Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/compiler.h>
26#include <linux/kernel.h>
27#include <linux/kmemcheck.h>
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
33#include <linux/ratelimit.h>
34#include <linux/oom.h>
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/stop_machine.h>
46#include <linux/sort.h>
47#include <linux/pfn.h>
48#include <linux/backing-dev.h>
49#include <linux/fault-inject.h>
50#include <linux/page-isolation.h>
51#include <linux/page_cgroup.h>
52#include <linux/debugobjects.h>
53#include <linux/kmemleak.h>
54#include <linux/compaction.h>
55#include <trace/events/kmem.h>
56#include <linux/ftrace_event.h>
57#include <linux/memcontrol.h>
58#include <linux/prefetch.h>
59#include <linux/migrate.h>
60#include <linux/page-debug-flags.h>
61
62#include <asm/tlbflush.h>
63#include <asm/div64.h>
64#include "internal.h"
65
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
82/*
83 * Array of node states.
84 */
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
98unsigned long totalram_pages __read_mostly;
99unsigned long totalreserve_pages __read_mostly;
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
108int percpu_pagelist_fraction;
109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
130}
131
132void pm_restrict_gfp_mask(void)
133{
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
138}
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
146#endif /* CONFIG_PM_SLEEP */
147
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
152static void __free_pages_ok(struct page *page, unsigned int order);
153
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
164 */
165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166#ifdef CONFIG_ZONE_DMA
167 256,
168#endif
169#ifdef CONFIG_ZONE_DMA32
170 256,
171#endif
172#ifdef CONFIG_HIGHMEM
173 32,
174#endif
175 32,
176};
177
178EXPORT_SYMBOL(totalram_pages);
179
180static char * const zone_names[MAX_NR_ZONES] = {
181#ifdef CONFIG_ZONE_DMA
182 "DMA",
183#endif
184#ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186#endif
187 "Normal",
188#ifdef CONFIG_HIGHMEM
189 "HighMem",
190#endif
191 "Movable",
192};
193
194int min_free_kbytes = 1024;
195
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
198static unsigned long __meminitdata dma_reserve;
199
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
214int nr_online_nodes __read_mostly = 1;
215EXPORT_SYMBOL(nr_node_ids);
216EXPORT_SYMBOL(nr_online_nodes);
217#endif
218
219int page_group_by_mobility_disabled __read_mostly;
220
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
226void set_pageblock_migratetype(struct page *page, int migratetype)
227{
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
236bool oom_killer_disabled __read_mostly;
237
238#ifdef CONFIG_DEBUG_VM
239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240{
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
258 if (!pfn_valid_within(page_to_pfn(page)))
259 return 0;
260 if (zone != page_zone(page))
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
271 return 1;
272 if (!page_is_consistent(zone, page))
273 return 1;
274
275 return 0;
276}
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
284static void bad_page(struct page *page)
285{
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
292 reset_page_mapcount(page); /* remove PageBuddy */
293 return;
294 }
295
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
317 current->comm, page_to_pfn(page));
318 dump_page(page);
319
320 print_modules();
321 dump_stack();
322out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
326}
327
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
337 *
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
341 */
342
343static void free_compound_page(struct page *page)
344{
345 __free_pages_ok(page, compound_order(page));
346}
347
348void prep_compound_page(struct page *page, unsigned long order)
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358 __SetPageTail(p);
359 set_page_count(p, 0);
360 p->first_page = page;
361 }
362}
363
364/* update __split_huge_page_refcount if you change this function */
365static int destroy_compound_page(struct page *page, unsigned long order)
366{
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
370
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
375 }
376
377 __ClearPageHead(page);
378
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
381
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
385 }
386 __ClearPageTail(p);
387 }
388
389 return bad;
390}
391
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
436static inline void set_page_order(struct page *page, int order)
437{
438 set_page_private(page, order);
439 __SetPageBuddy(page);
440}
441
442static inline void rmv_page_order(struct page *page)
443{
444 __ClearPageBuddy(page);
445 set_page_private(page, 0);
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
464 */
465static inline unsigned long
466__find_buddy_index(unsigned long page_idx, unsigned int order)
467{
468 return page_idx ^ (1 << order);
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
474 * (a) the buddy is not in a hole &&
475 * (b) the buddy is in the buddy system &&
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
478 *
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
481 *
482 * For recording page's order, we use page_private(page).
483 */
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
486{
487 if (!pfn_valid_within(page_to_pfn(buddy)))
488 return 0;
489
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
498 if (PageBuddy(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
500 return 1;
501 }
502 return 0;
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519 * order is recorded in page_private(page) field.
520 * So when we are allocating or freeing one, we can derive the state of the
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
523 * If a block is freed, and its buddy is also free, then this
524 * triggers coalescing into a block of larger size.
525 *
526 * -- wli
527 */
528
529static inline void __free_one_page(struct page *page,
530 struct zone *zone, unsigned int order,
531 int migratetype)
532{
533 unsigned long page_idx;
534 unsigned long combined_idx;
535 unsigned long uninitialized_var(buddy_idx);
536 struct page *buddy;
537
538 if (unlikely(PageCompound(page)))
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
541
542 VM_BUG_ON(migratetype == -1);
543
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
546 VM_BUG_ON(page_idx & ((1 << order) - 1));
547 VM_BUG_ON(bad_range(zone, page));
548
549 while (order < MAX_ORDER-1) {
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
552 if (!page_is_buddy(page, buddy, order))
553 break;
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
568 combined_idx = buddy_idx & page_idx;
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
584 struct page *higher_page, *higher_buddy;
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
588 higher_buddy = higher_page + (buddy_idx - combined_idx);
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597out:
598 zone->free_area[order].nr_free++;
599}
600
601static inline int free_pages_check(struct page *page)
602{
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
605 (atomic_read(&page->_count) != 0) |
606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
607 (mem_cgroup_bad_page_check(page)))) {
608 bad_page(page);
609 return 1;
610 }
611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
613 return 0;
614}
615
616/*
617 * Frees a number of pages from the PCP lists
618 * Assumes all pages on list are in same zone, and of same order.
619 * count is the number of pages to free.
620 *
621 * If the zone was previously in an "all pages pinned" state then look to
622 * see if this freeing clears that state.
623 *
624 * And clear the zone's pages_scanned counter, to hold off the "all pages are
625 * pinned" detection logic.
