct bio_vec *bvec; 802 struct page *page; 803 struct bio *bio; 804 int i, ret; 805 int nr_pages = 0; 806 unsigned int len = 0; 807 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; 808 809 for (i = 0; i < iov_count; i++) { 810 unsigned long uaddr; 811 unsigned long end; 812 unsigned long start; 813 814 uaddr = (unsigned long)iov[i].iov_base; 815 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; 816 start = uaddr >> PAGE_SHIFT; 817 818 /* 819 * Overflow, abort 820 */ 821 if (end < start) 822 return ERR_PTR(-EINVAL); 823 824 nr_pages += end - start; 825 len += iov[i].iov_len; 826 } 827 828 if (offset) 829 nr_pages++; 830 831 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask); 832 if (!bmd) 833 return ERR_PTR(-ENOMEM); 834 835 ret = -ENOMEM; 836 bio = bio_kmalloc(gfp_mask, nr_pages); 837 if (!bio) 838 goto out_bmd; 839 840 if (!write_to_vm) 841 bio->bi_rw |= REQ_WRITE; 842 843 ret = 0; 844 845 if (map_data) { 846 nr_pages = 1 << map_data->page_order; 847 i = map_data->offset / PAGE_SIZE; 848 } 849 while (len) { 850 unsigned int bytes = PAGE_SIZE; 851 852 bytes -= offset; 853 854 if (bytes > len) 855 bytes = len; 856 857 if (map_data) { 858 if (i == map_data->nr_entries * nr_pages) { 859 ret = -ENOMEM; 860 break; 861 } 862 863 page = map_data->pages[i / nr_pages]; 864 page += (i % nr_pages); 865 866 i++; 867 } else { 868 page = alloc_page(q->bounce_gfp | gfp_mask); 869 if (!page) { 870 ret = -ENOMEM; 871 break; 872 } 873 } 874 875 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) 876 break; 877 878 len -= bytes; 879 offset = 0; 880 } 881 882 if (ret) 883 goto cleanup; 884 885 /* 886 * success 887 */ 888 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) || 889 (map_data && map_data->from_user)) { 890 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0); 891 if (ret) 892 goto cleanup; 893 } 894 895 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1); 896 return bio; 897cleanup: 898 if (!map_data) 899 bio_for_each_segment(bvec, bio, i) 900 __free_page(bvec->bv_page); 901 902 bio_put(bio); 903out_bmd: 904 bio_free_map_data(bmd); 905 return ERR_PTR(ret); 906} 907 908/** 909 * bio_copy_user - copy user data to bio 910 * @q: destination block queue 911 * @map_data: pointer to the rq_map_data holding pages (if necessary) 912 * @uaddr: start of user address 913 * @len: length in bytes 914 * @write_to_vm: bool indicating writing to pages or not 915 * @gfp_mask: memory allocation flags 916 * 917 * Prepares and returns a bio for indirect user io, bouncing data 918 * to/from kernel pages as necessary. Must be paired with 919 * call bio_uncopy_user() on io completion. 920 */ 921struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data, 922 unsigned long uaddr, unsigned int len, 923 int write_to_vm, gfp_t gfp_mask) 924{ 925 struct sg_iovec iov; 926 927 iov.iov_base = (void __user *)uaddr; 928 iov.iov_len = len; 929 930 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask); 931} 932EXPORT_SYMBOL(bio_copy_user); 933 934static struct bio *__bio_map_user_iov(struct request_queue *q, 935 struct block_device *bdev, 936 struct sg_iovec *iov, int iov_count, 937 int write_to_vm, gfp_t gfp_mask) 938{ 939 int i, j; 940 int nr_pages = 0; 941 struct page **pages; 942 struct bio *bio; 943 int cur_page = 0; 944 int ret, offset; 945 946 for (i = 0; i < iov_count; i++) { 947 unsigned long uaddr = (unsigned long)iov[i].iov_base; 948 unsigned long len = iov[i].iov_len; 949 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 950 unsigned long