at v3.7 1299 lines 34 kB view raw
1/* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 5 <http://rt2x00.serialmonkey.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the 19 Free Software Foundation, Inc., 20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 21 */ 22 23/* 24 Module: rt2x00lib 25 Abstract: rt2x00 queue specific routines. 26 */ 27 28#include <linux/slab.h> 29#include <linux/kernel.h> 30#include <linux/module.h> 31#include <linux/dma-mapping.h> 32 33#include "rt2x00.h" 34#include "rt2x00lib.h" 35 36struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp) 37{ 38 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 39 struct sk_buff *skb; 40 struct skb_frame_desc *skbdesc; 41 unsigned int frame_size; 42 unsigned int head_size = 0; 43 unsigned int tail_size = 0; 44 45 /* 46 * The frame size includes descriptor size, because the 47 * hardware directly receive the frame into the skbuffer. 48 */ 49 frame_size = entry->queue->data_size + entry->queue->desc_size; 50 51 /* 52 * The payload should be aligned to a 4-byte boundary, 53 * this means we need at least 3 bytes for moving the frame 54 * into the correct offset. 55 */ 56 head_size = 4; 57 58 /* 59 * For IV/EIV/ICV assembly we must make sure there is 60 * at least 8 bytes bytes available in headroom for IV/EIV 61 * and 8 bytes for ICV data as tailroon. 62 */ 63 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) { 64 head_size += 8; 65 tail_size += 8; 66 } 67 68 /* 69 * Allocate skbuffer. 70 */ 71 skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp); 72 if (!skb) 73 return NULL; 74 75 /* 76 * Make sure we not have a frame with the requested bytes 77 * available in the head and tail. 78 */ 79 skb_reserve(skb, head_size); 80 skb_put(skb, frame_size); 81 82 /* 83 * Populate skbdesc. 84 */ 85 skbdesc = get_skb_frame_desc(skb); 86 memset(skbdesc, 0, sizeof(*skbdesc)); 87 skbdesc->entry = entry; 88 89 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) { 90 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, 91 skb->data, 92 skb->len, 93 DMA_FROM_DEVICE); 94 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX; 95 } 96 97 return skb; 98} 99 100void rt2x00queue_map_txskb(struct queue_entry *entry) 101{ 102 struct device *dev = entry->queue->rt2x00dev->dev; 103 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 104 105 skbdesc->skb_dma = 106 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE); 107 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX; 108} 109EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb); 110 111void rt2x00queue_unmap_skb(struct queue_entry *entry) 112{ 113 struct device *dev = entry->queue->rt2x00dev->dev; 114 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 115 116 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) { 117 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, 118 DMA_FROM_DEVICE); 119 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX; 120 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) { 121 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, 122 DMA_TO_DEVICE); 123 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX; 124 } 125} 126EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb); 127 128void rt2x00queue_free_skb(struct queue_entry *entry) 129{ 130 if (!entry->skb) 131 return; 132 133 rt2x00queue_unmap_skb(entry); 134 dev_kfree_skb_any(entry->skb); 135 entry->skb = NULL; 136} 137 138void rt2x00queue_align_frame(struct sk_buff *skb) 139{ 140 unsigned int frame_length = skb->len; 141 unsigned int align = ALIGN_SIZE(skb, 0); 142 143 if (!align) 144 return; 145 146 skb_push(skb, align); 147 memmove(skb->data, skb->data + align, frame_length); 148 skb_trim(skb, frame_length); 149} 150 151void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length) 152{ 153 unsigned int payload_length = skb->len - header_length; 154 unsigned int header_align = ALIGN_SIZE(skb, 0); 155 unsigned int payload_align = ALIGN_SIZE(skb, header_length); 156 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0; 157 158 /* 159 * Adjust the header alignment if the payload needs to be moved more 160 * than the header. 161 */ 162 if (payload_align > header_align) 163 header_align += 4; 164 165 /* There is nothing to do if no alignment is needed */ 166 if (!header_align) 167 return; 168 169 /* Reserve the amount of space needed in front of the frame */ 170 skb_push(skb, header_align); 171 172 /* 173 * Move the header. 