626 */
627static void free_pcppages_bulk(struct zone *zone, int count,
628 struct per_cpu_pages *pcp)
629{
630 int migratetype = 0;
631 int batch_free = 0;
632 int to_free = count;
633
634 spin_lock(&zone->lock);
635 zone->all_unreclaimable = 0;
636 zone->pages_scanned = 0;
637
638 while (to_free) {
639 struct page *page;
640 struct list_head *list;
641
642 /*
643 * Remove pages from lists in a round-robin fashion. A
644 * batch_free count is maintained that is incremented when an
645 * empty list is encountered. This is so more pages are freed
646 * off fuller lists instead of spinning excessively around empty
647 * lists
648 */
649 do {
650 batch_free++;
651 if (++migratetype == MIGRATE_PCPTYPES)
652 migratetype = 0;
653 list = &pcp->lists[migratetype];
654 } while (list_empty(list));
655
656 /* This is the only non-empty list. Free them all. */
657 if (batch_free == MIGRATE_PCPTYPES)
658 batch_free = to_free;
659
660 do {
661 int mt; /* migratetype of the to-be-freed page */
662
663 page = list_entry(list->prev, struct page, lru);
664 /* must delete as __free_one_page list manipulates */
665 list_del(&page->lru);
666 mt = get_freepage_migratetype(page);
667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
668 __free_one_page(page, zone, 0, mt);
669 trace_mm_page_pcpu_drain(page, 0, mt);
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
672 } while (--to_free && --batch_free && !list_empty(list));
673 }
674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
675 spin_unlock(&zone->lock);
676}
677
678static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
680{
681 spin_lock(&zone->lock);
682 zone->all_unreclaimable = 0;
683 zone->pages_scanned = 0;
684
685 __free_one_page(page, zone, order, migratetype);
686 if (unlikely(migratetype != MIGRATE_ISOLATE))
687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
688 spin_unlock(&zone->lock);
689}
690
691static bool free_pages_prepare(struct page *page, unsigned int order)
692{
693 int i;
694 int bad = 0;
695
696 trace_mm_page_free(page, order);
697 kmemcheck_free_shadow(page, order);
698
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
703 if (bad)
704 return false;
705
706 if (!PageHighMem(page)) {
707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
711 arch_free_page(page, order);
712 kernel_map_pages(page, 1 << order, 0);
713
714 return true;
715}
716
717static void __free_pages_ok(struct page *page, unsigned int order)
718{
719 unsigned long flags;
720 int migratetype;
721
722 if (!free_pages_prepare(page, order))
723 return;
724
725 local_irq_save(flags);
726 __count_vm_events(PGFREE, 1 << order);
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
730 local_irq_restore(flags);
731}
732
733void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
734{
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
737
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
741
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
746 }
747
748 set_page_refcounted(page);
749 __free_pages(page, order);
750}
751
752#ifdef CONFIG_CMA
753/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
754void __init init_cma_reserved_pageblock(struct page *page)
755{
756 unsigned i = pageblock_nr_pages;
757 struct page *p = page;
758
759 do {
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 } while (++p, --i);
763
764 set_page_refcounted(page);
765 set_pageblock_migratetype(page, MIGRATE_CMA);
766 __free_pages(page, pageblock_order);
767 totalram_pages += pageblock_nr_pages;
768}
769#endif
770
771/*
772 * The order of subdivision here is critical for the IO subsystem.
773 * Please do not alter this order without good reasons and regression
774 * testing. Specifically, as large blocks of memory are subdivided,
775 * the order in which smaller blocks are delivered depends on the order
776 * they're subdivided in this function. This is the primary factor
777 * influencing the order in which pages are delivered to the IO
778 * subsystem according to empirical testing, and this is also justified
779 * by considering the behavior of a buddy system containing a single
780 * large block of memory acted on by a series of small allocations.
781 * This behavior is a critical factor in sglist merging's success.
782 *
783 * -- wli
784 */
785static inline void expand(struct zone *zone, struct page *page,
786 int low, int high, struct free_area *area,
787 int migratetype)
788{
789 unsigned long size = 1 << high;
790
791 while (high > low) {
792 area--;
793 high--;
794 size >>= 1;
795 VM_BUG_ON(bad_range(zone, &page[size]));
796
797#ifdef CONFIG_DEBUG_PAGEALLOC
798 if (high < debug_guardpage_minorder()) {
799 /*
800 * Mark as guard pages (or page), that will allow to
801 * merge back to allocator when buddy will be freed.
802 * Corresponding page table entries will not be touched,
803 * pages will stay not present in virtual address space
804 */
805 INIT_LIST_HEAD(&page[size].lru);
806 set_page_guard_flag(&page[size]);
807 set_page_private(&page[size], high);
808 /* Guard pages are not available for any usage */
809 __mod_zone_freepage_state(zone, -(1 << high),
810 migratetype);
811 continue;
812 }
813#endif
814 list_add(&page[size].lru, &area->free_list[migratetype]);
815 area->nr_free++;
816 set_page_order(&page[size], high);
817 }
818}
819
820/*
821 * This page is about to be returned from the page allocator
822 */
823static inline int check_new_page(struct page *page)
824{
825 if (unlikely(page_mapcount(page) |
826 (page->mapping != NULL) |
827 (atomic_read(&page->_count) != 0) |
828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 (mem_cgroup_bad_page_check(page)))) {
830 bad_page(page);
831 return 1;
832 }
833 return 0;
834}
835
836static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
837{
838 int i;
839
840 for (i = 0; i < (1 << order); i++) {
841 struct page *p = page + i;
842 if (unlikely(check_new_page(p)))
843 return 1;
844 }
845
846 set_page_private(page, 0);
847 set_page_refcounted(page);
848
849 arch_alloc_page(page, order);
850 kernel_map_pages(page, 1 << order, 1);
851
852 if (gfp_flags & __GFP_ZERO)
853 prep_zero_page(page, order, gfp_flags);
854
855 if (order && (gfp_flags & __GFP_COMP))
856 prep_compound_page(page, order);
857
858 return 0;
859}
860
861/*
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
864 */
865static inline
866struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
867 int migratetype)
868{
869 unsigned int current_order;
870 struct free_area * area;
871 struct page *page;
872
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
877 continue;
878
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
884 expand(zone, page, order, current_order, area, migratetype);
885 return page;
886 }
887
888 return NULL;
889}
890
891
892/*
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
895 */
896static int fallbacks[MIGRATE_TYPES][4] = {
897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
899#ifdef CONFIG_CMA
900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
902#else
903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
904#endif
905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
907};
908
909/*
910 * Move the free pages in a range to the free lists of the requested type.
911 * Note that start_page and end_pages are not aligned on a pageblock
912 * boundary. If alignment is required, use move_freepages_block()
913 */
914int move_freepages(struct zone *zone,
915 struct page *start_page, struct page *end_page,
916 int migratetype)
917{
918 struct page *page;
919 unsigned long order;
920 int pages_moved = 0;
921
922#ifndef CONFIG_HOLES_IN_ZONE
923 /*
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
928 * grouping pages by mobility
929 */
930 BUG_ON(page_zone(start_page) != page_zone(end_page));
931#endif
932
933 for (page = start_page; page <= end_page;) {
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
936
937 if (!pfn_valid_within(page_to_pfn(page))) {
938 page++;
939 continue;
940 }
941
942 if (!PageBuddy(page)) {
943 page++;
944 continue;
945 }
946
947 order = page_order(page);
948 list_move(&page->lru,
949 &zone->free_area[order].free_list[migratetype]);
950 set_freepage_migratetype(page, migratetype);
951 page += 1 << order;
952 pages_moved += 1 << order;
953 }
954
955 return pages_moved;
956}
957
958int move_freepages_block(struct zone *zone, struct page *page,
959 int migratetype)
960{
961 unsigned long start_pfn, end_pfn;
962 struct page *start_page, *end_page;
963
964 start_pfn = page_to_pfn(page);
965 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
966 start_page = pfn_to_page(start_pfn);
967 end_page = start_page + pageblock_nr_pages - 1;
968 end_pfn = start_pfn + pageblock_nr_pages - 1;
969
970 /* Do not cross zone boundaries */
971 if (start_pfn < zone->zone_start_pfn)
972 start_page = page;
973 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
974 return 0;
975
976 return move_freepages(zone, start_page, end_page, migratetype);
977}
978
979static void change_pageblock_range(struct page *pageblock_page,
980 int start_order, int migratetype)
981{
982 int nr_pageblocks = 1 << (start_order - pageblock_order);
983
984 while (nr_pageblocks--) {
985 set_pageblock_migratetype(pageblock_page, migratetype);
986 pageblock_page += pageblock_nr_pages;
987 }
988}
989
990/* Remove an element from the buddy allocator from the fallback list */
991static inline struct page *
992__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
993{
994 struct free_area * area;
995 int current_order;
996 struct page *page;
997 int migratetype, i;
998
999 /* Find the largest possible block of pages in the other list */
1000 for (current_order = MAX_ORDER-1; current_order >= order;
1001 --current_order) {
1002 for (i = 0;; i++) {
1003 migratetype = fallbacks[start_migratetype][i];
1004
1005 /* MIGRATE_RESERVE handled later if necessary */
1006 if (migratetype == MIGRATE_RESERVE)
1007 break;
1008
1009 area = &(zone->free_area[current_order]);
1010 if (list_empty(&area->free_list[migratetype]))
1011 continue;
1012
1013 page = list_entry(area->free_list[migratetype].next,
1014 struct page, lru);
1015 area->nr_free--;
1016
1017 /*
1018 * If breaking a large block of pages, move all free
1019 * pages to the preferred allocation list. If falling
1020 * back for a reclaimable kernel allocation, be more
1021 * aggressive about taking ownership of free pages
1022 *
1023 * On the other hand, never change migration
1024 * type of MIGRATE_CMA pageblocks nor move CMA
1025 * pages on different free lists. We don't
1026 * want unmovable pages to be allocated from
1027 * MIGRATE_CMA areas.
