at v3.7 1396 lines 36 kB view raw
1/* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the 18 Free Software Foundation, Inc., 19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 */ 21 22/* 23 Module: rt2x00lib 24 Abstract: rt2x00 generic device routines. 25 */ 26 27#include <linux/kernel.h> 28#include <linux/module.h> 29#include <linux/slab.h> 30#include <linux/log2.h> 31 32#include "rt2x00.h" 33#include "rt2x00lib.h" 34 35/* 36 * Utility functions. 37 */ 38u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 39 struct ieee80211_vif *vif) 40{ 41 /* 42 * When in STA mode, bssidx is always 0 otherwise local_address[5] 43 * contains the bss number, see BSS_ID_MASK comments for details. 44 */ 45 if (rt2x00dev->intf_sta_count) 46 return 0; 47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 48} 49EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 50 51/* 52 * Radio control handlers. 53 */ 54int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 55{ 56 int status; 57 58 /* 59 * Don't enable the radio twice. 60 * And check if the hardware button has been disabled. 61 */ 62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 63 return 0; 64 65 /* 66 * Initialize all data queues. 67 */ 68 rt2x00queue_init_queues(rt2x00dev); 69 70 /* 71 * Enable radio. 72 */ 73 status = 74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 75 if (status) 76 return status; 77 78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 79 80 rt2x00leds_led_radio(rt2x00dev, true); 81 rt2x00led_led_activity(rt2x00dev, true); 82 83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 84 85 /* 86 * Enable queues. 87 */ 88 rt2x00queue_start_queues(rt2x00dev); 89 rt2x00link_start_tuner(rt2x00dev); 90 rt2x00link_start_agc(rt2x00dev); 91 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) 92 rt2x00link_start_vcocal(rt2x00dev); 93 94 /* 95 * Start watchdog monitoring. 96 */ 97 rt2x00link_start_watchdog(rt2x00dev); 98 99 return 0; 100} 101 102void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 103{ 104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 105 return; 106 107 /* 108 * Stop watchdog monitoring. 109 */ 110 rt2x00link_stop_watchdog(rt2x00dev); 111 112 /* 113 * Stop all queues 114 */ 115 rt2x00link_stop_agc(rt2x00dev); 116 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) 117 rt2x00link_stop_vcocal(rt2x00dev); 118 rt2x00link_stop_tuner(rt2x00dev); 119 rt2x00queue_stop_queues(rt2x00dev); 120 rt2x00queue_flush_queues(rt2x00dev, true); 121 122 /* 123 * Disable radio. 124 */ 125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 127 rt2x00led_led_activity(rt2x00dev, false); 128 rt2x00leds_led_radio(rt2x00dev, false); 129} 130 131static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 132 struct ieee80211_vif *vif) 133{ 134 struct rt2x00_dev *rt2x00dev = data; 135 struct rt2x00_intf *intf = vif_to_intf(vif); 136 137 /* 138 * It is possible the radio was disabled while the work had been 139 * scheduled. If that happens we should return here immediately, 140 * note that in the spinlock protected area above the delayed_flags 141 * have been cleared correctly. 142 */ 143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 144 return; 145 146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) 147 rt2x00queue_update_beacon(rt2x00dev, vif); 148} 149 150static void rt2x00lib_intf_scheduled(struct work_struct *work) 151{ 152 struct rt2x00_dev *rt2x00dev = 153 container_of(work, struct rt2x00_dev, intf_work); 154 155 /* 156 * Iterate over each interface and perform the 157 * requested configurations. 158 */ 159 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 160 rt2x00lib_intf_scheduled_iter, 161 rt2x00dev); 162} 163 164static void rt2x00lib_autowakeup(struct work_struct *work) 165{ 166 struct rt2x00_dev *rt2x00dev = 167 container_of(work, struct rt2x00_dev, autowakeup_work.work); 168 169 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 170 return; 171 172 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 173 ERROR(rt2x00dev, "Device failed to wakeup.\n"); 174 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 175} 176 177/* 178 * Interrupt context handlers. 179 */ 180static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 181 struct ieee80211_vif *vif) 182{ 183 struct rt2x00_dev *rt2x00dev = data; 184 struct sk_buff *skb; 185 186 /* 187 * Only AP mode interfaces do broad- and multicast buffering 188 */ 189 if (vif->type != NL80211_IFTYPE_AP) 190 return; 191 192 /* 193 * Send out buffered broad- and multicast frames 194 */ 195 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 196 while (skb) { 197 rt2x00mac_tx(rt2x00dev->hw, NULL, skb); 198 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 199 } 200} 201 202static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 203 struct ieee80211_vif *vif) 204{ 205 struct rt2x00_dev *rt2x00dev = data; 206 207 if (vif->type != NL80211_IFTYPE_AP && 208 vif->type != NL80211_IFTYPE_ADHOC && 209 vif->type != NL80211_IFTYPE_MESH_POINT && 210 vif->type != NL80211_IFTYPE_WDS) 211 return; 212 213 /* 214 * Update the beacon without locking. This is safe on PCI devices 215 * as they only update the beacon periodically here. This should 216 * never be called for USB devices. 