174 */ 175 memmove(skb->data, skb->data + header_align, header_length); 176 177 /* Move the payload, if present and if required */ 178 if (payload_length && payload_align) 179 memmove(skb->data + header_length + l2pad, 180 skb->data + header_length + l2pad + payload_align, 181 payload_length); 182 183 /* Trim the skb to the correct size */ 184 skb_trim(skb, header_length + l2pad + payload_length); 185} 186 187void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length) 188{ 189 /* 190 * L2 padding is only present if the skb contains more than just the 191 * IEEE 802.11 header. 192 */ 193 unsigned int l2pad = (skb->len > header_length) ? 194 L2PAD_SIZE(header_length) : 0; 195 196 if (!l2pad) 197 return; 198 199 memmove(skb->data + l2pad, skb->data, header_length); 200 skb_pull(skb, l2pad); 201} 202 203static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev, 204 struct sk_buff *skb, 205 struct txentry_desc *txdesc) 206{ 207 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 208 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 209 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif); 210 u16 seqno; 211 212 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 213 return; 214 215 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); 216 217 if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags)) { 218 /* 219 * rt2800 has a H/W (or F/W) bug, device incorrectly increase 220 * seqno on retransmited data (non-QOS) frames. To workaround 221 * the problem let's generate seqno in software if QOS is 222 * disabled. 223 */ 224 if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags)) 225 __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); 226 else 227 /* H/W will generate sequence number */ 228 return; 229 } 230 231 /* 232 * The hardware is not able to insert a sequence number. Assign a 233 * software generated one here. 234 * 235 * This is wrong because beacons are not getting sequence 236 * numbers assigned properly. 237 * 238 * A secondary problem exists for drivers that cannot toggle 239 * sequence counting per-frame, since those will override the 240 * sequence counter given by mac80211. 241 */ 242 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) 243 seqno = atomic_add_return(0x10, &intf->seqno); 244 else 245 seqno = atomic_read(&intf->seqno); 246 247 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 248 hdr->seq_ctrl |= cpu_to_le16(seqno); 249} 250 251static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev, 252 struct sk_buff *skb, 253 struct txentry_desc *txdesc, 254 const struct rt2x00_rate *hwrate) 255{ 256 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 257 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; 258 unsigned int data_length; 259 unsigned int duration; 260 unsigned int residual; 261 262 /* 263 * Determine with what IFS priority this frame should be send. 264 * Set ifs to IFS_SIFS when the this is not the first fragment, 265 * or this fragment came after RTS/CTS. 266 */ 267 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) 268 txdesc->u.plcp.ifs = IFS_BACKOFF; 269 else 270 txdesc->u.plcp.ifs = IFS_SIFS; 271 272 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */ 273 data_length = skb->len + 4; 274 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb); 275 276 /* 277 * PLCP setup 278 * Length calculation depends on OFDM/CCK rate. 279 */ 280 txdesc->u.plcp.signal = hwrate->plcp; 281 txdesc->u.plcp.service = 0x04; 282 283 if (hwrate->flags & DEV_RATE_OFDM) { 284 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f; 285 txdesc->u.plcp.length_low = data_length & 0x3f; 286 } else { 287 /* 288 * Convert length to microseconds. 289 */ 290 residual = GET_DURATION_RES(data_length, hwrate->bitrate); 291 duration = GET_DURATION(data_length, hwrate->bitrate); 292 293 if (residual != 0) { 294 duration++; 295 296 /* 297 * Check if we need to set the Length Extension 298 */ 299 if (hwrate->bitrate == 110 && residual <= 30) 300 txdesc->u.plcp.service |= 0x80; 301 } 302 303 txdesc->u.plcp.length_high = (duration >> 8) & 0xff; 304 txdesc->u.plcp.length_low = duration & 0xff; 305 306 /* 307 * When preamble is enabled we should set the 308 * preamble bit for the signal. 309 */ 310 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 311 txdesc->u.plcp.signal |= 0x08; 312 } 313} 314 315static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev, 316 struct sk_buff *skb, 317 struct txentry_desc *txdesc, 318 struct ieee80211_sta *sta, 319 const struct rt2x00_rate *hwrate) 320{ 321 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 322 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; 323 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 324 struct rt2x00_sta *sta_priv = NULL; 325 326 if (sta) { 327 txdesc->u.ht.mpdu_density = 328 sta->ht_cap.ampdu_density; 329 330 sta_priv = sta_to_rt2x00_sta(sta); 331 txdesc->u.ht.wcid = sta_priv->wcid; 332 } 333 334 /* 335 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the 336 * mcs rate to be used 337 */ 338 if (txrate->flags & IEEE80211_TX_RC_MCS) { 339 txdesc->u.ht.mcs = txrate->idx; 340 341 /* 342 * MIMO PS should be set to 1 for STA's using dynamic SM PS 343 * when using more then one tx stream (>MCS7). 