start = uaddr >> PAGE_SHIFT; 951 952 /* 953 * Overflow, abort 954 */ 955 if (end < start) 956 return ERR_PTR(-EINVAL); 957 958 nr_pages += end - start; 959 /* 960 * buffer must be aligned to at least hardsector size for now 961 */ 962 if (uaddr & queue_dma_alignment(q)) 963 return ERR_PTR(-EINVAL); 964 } 965 966 if (!nr_pages) 967 return ERR_PTR(-EINVAL); 968 969 bio = bio_kmalloc(gfp_mask, nr_pages); 970 if (!bio) 971 return ERR_PTR(-ENOMEM); 972 973 ret = -ENOMEM; 974 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); 975 if (!pages) 976 goto out; 977 978 for (i = 0; i < iov_count; i++) { 979 unsigned long uaddr = (unsigned long)iov[i].iov_base; 980 unsigned long len = iov[i].iov_len; 981 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 982 unsigned long start = uaddr >> PAGE_SHIFT; 983 const int local_nr_pages = end - start; 984 const int page_limit = cur_page + local_nr_pages; 985 986 ret = get_user_pages_fast(uaddr, local_nr_pages, 987 write_to_vm, &pages[cur_page]); 988 if (ret < local_nr_pages) { 989 ret = -EFAULT; 990 goto out_unmap; 991 } 992 993 offset = uaddr & ~PAGE_MASK; 994 for (j = cur_page; j < page_limit; j++) { 995 unsigned int bytes = PAGE_SIZE - offset; 996 997 if (len <= 0) 998 break; 999 1000 if (bytes > len) 1001 bytes = len; 1002 1003 /* 1004 * sorry... 1005 */ 1006 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < 1007 bytes) 1008 break; 1009 1010 len -= bytes; 1011 offset = 0; 1012 } 1013 1014 cur_page = j; 1015 /* 1016 * release the pages we didn't map into the bio, if any 1017 */ 1018 while (j < page_limit) 1019 page_cache_release(pages[j++]); 1020 } 1021 1022 kfree(pages); 1023 1024 /* 1025 * set data direction, and check if mapped pages need bouncing 1026 */ 1027 if (!write_to_vm) 1028 bio->bi_rw |= REQ_WRITE; 1029 1030 bio->bi_bdev = bdev; 1031 bio->bi_flags |= (1 << BIO_USER_MAPPED); 1032 return bio; 1033 1034 out_unmap: 1035 for (i = 0; i < nr_pages; i++) { 1036 if(!pages[i]) 1037 break; 1038 page_cache_release(pages[i]); 1039 } 1040 out: 1041 kfree(pages); 1042 bio_put(bio); 1043 return ERR_PTR(ret); 1044} 1045 1046/** 1047 * bio_map_user - map user address into bio 1048 * @q: the struct request_queue for the bio 1049 * @bdev: destination block device 1050 * @uaddr: start of user address 1051 * @len: length in bytes 1052 * @write_to_vm: bool indicating writing to pages or not 1053 * @gfp_mask: memory allocation flags 1054 * 1055 * Map the user space address into a bio suitable for io to a block 1056 * device. Returns an error pointer in case of error. 1057 */ 1058struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, 1059 unsigned long uaddr, unsigned int len, int write_to_vm, 1060 gfp_t gfp_mask) 1061{ 1062 struct sg_iovec iov; 1063 1064 iov.iov_base = (void __user *)uaddr; 1065 iov.iov_len = len; 1066 1067 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask); 1068} 1069EXPORT_SYMBOL(bio_map_user); 1070 1071/** 1072 * bio_map_user_iov - map user sg_iovec table into bio 1073 * @q: the struct request_queue for the bio 1074 * @bdev: destination block device 1075 * @iov: the iovec. 1076 * @iov_count: number of elements in the iovec 1077 * @write_to_vm: bool indicating writing to pages or not 1078 * @gfp_mask: memory allocation flags 1079 * 1080 * Map the user space address into a bio suitable for io to a block 1081 * device. Returns an error pointer in case of error. 