217 */ 218 WARN_ON(rt2x00_is_usb(rt2x00dev)); 219 rt2x00queue_update_beacon_locked(rt2x00dev, vif); 220} 221 222void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 223{ 224 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 225 return; 226 227 /* send buffered bc/mc frames out for every bssid */ 228 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw, 229 rt2x00lib_bc_buffer_iter, 230 rt2x00dev); 231 /* 232 * Devices with pre tbtt interrupt don't need to update the beacon 233 * here as they will fetch the next beacon directly prior to 234 * transmission. 235 */ 236 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags)) 237 return; 238 239 /* fetch next beacon */ 240 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw, 241 rt2x00lib_beaconupdate_iter, 242 rt2x00dev); 243} 244EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 245 246void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 247{ 248 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 249 return; 250 251 /* fetch next beacon */ 252 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw, 253 rt2x00lib_beaconupdate_iter, 254 rt2x00dev); 255} 256EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 257 258void rt2x00lib_dmastart(struct queue_entry *entry) 259{ 260 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 261 rt2x00queue_index_inc(entry, Q_INDEX); 262} 263EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 264 265void rt2x00lib_dmadone(struct queue_entry *entry) 266{ 267 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 268 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 269 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 270} 271EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 272 273void rt2x00lib_txdone(struct queue_entry *entry, 274 struct txdone_entry_desc *txdesc) 275{ 276 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 277 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 278 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 279 unsigned int header_length, i; 280 u8 rate_idx, rate_flags, retry_rates; 281 u8 skbdesc_flags = skbdesc->flags; 282 bool success; 283 284 /* 285 * Unmap the skb. 286 */ 287 rt2x00queue_unmap_skb(entry); 288 289 /* 290 * Remove the extra tx headroom from the skb. 291 */ 292 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom); 293 294 /* 295 * Signal that the TX descriptor is no longer in the skb. 296 */ 297 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 298 299 /* 300 * Determine the length of 802.11 header. 301 */ 302 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 303 304 /* 305 * Remove L2 padding which was added during 306 */ 307 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 308 rt2x00queue_remove_l2pad(entry->skb, header_length); 309 310 /* 311 * If the IV/EIV data was stripped from the frame before it was 312 * passed to the hardware, we should now reinsert it again because 313 * mac80211 will expect the same data to be present it the 314 * frame as it was passed to us. 315 */ 316 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) 317 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 318 319 /* 320 * Send frame to debugfs immediately, after this call is completed 321 * we are going to overwrite the skb->cb array. 322 */ 323 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb); 324 325 /* 326 * Determine if the frame has been successfully transmitted. 327 */ 328 success = 329 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 330 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 331 332 /* 333 * Update TX statistics. 334 */ 335 rt2x00dev->link.qual.tx_success += success; 336 rt2x00dev->link.qual.tx_failed += !success; 337 338 rate_idx = skbdesc->tx_rate_idx; 339 rate_flags = skbdesc->tx_rate_flags; 340 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 341 (txdesc->retry + 1) : 1; 342 343 /* 344 * Initialize TX status 345 */ 346 memset(&tx_info->status, 0, sizeof(tx_info->status)); 347 tx_info->status.ack_signal = 0; 348 349 /* 350 * Frame was send with retries, hardware tried 351 * different rates to send out the frame, at each 352 * retry it lowered the rate 1 step except when the 353 * lowest rate was used. 354 */ 355 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 356 tx_info->status.rates[i].idx = rate_idx - i; 357 tx_info->status.rates[i].flags = rate_flags; 358 359 if (rate_idx - i == 0) { 360 /* 361 * The lowest rate (index 0) was used until the 362 * number of max retries was reached. 