1028 */
1029 if (!is_migrate_cma(migratetype) &&
1030 (unlikely(current_order >= pageblock_order / 2) ||
1031 start_migratetype == MIGRATE_RECLAIMABLE ||
1032 page_group_by_mobility_disabled)) {
1033 int pages;
1034 pages = move_freepages_block(zone, page,
1035 start_migratetype);
1036
1037 /* Claim the whole block if over half of it is free */
1038 if (pages >= (1 << (pageblock_order-1)) ||
1039 page_group_by_mobility_disabled)
1040 set_pageblock_migratetype(page,
1041 start_migratetype);
1042
1043 migratetype = start_migratetype;
1044 }
1045
1046 /* Remove the page from the freelists */
1047 list_del(&page->lru);
1048 rmv_page_order(page);
1049
1050 /* Take ownership for orders >= pageblock_order */
1051 if (current_order >= pageblock_order &&
1052 !is_migrate_cma(migratetype))
1053 change_pageblock_range(page, current_order,
1054 start_migratetype);
1055
1056 expand(zone, page, order, current_order, area,
1057 is_migrate_cma(migratetype)
1058 ? migratetype : start_migratetype);
1059
1060 trace_mm_page_alloc_extfrag(page, order, current_order,
1061 start_migratetype, migratetype);
1062
1063 return page;
1064 }
1065 }
1066
1067 return NULL;
1068}
1069
1070/*
1071 * Do the hard work of removing an element from the buddy allocator.
1072 * Call me with the zone->lock already held.
1073 */
1074static struct page *__rmqueue(struct zone *zone, unsigned int order,
1075 int migratetype)
1076{
1077 struct page *page;
1078
1079retry_reserve:
1080 page = __rmqueue_smallest(zone, order, migratetype);
1081
1082 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1083 page = __rmqueue_fallback(zone, order, migratetype);
1084
1085 /*
1086 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1087 * is used because __rmqueue_smallest is an inline function
1088 * and we want just one call site
1089 */
1090 if (!page) {
1091 migratetype = MIGRATE_RESERVE;
1092 goto retry_reserve;
1093 }
1094 }
1095
1096 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1097 return page;
1098}
1099
1100/*
1101 * Obtain a specified number of elements from the buddy allocator, all under
1102 * a single hold of the lock, for efficiency. Add them to the supplied list.
1103 * Returns the number of new pages which were placed at *list.
1104 */
1105static int rmqueue_bulk(struct zone *zone, unsigned int order,
1106 unsigned long count, struct list_head *list,
1107 int migratetype, int cold)
1108{
1109 int mt = migratetype, i;
1110
1111 spin_lock(&zone->lock);
1112 for (i = 0; i < count; ++i) {
1113 struct page *page = __rmqueue(zone, order, migratetype);
1114 if (unlikely(page == NULL))
1115 break;
1116
1117 /*
1118 * Split buddy pages returned by expand() are received here
1119 * in physical page order. The page is added to the callers and
1120 * list and the list head then moves forward. From the callers
1121 * perspective, the linked list is ordered by page number in
1122 * some conditions. This is useful for IO devices that can
1123 * merge IO requests if the physical pages are ordered
1124 * properly.
1125 */
1126 if (likely(cold == 0))
1127 list_add(&page->lru, list);
1128 else
1129 list_add_tail(&page->lru, list);
1130 if (IS_ENABLED(CONFIG_CMA)) {
1131 mt = get_pageblock_migratetype(page);
1132 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1133 mt = migratetype;
1134 }
1135 set_freepage_migratetype(page, mt);
1136 list = &page->lru;
1137 if (is_migrate_cma(mt))
1138 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1139 -(1 << order));
1140 }
1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1142 spin_unlock(&zone->lock);
1143 return i;
1144}
1145
1146#ifdef CONFIG_NUMA
1147/*
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
1154 */
1155void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1156{
1157 unsigned long flags;
1158 int to_drain;
1159
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
1169 local_irq_restore(flags);
1170}
1171#endif
1172
1173/*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180static void drain_pages(unsigned int cpu)
1181{
1182 unsigned long flags;
1183 struct zone *zone;
1184
1185 for_each_populated_zone(zone) {
1186 struct per_cpu_pageset *pset;
1187 struct per_cpu_pages *pcp;
1188
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
1191
1192 pcp = &pset->pcp;
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
1197 local_irq_restore(flags);
1198 }
1199}
1200
1201/*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204void drain_local_pages(void *arg)
1205{
1206 drain_pages(smp_processor_id());
1207}
1208
1209/*
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
1217 */
1218void drain_all_pages(void)
1219{
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1251}
1252
1253#ifdef CONFIG_HIBERNATION
1254
1255void mark_free_pages(struct zone *zone)
1256{
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
1259 int order, t;
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
1274 }
1275
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1278 unsigned long i;
1279
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
1282 swsusp_set_page_free(pfn_to_page(pfn + i));
1283 }
1284 }
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286}
1287#endif /* CONFIG_PM */
1288
1289/*
1290 * Free a 0-order page
1291 * cold == 1 ? free a cold page : free a hot page
1292 */
1293void free_hot_cold_page(struct page *page, int cold)
1294{
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
1298 int migratetype;
1299
1300 if (!free_pages_prepare(page, 0))
1301 return;
1302
1303 migratetype = get_pageblock_migratetype(page);
1304 set_freepage_migratetype(page, migratetype);
1305 local_irq_save(flags);
1306 __count_vm_event(PGFREE);
1307
1308 /*
1309 * We only track unmovable, reclaimable and movable on pcp lists.