344 */ 345 if (sta && txdesc->u.ht.mcs > 7 && 346 ((sta->ht_cap.cap & 347 IEEE80211_HT_CAP_SM_PS) >> 348 IEEE80211_HT_CAP_SM_PS_SHIFT) == 349 WLAN_HT_CAP_SM_PS_DYNAMIC) 350 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags); 351 } else { 352 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs); 353 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 354 txdesc->u.ht.mcs |= 0x08; 355 } 356 357 if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) { 358 if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)) 359 txdesc->u.ht.txop = TXOP_SIFS; 360 else 361 txdesc->u.ht.txop = TXOP_BACKOFF; 362 363 /* Left zero on all other settings. */ 364 return; 365 } 366 367 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */ 368 369 /* 370 * Only one STBC stream is supported for now. 371 */ 372 if (tx_info->flags & IEEE80211_TX_CTL_STBC) 373 txdesc->u.ht.stbc = 1; 374 375 /* 376 * This frame is eligible for an AMPDU, however, don't aggregate 377 * frames that are intended to probe a specific tx rate. 378 */ 379 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU && 380 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) 381 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags); 382 383 /* 384 * Set 40Mhz mode if necessary (for legacy rates this will 385 * duplicate the frame to both channels). 386 */ 387 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH || 388 txrate->flags & IEEE80211_TX_RC_DUP_DATA) 389 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags); 390 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 391 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags); 392 393 /* 394 * Determine IFS values 395 * - Use TXOP_BACKOFF for management frames except beacons 396 * - Use TXOP_SIFS for fragment bursts 397 * - Use TXOP_HTTXOP for everything else 398 * 399 * Note: rt2800 devices won't use CTS protection (if used) 400 * for frames not transmitted with TXOP_HTTXOP 401 */ 402 if (ieee80211_is_mgmt(hdr->frame_control) && 403 !ieee80211_is_beacon(hdr->frame_control)) 404 txdesc->u.ht.txop = TXOP_BACKOFF; 405 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)) 406 txdesc->u.ht.txop = TXOP_SIFS; 407 else 408 txdesc->u.ht.txop = TXOP_HTTXOP; 409} 410 411static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev, 412 struct sk_buff *skb, 413 struct txentry_desc *txdesc, 414 struct ieee80211_sta *sta) 415{ 416 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 417 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 418 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; 419 struct ieee80211_rate *rate; 420 const struct rt2x00_rate *hwrate = NULL; 421 422 memset(txdesc, 0, sizeof(*txdesc)); 423 424 /* 425 * Header and frame information. 426 */ 427 txdesc->length = skb->len; 428 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb); 429 430 /* 431 * Check whether this frame is to be acked. 432 */ 433 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) 434 __set_bit(ENTRY_TXD_ACK, &txdesc->flags); 435 436 /* 437 * Check if this is a RTS/CTS frame 438 */ 439 if (ieee80211_is_rts(hdr->frame_control) || 440 ieee80211_is_cts(hdr->frame_control)) { 441 __set_bit(ENTRY_TXD_BURST, &txdesc->flags); 442 if (ieee80211_is_rts(hdr->frame_control)) 443 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags); 444 else 445 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags); 446 if (tx_info->control.rts_cts_rate_idx >= 0) 447 rate = 448 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info); 449 } 450 451 /* 452 * Determine retry information. 453 */ 454 txdesc->retry_limit = tx_info->control.rates[0].count - 1; 455 if (txdesc->retry_limit >= rt2x00dev->long_retry) 456 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags); 457 458 /* 459 * Check if more fragments are pending 460 */ 461 if (ieee80211_has_morefrags(hdr->frame_control)) { 462 __set_bit(ENTRY_TXD_BURST, &txdesc->flags); 463 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags); 464 } 465 466 /* 467 * Check if more frames (!= fragments) are pending 468 */ 469 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES) 470 __set_bit(ENTRY_TXD_BURST, &txdesc->flags); 471 472 /* 473 * Beacons and probe responses require the tsf timestamp 474 * to be inserted into the frame. 