at v3.7 1712 lines 49 kB view raw
1/* 2 * drivers/mtd/nand/diskonchip.c 3 * 4 * (C) 2003 Red Hat, Inc. 5 * (C) 2004 Dan Brown <dan_brown@ieee.org> 6 * (C) 2004 Kalev Lember <kalev@smartlink.ee> 7 * 8 * Author: David Woodhouse <dwmw2@infradead.org> 9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> 10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> 11 * 12 * Error correction code lifted from the old docecc code 13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 14 * Copyright (C) 2000 Netgem S.A. 15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> 16 * 17 * Interface to generic NAND code for M-Systems DiskOnChip devices 18 */ 19 20#include <linux/kernel.h> 21#include <linux/init.h> 22#include <linux/sched.h> 23#include <linux/delay.h> 24#include <linux/rslib.h> 25#include <linux/moduleparam.h> 26#include <linux/slab.h> 27#include <asm/io.h> 28 29#include <linux/mtd/mtd.h> 30#include <linux/mtd/nand.h> 31#include <linux/mtd/doc2000.h> 32#include <linux/mtd/partitions.h> 33#include <linux/mtd/inftl.h> 34#include <linux/module.h> 35 36/* Where to look for the devices? */ 37#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 38#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 39#endif 40 41static unsigned long __initdata doc_locations[] = { 42#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) 43#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH 44 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, 45 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, 46 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 47 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 48 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, 49#else /* CONFIG_MTD_DOCPROBE_HIGH */ 50 0xc8000, 0xca000, 0xcc000, 0xce000, 51 0xd0000, 0xd2000, 0xd4000, 0xd6000, 52 0xd8000, 0xda000, 0xdc000, 0xde000, 53 0xe0000, 0xe2000, 0xe4000, 0xe6000, 54 0xe8000, 0xea000, 0xec000, 0xee000, 55#endif /* CONFIG_MTD_DOCPROBE_HIGH */ 56#else 57#warning Unknown architecture for DiskOnChip. No default probe locations defined 58#endif 59 0xffffffff }; 60 61static struct mtd_info *doclist = NULL; 62 63struct doc_priv { 64 void __iomem *virtadr; 65 unsigned long physadr; 66 u_char ChipID; 67 u_char CDSNControl; 68 int chips_per_floor; /* The number of chips detected on each floor */ 69 int curfloor; 70 int curchip; 71 int mh0_page; 72 int mh1_page; 73 struct mtd_info *nextdoc; 74}; 75 76/* This is the syndrome computed by the HW ecc generator upon reading an empty 77 page, one with all 0xff for data and stored ecc code. */ 78static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a }; 79 80/* This is the ecc value computed by the HW ecc generator upon writing an empty 81 page, one with all 0xff for data. */ 82static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; 83 84#define INFTL_BBT_RESERVED_BLOCKS 4 85 86#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) 87#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) 88#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) 89 90static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, 91 unsigned int bitmask); 92static void doc200x_select_chip(struct mtd_info *mtd, int chip); 93 94static int debug = 0; 95module_param(debug, int, 0); 96 97static int try_dword = 1; 98module_param(try_dword, int, 0); 99 100static int no_ecc_failures = 0; 101module_param(no_ecc_failures, int, 0); 102 103static int no_autopart = 0; 104module_param(no_autopart, int, 0); 105 106static int show_firmware_partition = 0; 107module_param(show_firmware_partition, int, 0); 108 109#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE 110static int inftl_bbt_write = 1; 111#else 112static int inftl_bbt_write = 0; 113#endif 114module_param(inftl_bbt_write, int, 0); 115 116static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; 117module_param(doc_config_location, ulong, 0); 118MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); 119 120/* Sector size for HW ECC */ 121#define SECTOR_SIZE 512 122/* The sector bytes are packed into NB_DATA 10 bit words */ 123#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) 124/* Number of roots */ 125#define NROOTS 4 126/* First consective root */ 127#define FCR 510 128/* Number of symbols */ 129#define NN 1023 130 131/* the Reed Solomon control structure */ 132static struct rs_control *rs_decoder; 133 134/* 135 * The HW decoder in the DoC ASIC's provides us a error syndrome, 136 * which we must convert to a standard syndrome usable by the generic 137 * Reed-Solomon library code. 138 * 139 * Fabrice Bellard figured this out in the old docecc code. I added 140 * some comments, improved a minor bit and converted it to make use 141 * of the generic Reed-Solomon library. tglx 142 */ 143static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) 144{ 145 int i, j, nerr, errpos[8]; 146 uint8_t parity; 147 uint16_t ds[4], s[5], tmp, errval[8], syn[4]; 148 149 memset(syn, 0, sizeof(syn)); 150 /* Convert the ecc bytes into words */ 151 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); 152 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); 153 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); 154 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); 155 parity = ecc[1]; 156 157 /* Initialize the syndrome buffer */ 158 for (i = 0; i < NROOTS; i++) 159 s[i] = ds[0]; 160 /* 161 * Evaluate 162 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] 163 * where x = alpha^(FCR + i) 164 */ 165 for (j = 1; j < NROOTS; j++) { 166 if (ds[j] == 0) 167 continue; 168 tmp = rs->index_of[ds[j]]; 169 for (i = 0; i < NROOTS; i++) 170 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)]; 171 } 172 173 /* Calc syn[i] = s[i] / alpha^(v + i) */ 174 for (i = 0; i < NROOTS; i++) { 175 if (s[i]) 176 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i)); 177 } 178 /* Call the decoder library */ 179 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); 180 181 /* Incorrectable errors ? */ 182 if (nerr < 0) 183 return nerr; 184 185 /* 186 * Correct the errors. The bitpositions are a bit of magic, 187 * but they are given by the design of the de/encoder circuit 188 * in the DoC ASIC's. 189 */ 190 for (i = 0; i < nerr; i++) { 191 int index, bitpos, pos = 1015 - errpos[i]; 192 uint8_t val; 193 if (pos >= NB_DATA && pos < 1019) 194 continue; 195 if (pos < NB_DATA) { 196 /* extract bit position (MSB first) */ 197 pos = 10 * (NB_DATA - 1 - pos) - 6; 198 /* now correct the following 10 bits. At most two bytes 199 can be modified since pos is