1310 * Free ISOLATE pages back to the allocator because they are being
1311 * offlined but treat RESERVE as movable pages so we can get those
1312 * areas back if necessary. Otherwise, we may have to free
1313 * excessively into the page allocator
1314 */
1315 if (migratetype >= MIGRATE_PCPTYPES) {
1316 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1317 free_one_page(zone, page, 0, migratetype);
1318 goto out;
1319 }
1320 migratetype = MIGRATE_MOVABLE;
1321 }
1322
1323 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1324 if (cold)
1325 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1326 else
1327 list_add(&page->lru, &pcp->lists[migratetype]);
1328 pcp->count++;
1329 if (pcp->count >= pcp->high) {
1330 free_pcppages_bulk(zone, pcp->batch, pcp);
1331 pcp->count -= pcp->batch;
1332 }
1333
1334out:
1335 local_irq_restore(flags);
1336}
1337
1338/*
1339 * Free a list of 0-order pages
1340 */
1341void free_hot_cold_page_list(struct list_head *list, int cold)
1342{
1343 struct page *page, *next;
1344
1345 list_for_each_entry_safe(page, next, list, lru) {
1346 trace_mm_page_free_batched(page, cold);
1347 free_hot_cold_page(page, cold);
1348 }
1349}
1350
1351/*
1352 * split_page takes a non-compound higher-order page, and splits it into
1353 * n (1<<order) sub-pages: page[0..n]
1354 * Each sub-page must be freed individually.
1355 *
1356 * Note: this is probably too low level an operation for use in drivers.
1357 * Please consult with lkml before using this in your driver.
1358 */
1359void split_page(struct page *page, unsigned int order)
1360{
1361 int i;
1362
1363 VM_BUG_ON(PageCompound(page));
1364 VM_BUG_ON(!page_count(page));
1365
1366#ifdef CONFIG_KMEMCHECK
1367 /*
1368 * Split shadow pages too, because free(page[0]) would
1369 * otherwise free the whole shadow.
1370 */
1371 if (kmemcheck_page_is_tracked(page))
1372 split_page(virt_to_page(page[0].shadow), order);
1373#endif
1374
1375 for (i = 1; i < (1 << order); i++)
1376 set_page_refcounted(page + i);
1377}
1378
1379/*
1380 * Similar to the split_page family of functions except that the page
1381 * required at the given order and being isolated now to prevent races
1382 * with parallel allocators
1383 */
1384int capture_free_page(struct page *page, int alloc_order, int migratetype)
1385{
1386 unsigned int order;
1387 unsigned long watermark;
1388 struct zone *zone;
1389 int mt;
1390
1391 BUG_ON(!PageBuddy(page));
1392
1393 zone = page_zone(page);
1394 order = page_order(page);
1395
1396 /* Obey watermarks as if the page was being allocated */
1397 watermark = low_wmark_pages(zone) + (1 << order);
1398 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1399 return 0;
1400
1401 /* Remove page from free list */
1402 list_del(&page->lru);
1403 zone->free_area[order].nr_free--;
1404 rmv_page_order(page);
1405
1406 mt = get_pageblock_migratetype(page);
1407 if (unlikely(mt != MIGRATE_ISOLATE))
1408 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
1409
1410 if (alloc_order != order)
1411 expand(zone, page, alloc_order, order,
1412 &zone->free_area[order], migratetype);
1413
1414 /* Set the pageblock if the captured page is at least a pageblock */
1415 if (order >= pageblock_order - 1) {
1416 struct page *endpage = page + (1 << order) - 1;
1417 for (; page < endpage; page += pageblock_nr_pages) {
1418 int mt = get_pageblock_migratetype(page);
1419 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1420 set_pageblock_migratetype(page,
1421 MIGRATE_MOVABLE);
1422 }
1423 }
1424
1425 return 1UL << alloc_order;
1426}
1427
1428/*
1429 * Similar to split_page except the page is already free. As this is only
1430 * being used for migration, the migratetype of the block also changes.
1431 * As this is called with interrupts disabled, the caller is responsible
1432 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1433 * are enabled.
1434 *
1435 * Note: this is probably too low level an operation for use in drivers.
1436 * Please consult with lkml before using this in your driver.
1437 */
1438int split_free_page(struct page *page)
1439{
1440 unsigned int order;
1441 int nr_pages;
1442
1443 BUG_ON(!PageBuddy(page));
1444 order = page_order(page);
1445
1446 nr_pages = capture_free_page(page, order, 0);
1447 if (!nr_pages)
1448 return 0;
1449
1450 /* Split into individual pages */
1451 set_page_refcounted(page);
1452 split_page(page, order);
1453 return nr_pages;
1454}
1455
1456/*
1457 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1458 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1459 * or two.
1460 */
1461static inline
1462struct page *buffered_rmqueue(struct zone *preferred_zone,
1463 struct zone *zone, int order, gfp_t gfp_flags,
1464 int migratetype)
1465{
1466 unsigned long flags;
1467 struct page *page;
1468 int cold = !!(gfp_flags & __GFP_COLD);
1469
1470again:
1471 if (likely(order == 0)) {
1472 struct per_cpu_pages *pcp;
1473 struct list_head *list;
1474
1475 local_irq_save(flags);
1476 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1477 list = &pcp->lists[migratetype];
1478 if (list_empty(list)) {
1479 pcp->count += rmqueue_bulk(zone, 0,
1480 pcp->batch, list,
1481 migratetype, cold);
1482 if (unlikely(list_empty(list)))
1483 goto failed;
1484 }
1485
1486 if (cold)
1487 page = list_entry(list->prev, struct page, lru);
1488 else
1489 page = list_entry(list->next, struct page, lru);
1490
1491 list_del(&page->lru);
1492 pcp->count--;
1493 } else {
1494 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1495 /*
1496 * __GFP_NOFAIL is not to be used in new code.
1497 *
1498 * All __GFP_NOFAIL callers should be fixed so that they
1499 * properly detect and handle allocation failures.
1500 *
1501 * We most definitely don't want callers attempting to
1502 * allocate greater than order-1 page units with
1503 * __GFP_NOFAIL.