475 */ 476 if (ieee80211_is_beacon(hdr->frame_control) || 477 ieee80211_is_probe_resp(hdr->frame_control)) 478 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags); 479 480 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) && 481 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) 482 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags); 483 484 /* 485 * Determine rate modulation. 486 */ 487 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 488 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD; 489 else if (txrate->flags & IEEE80211_TX_RC_MCS) 490 txdesc->rate_mode = RATE_MODE_HT_MIX; 491 else { 492 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info); 493 hwrate = rt2x00_get_rate(rate->hw_value); 494 if (hwrate->flags & DEV_RATE_OFDM) 495 txdesc->rate_mode = RATE_MODE_OFDM; 496 else 497 txdesc->rate_mode = RATE_MODE_CCK; 498 } 499 500 /* 501 * Apply TX descriptor handling by components 502 */ 503 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc); 504 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc); 505 506 if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags)) 507 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc, 508 sta, hwrate); 509 else 510 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc, 511 hwrate); 512} 513 514static int rt2x00queue_write_tx_data(struct queue_entry *entry, 515 struct txentry_desc *txdesc) 516{ 517 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 518 519 /* 520 * This should not happen, we already checked the entry 521 * was ours. When the hardware disagrees there has been 522 * a queue corruption! 523 */ 524 if (unlikely(rt2x00dev->ops->lib->get_entry_state && 525 rt2x00dev->ops->lib->get_entry_state(entry))) { 526 ERROR(rt2x00dev, 527 "Corrupt queue %d, accessing entry which is not ours.\n" 528 "Please file bug report to %s.\n", 529 entry->queue->qid, DRV_PROJECT); 530 return -EINVAL; 531 } 532 533 /* 534 * Add the requested extra tx headroom in front of the skb. 535 */ 536 skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom); 537 memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom); 538 539 /* 540 * Call the driver's write_tx_data function, if it exists. 541 */ 542 if (rt2x00dev->ops->lib->write_tx_data) 543 rt2x00dev->ops->lib->write_tx_data(entry, txdesc); 544 545 /* 546 * Map the skb to DMA. 547 */ 548 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) 549 rt2x00queue_map_txskb(entry); 550 551 return 0; 552} 553 554static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry, 555 struct txentry_desc *txdesc) 556{ 557 struct data_queue *queue = entry->queue; 558 559 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc); 560 561 /* 562 * All processing on the frame has been completed, this means 563 * it is now ready to be dumped to userspace through debugfs. 564 */ 565 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb); 566} 567 568static void rt2x00queue_kick_tx_queue(struct data_queue *queue, 569 struct txentry_desc *txdesc) 570{ 571 /* 572 * Check if we need to kick the queue, there are however a few rules 573 * 1) Don't kick unless this is the last in frame in a burst. 574 * When the burst flag is set, this frame is always followed 575 * by another frame which in some way are related to eachother. 576 * This is true for fragments, RTS or CTS-to-self frames. 577 * 2) Rule 1 can be broken when the available entries 578 * in the queue are less then a certain threshold. 579 */ 580 if (rt2x00queue_threshold(queue) || 581 !test_bit(ENTRY_TXD_BURST, &txdesc->flags)) 582 queue->rt2x00dev->ops->lib->kick_queue(queue); 583} 584 585int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb, 586 bool local) 587{ 588 struct ieee80211_tx_info *tx_info; 589 struct queue_entry *entry; 590 struct txentry_desc txdesc; 591 struct skb_frame_desc *skbdesc; 592 u8 rate_idx, rate_flags; 593 int ret = 0; 594 595 /* 596 * Copy all TX descriptor information into txdesc, 597 * after that we are free to use the skb->cb array 598 * for our information. 599 */ 600 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, NULL); 601 602 /* 603 * All information is retrieved from the skb->cb array, 604 * now we should claim ownership of the driver part of that 605 * array, preserving the bitrate index and flags. 