even */ 200 index = (pos >> 3) ^ 1; 201 bitpos = pos & 7; 202 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { 203 val = (uint8_t) (errval[i] >> (2 + bitpos)); 204 parity ^= val; 205 if (index < SECTOR_SIZE) 206 data[index] ^= val; 207 } 208 index = ((pos >> 3) + 1) ^ 1; 209 bitpos = (bitpos + 10) & 7; 210 if (bitpos == 0) 211 bitpos = 8; 212 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { 213 val = (uint8_t) (errval[i] << (8 - bitpos)); 214 parity ^= val; 215 if (index < SECTOR_SIZE) 216 data[index] ^= val; 217 } 218 } 219 } 220 /* If the parity is wrong, no rescue possible */ 221 return parity ? -EBADMSG : nerr; 222} 223 224static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) 225{ 226 volatile char dummy; 227 int i; 228 229 for (i = 0; i < cycles; i++) { 230 if (DoC_is_Millennium(doc)) 231 dummy = ReadDOC(doc->virtadr, NOP); 232 else if (DoC_is_MillenniumPlus(doc)) 233 dummy = ReadDOC(doc->virtadr, Mplus_NOP); 234 else 235 dummy = ReadDOC(doc->virtadr, DOCStatus); 236 } 237 238} 239 240#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) 241 242/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ 243static int _DoC_WaitReady(struct doc_priv *doc) 244{ 245 void __iomem *docptr = doc->virtadr; 246 unsigned long timeo = jiffies + (HZ * 10); 247 248 if (debug) 249 printk("_DoC_WaitReady...\n"); 250 /* Out-of-line routine to wait for chip response */ 251 if (DoC_is_MillenniumPlus(doc)) { 252 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { 253 if (time_after(jiffies, timeo)) { 254 printk("_DoC_WaitReady timed out.\n"); 255 return -EIO; 256 } 257 udelay(1); 258 cond_resched(); 259 } 260 } else { 261 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { 262 if (time_after(jiffies, timeo)) { 263 printk("_DoC_WaitReady timed out.\n"); 264 return -EIO; 265 } 266 udelay(1); 267 cond_resched(); 268 } 269 } 270 271 return 0; 272} 273 274static inline int DoC_WaitReady(struct doc_priv *doc) 275{ 276 void __iomem *docptr = doc->virtadr; 277 int ret = 0; 278 279 if (DoC_is_MillenniumPlus(doc)) { 280 DoC_Delay(doc, 4); 281 282 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) 283 /* Call the out-of-line routine to wait */ 284 ret = _DoC_WaitReady(doc); 285 } else { 286 DoC_Delay(doc, 4); 287 288 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) 289 /* Call the out-of-line routine to wait */ 290 ret = _DoC_WaitReady(doc); 291 DoC_Delay(doc, 2); 292 } 293 294 if (debug) 295 printk("DoC_WaitReady OK\n"); 296 return ret; 297} 298 299static void doc2000_write_byte(struct mtd_info *mtd, u_char datum) 300{ 301 struct nand_chip *this = mtd->priv; 302 struct doc_priv *doc = this->priv; 303 void __iomem *docptr = doc->virtadr; 304 305 if (debug) 306 printk("write_byte %02x\n", datum); 307 WriteDOC(datum, docptr, CDSNSlowIO); 308 WriteDOC(datum, docptr, 2k_CDSN_IO); 309} 310 311static u_char doc2000_read_byte(struct mtd_info *mtd) 312{ 313 struct nand_chip *this = mtd->priv; 314 struct doc_priv *doc = this->priv; 315 void __iomem *docptr = doc->virtadr; 316 u_char ret; 317 318 ReadDOC(docptr, CDSNSlowIO); 319 DoC_Delay(doc, 2); 320 ret = ReadDOC(docptr, 2k_CDSN_IO); 321 if (debug) 322 printk("read_byte returns %02x\n", ret); 323 return ret; 324} 325 326static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len) 327{ 328 struct nand_chip *this = mtd->priv; 329 struct doc_priv *doc = this->priv; 330 void __iomem *docptr = doc->virtadr; 331 int i; 332 if (debug) 333 printk("writebuf of %d bytes: ", len); 334 for (i = 0; i < len; i++) { 335 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); 336 if (debug && i < 16) 337 printk("%02x ", buf[i]); 338 } 339 if (debug) 340 printk("\n"); 341} 342 343static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len) 344{ 345 struct nand_chip *this = mtd->priv; 346 struct doc_priv *doc = this->priv; 347 void __iomem *docptr = doc->virtadr; 348 int i; 349 350 if (debug) 351 printk("readbuf of %d bytes: ", len); 352 353 for (i = 0; i < len; i++) { 354 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); 355 } 356} 357 358static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len) 359{ 360 struct nand_chip *this = mtd->priv; 361 struct doc_priv *doc = this->priv; 362 void __iomem *docptr = doc->virtadr; 363 int i; 364 365 if (debug) 366 printk("readbuf_dword of %d bytes: ", len); 367 368 if (unlikely((((unsigned long)buf) | len) & 3)) { 369 for (i = 0; i < len; i++) { 370 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); 371 } 372 } else { 373 for (i = 0; i < len; i += 4) { 374 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); 375 } 376 } 377} 378 379static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) 380{ 381 struct nand_chip *this = mtd->priv; 382 struct doc_priv *doc = this->priv; 383 uint16_t ret; 384 385 doc200x_select_chip(mtd, nr); 386 doc200x_hwcontrol(mtd, NAND_CMD_READID, 387 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 388 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); 389 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 390 391 /* We can't use dev_ready here, but at least we wait for the 392 * command to complete 393 */ 394 udelay(50); 395 396 ret = this->read_byte(mtd) << 8; 397 ret |= this->read_byte(mtd); 398 399 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { 400 /* First chip probe. See if we get same results by 32-bit access */ 401 union { 402 uint32_t dword; 403 uint8_t byte[4]; 404 } ident; 405 void __iomem *docptr = doc->virtadr; 406 407 doc200x_hwcontrol(mtd, NAND_CMD_READID, 408 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 409 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); 410 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 411 NAND_NCE | NAND_CTRL_CHANGE); 412 413 udelay(50); 414 415 ident.dword = readl(docptr + DoC_2k_CDSN_IO); 416 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { 417 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n"); 418 this->read_buf = &doc2000_readbuf_dword; 419 } 420 } 421 422 return ret; 423} 424 425static void __init doc2000_count_chips(struct mtd_info *mtd) 426{ 427 struct nand_chip *this = mtd->priv; 428 struct doc_priv *doc = this->priv; 429 uint16_t mfrid; 430 int i; 431 432 /* Max 4 chips per floor on DiskOnChip 2000 */ 433 doc->chips_per_floor = 4; 434 435 /* Find out what the first chip is */ 436 mfrid = doc200x_ident_chip(mtd, 0); 437 438 /* Find how many chips in each floor. */ 439 for (i = 1; i < 4; i++) { 440 if (doc200x_ident_chip(mtd, i) != mfrid) 441 break; 442 } 443 doc->chips_per_floor = i; 444 printk(KERN_DEBUG "Detected %d chips per floor.