1504 */
1505 WARN_ON_ONCE(order > 1);
1506 }
1507 spin_lock_irqsave(&zone->lock, flags);
1508 page = __rmqueue(zone, order, migratetype);
1509 spin_unlock(&zone->lock);
1510 if (!page)
1511 goto failed;
1512 __mod_zone_freepage_state(zone, -(1 << order),
1513 get_pageblock_migratetype(page));
1514 }
1515
1516 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1517 zone_statistics(preferred_zone, zone, gfp_flags);
1518 local_irq_restore(flags);
1519
1520 VM_BUG_ON(bad_range(zone, page));
1521 if (prep_new_page(page, order, gfp_flags))
1522 goto again;
1523 return page;
1524
1525failed:
1526 local_irq_restore(flags);
1527 return NULL;
1528}
1529
1530#ifdef CONFIG_FAIL_PAGE_ALLOC
1531
1532static struct {
1533 struct fault_attr attr;
1534
1535 u32 ignore_gfp_highmem;
1536 u32 ignore_gfp_wait;
1537 u32 min_order;
1538} fail_page_alloc = {
1539 .attr = FAULT_ATTR_INITIALIZER,
1540 .ignore_gfp_wait = 1,
1541 .ignore_gfp_highmem = 1,
1542 .min_order = 1,
1543};
1544
1545static int __init setup_fail_page_alloc(char *str)
1546{
1547 return setup_fault_attr(&fail_page_alloc.attr, str);
1548}
1549__setup("fail_page_alloc=", setup_fail_page_alloc);
1550
1551static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1552{
1553 if (order < fail_page_alloc.min_order)
1554 return false;
1555 if (gfp_mask & __GFP_NOFAIL)
1556 return false;
1557 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1558 return false;
1559 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1560 return false;
1561
1562 return should_fail(&fail_page_alloc.attr, 1 << order);
1563}
1564
1565#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1566
1567static int __init fail_page_alloc_debugfs(void)
1568{
1569 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1570 struct dentry *dir;
1571
1572 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1573 &fail_page_alloc.attr);
1574 if (IS_ERR(dir))
1575 return PTR_ERR(dir);
1576
1577 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1578 &fail_page_alloc.ignore_gfp_wait))
1579 goto fail;
1580 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1581 &fail_page_alloc.ignore_gfp_highmem))
1582 goto fail;
1583 if (!debugfs_create_u32("min-order", mode, dir,
1584 &fail_page_alloc.min_order))
1585 goto fail;
1586
1587 return 0;
1588fail:
1589 debugfs_remove_recursive(dir);
1590
1591 return -ENOMEM;
1592}
1593
1594late_initcall(fail_page_alloc_debugfs);
1595
1596#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1597
1598#else /* CONFIG_FAIL_PAGE_ALLOC */
1599
1600static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1601{
1602 return false;
1603}
1604
1605#endif /* CONFIG_FAIL_PAGE_ALLOC */
1606
1607/*
1608 * Return true if free pages are above 'mark'. This takes into account the order
1609 * of the allocation.
1610 */
1611static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1612 int classzone_idx, int alloc_flags, long free_pages)
1613{
1614 /* free_pages my go negative - that's OK */
1615 long min = mark;
1616 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1617 int o;
1618
1619 free_pages -= (1 << order) - 1;
1620 if (alloc_flags & ALLOC_HIGH)
1621 min -= min / 2;
1622 if (alloc_flags & ALLOC_HARDER)
1623 min -= min / 4;
1624#ifdef CONFIG_CMA
1625 /* If allocation can't use CMA areas don't use free CMA pages */
1626 if (!(alloc_flags & ALLOC_CMA))
1627 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1628#endif
1629 if (free_pages <= min + lowmem_reserve)
1630 return false;
1631 for (o = 0; o < order; o++) {
1632 /* At the next order, this order's pages become unavailable */
1633 free_pages -= z->free_area[o].nr_free << o;
1634
1635 /* Require fewer higher order pages to be free */
1636 min >>= 1;
1637
1638 if (free_pages <= min)
1639 return false;
1640 }
1641 return true;
1642}
1643
1644#ifdef CONFIG_MEMORY_ISOLATION
1645static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1646{
1647 if (unlikely(zone->nr_pageblock_isolate))
1648 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1649 return 0;
1650}
1651#else
1652static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1653{
1654 return 0;
1655}
1656#endif
1657
1658bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1659 int classzone_idx, int alloc_flags)
1660{
1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 zone_page_state(z, NR_FREE_PAGES));
1663}
1664
1665bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1666 int classzone_idx, int alloc_flags)
1667{
1668 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1669
1670 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1671 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1672
1673 /*
1674 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1675 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1676 * sleep although it could do so. But this is more desirable for memory
1677 * hotplug than sleeping which can cause a livelock in the direct
1678 * reclaim path.
1679 */
1680 free_pages -= nr_zone_isolate_freepages(z);
1681 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1682 free_pages);
1683}
1684
1685#ifdef CONFIG_NUMA
1686/*
1687 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1688 * skip over zones that are not allowed by the cpuset, or that have
1689 * been recently (in last second) found to be nearly full. See further
1690 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1691 * that have to skip over a lot of full or unallowed zones.
1692 *
1693 * If the zonelist cache is present in the passed in zonelist, then
1694 * returns a pointer to the allowed node mask (either the current
1695 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1696 *
1697 * If the zonelist cache is not available for this zonelist, does
1698 * nothing and returns NULL.
1699 *
1700 * If the fullzones BITMAP in the zonelist cache is stale (more than
1701 * a second since last zap'd) then we zap it out (clear its bits.)
1702 *
1703 * We hold off even calling zlc_setup, until after we've checked the
1704 * first zone in the zonelist, on the theory that most allocations will
1705 * be satisfied from that first zone, so best to examine that zone as
1706 * quickly as we can.
1707 */
1708static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1709{
1710 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1711 nodemask_t *allowednodes; /* zonelist_cache approximation */
1712
1713 zlc = zonelist->zlcache_ptr;
1714 if (!zlc)
1715 return NULL;
1716
1717 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1718 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1719 zlc->last_full_zap = jiffies;
1720 }
1721
1722 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1723 &cpuset_current_mems_allowed :
1724 &node_states[N_HIGH_MEMORY];
1725 return allowednodes;
1726}
1727
1728/*
1729 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1730 * if it is worth looking at further for free memory:
1731 * 1) Check that the zone isn't thought to be full (doesn't have its
1732 * bit set in the zonelist_cache fullzones BITMAP).
1733 * 2) Check that the zones node (obtained from the zonelist_cache
1734 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1735 * Return true (non-zero) if zone is worth looking at further, or
1736 * else return false (zero) if it is not.
1737 *
1738 * This check -ignores- the distinction between various watermarks,
1739 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1740 * found to be full for any variation of these watermarks, it will
1741 * be considered full for up to one second by all requests, unless
1742 * we are so low on memory on all allowed nodes that we are forced
1743 * into the second scan of the zonelist.
1744 *
1745 * In the second scan we ignore this zonelist cache and exactly
1746 * apply the watermarks to all zones, even it is slower to do so.
1747 * We are low on memory in the second scan, and should leave no stone
1748 * unturned looking for a free page.
1749 */
1750static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1751 nodemask_t *allowednodes)
1752{
1753 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1754 int i; /* index of *z in zonelist zones */
1755 int n; /* node that zone *z is on */
1756
1757 zlc = zonelist->zlcache_ptr;
1758 if (!zlc)
1759 return 1;
1760
1761 i = z - zonelist->_zonerefs;
1762 n = zlc->z_to_n[i];
1763
1764 /* This zone is worth trying if it is allowed but not full */
1765 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1766}
1767
1768/*
1769 * Given 'z' scanning a zonelist, set the corresponding bit in
1770 * zlc->fullzones, so that subsequent attempts to allocate a page
1771 * from that zone don't waste time re-examining it.
1772 */
1773static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1774{
1775 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1776 int i; /* index of *z in zonelist zones */
1777
1778 zlc = zonelist->zlcache_ptr;
1779 if (!zlc)
1780 return;
1781
1782 i = z - zonelist->_zonerefs;
1783
1784 set_bit(i, zlc->fullzones);
1785}
1786
1787/*
1788 * clear all zones full, called after direct reclaim makes progress so that
1789 * a zone that was recently full is not skipped over for up to a second
1790 */
1791static void zlc_clear_zones_full(struct zonelist *zonelist)
1792{
1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1794
1795 zlc = zonelist->zlcache_ptr;
1796 if (!zlc)
1797 return;
1798
1799 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1800}
1801
1802static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1803{
1804 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1805}
1806
1807static void __paginginit init_zone_allows_reclaim(int nid)
1808{
1809 int i;
1810
1811 for_each_online_node(i)
1812 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1813 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1814 else
1815 zone_reclaim_mode = 1;
1816}
1817
1818#else /* CONFIG_NUMA */
1819
1820static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1821{
1822 return NULL;
1823}
1824
1825static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1826 nodemask_t *allowednodes)
1827{
1828 return 1;
1829}
1830
1831static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1832{
1833}
1834
1835static void zlc_clear_zones_full(struct zonelist *zonelist)
1836{
1837}
1838
1839static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1840{
1841 return true;
1842}
1843
1844static inline void init_zone_allows_reclaim(int nid)
1845{
1846}
1847#endif /* CONFIG_NUMA */
1848
1849/*
1850 * get_page_from_freelist goes through the zonelist trying to allocate
1851 * a page.