606 */ 607 tx_info = IEEE80211_SKB_CB(skb); 608 rate_idx = tx_info->control.rates[0].idx; 609 rate_flags = tx_info->control.rates[0].flags; 610 skbdesc = get_skb_frame_desc(skb); 611 memset(skbdesc, 0, sizeof(*skbdesc)); 612 skbdesc->tx_rate_idx = rate_idx; 613 skbdesc->tx_rate_flags = rate_flags; 614 615 if (local) 616 skbdesc->flags |= SKBDESC_NOT_MAC80211; 617 618 /* 619 * When hardware encryption is supported, and this frame 620 * is to be encrypted, we should strip the IV/EIV data from 621 * the frame so we can provide it to the driver separately. 622 */ 623 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) && 624 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) { 625 if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags)) 626 rt2x00crypto_tx_copy_iv(skb, &txdesc); 627 else 628 rt2x00crypto_tx_remove_iv(skb, &txdesc); 629 } 630 631 /* 632 * When DMA allocation is required we should guarantee to the 633 * driver that the DMA is aligned to a 4-byte boundary. 634 * However some drivers require L2 padding to pad the payload 635 * rather then the header. This could be a requirement for 636 * PCI and USB devices, while header alignment only is valid 637 * for PCI devices. 638 */ 639 if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags)) 640 rt2x00queue_insert_l2pad(skb, txdesc.header_length); 641 else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags)) 642 rt2x00queue_align_frame(skb); 643 644 /* 645 * That function must be called with bh disabled. 646 */ 647 spin_lock(&queue->tx_lock); 648 649 if (unlikely(rt2x00queue_full(queue))) { 650 ERROR(queue->rt2x00dev, 651 "Dropping frame due to full tx queue %d.\n", queue->qid); 652 ret = -ENOBUFS; 653 goto out; 654 } 655 656 entry = rt2x00queue_get_entry(queue, Q_INDEX); 657 658 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, 659 &entry->flags))) { 660 ERROR(queue->rt2x00dev, 661 "Arrived at non-free entry in the non-full queue %d.\n" 662 "Please file bug report to %s.\n", 663 queue->qid, DRV_PROJECT); 664 ret = -EINVAL; 665 goto out; 666 } 667 668 skbdesc->entry = entry; 669 entry->skb = skb; 670 671 /* 672 * It could be possible that the queue was corrupted and this 673 * call failed. Since we always return NETDEV_TX_OK to mac80211, 674 * this frame will simply be dropped. 675 */ 676 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) { 677 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 678 entry->skb = NULL; 679 ret = -EIO; 680 goto out; 681 } 682 683 set_bit(ENTRY_DATA_PENDING, &entry->flags); 684 685 rt2x00queue_index_inc(entry, Q_INDEX); 686 rt2x00queue_write_tx_descriptor(entry, &txdesc); 687 rt2x00queue_kick_tx_queue(queue, &txdesc); 688 689out: 690 spin_unlock(&queue->tx_lock); 691 return ret; 692} 693 694int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev, 695 struct ieee80211_vif *vif) 696{ 697 struct rt2x00_intf *intf = vif_to_intf(vif); 698 699 if (unlikely(!intf->beacon)) 700 return -ENOBUFS; 701 702 mutex_lock(&intf->beacon_skb_mutex); 703 704 /* 705 * Clean up the beacon skb. 706 */ 707 rt2x00queue_free_skb(intf->beacon); 708 709 /* 710 * Clear beacon (single bssid devices don't need to clear the beacon 711 * since the beacon queue will get stopped anyway). 712 */ 713 if (rt2x00dev->ops->lib->clear_beacon) 714 rt2x00dev->ops->lib->clear_beacon(intf->beacon); 715 716 mutex_unlock(&intf->beacon_skb_mutex); 717 718 return 0; 719} 720 721int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev, 722 struct ieee80211_vif *vif) 723{ 724 struct rt2x00_intf *intf = vif_to_intf(vif); 725 struct skb_frame_desc *skbdesc; 726 struct txentry_desc txdesc; 727 728 if (unlikely(!intf->beacon)) 729 return -ENOBUFS; 730 731 /* 732 * Clean up the beacon skb. 733 */ 734 rt2x00queue_free_skb(intf->beacon); 735 736 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif); 737 if (!intf->beacon->skb) 738 return -ENOMEM; 739 740 /* 741 * Copy all TX descriptor information into txdesc, 742 * after that we are free to use the skb->cb array 743 * for our information. 744 */ 745 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL); 746 747 /* 748 * Fill in skb descriptor 749 */ 750 skbdesc = get_skb_frame_desc(intf->beacon->skb); 751 memset(skbdesc, 0, sizeof(*skbdesc)); 752 skbdesc->entry = intf->beacon; 753 754 /* 755 * Send beacon to hardware. 