\n", i); 445} 446 447static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this) 448{ 449 struct doc_priv *doc = this->priv; 450 451 int status; 452 453 DoC_WaitReady(doc); 454 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); 455 DoC_WaitReady(doc); 456 status = (int)this->read_byte(mtd); 457 458 return status; 459} 460 461static void doc2001_write_byte(struct mtd_info *mtd, u_char datum) 462{ 463 struct nand_chip *this = mtd->priv; 464 struct doc_priv *doc = this->priv; 465 void __iomem *docptr = doc->virtadr; 466 467 WriteDOC(datum, docptr, CDSNSlowIO); 468 WriteDOC(datum, docptr, Mil_CDSN_IO); 469 WriteDOC(datum, docptr, WritePipeTerm); 470} 471 472static u_char doc2001_read_byte(struct mtd_info *mtd) 473{ 474 struct nand_chip *this = mtd->priv; 475 struct doc_priv *doc = this->priv; 476 void __iomem *docptr = doc->virtadr; 477 478 //ReadDOC(docptr, CDSNSlowIO); 479 /* 11.4.5 -- delay twice to allow extended length cycle */ 480 DoC_Delay(doc, 2); 481 ReadDOC(docptr, ReadPipeInit); 482 //return ReadDOC(docptr, Mil_CDSN_IO); 483 return ReadDOC(docptr, LastDataRead); 484} 485 486static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len) 487{ 488 struct nand_chip *this = mtd->priv; 489 struct doc_priv *doc = this->priv; 490 void __iomem *docptr = doc->virtadr; 491 int i; 492 493 for (i = 0; i < len; i++) 494 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); 495 /* Terminate write pipeline */ 496 WriteDOC(0x00, docptr, WritePipeTerm); 497} 498 499static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len) 500{ 501 struct nand_chip *this = mtd->priv; 502 struct doc_priv *doc = this->priv; 503 void __iomem *docptr = doc->virtadr; 504 int i; 505 506 /* Start read pipeline */ 507 ReadDOC(docptr, ReadPipeInit); 508 509 for (i = 0; i < len - 1; i++) 510 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); 511 512 /* Terminate read pipeline */ 513 buf[i] = ReadDOC(docptr, LastDataRead); 514} 515 516static u_char doc2001plus_read_byte(struct mtd_info *mtd) 517{ 518 struct nand_chip *this = mtd->priv; 519 struct doc_priv *doc = this->priv; 520 void __iomem *docptr = doc->virtadr; 521 u_char ret; 522 523 ReadDOC(docptr, Mplus_ReadPipeInit); 524 ReadDOC(docptr, Mplus_ReadPipeInit); 525 ret = ReadDOC(docptr, Mplus_LastDataRead); 526 if (debug) 527 printk("read_byte returns %02x\n", ret); 528 return ret; 529} 530 531static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len) 532{ 533 struct nand_chip *this = mtd->priv; 534 struct doc_priv *doc = this->priv; 535 void __iomem *docptr = doc->virtadr; 536 int i; 537 538 if (debug) 539 printk("writebuf of %d bytes: ", len); 540 for (i = 0; i < len; i++) { 541 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); 542 if (debug && i < 16) 543 printk("%02x ", buf[i]); 544 } 545 if (debug) 546 printk("\n"); 547} 548 549static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len) 550{ 551 struct nand_chip *this = mtd->priv; 552 struct doc_priv *doc = this->priv; 553 void __iomem *docptr = doc->virtadr; 554 int i; 555 556 if (debug) 557 printk("readbuf of %d bytes: ", len); 558 559 /* Start read pipeline */ 560 ReadDOC(docptr, Mplus_ReadPipeInit); 561 ReadDOC(docptr, Mplus_ReadPipeInit); 562 563 for (i = 0; i < len - 2; i++) { 564 buf[i] = ReadDOC(docptr, Mil_CDSN_IO); 565 if (debug && i < 16) 566 printk("%02x ", buf[i]); 567 } 568 569 /* Terminate read pipeline */ 570 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); 571 if (debug && i < 16) 572 printk("%02x ", buf[len - 2]); 573 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); 574 if (debug && i < 16) 575 printk("%02x ", buf[len - 1]); 576 if (debug) 577 printk("\n"); 578} 579 580static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) 581{ 582 struct nand_chip *this = mtd->priv; 583 struct doc_priv *doc = this->priv; 584 void __iomem *docptr = doc->virtadr; 585 int floor = 0; 586 587 if (debug) 588 printk("select chip (%d)\n", chip); 589 590 if (chip == -1) { 591 /* Disable flash internally */ 592 WriteDOC(0, docptr, Mplus_FlashSelect); 593 return; 594 } 595 596 floor = chip / doc->chips_per_floor; 597 chip -= (floor * doc->chips_per_floor); 598 599 /* Assert ChipEnable and deassert WriteProtect */ 600 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); 601 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); 602 603 doc->curchip = chip; 604 doc->curfloor = floor; 605} 606 607static void doc200x_select_chip(struct mtd_info *mtd, int chip) 608{ 609 struct nand_chip *this = mtd->priv; 610 struct doc_priv *doc = this->priv; 611 void __iomem *docptr = doc->virtadr; 612 int floor = 0; 613 614 if (debug) 615 printk("select chip (%d)\n", chip); 616 617 if (chip == -1) 618 return; 619 620 floor = chip / doc->chips_per_floor; 621 chip -= (floor * doc->chips_per_floor); 622 623 /* 11.4.4 -- deassert CE before changing chip */ 624 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); 625 626 WriteDOC(floor, docptr, FloorSelect); 627 WriteDOC(chip, docptr, CDSNDeviceSelect); 628 629 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 630 631 doc->curchip = chip; 632 doc->curfloor = floor; 633} 634 635#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE) 636 637static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, 638 unsigned int ctrl) 639{ 640 struct nand_chip *this = mtd->priv; 641 struct doc_priv *doc = this->priv; 642 void __iomem *docptr = doc->virtadr; 643 644 if (ctrl & NAND_CTRL_CHANGE) { 645 doc->CDSNControl &= ~CDSN_CTRL_MSK; 646 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK; 647 if (debug) 648 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); 649 WriteDOC(doc->CDSNControl, docptr, CDSNControl); 650 /* 11.4.3 -- 4 NOPs after CSDNControl write */ 651 DoC_Delay(doc, 4); 652 } 653 if (cmd != NAND_CMD_NONE) { 654 if (DoC_is_2000(doc)) 655 doc2000_write_byte(mtd, cmd); 656 else 657 doc2001_write_byte(mtd, cmd); 658 } 659} 660 661static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) 662{ 663 struct nand_chip *this = mtd->priv; 664 struct doc_priv *doc = this->priv; 665 void __iomem *docptr = doc->virtadr; 666 667 /* 668 * Must terminate write pipeline before sending any commands 669 * to the device. 670 */ 671 if (command == NAND_CMD_PAGEPROG) { 672 WriteDOC(0x00, docptr, Mplus_WritePipeTerm); 673 WriteDOC(0x00, docptr, Mplus_WritePipeTerm); 674 } 675 676 /* 677 * Write out the command to the device. 