363 */ 364 tx_info->status.rates[i].count = retry_rates - i; 365 i++; 366 break; 367 } 368 tx_info->status.rates[i].count = 1; 369 } 370 if (i < (IEEE80211_TX_MAX_RATES - 1)) 371 tx_info->status.rates[i].idx = -1; /* terminate */ 372 373 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 374 if (success) 375 tx_info->flags |= IEEE80211_TX_STAT_ACK; 376 else 377 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 378 } 379 380 /* 381 * Every single frame has it's own tx status, hence report 382 * every frame as ampdu of size 1. 383 * 384 * TODO: if we can find out how many frames were aggregated 385 * by the hw we could provide the real ampdu_len to mac80211 386 * which would allow the rc algorithm to better decide on 387 * which rates are suitable. 388 */ 389 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 390 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 391 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 392 tx_info->status.ampdu_len = 1; 393 tx_info->status.ampdu_ack_len = success ? 1 : 0; 394 /* 395 * TODO: Need to tear down BA session here 396 * if not successful. 397 */ 398 } 399 400 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 401 if (success) 402 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 403 else 404 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 405 } 406 407 /* 408 * Only send the status report to mac80211 when it's a frame 409 * that originated in mac80211. If this was a extra frame coming 410 * through a mac80211 library call (RTS/CTS) then we should not 411 * send the status report back. 412 */ 413 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 414 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags)) 415 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 416 else 417 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 418 } else 419 dev_kfree_skb_any(entry->skb); 420 421 /* 422 * Make this entry available for reuse. 423 */ 424 entry->skb = NULL; 425 entry->flags = 0; 426 427 rt2x00dev->ops->lib->clear_entry(entry); 428 429 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 430 431 /* 432 * If the data queue was below the threshold before the txdone 433 * handler we must make sure the packet queue in the mac80211 stack 434 * is reenabled when the txdone handler has finished. This has to be 435 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 436 * before it was stopped. 437 */ 438 spin_lock_bh(&entry->queue->tx_lock); 439 if (!rt2x00queue_threshold(entry->queue)) 440 rt2x00queue_unpause_queue(entry->queue); 441 spin_unlock_bh(&entry->queue->tx_lock); 442} 443EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 444 445void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 446{ 447 struct txdone_entry_desc txdesc; 448 449 txdesc.flags = 0; 450 __set_bit(status, &txdesc.flags); 451 txdesc.retry = 0; 452 453 rt2x00lib_txdone(entry, &txdesc); 454} 455EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 456 457static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 458{ 459 struct ieee80211_mgmt *mgmt = (void *)data; 460 u8 *pos, *end; 461 462 pos = (u8 *)mgmt->u.beacon.variable; 463 end = data + len; 464 while (pos < end) { 465 if (pos + 2 + pos[1] > end) 466 return NULL; 467 468 if (pos[0] == ie) 469 return pos; 470 471 pos += 2 + pos[1]; 472 } 473 474 return NULL; 475} 476 477static void rt2x00lib_sleep(struct work_struct *work) 478{ 479 struct rt2x00_dev *rt2x00dev = 480 container_of(work, struct rt2x00_dev, sleep_work); 481 482 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 483 return; 484 485 /* 486 * Check again is powersaving is enabled, to prevent races from delayed 487 * work execution. 488 */ 489 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 490 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 491 IEEE80211_CONF_CHANGE_PS); 492} 493 494static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 495 struct sk_buff *skb, 496 struct rxdone_entry_desc *rxdesc) 497{ 498 struct ieee80211_hdr *hdr = (void *) skb->data; 499 struct ieee80211_tim_ie *tim_ie; 500 u8 *tim; 501 u8 tim_len; 502 bool cam; 503 504 /* If this is not a beacon, or if mac80211 has no powersaving 505 * configured, or if the device is already in powersaving mode 506 * we can exit now. */ 507 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 508 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 509 return; 510 511 /* min. beacon length + FCS_LEN */ 512 if (skb->len <= 40 + FCS_LEN) 513 return; 514 515 /* and only beacons from the associated BSSID, please */ 516 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 517 !rt2x00dev->aid) 518 return; 519 520 rt2x00dev->last_beacon = jiffies; 521 522 