756 */ 757 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc); 758 759 return 0; 760 761} 762 763int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev, 764 struct ieee80211_vif *vif) 765{ 766 struct rt2x00_intf *intf = vif_to_intf(vif); 767 int ret; 768 769 mutex_lock(&intf->beacon_skb_mutex); 770 ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif); 771 mutex_unlock(&intf->beacon_skb_mutex); 772 773 return ret; 774} 775 776bool rt2x00queue_for_each_entry(struct data_queue *queue, 777 enum queue_index start, 778 enum queue_index end, 779 bool (*fn)(struct queue_entry *entry)) 780{ 781 unsigned long irqflags; 782 unsigned int index_start; 783 unsigned int index_end; 784 unsigned int i; 785 786 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) { 787 ERROR(queue->rt2x00dev, 788 "Entry requested from invalid index range (%d - %d)\n", 789 start, end); 790 return true; 791 } 792 793 /* 794 * Only protect the range we are going to loop over, 795 * if during our loop a extra entry is set to pending 796 * it should not be kicked during this run, since it 797 * is part of another TX operation. 798 */ 799 spin_lock_irqsave(&queue->index_lock, irqflags); 800 index_start = queue->index[start]; 801 index_end = queue->index[end]; 802 spin_unlock_irqrestore(&queue->index_lock, irqflags); 803 804 /* 805 * Start from the TX done pointer, this guarantees that we will 806 * send out all frames in the correct order. 807 */ 808 if (index_start < index_end) { 809 for (i = index_start; i < index_end; i++) { 810 if (fn(&queue->entries[i])) 811 return true; 812 } 813 } else { 814 for (i = index_start; i < queue->limit; i++) { 815 if (fn(&queue->entries[i])) 816 return true; 817 } 818 819 for (i = 0; i < index_end; i++) { 820 if (fn(&queue->entries[i])) 821 return true; 822 } 823 } 824 825 return false; 826} 827EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry); 828 829struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 830 enum queue_index index) 831{ 832 struct queue_entry *entry; 833 unsigned long irqflags; 834 835 if (unlikely(index >= Q_INDEX_MAX)) { 836 ERROR(queue->rt2x00dev, 837 "Entry requested from invalid index type (%d)\n", index); 838 return NULL; 839 } 840 841 spin_lock_irqsave(&queue->index_lock, irqflags); 842 843 entry = &queue->entries[queue->index[index]]; 844 845 spin_unlock_irqrestore(&queue->index_lock, irqflags); 846 847 return entry; 848} 849EXPORT_SYMBOL_GPL(rt2x00queue_get_entry); 850 851void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index) 852{ 853 struct data_queue *queue = entry->queue; 854 unsigned long irqflags; 855 856 if (unlikely(index >= Q_INDEX_MAX)) { 857 ERROR(queue->rt2x00dev, 858 "Index change on invalid index type (%d)\n", index); 859 return; 860 } 861 862 spin_lock_irqsave(&queue->index_lock, irqflags); 863 864 queue->index[index]++; 865 if (queue->index[index] >= queue->limit) 866 queue->index[index] = 0; 867 868 entry->last_action = jiffies; 869 870 if (index == Q_INDEX) { 871 queue->length++; 872 } else if (index == Q_INDEX_DONE) { 873 queue->length--; 874 queue->count++; 875 } 876 877 spin_unlock_irqrestore(&queue->index_lock, irqflags); 878} 879 880void rt2x00queue_pause_queue(struct data_queue *queue) 881{ 882 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || 883 !test_bit(QUEUE_STARTED, &queue->flags) || 884 test_and_set_bit(QUEUE_PAUSED, &queue->flags)) 885 return; 886 887 switch (queue->qid) { 888 case QID_AC_VO: 889 case QID_AC_VI: 890 case QID_AC_BE: 891 case QID_AC_BK: 892 /* 893 * For TX queues, we have to disable the queue 894 * inside mac80211. 895 */ 896 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid); 897 break; 898 default: 899 break; 900 } 901} 902EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue); 903 904void rt2x00queue_unpause_queue(struct data_queue *queue) 905{ 906 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || 907 !test_bit(QUEUE_STARTED, &queue->flags) || 908 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags)) 909 return; 910 911 switch (queue->qid) { 912 case QID_AC_VO: 913 case QID_AC_VI: 914 case QID_AC_BE: 915 case QID_AC_BK: 916 /* 917 * For TX queues, we have to enable the queue 918 * inside mac80211. 919 */ 920 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid); 921 break; 922 case QID_RX: 923 /* 924 * For RX we need to kick the queue now in order to 925 * receive frames. 926 */ 927 queue->rt2x00dev->ops->lib->kick_queue(queue); 928 default: 929 break; 930 } 931} 932EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue); 933 934void rt2x00queue_start_queue(struct data_queue *queue) 935{ 936 mutex_lock(&queue->status_lock); 937 938 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || 939 test_and_set_bit(QUEUE_STARTED, &queue->flags)) { 940 mutex_unlock(&queue->status_lock); 941 return; 942 } 943 944 set_bit(QUEUE_PAUSED, &queue->flags); 945 946 queue->rt2x00dev->ops->lib->start_queue(queue); 947 948 rt2x00queue_unpause_queue(queue); 949 950 mutex_unlock(&queue->status_lock); 951} 952EXPORT_SYMBOL_GPL(rt2x00queue_start_queue); 953 954void rt2x00queue_stop_queue(struct data_queue *queue) 955{ 956 