1852 */
1853static struct page *
1854get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1855 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1856 struct zone *preferred_zone, int migratetype)
1857{
1858 struct zoneref *z;
1859 struct page *page = NULL;
1860 int classzone_idx;
1861 struct zone *zone;
1862 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1863 int zlc_active = 0; /* set if using zonelist_cache */
1864 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1865
1866 classzone_idx = zone_idx(preferred_zone);
1867zonelist_scan:
1868 /*
1869 * Scan zonelist, looking for a zone with enough free.
1870 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1871 */
1872 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1873 high_zoneidx, nodemask) {
1874 if (NUMA_BUILD && zlc_active &&
1875 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1876 continue;
1877 if ((alloc_flags & ALLOC_CPUSET) &&
1878 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1879 continue;
1880 /*
1881 * When allocating a page cache page for writing, we
1882 * want to get it from a zone that is within its dirty
1883 * limit, such that no single zone holds more than its
1884 * proportional share of globally allowed dirty pages.
1885 * The dirty limits take into account the zone's
1886 * lowmem reserves and high watermark so that kswapd
1887 * should be able to balance it without having to
1888 * write pages from its LRU list.
1889 *
1890 * This may look like it could increase pressure on
1891 * lower zones by failing allocations in higher zones
1892 * before they are full. But the pages that do spill
1893 * over are limited as the lower zones are protected
1894 * by this very same mechanism. It should not become
1895 * a practical burden to them.
1896 *
1897 * XXX: For now, allow allocations to potentially
1898 * exceed the per-zone dirty limit in the slowpath
1899 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1900 * which is important when on a NUMA setup the allowed
1901 * zones are together not big enough to reach the
1902 * global limit. The proper fix for these situations
1903 * will require awareness of zones in the
1904 * dirty-throttling and the flusher threads.
1905 */
1906 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1907 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1908 goto this_zone_full;
1909
1910 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1911 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1912 unsigned long mark;
1913 int ret;
1914
1915 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1916 if (zone_watermark_ok(zone, order, mark,
1917 classzone_idx, alloc_flags))
1918 goto try_this_zone;
1919
1920 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1921 /*
1922 * we do zlc_setup if there are multiple nodes
1923 * and before considering the first zone allowed
1924 * by the cpuset.
1925 */
1926 allowednodes = zlc_setup(zonelist, alloc_flags);
1927 zlc_active = 1;
1928 did_zlc_setup = 1;
1929 }
1930
1931 if (zone_reclaim_mode == 0 ||
1932 !zone_allows_reclaim(preferred_zone, zone))
1933 goto this_zone_full;
1934
1935 /*
1936 * As we may have just activated ZLC, check if the first
1937 * eligible zone has failed zone_reclaim recently.
1938 */
1939 if (NUMA_BUILD && zlc_active &&
1940 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1941 continue;
1942
1943 ret = zone_reclaim(zone, gfp_mask, order);
1944 switch (ret) {
1945 case ZONE_RECLAIM_NOSCAN:
1946 /* did not scan */
1947 continue;
1948 case ZONE_RECLAIM_FULL:
1949 /* scanned but unreclaimable */
1950 continue;
1951 default:
1952 /* did we reclaim enough */
1953 if (!zone_watermark_ok(zone, order, mark,
1954 classzone_idx, alloc_flags))
1955 goto this_zone_full;
1956 }
1957 }
1958
1959try_this_zone:
1960 page = buffered_rmqueue(preferred_zone, zone, order,
1961 gfp_mask, migratetype);
1962 if (page)
1963 break;
1964this_zone_full:
1965 if (NUMA_BUILD)
1966 zlc_mark_zone_full(zonelist, z);
1967 }
1968
1969 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1970 /* Disable zlc cache for second zonelist scan */
1971 zlc_active = 0;
1972 goto zonelist_scan;
1973 }
1974
1975 if (page)
1976 /*
1977 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1978 * necessary to allocate the page. The expectation is
1979 * that the caller is taking steps that will free more
1980 * memory. The caller should avoid the page being used
1981 * for !PFMEMALLOC purposes.
1982 */
1983 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1984
1985 return page;
1986}
1987
1988/*
1989 * Large machines with many possible nodes should not always dump per-node
1990 * meminfo in irq context.
1991 */
1992static inline bool should_suppress_show_mem(void)
1993{
1994 bool ret = false;
1995
1996#if NODES_SHIFT > 8
1997 ret = in_interrupt();
1998#endif
1999 return ret;
2000}
2001
2002static DEFINE_RATELIMIT_STATE(nopage_rs,
2003 DEFAULT_RATELIMIT_INTERVAL,
2004 DEFAULT_RATELIMIT_BURST);
2005
2006void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2007{
2008 unsigned int filter = SHOW_MEM_FILTER_NODES;
2009
2010 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2011 debug_guardpage_minorder() > 0)
2012 return;
2013
2014 /*
2015 * This documents exceptions given to allocations in certain
2016 * contexts that are allowed to allocate outside current's set
2017 * of allowed nodes.
2018 */
2019 if (!(gfp_mask & __GFP_NOMEMALLOC))
2020 if (test_thread_flag(TIF_MEMDIE) ||
2021 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2022 filter &= ~SHOW_MEM_FILTER_NODES;
2023 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2024 filter &= ~SHOW_MEM_FILTER_NODES;
2025
2026 if (fmt) {
2027 struct va_format vaf;
2028 va_list args;
2029
2030 va_start(args, fmt);
2031
2032 vaf.fmt = fmt;
2033 vaf.va = &args;
2034
2035 pr_warn("%pV", &vaf);
2036
2037 va_end(args);
2038 }
2039
2040 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2041 current->comm, order, gfp_mask);
2042
2043 dump_stack();
2044 if (!should_suppress_show_mem())
2045 show_mem(filter);
2046}
2047
2048static inline int
2049should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2050 unsigned long did_some_progress,
2051 unsigned long pages_reclaimed)
2052{
2053 /* Do not loop if specifically requested */
2054 if (gfp_mask & __GFP_NORETRY)
2055 return 0;
2056
2057 /* Always retry if specifically requested */
2058 if (gfp_mask & __GFP_NOFAIL)
2059 return 1;
2060
2061 /*
2062 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2063 * making forward progress without invoking OOM. Suspend also disables
2064 * storage devices so kswapd will not help. Bail if we are suspending.
2065 */
2066 if (!did_some_progress && pm_suspended_storage())
2067 return 0;
2068
2069 /*
2070 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2071 * means __GFP_NOFAIL, but that may not be true in other
2072 * implementations.