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 523 if (!tim) 524 return; 525 526 if (tim[1] < sizeof(*tim_ie)) 527 return; 528 529 tim_len = tim[1]; 530 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 531 532 /* Check whenever the PHY can be turned off again. */ 533 534 /* 1. What about buffered unicast traffic for our AID? */ 535 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 536 537 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 538 cam |= (tim_ie->bitmap_ctrl & 0x01); 539 540 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 541 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 542} 543 544static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 545 struct rxdone_entry_desc *rxdesc) 546{ 547 struct ieee80211_supported_band *sband; 548 const struct rt2x00_rate *rate; 549 unsigned int i; 550 int signal = rxdesc->signal; 551 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 552 553 switch (rxdesc->rate_mode) { 554 case RATE_MODE_CCK: 555 case RATE_MODE_OFDM: 556 /* 557 * For non-HT rates the MCS value needs to contain the 558 * actually used rate modulation (CCK or OFDM). 559 */ 560 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 561 signal = RATE_MCS(rxdesc->rate_mode, signal); 562 563 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 564 for (i = 0; i < sband->n_bitrates; i++) { 565 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 566 if (((type == RXDONE_SIGNAL_PLCP) && 567 (rate->plcp == signal)) || 568 ((type == RXDONE_SIGNAL_BITRATE) && 569 (rate->bitrate == signal)) || 570 ((type == RXDONE_SIGNAL_MCS) && 571 (rate->mcs == signal))) { 572 return i; 573 } 574 } 575 break; 576 case RATE_MODE_HT_MIX: 577 case RATE_MODE_HT_GREENFIELD: 578 if (signal >= 0 && signal <= 76) 579 return signal; 580 break; 581 default: 582 break; 583 } 584 585 WARNING(rt2x00dev, "Frame received with unrecognized signal, " 586 "mode=0x%.4x, signal=0x%.4x, type=%d.\n", 587 rxdesc->rate_mode, signal, type); 588 return 0; 589} 590 591void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) 592{ 593 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 594 struct rxdone_entry_desc rxdesc; 595 struct sk_buff *skb; 596 struct ieee80211_rx_status *rx_status; 597 unsigned int header_length; 598 int rate_idx; 599 600 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 601 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 602 goto submit_entry; 603 604 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 605 goto submit_entry; 606 607 /* 608 * Allocate a new sk_buffer. If no new buffer available, drop the 609 * received frame and reuse the existing buffer. 610 */ 611 skb = rt2x00queue_alloc_rxskb(entry, gfp); 612 if (!skb) 613 goto submit_entry; 614 615 /* 616 * Unmap the skb. 617 */ 618 rt2x00queue_unmap_skb(entry); 619 620 /* 621 * Extract the RXD details. 622 */ 623 memset(&rxdesc, 0, sizeof(rxdesc)); 624 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 625 626 /* 627 * Check for valid size in case we get corrupted descriptor from 628 * hardware. 629 */ 630 if (unlikely(rxdesc.size == 0 || 631 rxdesc.size > entry->queue->data_size)) { 632 ERROR(rt2x00dev, "Wrong frame size %d max %d.\n", 633 rxdesc.size, entry->queue->data_size); 634 dev_kfree_skb(entry->skb); 635 goto renew_skb; 636 } 637 638 /* 639 * The data behind the ieee80211 header must be 640 * aligned on a 4 byte boundary. 641 */ 642 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 643 644 /* 645 * Hardware might have stripped the IV/EIV/ICV data, 646 * in that case it is possible that the data was 647 * provided separately (through hardware descriptor) 648 * in which case we should reinsert the data into the frame. 649 */ 650 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 651 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 652 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 653 &rxdesc); 654 else if (header_length && 655 (rxdesc.size > header_length) && 656 (rxdesc.dev_flags & RXDONE_L2PAD)) 657 rt2x00queue_remove_l2pad(entry->skb, header_length); 658 659 /* Trim buffer to correct size */ 660 skb_trim(entry->skb, rxdesc.size); 661 662 /* 663 * Translate the signal to the correct bitrate index. 664 */ 665 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 666 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 667 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 668 rxdesc.flags |= RX_FLAG_HT; 669 670 /* 671 * Check if this is a beacon, and more frames have been 672 * buffered while we were in powersaving mode. 673 */ 674 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 675 676 /* 677 * Update extra components 678 */ 679 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 680 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 681 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb); 682 683 /* 684 * Initialize RX status information, and send frame 685 * to mac80211. 