678 */ 679 if (command == NAND_CMD_SEQIN) { 680 int readcmd; 681 682 if (column >= mtd->writesize) { 683 /* OOB area */ 684 column -= mtd->writesize; 685 readcmd = NAND_CMD_READOOB; 686 } else if (column < 256) { 687 /* First 256 bytes --> READ0 */ 688 readcmd = NAND_CMD_READ0; 689 } else { 690 column -= 256; 691 readcmd = NAND_CMD_READ1; 692 } 693 WriteDOC(readcmd, docptr, Mplus_FlashCmd); 694 } 695 WriteDOC(command, docptr, Mplus_FlashCmd); 696 WriteDOC(0, docptr, Mplus_WritePipeTerm); 697 WriteDOC(0, docptr, Mplus_WritePipeTerm); 698 699 if (column != -1 || page_addr != -1) { 700 /* Serially input address */ 701 if (column != -1) { 702 /* Adjust columns for 16 bit buswidth */ 703 if (this->options & NAND_BUSWIDTH_16) 704 column >>= 1; 705 WriteDOC(column, docptr, Mplus_FlashAddress); 706 } 707 if (page_addr != -1) { 708 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress); 709 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); 710 /* One more address cycle for higher density devices */ 711 if (this->chipsize & 0x0c000000) { 712 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); 713 printk("high density\n"); 714 } 715 } 716 WriteDOC(0, docptr, Mplus_WritePipeTerm); 717 WriteDOC(0, docptr, Mplus_WritePipeTerm); 718 /* deassert ALE */ 719 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || 720 command == NAND_CMD_READOOB || command == NAND_CMD_READID) 721 WriteDOC(0, docptr, Mplus_FlashControl); 722 } 723 724 /* 725 * program and erase have their own busy handlers 726 * status and sequential in needs no delay 727 */ 728 switch (command) { 729 730 case NAND_CMD_PAGEPROG: 731 case NAND_CMD_ERASE1: 732 case NAND_CMD_ERASE2: 733 case NAND_CMD_SEQIN: 734 case NAND_CMD_STATUS: 735 return; 736 737 case NAND_CMD_RESET: 738 if (this->dev_ready) 739 break; 740 udelay(this->chip_delay); 741 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); 742 WriteDOC(0, docptr, Mplus_WritePipeTerm); 743 WriteDOC(0, docptr, Mplus_WritePipeTerm); 744 while (!(this->read_byte(mtd) & 0x40)) ; 745 return; 746 747 /* This applies to read commands */ 748 default: 749 /* 750 * If we don't have access to the busy pin, we apply the given 751 * command delay 752 */ 753 if (!this->dev_ready) { 754 udelay(this->chip_delay); 755 return; 756 } 757 } 758 759 /* Apply this short delay always to ensure that we do wait tWB in 760 * any case on any machine. */ 761 ndelay(100); 762 /* wait until command is processed */ 763 while (!this->dev_ready(mtd)) ; 764} 765 766static int doc200x_dev_ready(struct mtd_info *mtd) 767{ 768 struct nand_chip *this = mtd->priv; 769 struct doc_priv *doc = this->priv; 770 void __iomem *docptr = doc->virtadr; 771 772 if (DoC_is_MillenniumPlus(doc)) { 773 /* 11.4.2 -- must NOP four times before checking FR/B# */ 774 DoC_Delay(doc, 4); 775 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { 776 if (debug) 777 printk("not ready\n"); 778 return 0; 779 } 780 if (debug) 781 printk("was ready\n"); 782 return 1; 783 } else { 784 /* 11.4.2 -- must NOP four times before checking FR/B# */ 785 DoC_Delay(doc, 4); 786 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { 787 if (debug) 788 printk("not ready\n"); 789 return 0; 790 } 791 /* 11.4.2 -- Must NOP twice if it's ready */ 792 DoC_Delay(doc, 2); 793 if (debug) 794 printk("was ready\n"); 795 return 1; 796 } 797} 798 799static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) 800{ 801 /* This is our last resort if we couldn't find or create a BBT. Just 802 pretend all blocks are good. */ 803 return 0; 804} 805 806static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode) 807{ 808 struct nand_chip *this = mtd->priv; 809 struct doc_priv *doc = this->priv; 810 void __iomem *docptr = doc->virtadr; 811 812 /* Prime the ECC engine */ 813 switch (mode) { 814 case NAND_ECC_READ: 815 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 816 WriteDOC(DOC_ECC_EN, docptr, ECCConf); 817 break; 818 case NAND_ECC_WRITE: 819 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 820 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); 821 break; 822 } 823} 824 825static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode) 826{ 827 struct nand_chip *this = mtd->priv; 828 struct doc_priv *doc = this->priv; 829 void __iomem *docptr = doc->virtadr; 830 831 /* Prime the ECC engine */ 832 switch (mode) { 833 case NAND_ECC_READ: 834 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); 835 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); 836 break; 837 case NAND_ECC_WRITE: 838 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); 839 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); 840 break; 841 } 842} 843 844/* This code is only called on write */ 845static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code) 846{ 847 struct nand_chip *this = mtd->priv; 848 struct doc_priv *doc = this->priv; 849 void __iomem *docptr = doc->virtadr; 850 int i; 851 int emptymatch = 1; 852 853 /* flush the pipeline */ 854 if (DoC_is_2000(doc)) { 855 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); 856 WriteDOC(0, docptr, 2k_CDSN_IO); 857 WriteDOC(0, docptr, 2k_CDSN_IO); 858 WriteDOC(0, docptr, 2k_CDSN_IO); 859 WriteDOC(doc->CDSNControl, docptr, CDSNControl); 860 } else if (DoC_is_MillenniumPlus(doc)) { 861 WriteDOC(0, docptr, Mplus_NOP); 862 WriteDOC(0, docptr, Mplus_NOP); 863 WriteDOC(0, docptr, Mplus_NOP); 864 } else { 865 WriteDOC(0, docptr, NOP); 866 WriteDOC(0, docptr, NOP); 867 WriteDOC(0, docptr, NOP); 868 } 869 870 for (i = 0; i < 6; i++) { 871 if (DoC_is_MillenniumPlus(doc)) 872 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); 873 else 874 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); 875 if (ecc_code[i] != empty_write_ecc[i]) 876 emptymatch = 0; 877 } 878 if (DoC_is_MillenniumPlus(doc)) 879 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); 880 else 881 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 882#if 0 883 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ 884 if (emptymatch) { 885 /* Note: this somewhat expensive test should not be triggered 886 often. It could be optimized away by examining the data in 887 the writebuf routine, and remembering the result. */ 888 for (i = 0; i < 512; i++) { 889 if (dat[i] == 0xff) 890 continue; 891 emptymatch = 0; 892 break; 893 } 894 } 895 /* If emptymatch still =1, we do have an all-0xff data buffer. 