2073 */
2074 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2075 return 1;
2076
2077 /*
2078 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2079 * specified, then we retry until we no longer reclaim any pages
2080 * (above), or we've reclaimed an order of pages at least as
2081 * large as the allocation's order. In both cases, if the
2082 * allocation still fails, we stop retrying.
2083 */
2084 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2085 return 1;
2086
2087 return 0;
2088}
2089
2090static inline struct page *
2091__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2092 struct zonelist *zonelist, enum zone_type high_zoneidx,
2093 nodemask_t *nodemask, struct zone *preferred_zone,
2094 int migratetype)
2095{
2096 struct page *page;
2097
2098 /* Acquire the OOM killer lock for the zones in zonelist */
2099 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2100 schedule_timeout_uninterruptible(1);
2101 return NULL;
2102 }
2103
2104 /*
2105 * Go through the zonelist yet one more time, keep very high watermark
2106 * here, this is only to catch a parallel oom killing, we must fail if
2107 * we're still under heavy pressure.
2108 */
2109 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2110 order, zonelist, high_zoneidx,
2111 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2112 preferred_zone, migratetype);
2113 if (page)
2114 goto out;
2115
2116 if (!(gfp_mask & __GFP_NOFAIL)) {
2117 /* The OOM killer will not help higher order allocs */
2118 if (order > PAGE_ALLOC_COSTLY_ORDER)
2119 goto out;
2120 /* The OOM killer does not needlessly kill tasks for lowmem */
2121 if (high_zoneidx < ZONE_NORMAL)
2122 goto out;
2123 /*
2124 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2125 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2126 * The caller should handle page allocation failure by itself if
2127 * it specifies __GFP_THISNODE.
2128 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2129 */
2130 if (gfp_mask & __GFP_THISNODE)
2131 goto out;
2132 }
2133 /* Exhausted what can be done so it's blamo time */
2134 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2135
2136out:
2137 clear_zonelist_oom(zonelist, gfp_mask);
2138 return page;
2139}
2140
2141#ifdef CONFIG_COMPACTION
2142/* Try memory compaction for high-order allocations before reclaim */
2143static struct page *
2144__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2145 struct zonelist *zonelist, enum zone_type high_zoneidx,
2146 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2147 int migratetype, bool sync_migration,
2148 bool *contended_compaction, bool *deferred_compaction,
2149 unsigned long *did_some_progress)
2150{
2151 struct page *page = NULL;
2152
2153 if (!order)
2154 return NULL;
2155
2156 if (compaction_deferred(preferred_zone, order)) {
2157 *deferred_compaction = true;
2158 return NULL;
2159 }
2160
2161 current->flags |= PF_MEMALLOC;
2162 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2163 nodemask, sync_migration,
2164 contended_compaction, &page);
2165 current->flags &= ~PF_MEMALLOC;
2166
2167 /* If compaction captured a page, prep and use it */
2168 if (page) {
2169 prep_new_page(page, order, gfp_mask);
2170 goto got_page;
2171 }
2172
2173 if (*did_some_progress != COMPACT_SKIPPED) {
2174 /* Page migration frees to the PCP lists but we want merging */
2175 drain_pages(get_cpu());
2176 put_cpu();
2177
2178 page = get_page_from_freelist(gfp_mask, nodemask,
2179 order, zonelist, high_zoneidx,
2180 alloc_flags & ~ALLOC_NO_WATERMARKS,
2181 preferred_zone, migratetype);
2182 if (page) {
2183got_page:
2184 preferred_zone->compact_blockskip_flush = false;
2185 preferred_zone->compact_considered = 0;
2186 preferred_zone->compact_defer_shift = 0;
2187 if (order >= preferred_zone->compact_order_failed)
2188 preferred_zone->compact_order_failed = order + 1;
2189 count_vm_event(COMPACTSUCCESS);
2190 return page;
2191 }
2192
2193 /*
2194 * It's bad if compaction run occurs and fails.
2195 * The most likely reason is that pages exist,
2196 * but not enough to satisfy watermarks.
2197 */
2198 count_vm_event(COMPACTFAIL);
2199
2200 /*
2201 * As async compaction considers a subset of pageblocks, only
2202 * defer if the failure was a sync compaction failure.
2203 */
2204 if (sync_migration)
2205 defer_compaction(preferred_zone, order);
2206
2207 cond_resched();
2208 }
2209
2210 return NULL;
2211}
2212#else
2213static inline struct page *
2214__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2215 struct zonelist *zonelist, enum zone_type high_zoneidx,
2216 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2217 int migratetype, bool sync_migration,
2218 bool *contended_compaction, bool *deferred_compaction,
2219 unsigned long *did_some_progress)
2220{
2221 return NULL;
2222}
2223#endif /* CONFIG_COMPACTION */
2224
2225/* Perform direct synchronous page reclaim */
2226static int
2227__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2228 nodemask_t *nodemask)
2229{
2230 struct reclaim_state reclaim_state;
2231 int progress;
2232
2233 cond_resched();
2234
2235 /* We now go into synchronous reclaim */
2236 cpuset_memory_pressure_bump();
2237 current->flags |= PF_MEMALLOC;
2238 lockdep_set_current_reclaim_state(gfp_mask);
2239 reclaim_state.reclaimed_slab = 0;
2240 current->reclaim_state = &reclaim_state;
2241
2242 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2243
2244 current->reclaim_state = NULL;
2245 lockdep_clear_current_reclaim_state();
2246 current->flags &= ~PF_MEMALLOC;
2247
2248 cond_resched();
2249
2250 return progress;
2251}
2252
2253/* The really slow allocator path where we enter direct reclaim */
2254static inline struct page *
2255__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2256 struct zonelist *zonelist, enum zone_type high_zoneidx,
2257 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2258 int migratetype, unsigned long *did_some_progress)
2259{
2260 struct page *page = NULL;
2261 bool drained = false;
2262
2263 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2264 nodemask);
2265 if (unlikely(!(*did_some_progress)))
2266 return NULL;
2267
2268 /* After successful reclaim, reconsider all zones for allocation */
2269 if (NUMA_BUILD)
2270 zlc_clear_zones_full(zonelist);
2271
2272retry:
2273 page = get_page_from_freelist(gfp_mask, nodemask, order,
2274 zonelist, high_zoneidx,
2275 alloc_flags & ~ALLOC_NO_WATERMARKS,
2276 preferred_zone, migratetype);
2277
2278 /*
2279 * If an allocation failed after direct reclaim, it could be because
2280 * pages are pinned on the per-cpu lists. Drain them and try again
2281 */
2282 if (!page && !drained) {
2283 drain_all_pages();
2284 drained = true;
2285 goto retry;
2286 }
2287
2288 return page;
2289}
2290
2291/*
2292 * This is called in the allocator slow-path if the allocation request is of
2293 * sufficient urgency to ignore watermarks and take other desperate measures
2294 */
2295static inline struct page *
2296__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2297 struct zonelist *zonelist, enum zone_type high_zoneidx,
2298 nodemask_t *nodemask, struct zone *preferred_zone,
2299 int migratetype)
2300{
2301 struct page *page;
2302
2303 do {
2304 page = get_page_from_freelist(gfp_mask, nodemask, order,
2305 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2306 preferred_zone, migratetype);
2307
2308 if (!page && gfp_mask & __GFP_NOFAIL)
2309 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2310 } while (!page && (gfp_mask & __GFP_NOFAIL));
2311
2312 return page;
2313}
2314
2315static inline
2316void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2317 enum zone_type high_zoneidx,
2318 enum zone_type classzone_idx)
2319{
2320 struct zoneref *z;
2321 struct zone *zone;
2322
2323 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2324 wakeup_kswapd(zone, order, classzone_idx);
2325}
2326
2327static inline int
2328gfp_to_alloc_flags(gfp_t gfp_mask)
2329{
2330 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2331 const gfp_t wait = gfp_mask & __GFP_WAIT;
2332
2333 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2334 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2335
2336 /*
2337 * The caller may dip into page reserves a bit more if the caller
2338 * cannot run direct reclaim, or if the caller has realtime scheduling
2339 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2340 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2341 */
2342 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2343
2344 if (!wait) {
2345 /*
2346 * Not worth trying to allocate harder for
2347 * __GFP_NOMEMALLOC even if it can't schedule.