1082 */ 1083struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, 1084 struct sg_iovec *iov, int iov_count, 1085 int write_to_vm, gfp_t gfp_mask) 1086{ 1087 struct bio *bio; 1088 1089 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm, 1090 gfp_mask); 1091 if (IS_ERR(bio)) 1092 return bio; 1093 1094 /* 1095 * subtle -- if __bio_map_user() ended up bouncing a bio, 1096 * it would normally disappear when its bi_end_io is run. 1097 * however, we need it for the unmap, so grab an extra 1098 * reference to it 1099 */ 1100 bio_get(bio); 1101 1102 return bio; 1103} 1104 1105static void __bio_unmap_user(struct bio *bio) 1106{ 1107 struct bio_vec *bvec; 1108 int i; 1109 1110 /* 1111 * make sure we dirty pages we wrote to 1112 */ 1113 __bio_for_each_segment(bvec, bio, i, 0) { 1114 if (bio_data_dir(bio) == READ) 1115 set_page_dirty_lock(bvec->bv_page); 1116 1117 page_cache_release(bvec->bv_page); 1118 } 1119 1120 bio_put(bio); 1121} 1122 1123/** 1124 * bio_unmap_user - unmap a bio 1125 * @bio: the bio being unmapped 1126 * 1127 * Unmap a bio previously mapped by bio_map_user(). Must be called with 1128 * a process context. 1129 * 1130 * bio_unmap_user() may sleep. 1131 */ 1132void bio_unmap_user(struct bio *bio) 1133{ 1134 __bio_unmap_user(bio); 1135 bio_put(bio); 1136} 1137EXPORT_SYMBOL(bio_unmap_user); 1138 1139static void bio_map_kern_endio(struct bio *bio, int err) 1140{ 1141 bio_put(bio); 1142} 1143 1144static struct bio *__bio_map_kern(struct request_queue *q, void *data, 1145 unsigned int len, gfp_t gfp_mask) 1146{ 1147 unsigned long kaddr = (unsigned long)data; 1148 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1149 unsigned long start = kaddr >> PAGE_SHIFT; 1150 const int nr_pages = end - start; 1151 int offset, i; 1152 struct bio *bio; 1153 1154 bio = bio_kmalloc(gfp_mask, nr_pages); 1155 if (!bio) 1156 return ERR_PTR(-ENOMEM); 1157 1158 offset = offset_in_page(kaddr); 1159 for (i = 0; i < nr_pages; i++) { 1160 unsigned int bytes = PAGE_SIZE - offset; 1161 1162 if (len <= 0) 1163 break; 1164 1165 if (bytes > len) 1166 bytes = len; 1167 1168 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, 1169 offset) < bytes) 1170 break; 1171 1172 data += bytes; 1173 len -= bytes; 1174 offset = 0; 1175 } 1176 1177 bio->bi_end_io = bio_map_kern_endio; 1178 return bio; 1179} 1180 1181/** 1182 * bio_map_kern - map kernel address into bio 1183 * @q: the struct request_queue for the bio 1184 * @data: pointer to buffer to map 1185 * @len: length in bytes 1186 * @gfp_mask: allocation flags for bio allocation 1187 * 1188 * Map the kernel address into a bio suitable for io to a block 1189 * device. Returns an error pointer in case of error. 1190 */ 1191struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, 1192 gfp_t gfp_mask) 1193{ 1194 struct bio *bio; 1195 1196 bio = __bio_map_kern(q, data, len, gfp_mask); 1197 if (IS_ERR(bio)) 1198 return bio; 1199 1200 if (bio->bi_size == len) 1201 return bio; 1202 1203 /* 1204 * Don't support partial mappings. 1205 */ 1206 bio_put(bio); 1207 return ERR_PTR(-EINVAL); 1208} 1209EXPORT_SYMBOL(bio_map_kern); 1210 1211static void bio_copy_kern_endio(struct bio *bio, int err) 1212{ 1213 struct bio_vec *bvec; 1214 const int read = bio_data_dir(bio) == READ; 1215 struct bio_map_data *bmd = bio->bi_private; 1216 int i; 1217 char *p = bmd->sgvecs[0].iov_base; 1218 1219 __bio_for_each_segment(bvec, bio, i, 0) { 1220 char *addr = page_address(bvec->bv_page); 1221 int len = bmd->iovecs[i].bv_len; 1222 1223 if (read) 1224 memcpy(p, addr, len); 1225 1226 __free_page(bvec->bv_page); 1227 p += len; 1228 } 1229 1230 bio_free_map_data(bmd); 1231 bio_put(bio); 1232} 1233 1234/** 1235 * bio_copy_kern - copy kernel address into bio 1236 * @q: the struct request_queue for the bio 1237 * @data: pointer to buffer to copy 1238 * @len: length in bytes 1239 * @gfp_mask: allocation flags for bio and page allocation 1240 * @reading: data direction is READ 1241 * 1242 * copy the kernel address into a bio suitable for io to a block 1243 * device. Returns an error pointer in case of error. 