896 Return all-0xff ecc value instead of the computed one, so 897 it'll look just like a freshly-erased page. */ 898 if (emptymatch) 899 memset(ecc_code, 0xff, 6); 900#endif 901 return 0; 902} 903 904static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, 905 u_char *read_ecc, u_char *isnull) 906{ 907 int i, ret = 0; 908 struct nand_chip *this = mtd->priv; 909 struct doc_priv *doc = this->priv; 910 void __iomem *docptr = doc->virtadr; 911 uint8_t calc_ecc[6]; 912 volatile u_char dummy; 913 int emptymatch = 1; 914 915 /* flush the pipeline */ 916 if (DoC_is_2000(doc)) { 917 dummy = ReadDOC(docptr, 2k_ECCStatus); 918 dummy = ReadDOC(docptr, 2k_ECCStatus); 919 dummy = ReadDOC(docptr, 2k_ECCStatus); 920 } else if (DoC_is_MillenniumPlus(doc)) { 921 dummy = ReadDOC(docptr, Mplus_ECCConf); 922 dummy = ReadDOC(docptr, Mplus_ECCConf); 923 dummy = ReadDOC(docptr, Mplus_ECCConf); 924 } else { 925 dummy = ReadDOC(docptr, ECCConf); 926 dummy = ReadDOC(docptr, ECCConf); 927 dummy = ReadDOC(docptr, ECCConf); 928 } 929 930 /* Error occurred ? */ 931 if (dummy & 0x80) { 932 for (i = 0; i < 6; i++) { 933 if (DoC_is_MillenniumPlus(doc)) 934 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); 935 else 936 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); 937 if (calc_ecc[i] != empty_read_syndrome[i]) 938 emptymatch = 0; 939 } 940 /* If emptymatch=1, the read syndrome is consistent with an 941 all-0xff data and stored ecc block. Check the stored ecc. */ 942 if (emptymatch) { 943 for (i = 0; i < 6; i++) { 944 if (read_ecc[i] == 0xff) 945 continue; 946 emptymatch = 0; 947 break; 948 } 949 } 950 /* If emptymatch still =1, check the data block. */ 951 if (emptymatch) { 952 /* Note: this somewhat expensive test should not be triggered 953 often. It could be optimized away by examining the data in 954 the readbuf routine, and remembering the result. */ 955 for (i = 0; i < 512; i++) { 956 if (dat[i] == 0xff) 957 continue; 958 emptymatch = 0; 959 break; 960 } 961 } 962 /* If emptymatch still =1, this is almost certainly a freshly- 963 erased block, in which case the ECC will not come out right. 964 We'll suppress the error and tell the caller everything's 965 OK. Because it is. */ 966 if (!emptymatch) 967 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc); 968 if (ret > 0) 969 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret); 970 } 971 if (DoC_is_MillenniumPlus(doc)) 972 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); 973 else 974 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 975 if (no_ecc_failures && mtd_is_eccerr(ret)) { 976 printk(KERN_ERR "suppressing ECC failure\n"); 977 ret = 0; 978 } 979 return ret; 980} 981 982//u_char mydatabuf[528]; 983 984/* The strange out-of-order .oobfree list below is a (possibly unneeded) 985 * attempt to retain compatibility. It used to read: 986 * .oobfree = { {8, 8} } 987 * Since that leaves two bytes unusable, it was changed. But the following 988 * scheme might affect existing jffs2 installs by moving the cleanmarker: 989 * .oobfree = { {6, 10} } 990 * jffs2 seems to handle the above gracefully, but the current scheme seems 991 * safer. The only problem with it is that any code that parses oobfree must 992 * be able to handle out-of-order segments. 993 */ 994static struct nand_ecclayout doc200x_oobinfo = { 995 .eccbytes = 6, 996 .eccpos = {0, 1, 2, 3, 4, 5}, 997 .oobfree = {{8, 8}, {6, 2}} 998}; 999 1000/* Find the (I)NFTL Media Header, and optionally also the mirror media header. 1001 On successful return, buf will contain a copy of the media header for 1002 further processing. id is the string to scan for, and will presumably be 1003 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media 1004 header. The page #s of the found media headers are placed in mh0_page and 1005 mh1_page in the DOC private structure. */ 1006static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) 1007{ 1008 struct nand_chip *this = mtd->priv; 1009 struct doc_priv *doc = this->priv; 1010 unsigned offs; 1011 int ret; 1012 size_t retlen; 1013 1014 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { 1015 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); 1016 if (retlen != mtd->writesize) 1017 continue; 1018 if (ret) { 1019 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs); 1020 } 1021 if (memcmp(buf, id, 6)) 1022 continue; 1023 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs); 1024 if (doc->mh0_page == -1) { 1025 doc->mh0_page = offs >> this->page_shift; 1026 if (!findmirror) 1027 return 1; 1028 continue; 1029 } 1030 doc->mh1_page = offs >> this->page_shift; 1031 return 2; 1032 } 1033 if (doc->mh0_page == -1) { 1034 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id); 1035 return 0; 1036 } 1037 /* Only one mediaheader was found. We want buf to contain a 1038 mediaheader on return, so we'll have to re-read the one we found. */ 1039 offs = doc->mh0_page << this->page_shift; 1040 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); 1041 if (retlen != mtd->writesize) { 1042 /* Insanity. Give up. */ 1043 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); 1044 return 0; 1045 } 1046 return 1; 1047} 1048 1049static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) 1050{ 1051 struct nand_chip *this = mtd->priv; 1052 struct doc_priv *doc = this->priv; 1053 int ret = 0; 1054 u_char *buf; 1055 struct NFTLMediaHeader *mh; 1056 const unsigned psize = 1 << this->page_shift; 1057 int numparts = 0; 1058 unsigned blocks, maxblocks; 1059 int offs, numheaders; 1060 1061 buf = kmalloc(mtd->writesize, GFP_KERNEL); 1062 if (!buf) { 1063 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); 1064 return 0; 1065 } 1066 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) 1067 goto out; 1068 mh = (struct NFTLMediaHeader *)buf; 1069 1070 le16_to_cpus(&mh->NumEraseUnits); 1071 le16_to_cpus(&mh->FirstPhysicalEUN); 1072 le32_to_cpus(&mh->FormattedSize); 1073 1074 printk(KERN_INFO " DataOrgID = %s\n" 1075 " NumEraseUnits = %d\n" 1076 " FirstPhysicalEUN = %d\n" 1077 " FormattedSize = %d\n" 1078 " UnitSizeFactor = %d\n", 1079 mh->DataOrgID, mh->NumEraseUnits, 1080 mh->FirstPhysicalEUN, mh->FormattedSize, 1081 mh->UnitSizeFactor); 1082 1083 blocks = mtd->size >> this->phys_erase_shift; 1084 maxblocks = min(32768U, mtd->erasesize - psize); 1085 1086 if (mh->UnitSizeFactor == 0x00) { 1087 /* Auto-determine UnitSizeFactor. The constraints are: 1088 - There can be at most 32768 virtual blocks. 1089 - There can be at most (virtual block size - page size) 1090 virtual blocks (because MediaHeader+BBT must fit in 1). 