mutex_lock(&queue->status_lock); 957 958 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) { 959 mutex_unlock(&queue->status_lock); 960 return; 961 } 962 963 rt2x00queue_pause_queue(queue); 964 965 queue->rt2x00dev->ops->lib->stop_queue(queue); 966 967 mutex_unlock(&queue->status_lock); 968} 969EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue); 970 971void rt2x00queue_flush_queue(struct data_queue *queue, bool drop) 972{ 973 bool started; 974 bool tx_queue = 975 (queue->qid == QID_AC_VO) || 976 (queue->qid == QID_AC_VI) || 977 (queue->qid == QID_AC_BE) || 978 (queue->qid == QID_AC_BK); 979 980 mutex_lock(&queue->status_lock); 981 982 /* 983 * If the queue has been started, we must stop it temporarily 984 * to prevent any new frames to be queued on the device. If 985 * we are not dropping the pending frames, the queue must 986 * only be stopped in the software and not the hardware, 987 * otherwise the queue will never become empty on its own. 988 */ 989 started = test_bit(QUEUE_STARTED, &queue->flags); 990 if (started) { 991 /* 992 * Pause the queue 993 */ 994 rt2x00queue_pause_queue(queue); 995 996 /* 997 * If we are not supposed to drop any pending 998 * frames, this means we must force a start (=kick) 999 * to the queue to make sure the hardware will 1000 * start transmitting. 1001 */ 1002 if (!drop && tx_queue) 1003 queue->rt2x00dev->ops->lib->kick_queue(queue); 1004 } 1005 1006 /* 1007 * Check if driver supports flushing, if that is the case we can 1008 * defer the flushing to the driver. Otherwise we must use the 1009 * alternative which just waits for the queue to become empty. 1010 */ 1011 if (likely(queue->rt2x00dev->ops->lib->flush_queue)) 1012 queue->rt2x00dev->ops->lib->flush_queue(queue, drop); 1013 1014 /* 1015 * The queue flush has failed... 1016 */ 1017 if (unlikely(!rt2x00queue_empty(queue))) 1018 WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid); 1019 1020 /* 1021 * Restore the queue to the previous status 1022 */ 1023 if (started) 1024 rt2x00queue_unpause_queue(queue); 1025 1026 mutex_unlock(&queue->status_lock); 1027} 1028EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue); 1029 1030void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev) 1031{ 1032 struct data_queue *queue; 1033 1034 /* 1035 * rt2x00queue_start_queue will call ieee80211_wake_queue 1036 * for each queue after is has been properly initialized. 1037 */ 1038 tx_queue_for_each(rt2x00dev, queue) 1039 rt2x00queue_start_queue(queue); 1040 1041 rt2x00queue_start_queue(rt2x00dev->rx); 1042} 1043EXPORT_SYMBOL_GPL(rt2x00queue_start_queues); 1044 1045void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev) 1046{ 1047 struct data_queue *queue; 1048 1049 /* 1050 * rt2x00queue_stop_queue will call ieee80211_stop_queue 1051 * as well, but we are completely shutting doing everything 1052 * now, so it is much safer to stop all TX queues at once, 1053 * and use rt2x00queue_stop_queue for cleaning up. 1054 */ 1055 ieee80211_stop_queues(rt2x00dev->hw); 1056 1057 tx_queue_for_each(rt2x00dev, queue) 1058 rt2x00queue_stop_queue(queue); 1059 1060 rt2x00queue_stop_queue(rt2x00dev->rx); 1061} 1062EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues); 1063 1064void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop) 1065{ 1066 struct data_queue *queue; 1067 1068 tx_queue_for_each(rt2x00dev, queue) 1069 rt2x00queue_flush_queue(queue, drop); 1070 1071 rt2x00queue_flush_queue(rt2x00dev->rx, drop); 1072} 1073EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues); 1074 1075static void rt2x00queue_reset(struct data_queue *queue) 1076{ 1077 unsigned long irqflags; 1078 unsigned int i; 1079 1080 spin_lock_irqsave(&queue->index_lock, irqflags); 1081 1082 queue->count = 0; 1083 queue->length = 0; 1084 1085 for (i = 0; i < Q_INDEX_MAX; i++) 1086 queue->index[i] = 0; 1087 1088 spin_unlock_irqrestore(&queue->index_lock, irqflags); 1089} 1090 1091void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev) 1092{ 1093 struct data_queue *queue; 1094 unsigned int i; 1095 1096 queue_for_each(rt2x00dev, queue) { 1097 rt2x00queue_reset(queue); 1098 1099 for (i = 0; i < queue->limit; i++) 1100 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]); 1101 } 1102} 1103 1104static int rt2x00queue_alloc_entries(struct data_queue *queue, 1105 const struct data_queue_desc *qdesc) 1106{ 1107 struct queue_entry *entries; 1108 unsigned int entry_size; 1109 unsigned int i; 1110 1111 rt2x00queue_reset(queue); 1112 1113 queue->limit = qdesc->entry_num; 1114 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10); 1115 queue->data_size = qdesc->data_size; 1116 queue->desc_size = qdesc->desc_size; 1117 1118 /* 1119 * Allocate all queue entries. 