1244 */ 1245struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, 1246 gfp_t gfp_mask, int reading) 1247{ 1248 struct bio *bio; 1249 struct bio_vec *bvec; 1250 int i; 1251 1252 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask); 1253 if (IS_ERR(bio)) 1254 return bio; 1255 1256 if (!reading) { 1257 void *p = data; 1258 1259 bio_for_each_segment(bvec, bio, i) { 1260 char *addr = page_address(bvec->bv_page); 1261 1262 memcpy(addr, p, bvec->bv_len); 1263 p += bvec->bv_len; 1264 } 1265 } 1266 1267 bio->bi_end_io = bio_copy_kern_endio; 1268 1269 return bio; 1270} 1271EXPORT_SYMBOL(bio_copy_kern); 1272 1273/* 1274 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 1275 * for performing direct-IO in BIOs. 1276 * 1277 * The problem is that we cannot run set_page_dirty() from interrupt context 1278 * because the required locks are not interrupt-safe. So what we can do is to 1279 * mark the pages dirty _before_ performing IO. And in interrupt context, 1280 * check that the pages are still dirty. If so, fine. If not, redirty them 1281 * in process context. 1282 * 1283 * We special-case compound pages here: normally this means reads into hugetlb 1284 * pages. The logic in here doesn't really work right for compound pages 1285 * because the VM does not uniformly chase down the head page in all cases. 1286 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't 1287 * handle them at all. So we skip compound pages here at an early stage. 1288 * 1289 * Note that this code is very hard to test under normal circumstances because 1290 * direct-io pins the pages with get_user_pages(). This makes 1291 * is_page_cache_freeable return false, and the VM will not clean the pages. 1292 * But other code (eg, flusher threads) could clean the pages if they are mapped 1293 * pagecache. 1294 * 1295 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 1296 * deferred bio dirtying paths. 1297 */ 1298 1299/* 1300 * bio_set_pages_dirty() will mark all the bio's pages as dirty. 1301 */ 1302void bio_set_pages_dirty(struct bio *bio) 1303{ 1304 struct bio_vec *bvec = bio->bi_io_vec; 1305 int i; 1306 1307 for (i = 0; i < bio->bi_vcnt; i++) { 1308 struct page *page = bvec[i].bv_page; 1309 1310 if (page && !PageCompound(page)) 1311 set_page_dirty_lock(page); 1312 } 1313} 1314 1315static void bio_release_pages(struct bio *bio) 1316{ 1317 struct bio_vec *bvec = bio->bi_io_vec; 1318 int i; 1319 1320 for (i = 0; i < bio->bi_vcnt; i++) { 1321 struct page *page = bvec[i].bv_page; 1322 1323 if (page) 1324 put_page(page); 1325 } 1326} 1327 1328/* 1329 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 1330 * If they are, then fine. If, however, some pages are clean then they must 1331 * have been written out during the direct-IO read. So we take another ref on 1332 * the BIO and the offending pages and re-dirty the pages in process context. 