686 */ 687 rx_status = IEEE80211_SKB_RXCB(entry->skb); 688 rx_status->mactime = rxdesc.timestamp; 689 rx_status->band = rt2x00dev->curr_band; 690 rx_status->freq = rt2x00dev->curr_freq; 691 rx_status->rate_idx = rate_idx; 692 rx_status->signal = rxdesc.rssi; 693 rx_status->flag = rxdesc.flags; 694 rx_status->antenna = rt2x00dev->link.ant.active.rx; 695 696 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 697 698renew_skb: 699 /* 700 * Replace the skb with the freshly allocated one. 701 */ 702 entry->skb = skb; 703 704submit_entry: 705 entry->flags = 0; 706 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 707 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 708 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 709 rt2x00dev->ops->lib->clear_entry(entry); 710} 711EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 712 713/* 714 * Driver initialization handlers. 715 */ 716const struct rt2x00_rate rt2x00_supported_rates[12] = { 717 { 718 .flags = DEV_RATE_CCK, 719 .bitrate = 10, 720 .ratemask = BIT(0), 721 .plcp = 0x00, 722 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 723 }, 724 { 725 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 726 .bitrate = 20, 727 .ratemask = BIT(1), 728 .plcp = 0x01, 729 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 730 }, 731 { 732 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 733 .bitrate = 55, 734 .ratemask = BIT(2), 735 .plcp = 0x02, 736 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 737 }, 738 { 739 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 740 .bitrate = 110, 741 .ratemask = BIT(3), 742 .plcp = 0x03, 743 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 744 }, 745 { 746 .flags = DEV_RATE_OFDM, 747 .bitrate = 60, 748 .ratemask = BIT(4), 749 .plcp = 0x0b, 750 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 751 }, 752 { 753 .flags = DEV_RATE_OFDM, 754 .bitrate = 90, 755 .ratemask = BIT(5), 756 .plcp = 0x0f, 757 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 758 }, 759 { 760 .flags = DEV_RATE_OFDM, 761 .bitrate = 120, 762 .ratemask = BIT(6), 763 .plcp = 0x0a, 764 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 765 }, 766 { 767 .flags = DEV_RATE_OFDM, 768 .bitrate = 180, 769 .ratemask = BIT(7), 770 .plcp = 0x0e, 771 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 772 }, 773 { 774 .flags = DEV_RATE_OFDM, 775 .bitrate = 240, 776 .ratemask = BIT(8), 777 .plcp = 0x09, 778 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 779 }, 780 { 781 .flags = DEV_RATE_OFDM, 782 .bitrate = 360, 783 .ratemask = BIT(9), 784 .plcp = 0x0d, 785 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 786 }, 787 { 788 .flags = DEV_RATE_OFDM, 789 .bitrate = 480, 790 .ratemask = BIT(10), 791 .plcp = 0x08, 792 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 793 }, 794 { 795 .flags = DEV_RATE_OFDM, 796 .bitrate = 540, 797 .ratemask = BIT(11), 798 .plcp = 0x0c, 799 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 800 }, 801}; 802 803static void rt2x00lib_channel(struct ieee80211_channel *entry, 804 const int channel, const int tx_power, 805 const int value) 806{ 807 /* XXX: this assumption about the band is wrong for 802.11j */ 808 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; 809 entry->center_freq = ieee80211_channel_to_frequency(channel, 810 entry->band); 811 entry->hw_value = value; 812 entry->max_power = tx_power; 813 entry->max_antenna_gain = 0xff; 814} 815 816static void rt2x00lib_rate(struct ieee80211_rate *entry, 817 const u16 index, const struct rt2x00_rate *rate) 818{ 819 entry->flags = 0; 820 entry->bitrate = rate->bitrate; 821 entry->hw_value = index; 822 entry->hw_value_short = index; 823 824 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 825 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 826} 827 828static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 829 struct hw_mode_spec *spec) 830{ 831 struct ieee80211_hw *hw = rt2x00dev->hw; 832 struct ieee80211_channel *channels; 833 struct ieee80211_rate *rates; 834 unsigned int num_rates; 835 unsigned int i; 836 837 num_rates = 0; 838 if (spec->supported_rates & SUPPORT_RATE_CCK) 839 num_rates += 4; 840 if (spec->supported_rates & SUPPORT_RATE_OFDM) 841 num_rates += 8; 842 843 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 844 if (!channels) 845 return -ENOMEM; 846 847 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 848 if (!rates) 849 goto exit_free_channels; 850 851 /* 852 * Initialize Rate list. 853 */ 854 for (i = 0; i < num_rates; i++) 855 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 856 857 /* 858 * Initialize Channel list. 859 */ 860 for (i = 0; i < spec->num_channels; i++) { 861 rt2x00lib_channel(&channels[i], 862 spec->channels[i].channel, 