1091 */ 1092 mh->UnitSizeFactor = 0xff; 1093 while (blocks > maxblocks) { 1094 blocks >>= 1; 1095 maxblocks = min(32768U, (maxblocks << 1) + psize); 1096 mh->UnitSizeFactor--; 1097 } 1098 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); 1099 } 1100 1101 /* NOTE: The lines below modify internal variables of the NAND and MTD 1102 layers; variables with have already been configured by nand_scan. 1103 Unfortunately, we didn't know before this point what these values 1104 should be. Thus, this code is somewhat dependent on the exact 1105 implementation of the NAND layer. */ 1106 if (mh->UnitSizeFactor != 0xff) { 1107 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); 1108 mtd->erasesize <<= (0xff - mh->UnitSizeFactor); 1109 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize); 1110 blocks = mtd->size >> this->bbt_erase_shift; 1111 maxblocks = min(32768U, mtd->erasesize - psize); 1112 } 1113 1114 if (blocks > maxblocks) { 1115 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); 1116 goto out; 1117 } 1118 1119 /* Skip past the media headers. */ 1120 offs = max(doc->mh0_page, doc->mh1_page); 1121 offs <<= this->page_shift; 1122 offs += mtd->erasesize; 1123 1124 if (show_firmware_partition == 1) { 1125 parts[0].name = " DiskOnChip Firmware / Media Header partition"; 1126 parts[0].offset = 0; 1127 parts[0].size = offs; 1128 numparts = 1; 1129 } 1130 1131 parts[numparts].name = " DiskOnChip BDTL partition"; 1132 parts[numparts].offset = offs; 1133 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; 1134 1135 offs += parts[numparts].size; 1136 numparts++; 1137 1138 if (offs < mtd->size) { 1139 parts[numparts].name = " DiskOnChip Remainder partition"; 1140 parts[numparts].offset = offs; 1141 parts[numparts].size = mtd->size - offs; 1142 numparts++; 1143 } 1144 1145 ret = numparts; 1146 out: 1147 kfree(buf); 1148 return ret; 1149} 1150 1151/* This is a stripped-down copy of the code in inftlmount.c */ 1152static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) 1153{ 1154 struct nand_chip *this = mtd->priv; 1155 struct doc_priv *doc = this->priv; 1156 int ret = 0; 1157 u_char *buf; 1158 struct INFTLMediaHeader *mh; 1159 struct INFTLPartition *ip; 1160 int numparts = 0; 1161 int blocks; 1162 int vshift, lastvunit = 0; 1163 int i; 1164 int end = mtd->size; 1165 1166 if (inftl_bbt_write) 1167 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); 1168 1169 buf = kmalloc(mtd->writesize, GFP_KERNEL); 1170 if (!buf) { 1171 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); 1172 return 0; 1173 } 1174 1175 if (!find_media_headers(mtd, buf, "BNAND", 0)) 1176 goto out; 1177 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); 1178 mh = (struct INFTLMediaHeader *)buf; 1179 1180 le32_to_cpus(&mh->NoOfBootImageBlocks); 1181 le32_to_cpus(&mh->NoOfBinaryPartitions); 1182 le32_to_cpus(&mh->NoOfBDTLPartitions); 1183 le32_to_cpus(&mh->BlockMultiplierBits); 1184 le32_to_cpus(&mh->FormatFlags); 1185 le32_to_cpus(&mh->PercentUsed); 1186 1187 printk(KERN_INFO " bootRecordID = %s\n" 1188 " NoOfBootImageBlocks = %d\n" 1189 " NoOfBinaryPartitions = %d\n" 1190 " NoOfBDTLPartitions = %d\n" 1191 " BlockMultiplerBits = %d\n" 1192 " FormatFlgs = %d\n" 1193 " OsakVersion = %d.%d.%d.%d\n" 1194 " PercentUsed = %d\n", 1195 mh->bootRecordID, mh->NoOfBootImageBlocks, 1196 mh->NoOfBinaryPartitions, 1197 mh->NoOfBDTLPartitions, 1198 mh->BlockMultiplierBits, mh->FormatFlags, 1199 ((unsigned char *) &mh->OsakVersion)[0] & 0xf, 1200 ((unsigned char *) &mh->OsakVersion)[1] & 0xf, 1201 ((unsigned char *) &mh->OsakVersion)[2] & 0xf, 1202 ((unsigned char *) &mh->OsakVersion)[3] & 0xf, 1203 mh->PercentUsed); 1204 1205 vshift = this->phys_erase_shift + mh->BlockMultiplierBits; 1206 1207 blocks = mtd->size >> vshift; 1208 if (blocks > 32768) { 1209 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); 1210 goto out; 1211 } 1212 1213 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); 1214 if (inftl_bbt_write && (blocks > mtd->erasesize)) { 1215 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); 1216 goto out; 1217 } 1218 1219 /* Scan the partitions */ 1220 for (i = 0; (i < 4); i++) { 1221 ip = &(mh->Partitions[i]); 1222 le32_to_cpus(&ip->virtualUnits); 1223 le32_to_cpus(&ip->firstUnit); 1224 le32_to_cpus(&ip->lastUnit); 1225 le32_to_cpus(&ip->flags); 1226 le32_to_cpus(&ip->spareUnits); 1227 le32_to_cpus(&ip->Reserved0); 1228 1229 printk(KERN_INFO " PARTITION[%d] ->\n" 1230 " virtualUnits = %d\n" 1231 " firstUnit = %d\n" 1232 " lastUnit = %d\n" 1233 " flags = 0x%x\n" 1234 " spareUnits = %d\n", 1235 i, ip->virtualUnits, ip->firstUnit, 1236 ip->lastUnit, ip->flags, 1237 ip->spareUnits); 1238 1239 if ((show_firmware_partition == 1) && 1240 (i == 0) && (ip->firstUnit > 0)) { 1241 parts[0].name = " DiskOnChip IPL / Media Header partition"; 1242 parts[0].offset = 0; 1243 parts[0].size = mtd->erasesize * ip->firstUnit; 1244 numparts = 1; 1245 } 1246 1247 if (ip->flags & INFTL_BINARY) 1248 parts[numparts].name = " DiskOnChip BDK partition"; 1249 else 1250 parts[numparts].name = " DiskOnChip BDTL partition"; 1251 parts[numparts].offset = ip->firstUnit << vshift; 1252 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; 1253 numparts++; 1254 if (ip->lastUnit > lastvunit) 1255 lastvunit = ip->lastUnit; 1256 if (ip->flags & INFTL_LAST) 1257 break; 1258 } 1259 lastvunit++; 1260 if ((lastvunit << vshift) < end) { 1261 parts[numparts].name = " DiskOnChip Remainder partition"; 1262 parts[numparts].offset = lastvunit << vshift; 1263 parts[numparts].size = end - parts[numparts].offset; 1264 numparts++; 1265 } 1266 ret = numparts; 1267 out: 1268 kfree(buf); 1269 return ret; 1270} 1271 1272static int __init nftl_scan_bbt(struct mtd_info *mtd) 1273{ 1274 int ret, numparts; 1275 struct nand_chip *this = mtd->priv; 1276 struct doc_priv *doc = this->priv; 1277 struct mtd_partition parts[2]; 1278 1279 memset((char *)parts, 0, sizeof(parts)); 1280 /* On NFTL, we have to find the media headers before we can read the 1281 BBTs, since they're stored in the media header eraseblocks. */ 1282 numparts = nftl_partscan(mtd, parts); 1283 if (!numparts) 1284 return -EIO; 1285 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | 1286 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | 1287 NAND_BBT_VERSION; 1288 this->bbt_td->veroffs = 7; 1289 this->bbt_td->pages[0] = doc->mh0_page + 1; 1290 if (doc->mh1_page != -1) { 1291 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | 1292 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | 1293 NAND_BBT_VERSION; 1294 this->bbt_md->veroffs = 7; 1295 this->bbt_md->pages[0] = doc->mh1_page + 1; 1296 } else { 1297 this->bbt_md = NULL; 1298 } 1299 1300 