1333 * 1334 * It is expected that bio_check_pages_dirty() will wholly own the BIO from 1335 * here on. It will run one page_cache_release() against each page and will 1336 * run one bio_put() against the BIO. 1337 */ 1338 1339static void bio_dirty_fn(struct work_struct *work); 1340 1341static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 1342static DEFINE_SPINLOCK(bio_dirty_lock); 1343static struct bio *bio_dirty_list; 1344 1345/* 1346 * This runs in process context 1347 */ 1348static void bio_dirty_fn(struct work_struct *work) 1349{ 1350 unsigned long flags; 1351 struct bio *bio; 1352 1353 spin_lock_irqsave(&bio_dirty_lock, flags); 1354 bio = bio_dirty_list; 1355 bio_dirty_list = NULL; 1356 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1357 1358 while (bio) { 1359 struct bio *next = bio->bi_private; 1360 1361 bio_set_pages_dirty(bio); 1362 bio_release_pages(bio); 1363 bio_put(bio); 1364 bio = next; 1365 } 1366} 1367 1368void bio_check_pages_dirty(struct bio *bio) 1369{ 1370 struct bio_vec *bvec = bio->bi_io_vec; 1371 int nr_clean_pages = 0; 1372 int i; 1373 1374 for (i = 0; i < bio->bi_vcnt; i++) { 1375 struct page *page = bvec[i].bv_page; 1376 1377 if (PageDirty(page) || PageCompound(page)) { 1378 page_cache_release(page); 1379 bvec[i].bv_page = NULL; 1380 } else { 1381 nr_clean_pages++; 1382 } 1383 } 1384 1385 if (nr_clean_pages) { 1386 unsigned long flags; 1387 1388 spin_lock_irqsave(&bio_dirty_lock, flags); 1389 bio->bi_private = bio_dirty_list; 1390 bio_dirty_list = bio; 1391 spin_unlock_irqrestore(&bio_dirty_lock, flags); 1392 schedule_work(&bio_dirty_work); 1393 } else { 1394 bio_put(bio); 1395 } 1396} 1397 1398#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1399void bio_flush_dcache_pages(struct bio *bi) 1400{ 1401 int i; 1402 struct bio_vec *bvec; 1403 1404 bio_for_each_segment(bvec, bi, i) 1405 flush_dcache_page(bvec->bv_page); 1406} 1407EXPORT_SYMBOL(bio_flush_dcache_pages); 1408#endif 1409 1410/** 1411 * bio_endio - end I/O on a bio 1412 * @bio: bio 1413 * @error: error, if any 1414 * 1415 * Description: 1416 * bio_endio() will end I/O on the whole bio. bio_endio() is the 1417 * preferred way to end I/O on a bio, it takes care of clearing 1418 * BIO_UPTODATE on error. @error is 0 on success, and and one of the 1419 * established -Exxxx (-EIO, for instance) error values in case 1420 * something went wrong. No one should call bi_end_io() directly on a 1421 * bio unless they own it and thus know that it has an end_io 1422 * function. 1423 **/ 1424void bio_endio(struct bio *bio, int error) 1425{ 1426 if (error) 1427 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1428 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 1429 error = -EIO; 1430 1431 if (bio->bi_end_io) 1432 bio->bi_end_io(bio, error); 1433} 1434EXPORT_SYMBOL(bio_endio); 1435 1436void bio_pair_release(struct bio_pair *bp) 1437{ 1438 if (atomic_dec_and_test(&bp->cnt)) { 1439 struct bio *master = bp->bio1.bi_private; 1440 1441 bio_endio(master, bp->error); 1442 mempool_free(bp, bp->bio2.bi_private); 1443 } 1444} 1445EXPORT_SYMBOL(bio_pair_release); 1446 1447static void bio_pair_end_1(struct bio *bi, int err) 1448{ 1449 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); 1450 1451 if (err) 1452 bp->error = err; 1453 1454 bio_pair_release(bp); 1455} 1456 1457static void bio_pair_end_2(struct bio *bi, int err) 1458{ 1459 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); 1460 1461 if (err) 1462 bp->error = err; 1463 1464 bio_pair_release(bp); 1465} 1466 1467/* 1468 * split a bio - only worry about a bio with a single page in its iovec 1469 */ 1470struct bio_pair *bio_split(struct bio *bi, int first_sectors) 1471{ 1472 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO); 