863 spec->channels_info[i].max_power, i); 864 } 865 866 /* 867 * Intitialize 802.11b, 802.11g 868 * Rates: CCK, OFDM. 869 * Channels: 2.4 GHz 870 */ 871 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 872 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14; 873 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates; 874 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels; 875 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates; 876 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = 877 &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; 878 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap, 879 &spec->ht, sizeof(spec->ht)); 880 } 881 882 /* 883 * Intitialize 802.11a 884 * Rates: OFDM. 885 * Channels: OFDM, UNII, HiperLAN2. 886 */ 887 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 888 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels = 889 spec->num_channels - 14; 890 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates = 891 num_rates - 4; 892 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14]; 893 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4]; 894 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = 895 &rt2x00dev->bands[IEEE80211_BAND_5GHZ]; 896 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap, 897 &spec->ht, sizeof(spec->ht)); 898 } 899 900 return 0; 901 902 exit_free_channels: 903 kfree(channels); 904 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); 905 return -ENOMEM; 906} 907 908static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 909{ 910 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 911 ieee80211_unregister_hw(rt2x00dev->hw); 912 913 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) { 914 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels); 915 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates); 916 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL; 917 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL; 918 } 919 920 kfree(rt2x00dev->spec.channels_info); 921} 922 923static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 924{ 925 struct hw_mode_spec *spec = &rt2x00dev->spec; 926 int status; 927 928 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 929 return 0; 930 931 /* 932 * Initialize HW modes. 933 */ 934 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 935 if (status) 936 return status; 937 938 /* 939 * Initialize HW fields. 940 */ 941 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 942 943 /* 944 * Initialize extra TX headroom required. 945 */ 946 rt2x00dev->hw->extra_tx_headroom = 947 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 948 rt2x00dev->ops->extra_tx_headroom); 949 950 /* 951 * Take TX headroom required for alignment into account. 952 */ 953 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 954 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 955 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) 956 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 957 958 /* 959 * Tell mac80211 about the size of our private STA structure. 960 */ 961 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 962 963 /* 964 * Allocate tx status FIFO for driver use. 965 */ 966 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) { 967 /* 968 * Allocate the txstatus fifo. In the worst case the tx 969 * status fifo has to hold the tx status of all entries 970 * in all tx queues. Hence, calculate the kfifo size as 971 * tx_queues * entry_num and round up to the nearest 972 * power of 2. 973 */ 974 int kfifo_size = 975 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 976 rt2x00dev->ops->tx->entry_num * 977 sizeof(u32)); 978 979 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 980 GFP_KERNEL); 981 if (status) 982 return status; 983 } 984 985 /* 986 * Initialize tasklets if used by the driver. Tasklets are 987 * disabled until the interrupts are turned on. The driver 988 * has to handle that. 989 */ 990#define RT2X00_TASKLET_INIT(taskletname) \ 991 if (rt2x00dev->ops->lib->taskletname) { \ 992 tasklet_init(&rt2x00dev->taskletname, \ 993 rt2x00dev->ops->lib->taskletname, \ 994 (unsigned long)rt2x00dev); \ 995 } 996 997 RT2X00_TASKLET_INIT(txstatus_tasklet); 998 RT2X00_TASKLET_INIT(pretbtt_tasklet); 999 RT2X00_TASKLET_INIT(tbtt_tasklet); 1000 RT2X00_TASKLET_INIT(rxdone_tasklet); 1001 RT2X00_TASKLET_INIT(autowake_tasklet); 1002 1003#undef RT2X00_TASKLET_INIT 1004 1005 /* 1006 * Register HW. 1007 */ 1008 status = ieee80211_register_hw(rt2x00dev->hw); 1009 if (status) 1010 return status; 1011 1012 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1013 1014 return 0; 1015} 1016 1017/* 1018 * Initialization/uninitialization handlers. 1019 */ 1020static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1021{ 1022 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1023 return; 1024 1025 /* 1026 * Unregister extra components. 