1120 */ 1121 entry_size = sizeof(*entries) + qdesc->priv_size; 1122 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL); 1123 if (!entries) 1124 return -ENOMEM; 1125 1126#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \ 1127 (((char *)(__base)) + ((__limit) * (__esize)) + \ 1128 ((__index) * (__psize))) 1129 1130 for (i = 0; i < queue->limit; i++) { 1131 entries[i].flags = 0; 1132 entries[i].queue = queue; 1133 entries[i].skb = NULL; 1134 entries[i].entry_idx = i; 1135 entries[i].priv_data = 1136 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit, 1137 sizeof(*entries), qdesc->priv_size); 1138 } 1139 1140#undef QUEUE_ENTRY_PRIV_OFFSET 1141 1142 queue->entries = entries; 1143 1144 return 0; 1145} 1146 1147static void rt2x00queue_free_skbs(struct data_queue *queue) 1148{ 1149 unsigned int i; 1150 1151 if (!queue->entries) 1152 return; 1153 1154 for (i = 0; i < queue->limit; i++) { 1155 rt2x00queue_free_skb(&queue->entries[i]); 1156 } 1157} 1158 1159static int rt2x00queue_alloc_rxskbs(struct data_queue *queue) 1160{ 1161 unsigned int i; 1162 struct sk_buff *skb; 1163 1164 for (i = 0; i < queue->limit; i++) { 1165 skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL); 1166 if (!skb) 1167 return -ENOMEM; 1168 queue->entries[i].skb = skb; 1169 } 1170 1171 return 0; 1172} 1173 1174int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev) 1175{ 1176 struct data_queue *queue; 1177 int status; 1178 1179 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx); 1180 if (status) 1181 goto exit; 1182 1183 tx_queue_for_each(rt2x00dev, queue) { 1184 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx); 1185 if (status) 1186 goto exit; 1187 } 1188 1189 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn); 1190 if (status) 1191 goto exit; 1192 1193 if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) { 1194 status = rt2x00queue_alloc_entries(rt2x00dev->atim, 1195 rt2x00dev->ops->atim); 1196 if (status) 1197 goto exit; 1198 } 1199 1200 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx); 1201 if (status) 1202 goto exit; 1203 1204 return 0; 1205 1206exit: 1207 ERROR(rt2x00dev, "Queue entries allocation failed.\n"); 1208 1209 rt2x00queue_uninitialize(rt2x00dev); 1210 1211 return status; 1212} 1213 1214void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev) 1215{ 1216 struct data_queue *queue; 1217 1218 rt2x00queue_free_skbs(rt2x00dev->rx); 1219 1220 queue_for_each(rt2x00dev, queue) { 1221 kfree(queue->entries); 1222 queue->entries = NULL; 1223 } 1224} 1225 1226static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev, 1227 struct data_queue *queue, enum data_queue_qid qid) 1228{ 1229 mutex_init(&queue->status_lock); 1230 spin_lock_init(&queue->tx_lock); 1231 spin_lock_init(&queue->index_lock); 1232 1233 queue->rt2x00dev = rt2x00dev; 1234 queue->qid = qid; 1235 queue->txop = 0; 1236 queue->aifs = 2; 1237 queue->cw_min = 5; 1238 queue->cw_max = 10; 1239} 1240 1241int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev) 1242{ 1243 struct data_queue *queue; 1244 enum data_queue_qid qid; 1245 unsigned int req_atim = 1246 !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); 1247 1248 /* 1249 * We need the following queues: 1250 * RX: 1 1251 * TX: ops->tx_queues 1252 * Beacon: 1 1253 * Atim: 1 (if required) 1254 */ 1255 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim; 1256 1257 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL); 1258 if (!queue) { 1259 ERROR(rt2x00dev, "Queue allocation failed.\n"); 1260 return -ENOMEM; 1261 } 1262 1263 /* 1264 * Initialize pointers 1265 */ 1266 rt2x00dev->rx = queue; 1267 rt2x00dev->tx = &queue[1]; 1268 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues]; 1269 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL; 1270 1271 /* 1272 * Initialize queue parameters. 1273 * RX: qid = QID_RX 1274 * TX: qid = QID_AC_VO + index 1275 * TX: cw_min: 2^5 = 32. 1276 * TX: cw_max: 2^10 = 1024. 1277 * BCN: qid = QID_BEACON 1278 * ATIM: qid = QID_ATIM 1279 */ 1280 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX); 1281 1282 qid = QID_AC_VO; 1283 tx_queue_for_each(rt2x00dev, queue) 1284 rt2x00queue_init(rt2x00dev, queue, qid++); 1285 1286 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON); 1287 if (req_atim) 1288 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM); 1289 1290 return 0; 1291} 1292 1293void rt2x00queue_free(struct rt2x00_dev *rt2x00dev) 1294{ 1295 kfree(rt2x00dev->rx); 1296 rt2x00dev->rx = NULL; 1297 rt2x00dev->tx = NULL; 1298 rt2x00dev->bcn = NULL; 1299}