1473 1474 if (!bp) 1475 return bp; 1476 1477 trace_block_split(bdev_get_queue(bi->bi_bdev), bi, 1478 bi->bi_sector + first_sectors); 1479 1480 BUG_ON(bi->bi_vcnt != 1 && bi->bi_vcnt != 0); 1481 BUG_ON(bi->bi_idx != 0); 1482 atomic_set(&bp->cnt, 3); 1483 bp->error = 0; 1484 bp->bio1 = *bi; 1485 bp->bio2 = *bi; 1486 bp->bio2.bi_sector += first_sectors; 1487 bp->bio2.bi_size -= first_sectors << 9; 1488 bp->bio1.bi_size = first_sectors << 9; 1489 1490 if (bi->bi_vcnt != 0) { 1491 bp->bv1 = bi->bi_io_vec[0]; 1492 bp->bv2 = bi->bi_io_vec[0]; 1493 1494 if (bio_is_rw(bi)) { 1495 bp->bv2.bv_offset += first_sectors << 9; 1496 bp->bv2.bv_len -= first_sectors << 9; 1497 bp->bv1.bv_len = first_sectors << 9; 1498 } 1499 1500 bp->bio1.bi_io_vec = &bp->bv1; 1501 bp->bio2.bi_io_vec = &bp->bv2; 1502 1503 bp->bio1.bi_max_vecs = 1; 1504 bp->bio2.bi_max_vecs = 1; 1505 } 1506 1507 bp->bio1.bi_end_io = bio_pair_end_1; 1508 bp->bio2.bi_end_io = bio_pair_end_2; 1509 1510 bp->bio1.bi_private = bi; 1511 bp->bio2.bi_private = bio_split_pool; 1512 1513 if (bio_integrity(bi)) 1514 bio_integrity_split(bi, bp, first_sectors); 1515 1516 return bp; 1517} 1518EXPORT_SYMBOL(bio_split); 1519 1520/** 1521 * bio_sector_offset - Find hardware sector offset in bio 1522 * @bio: bio to inspect 1523 * @index: bio_vec index 1524 * @offset: offset in bv_page 1525 * 1526 * Return the number of hardware sectors between beginning of bio 1527 * and an end point indicated by a bio_vec index and an offset 1528 * within that vector's page. 1529 */ 1530sector_t bio_sector_offset(struct bio *bio, unsigned short index, 1531 unsigned int offset) 1532{ 1533 unsigned int sector_sz; 1534 struct bio_vec *bv; 1535 sector_t sectors; 1536 int i; 1537 1538 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue); 1539 sectors = 0; 1540 1541 if (index >= bio->bi_idx) 1542 index = bio->bi_vcnt - 1; 1543 1544 __bio_for_each_segment(bv, bio, i, 0) { 1545 if (i == index) { 1546 if (offset > bv->bv_offset) 1547 sectors += (offset - bv->bv_offset) / sector_sz; 1548 break; 1549 } 1550 1551 sectors += bv->bv_len / sector_sz; 1552 } 1553 1554 return sectors; 1555} 1556EXPORT_SYMBOL(bio_sector_offset); 1557 1558/* 1559 * create memory pools for biovec's in a bio_set. 1560 * use the global biovec slabs created for general use. 1561 */ 1562static int biovec_create_pools(struct bio_set *bs, int pool_entries) 1563{ 1564 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; 1565 1566 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab); 1567 if (!bs->bvec_pool) 1568 return -ENOMEM; 1569 1570 return 0; 1571} 1572 1573static void biovec_free_pools(struct bio_set *bs) 1574{ 1575 mempool_destroy(bs->bvec_pool); 1576} 1577 1578void bioset_free(struct bio_set *bs) 1579{ 1580 if (bs->bio_pool) 1581 mempool_destroy(bs->bio_pool); 1582 1583 bioset_integrity_free(bs); 1584 biovec_free_pools(bs); 1585 bio_put_slab(bs); 1586 1587 kfree(bs); 1588} 1589EXPORT_SYMBOL(bioset_free); 1590 1591/** 1592 * bioset_create - Create a bio_set 1593 * @pool_size: Number of bio and bio_vecs to cache in the mempool 1594 * @front_pad: Number of bytes to allocate in front of the returned bio 1595 * 1596 * Description: 1597 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 1598 * to ask for a number of bytes to be allocated in front of the bio. 1599 * Front pad allocation is useful for embedding the bio inside 1600 * another structure, to avoid allocating extra data to go with the bio. 1601 * Note that the bio must be embedded at the END of that structure always, 1602 * or things will break badly. 