1027 */ 1028 rt2x00rfkill_unregister(rt2x00dev); 1029 1030 /* 1031 * Allow the HW to uninitialize. 1032 */ 1033 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1034 1035 /* 1036 * Free allocated queue entries. 1037 */ 1038 rt2x00queue_uninitialize(rt2x00dev); 1039} 1040 1041static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1042{ 1043 int status; 1044 1045 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1046 return 0; 1047 1048 /* 1049 * Allocate all queue entries. 1050 */ 1051 status = rt2x00queue_initialize(rt2x00dev); 1052 if (status) 1053 return status; 1054 1055 /* 1056 * Initialize the device. 1057 */ 1058 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1059 if (status) { 1060 rt2x00queue_uninitialize(rt2x00dev); 1061 return status; 1062 } 1063 1064 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1065 1066 return 0; 1067} 1068 1069int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1070{ 1071 int retval; 1072 1073 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1074 return 0; 1075 1076 /* 1077 * If this is the first interface which is added, 1078 * we should load the firmware now. 1079 */ 1080 retval = rt2x00lib_load_firmware(rt2x00dev); 1081 if (retval) 1082 return retval; 1083 1084 /* 1085 * Initialize the device. 1086 */ 1087 retval = rt2x00lib_initialize(rt2x00dev); 1088 if (retval) 1089 return retval; 1090 1091 rt2x00dev->intf_ap_count = 0; 1092 rt2x00dev->intf_sta_count = 0; 1093 rt2x00dev->intf_associated = 0; 1094 1095 /* Enable the radio */ 1096 retval = rt2x00lib_enable_radio(rt2x00dev); 1097 if (retval) 1098 return retval; 1099 1100 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1101 1102 return 0; 1103} 1104 1105void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1106{ 1107 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1108 return; 1109 1110 /* 1111 * Perhaps we can add something smarter here, 1112 * but for now just disabling the radio should do. 1113 */ 1114 rt2x00lib_disable_radio(rt2x00dev); 1115 1116 rt2x00dev->intf_ap_count = 0; 1117 rt2x00dev->intf_sta_count = 0; 1118 rt2x00dev->intf_associated = 0; 1119} 1120 1121static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) 1122{ 1123 struct ieee80211_iface_limit *if_limit; 1124 struct ieee80211_iface_combination *if_combination; 1125 1126 /* 1127 * Build up AP interface limits structure. 1128 */ 1129 if_limit = &rt2x00dev->if_limits_ap; 1130 if_limit->max = rt2x00dev->ops->max_ap_intf; 1131 if_limit->types = BIT(NL80211_IFTYPE_AP); 1132 1133 /* 1134 * Build up AP interface combinations structure. 1135 */ 1136 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; 1137 if_combination->limits = if_limit; 1138 if_combination->n_limits = 1; 1139 if_combination->max_interfaces = if_limit->max; 1140 if_combination->num_different_channels = 1; 1141 1142 /* 1143 * Finally, specify the possible combinations to mac80211. 1144 */ 1145 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; 1146 rt2x00dev->hw->wiphy->n_iface_combinations = 1; 1147} 1148 1149/* 1150 * driver allocation handlers. 1151 */ 1152int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1153{ 1154 int retval = -ENOMEM; 1155 1156 /* 1157 * Set possible interface combinations. 1158 */ 1159 rt2x00lib_set_if_combinations(rt2x00dev); 1160 1161 /* 1162 * Allocate the driver data memory, if necessary. 1163 */ 1164 if (rt2x00dev->ops->drv_data_size > 0) { 1165 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1166 GFP_KERNEL); 1167 if (!rt2x00dev->drv_data) { 1168 retval = -ENOMEM; 1169 goto exit; 1170 } 1171 } 1172 1173 spin_lock_init(&rt2x00dev->irqmask_lock); 1174 mutex_init(&rt2x00dev->csr_mutex); 1175 1176 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1177 1178 /* 1179 * Make room for rt2x00_intf inside the per-interface 1180 * structure ieee80211_vif. 1181 */ 1182 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1183 1184 /* 1185 * Determine which operating modes are supported, all modes 1186 * which require beaconing, depend on the availability of 1187 * beacon entries. 1188 */ 1189 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1190 if (rt2x00dev->ops->bcn->entry_num > 0) 1191 rt2x00dev->hw->wiphy->interface_modes |= 1192 BIT(NL80211_IFTYPE_ADHOC) | 1193 BIT(NL80211_IFTYPE_AP) | 1194 BIT(NL80211_IFTYPE_MESH_POINT) | 1195 BIT(NL80211_IFTYPE_WDS); 1196 1197 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 1198 1199 /* 1200 * Initialize work. 1201 */ 1202 rt2x00dev->workqueue = 1203 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0); 1204 if (!rt2x00dev->workqueue) { 1205 retval = -ENOMEM; 1206 goto exit; 1207 } 1208 1209 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1210 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1211 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1212 1213 /* 1214 * Let the driver probe the device to detect the capabilities. 