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set. 1301 At least as nand_bbt.c is currently written. */ 1302 if ((ret = nand_scan_bbt(mtd, NULL))) 1303 return ret; 1304 mtd_device_register(mtd, NULL, 0); 1305 if (!no_autopart) 1306 mtd_device_register(mtd, parts, numparts); 1307 return 0; 1308} 1309 1310static int __init inftl_scan_bbt(struct mtd_info *mtd) 1311{ 1312 int ret, numparts; 1313 struct nand_chip *this = mtd->priv; 1314 struct doc_priv *doc = this->priv; 1315 struct mtd_partition parts[5]; 1316 1317 if (this->numchips > doc->chips_per_floor) { 1318 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n"); 1319 return -EIO; 1320 } 1321 1322 if (DoC_is_MillenniumPlus(doc)) { 1323 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; 1324 if (inftl_bbt_write) 1325 this->bbt_td->options |= NAND_BBT_WRITE; 1326 this->bbt_td->pages[0] = 2; 1327 this->bbt_md = NULL; 1328 } else { 1329 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; 1330 if (inftl_bbt_write) 1331 this->bbt_td->options |= NAND_BBT_WRITE; 1332 this->bbt_td->offs = 8; 1333 this->bbt_td->len = 8; 1334 this->bbt_td->veroffs = 7; 1335 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; 1336 this->bbt_td->reserved_block_code = 0x01; 1337 this->bbt_td->pattern = "MSYS_BBT"; 1338 1339 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; 1340 if (inftl_bbt_write) 1341 this->bbt_md->options |= NAND_BBT_WRITE; 1342 this->bbt_md->offs = 8; 1343 this->bbt_md->len = 8; 1344 this->bbt_md->veroffs = 7; 1345 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; 1346 this->bbt_md->reserved_block_code = 0x01; 1347 this->bbt_md->pattern = "TBB_SYSM"; 1348 } 1349 1350 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set. 1351 At least as nand_bbt.c is currently written. */ 1352 if ((ret = nand_scan_bbt(mtd, NULL))) 1353 return ret; 1354 memset((char *)parts, 0, sizeof(parts)); 1355 numparts = inftl_partscan(mtd, parts); 1356 /* At least for now, require the INFTL Media Header. We could probably 1357 do without it for non-INFTL use, since all it gives us is 1358 autopartitioning, but I want to give it more thought. */ 1359 if (!numparts) 1360 return -EIO; 1361 mtd_device_register(mtd, NULL, 0); 1362 if (!no_autopart) 1363 mtd_device_register(mtd, parts, numparts); 1364 return 0; 1365} 1366 1367static inline int __init doc2000_init(struct mtd_info *mtd) 1368{ 1369 struct nand_chip *this = mtd->priv; 1370 struct doc_priv *doc = this->priv; 1371 1372 this->read_byte = doc2000_read_byte; 1373 this->write_buf = doc2000_writebuf; 1374 this->read_buf = doc2000_readbuf; 1375 this->scan_bbt = nftl_scan_bbt; 1376 1377 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; 1378 doc2000_count_chips(mtd); 1379 mtd->name = "DiskOnChip 2000 (NFTL Model)"; 1380 return (4 * doc->chips_per_floor); 1381} 1382 1383static inline int __init doc2001_init(struct mtd_info *mtd) 1384{ 1385 struct nand_chip *this = mtd->priv; 1386 struct doc_priv *doc = this->priv; 1387 1388 this->read_byte = doc2001_read_byte; 1389 this->write_buf = doc2001_writebuf; 1390 this->read_buf = doc2001_readbuf; 1391 1392 ReadDOC(doc->virtadr, ChipID); 1393 ReadDOC(doc->virtadr, ChipID); 1394 ReadDOC(doc->virtadr, ChipID); 1395 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { 1396 /* It's not a Millennium; it's one of the newer 1397 DiskOnChip 2000 units with a similar ASIC. 1398 Treat it like a Millennium, except that it 1399 can have multiple chips. */ 1400 doc2000_count_chips(mtd); 1401 mtd->name = "DiskOnChip 2000 (INFTL Model)"; 1402 this->scan_bbt = inftl_scan_bbt; 1403 return (4 * doc->chips_per_floor); 1404 } else { 1405 /* Bog-standard Millennium */ 1406 doc->chips_per_floor = 1; 1407 mtd->name = "DiskOnChip Millennium"; 1408 this->scan_bbt = nftl_scan_bbt; 1409 return 1; 1410 } 1411} 1412 1413static inline int __init doc2001plus_init(struct mtd_info *mtd) 1414{ 1415 struct nand_chip *this = mtd->priv; 1416 struct doc_priv *doc = this->priv; 1417 1418 this->read_byte = doc2001plus_read_byte; 1419 this->write_buf = doc2001plus_writebuf; 1420 this->read_buf = doc2001plus_readbuf; 1421 this->scan_bbt = inftl_scan_bbt; 1422 this->cmd_ctrl = NULL; 1423 this->select_chip = doc2001plus_select_chip; 1424 this->cmdfunc = doc2001plus_command; 1425 this->ecc.hwctl = doc2001plus_enable_hwecc; 1426 1427 doc->chips_per_floor = 1; 1428 mtd->name = "DiskOnChip Millennium Plus"; 1429 1430 return 1; 1431} 1432 1433static int __init doc_probe(unsigned long physadr) 1434{ 1435 unsigned char ChipID; 1436 struct mtd_info *mtd; 1437 struct nand_chip *nand; 1438 struct doc_priv *doc; 1439 void __iomem *virtadr; 1440 unsigned char save_control; 1441 unsigned char tmp, tmpb, tmpc; 1442 int reg, len, numchips; 1443 int ret = 0; 1444 1445 virtadr = ioremap(physadr, DOC_IOREMAP_LEN); 1446 if (!virtadr) { 1447 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); 1448 return -EIO; 1449 } 1450 1451 /* It's not possible to cleanly detect the DiskOnChip - the 1452 * bootup procedure will put the device into reset mode, and 1453 * it's not possible to talk to it without actually writing 1454 * to the DOCControl register. So we store the current contents 1455 * of the DOCControl register's location, in case we later decide 1456 * that it's not a DiskOnChip, and want to put it back how we 1457 * found it. 1458 */ 1459 save_control = ReadDOC(virtadr, DOCControl); 1460 1461 /* Reset the DiskOnChip ASIC */ 1462 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); 1463 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); 1464 1465 /* Enable the DiskOnChip ASIC */ 1466 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); 1467 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); 1468 1469 ChipID = ReadDOC(virtadr, ChipID); 1470 1471 switch (ChipID) { 1472 case DOC_ChipID_Doc2k: 1473 reg = DoC_2k_ECCStatus; 1474 break; 1475 case DOC_ChipID_DocMil: 1476 reg = DoC_ECCConf; 1477 break; 1478 case DOC_ChipID_DocMilPlus16: 1479 case DOC_ChipID_DocMilPlus32: 1480 case 0: 1481 /* Possible Millennium Plus, need to do more checks */ 1482 /* Possibly release from power down mode */ 1483 for (tmp = 0; (tmp < 4); tmp++) 1484 ReadDOC(virtadr, Mplus_Power); 1485 1486 /* Reset the Millennium Plus ASIC */ 1487 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; 1488 WriteDOC(tmp, virtadr, Mplus_DOCControl); 1489 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); 1490 1491 mdelay(1); 1492 /* Enable the Millennium Plus ASIC */ 1493 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; 1494 