1603 */ 1604struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) 1605{ 1606 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 1607 struct bio_set *bs; 1608 1609 bs = kzalloc(sizeof(*bs), GFP_KERNEL); 1610 if (!bs) 1611 return NULL; 1612 1613 bs->front_pad = front_pad; 1614 1615 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); 1616 if (!bs->bio_slab) { 1617 kfree(bs); 1618 return NULL; 1619 } 1620 1621 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); 1622 if (!bs->bio_pool) 1623 goto bad; 1624 1625 if (!biovec_create_pools(bs, pool_size)) 1626 return bs; 1627 1628bad: 1629 bioset_free(bs); 1630 return NULL; 1631} 1632EXPORT_SYMBOL(bioset_create); 1633 1634#ifdef CONFIG_BLK_CGROUP 1635/** 1636 * bio_associate_current - associate a bio with %current 1637 * @bio: target bio 1638 * 1639 * Associate @bio with %current if it hasn't been associated yet. Block 1640 * layer will treat @bio as if it were issued by %current no matter which 1641 * task actually issues it. 1642 * 1643 * This function takes an extra reference of @task's io_context and blkcg 1644 * which will be put when @bio is released. The caller must own @bio, 1645 * ensure %current->io_context exists, and is responsible for synchronizing 1646 * calls to this function. 1647 */ 1648int bio_associate_current(struct bio *bio) 1649{ 1650 struct io_context *ioc; 1651 struct cgroup_subsys_state *css; 1652 1653 if (bio->bi_ioc) 1654 return -EBUSY; 1655 1656 ioc = current->io_context; 1657 if (!ioc) 1658 return -ENOENT; 1659 1660 /* acquire active ref on @ioc and associate */ 1661 get_io_context_active(ioc); 1662 bio->bi_ioc = ioc; 1663 1664 /* associate blkcg if exists */ 1665 rcu_read_lock(); 1666 css = task_subsys_state(current, blkio_subsys_id); 1667 if (css && css_tryget(css)) 1668 bio->bi_css = css; 1669 rcu_read_unlock(); 1670 1671 return 0; 1672} 1673 1674/** 1675 * bio_disassociate_task - undo bio_associate_current() 1676 * @bio: target bio 1677 */ 1678void bio_disassociate_task(struct bio *bio) 1679{ 1680 if (bio->bi_ioc) { 1681 put_io_context(bio->bi_ioc); 1682 bio->bi_ioc = NULL; 1683 } 1684 if (bio->bi_css) { 1685 css_put(bio->bi_css); 1686 bio->bi_css = NULL; 1687 } 1688} 1689 1690#endif /* CONFIG_BLK_CGROUP */ 1691 1692static void __init biovec_init_slabs(void) 1693{ 1694 int i; 1695 1696 for (i = 0; i < BIOVEC_NR_POOLS; i++) { 1697 int size; 1698 struct biovec_slab *bvs = bvec_slabs + i; 1699 1700 if (bvs->nr_vecs <= BIO_INLINE_VECS) { 1701 bvs->slab = NULL; 1702 continue; 1703 } 1704 1705 size = bvs->nr_vecs * sizeof(struct bio_vec); 1706 bvs->slab = kmem_cache_create(bvs->name, size, 0, 1707 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 1708 } 1709} 1710 1711static int __init init_bio(void) 1712{ 1713 bio_slab_max = 2; 1714 bio_slab_nr = 0; 1715 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); 1716 if (!bio_slabs) 1717 panic("bio: can't allocate bios\n"); 1718 1719 bio_integrity_init(); 1720 biovec_init_slabs(); 1721 1722 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); 1723 if (!fs_bio_set) 1724 panic("bio: can't allocate bios\n"); 1725 1726 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) 1727 panic("bio: can't create integrity pool\n"); 1728 1729 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES, 1730 sizeof(struct bio_pair)); 1731 if (!bio_split_pool) 1732 panic("bio: can't create split pool\n"); 1733 1734 return 0; 1735} 1736subsys_initcall(init_bio);