1215 */ 1216 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1217 if (retval) { 1218 ERROR(rt2x00dev, "Failed to allocate device.\n"); 1219 goto exit; 1220 } 1221 1222 /* 1223 * Allocate queue array. 1224 */ 1225 retval = rt2x00queue_allocate(rt2x00dev); 1226 if (retval) 1227 goto exit; 1228 1229 /* 1230 * Initialize ieee80211 structure. 1231 */ 1232 retval = rt2x00lib_probe_hw(rt2x00dev); 1233 if (retval) { 1234 ERROR(rt2x00dev, "Failed to initialize hw.\n"); 1235 goto exit; 1236 } 1237 1238 /* 1239 * Register extra components. 1240 */ 1241 rt2x00link_register(rt2x00dev); 1242 rt2x00leds_register(rt2x00dev); 1243 rt2x00debug_register(rt2x00dev); 1244 rt2x00rfkill_register(rt2x00dev); 1245 1246 return 0; 1247 1248exit: 1249 rt2x00lib_remove_dev(rt2x00dev); 1250 1251 return retval; 1252} 1253EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1254 1255void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1256{ 1257 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1258 1259 /* 1260 * Disable radio. 1261 */ 1262 rt2x00lib_disable_radio(rt2x00dev); 1263 1264 /* 1265 * Stop all work. 1266 */ 1267 cancel_work_sync(&rt2x00dev->intf_work); 1268 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1269 cancel_work_sync(&rt2x00dev->sleep_work); 1270 if (rt2x00_is_usb(rt2x00dev)) { 1271 hrtimer_cancel(&rt2x00dev->txstatus_timer); 1272 cancel_work_sync(&rt2x00dev->rxdone_work); 1273 cancel_work_sync(&rt2x00dev->txdone_work); 1274 } 1275 if (rt2x00dev->workqueue) 1276 destroy_workqueue(rt2x00dev->workqueue); 1277 1278 /* 1279 * Free the tx status fifo. 1280 */ 1281 kfifo_free(&rt2x00dev->txstatus_fifo); 1282 1283 /* 1284 * Kill the tx status tasklet. 1285 */ 1286 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1287 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1288 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1289 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1290 tasklet_kill(&rt2x00dev->autowake_tasklet); 1291 1292 /* 1293 * Uninitialize device. 1294 */ 1295 rt2x00lib_uninitialize(rt2x00dev); 1296 1297 /* 1298 * Free extra components 1299 */ 1300 rt2x00debug_deregister(rt2x00dev); 1301 rt2x00leds_unregister(rt2x00dev); 1302 1303 /* 1304 * Free ieee80211_hw memory. 1305 */ 1306 rt2x00lib_remove_hw(rt2x00dev); 1307 1308 /* 1309 * Free firmware image. 1310 */ 1311 rt2x00lib_free_firmware(rt2x00dev); 1312 1313 /* 1314 * Free queue structures. 1315 */ 1316 rt2x00queue_free(rt2x00dev); 1317 1318 /* 1319 * Free the driver data. 1320 */ 1321 if (rt2x00dev->drv_data) 1322 kfree(rt2x00dev->drv_data); 1323} 1324EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1325 1326/* 1327 * Device state handlers 1328 */ 1329#ifdef CONFIG_PM 1330int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) 1331{ 1332 NOTICE(rt2x00dev, "Going to sleep.\n"); 1333 1334 /* 1335 * Prevent mac80211 from accessing driver while suspended. 1336 */ 1337 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1338 return 0; 1339 1340 /* 1341 * Cleanup as much as possible. 1342 */ 1343 rt2x00lib_uninitialize(rt2x00dev); 1344 1345 /* 1346 * Suspend/disable extra components. 1347 */ 1348 rt2x00leds_suspend(rt2x00dev); 1349 rt2x00debug_deregister(rt2x00dev); 1350 1351 /* 1352 * Set device mode to sleep for power management, 1353 * on some hardware this call seems to consistently fail. 1354 * From the specifications it is hard to tell why it fails, 1355 * and if this is a "bad thing". 1356 * Overall it is safe to just ignore the failure and 1357 * continue suspending. The only downside is that the 1358 * device will not be in optimal power save mode, but with 1359 * the radio and the other components already disabled the 1360 * device is as good as disabled. 1361 */ 1362 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1363 WARNING(rt2x00dev, "Device failed to enter sleep state, " 1364 "continue suspending.\n"); 1365 1366 return 0; 1367} 1368EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1369 1370int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1371{ 1372 NOTICE(rt2x00dev, "Waking up.\n"); 1373 1374 /* 1375 * Restore/enable extra components. 1376 */ 1377 rt2x00debug_register(rt2x00dev); 1378 rt2x00leds_resume(rt2x00dev); 1379 1380 /* 1381 * We are ready again to receive requests from mac80211. 1382 */ 1383 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1384 1385 return 0; 1386} 1387EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1388#endif /* CONFIG_PM */ 1389 1390/* 1391 * rt2x00lib module information. 1392 */ 1393MODULE_AUTHOR(DRV_PROJECT); 1394MODULE_VERSION(DRV_VERSION); 1395MODULE_DESCRIPTION("rt2x00 library"); 1396MODULE_LICENSE("GPL");