WriteDOC(tmp, virtadr, Mplus_DOCControl); 1495 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); 1496 mdelay(1); 1497 1498 ChipID = ReadDOC(virtadr, ChipID); 1499 1500 switch (ChipID) { 1501 case DOC_ChipID_DocMilPlus16: 1502 reg = DoC_Mplus_Toggle; 1503 break; 1504 case DOC_ChipID_DocMilPlus32: 1505 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); 1506 default: 1507 ret = -ENODEV; 1508 goto notfound; 1509 } 1510 break; 1511 1512 default: 1513 ret = -ENODEV; 1514 goto notfound; 1515 } 1516 /* Check the TOGGLE bit in the ECC register */ 1517 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1518 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1519 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1520 if ((tmp == tmpb) || (tmp != tmpc)) { 1521 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); 1522 ret = -ENODEV; 1523 goto notfound; 1524 } 1525 1526 for (mtd = doclist; mtd; mtd = doc->nextdoc) { 1527 unsigned char oldval; 1528 unsigned char newval; 1529 nand = mtd->priv; 1530 doc = nand->priv; 1531 /* Use the alias resolution register to determine if this is 1532 in fact the same DOC aliased to a new address. If writes 1533 to one chip's alias resolution register change the value on 1534 the other chip, they're the same chip. */ 1535 if (ChipID == DOC_ChipID_DocMilPlus16) { 1536 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); 1537 newval = ReadDOC(virtadr, Mplus_AliasResolution); 1538 } else { 1539 oldval = ReadDOC(doc->virtadr, AliasResolution); 1540 newval = ReadDOC(virtadr, AliasResolution); 1541 } 1542 if (oldval != newval) 1543 continue; 1544 if (ChipID == DOC_ChipID_DocMilPlus16) { 1545 WriteDOC(~newval, virtadr, Mplus_AliasResolution); 1546 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); 1547 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it 1548 } else { 1549 WriteDOC(~newval, virtadr, AliasResolution); 1550 oldval = ReadDOC(doc->virtadr, AliasResolution); 1551 WriteDOC(newval, virtadr, AliasResolution); // restore it 1552 } 1553 newval = ~newval; 1554 if (oldval == newval) { 1555 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); 1556 goto notfound; 1557 } 1558 } 1559 1560 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr); 1561 1562 len = sizeof(struct mtd_info) + 1563 sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr)); 1564 mtd = kzalloc(len, GFP_KERNEL); 1565 if (!mtd) { 1566 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len); 1567 ret = -ENOMEM; 1568 goto fail; 1569 } 1570 1571 nand = (struct nand_chip *) (mtd + 1); 1572 doc = (struct doc_priv *) (nand + 1); 1573 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); 1574 nand->bbt_md = nand->bbt_td + 1; 1575 1576 mtd->priv = nand; 1577 mtd->owner = THIS_MODULE; 1578 1579 nand->priv = doc; 1580 nand->select_chip = doc200x_select_chip; 1581 nand->cmd_ctrl = doc200x_hwcontrol; 1582 nand->dev_ready = doc200x_dev_ready; 1583 nand->waitfunc = doc200x_wait; 1584 nand->block_bad = doc200x_block_bad; 1585 nand->ecc.hwctl = doc200x_enable_hwecc; 1586 nand->ecc.calculate = doc200x_calculate_ecc; 1587 nand->ecc.correct = doc200x_correct_data; 1588 1589 nand->ecc.layout = &doc200x_oobinfo; 1590 nand->ecc.mode = NAND_ECC_HW_SYNDROME; 1591 nand->ecc.size = 512; 1592 nand->ecc.bytes = 6; 1593 nand->ecc.strength = 2; 1594 nand->bbt_options = NAND_BBT_USE_FLASH; 1595 1596 doc->physadr = physadr; 1597 doc->virtadr = virtadr; 1598 doc->ChipID = ChipID; 1599 doc->curfloor = -1; 1600 doc->curchip = -1; 1601 doc->mh0_page = -1; 1602 doc->mh1_page = -1; 1603 doc->nextdoc = doclist; 1604 1605 if (ChipID == DOC_ChipID_Doc2k) 1606 numchips = doc2000_init(mtd); 1607 else if (ChipID == DOC_ChipID_DocMilPlus16) 1608 numchips = doc2001plus_init(mtd); 1609 else 1610 numchips = doc2001_init(mtd); 1611 1612 if ((ret = nand_scan(mtd, numchips))) { 1613 /* DBB note: i believe nand_release is necessary here, as 1614 buffers may have been allocated in nand_base. Check with 1615 Thomas. FIX ME! */ 1616 /* nand_release will call mtd_device_unregister, but we 1617 haven't yet added it. This is handled without incident by 1618 mtd_device_unregister, as far as I can tell. */ 1619 nand_release(mtd); 1620 kfree(mtd); 1621 goto fail; 1622 } 1623 1624 /* Success! */ 1625 doclist = mtd; 1626 return 0; 1627 1628 notfound: 1629 /* Put back the contents of the DOCControl register, in case it's not 1630 actually a DiskOnChip. */ 1631 WriteDOC(save_control, virtadr, DOCControl); 1632 fail: 1633 iounmap(virtadr); 1634 return ret; 1635} 1636 1637static void release_nanddoc(void) 1638{ 1639 struct mtd_info *mtd, *nextmtd; 1640 struct nand_chip *nand; 1641 struct doc_priv *doc; 1642 1643 for (mtd = doclist; mtd; mtd = nextmtd) { 1644 nand = mtd->priv; 1645 doc = nand->priv; 1646 1647 nextmtd = doc->nextdoc; 1648 nand_release(mtd); 1649 iounmap(doc->virtadr); 1650 kfree(mtd); 1651 } 1652} 1653 1654static int __init init_nanddoc(void) 1655{ 1656 int i, ret = 0; 1657 1658 /* We could create the decoder on demand, if memory is a concern. 1659 * This way we have it handy, if an error happens 1660 * 1661 * Symbolsize is 10 (bits) 1662 * Primitve polynomial is x^10+x^3+1 1663 * first consecutive root is 510 1664 * primitve element to generate roots = 1 1665 * generator polinomial degree = 4 1666 */ 1667 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); 1668 if (!rs_decoder) { 1669 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n"); 1670 return -ENOMEM; 1671 } 1672 1673 if (doc_config_location) { 1674 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); 1675 ret = doc_probe(doc_config_location); 1676 if (ret < 0) 1677 goto outerr; 1678 } else { 1679 for (i = 0; (doc_locations[i] != 0xffffffff); i++) { 1680 doc_probe(doc_locations[i]); 1681 } 1682 } 1683 /* No banner message any more. Print a message if no DiskOnChip 1684 found, so the user knows we at least tried. */ 1685 if (!doclist) { 1686 printk(KERN_INFO "No valid DiskOnChip devices found\n"); 1687 ret = -ENODEV; 1688 goto outerr; 1689 } 1690 return 0; 1691 outerr: 1692 free_rs(rs_decoder); 1693 return ret; 1694} 1695 1696static void __exit cleanup_nanddoc(void) 1697{ 1698 /* Cleanup the nand/DoC resources */ 1699 release_nanddoc(); 1700 1701 /* Free the reed solomon resources */ 1702 if (rs_decoder) { 1703 free_rs(rs_decoder); 1704 } 1705} 1706 1707module_init(init_nanddoc); 1708module_exit(cleanup_nanddoc); 1709 1710MODULE_LICENSE("GPL"); 1711MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1712MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");