2348 */
2349 if (!(gfp_mask & __GFP_NOMEMALLOC))
2350 alloc_flags |= ALLOC_HARDER;
2351 /*
2352 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2353 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2354 */
2355 alloc_flags &= ~ALLOC_CPUSET;
2356 } else if (unlikely(rt_task(current)) && !in_interrupt())
2357 alloc_flags |= ALLOC_HARDER;
2358
2359 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2360 if (gfp_mask & __GFP_MEMALLOC)
2361 alloc_flags |= ALLOC_NO_WATERMARKS;
2362 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2363 alloc_flags |= ALLOC_NO_WATERMARKS;
2364 else if (!in_interrupt() &&
2365 ((current->flags & PF_MEMALLOC) ||
2366 unlikely(test_thread_flag(TIF_MEMDIE))))
2367 alloc_flags |= ALLOC_NO_WATERMARKS;
2368 }
2369#ifdef CONFIG_CMA
2370 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2371 alloc_flags |= ALLOC_CMA;
2372#endif
2373 return alloc_flags;
2374}
2375
2376bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2377{
2378 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2379}
2380
2381/* Returns true if the allocation is likely for THP */
2382static bool is_thp_alloc(gfp_t gfp_mask, unsigned int order)
2383{
2384 if (order == pageblock_order &&
2385 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
2386 return true;
2387 return false;
2388}
2389
2390static inline struct page *
2391__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2392 struct zonelist *zonelist, enum zone_type high_zoneidx,
2393 nodemask_t *nodemask, struct zone *preferred_zone,
2394 int migratetype)
2395{
2396 const gfp_t wait = gfp_mask & __GFP_WAIT;
2397 struct page *page = NULL;
2398 int alloc_flags;
2399 unsigned long pages_reclaimed = 0;
2400 unsigned long did_some_progress;
2401 bool sync_migration = false;
2402 bool deferred_compaction = false;
2403 bool contended_compaction = false;
2404
2405 /*
2406 * In the slowpath, we sanity check order to avoid ever trying to
2407 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2408 * be using allocators in order of preference for an area that is
2409 * too large.
2410 */
2411 if (order >= MAX_ORDER) {
2412 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2413 return NULL;
2414 }
2415
2416 /*
2417 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2418 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2419 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2420 * using a larger set of nodes after it has established that the
2421 * allowed per node queues are empty and that nodes are
2422 * over allocated.
2423 */
2424 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2425 goto nopage;
2426
2427restart:
2428 /* The decision whether to wake kswapd for THP is made later */
2429 if (!is_thp_alloc(gfp_mask, order))
2430 wake_all_kswapd(order, zonelist, high_zoneidx,
2431 zone_idx(preferred_zone));
2432
2433 /*
2434 * OK, we're below the kswapd watermark and have kicked background
2435 * reclaim. Now things get more complex, so set up alloc_flags according
2436 * to how we want to proceed.
2437 */
2438 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2439
2440 /*
2441 * Find the true preferred zone if the allocation is unconstrained by
2442 * cpusets.
2443 */
2444 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2445 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2446 &preferred_zone);
2447
2448rebalance:
2449 /* This is the last chance, in general, before the goto nopage. */
2450 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2451 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2452 preferred_zone, migratetype);
2453 if (page)
2454 goto got_pg;
2455
2456 /* Allocate without watermarks if the context allows */
2457 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2458 /*
2459 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2460 * the allocation is high priority and these type of
2461 * allocations are system rather than user orientated
2462 */
2463 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2464
2465 page = __alloc_pages_high_priority(gfp_mask, order,
2466 zonelist, high_zoneidx, nodemask,
2467 preferred_zone, migratetype);
2468 if (page) {
2469 goto got_pg;
2470 }
2471 }
2472
2473 /* Atomic allocations - we can't balance anything */
2474 if (!wait)
2475 goto nopage;
2476
2477 /* Avoid recursion of direct reclaim */
2478 if (current->flags & PF_MEMALLOC)
2479 goto nopage;
2480
2481 /* Avoid allocations with no watermarks from looping endlessly */
2482 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2483 goto nopage;
2484
2485 /*
2486 * Try direct compaction. The first pass is asynchronous. Subsequent
2487 * attempts after direct reclaim are synchronous
2488 */
2489 page = __alloc_pages_direct_compact(gfp_mask, order,
2490 zonelist, high_zoneidx,
2491 nodemask,
2492 alloc_flags, preferred_zone,
2493 migratetype, sync_migration,
2494 &contended_compaction,
2495 &deferred_compaction,
2496 &did_some_progress);
2497 if (page)
2498 goto got_pg;
2499 sync_migration = true;
2500
2501 if (is_thp_alloc(gfp_mask, order)) {
2502 /*
2503 * If compaction is deferred for high-order allocations, it is
2504 * because sync compaction recently failed. If this is the case
2505 * and the caller requested a movable allocation that does not
2506 * heavily disrupt the system then fail the allocation instead
2507 * of entering direct reclaim.
2508 */
2509 if (deferred_compaction || contended_compaction)
2510 goto nopage;
2511
2512 /* If process is willing to reclaim/compact then wake kswapd */
2513 wake_all_kswapd(order, zonelist, high_zoneidx,
2514 zone_idx(preferred_zone));
2515 }
2516
2517 /* Try direct reclaim and then allocating */
2518 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2519 zonelist, high_zoneidx,
2520 nodemask,
2521 alloc_flags, preferred_zone,
2522 migratetype, &did_some_progress);
2523 if (page)
2524 goto got_pg;
2525
2526 /*
2527 * If we failed to make any progress reclaiming, then we are
2528 * running out of options and have to consider going OOM
2529 */
2530 if (!did_some_progress) {
2531 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2532 if (oom_killer_disabled)
2533 goto nopage;
2534 /* Coredumps can quickly deplete all memory reserves */
2535 if ((current->flags & PF_DUMPCORE) &&
2536 !(gfp_mask & __GFP_NOFAIL))
2537 goto nopage;
2538 page = __alloc_pages_may_oom(gfp_mask, order,
2539 zonelist, high_zoneidx,
2540 nodemask, preferred_zone,
2541 migratetype);
2542 if (page)
2543 goto got_pg;
2544
2545 if (!(gfp_mask & __GFP_NOFAIL)) {
2546 /*
2547 * The oom killer is not called for high-order
2548 * allocations that may fail, so if no progress
2549 * is being made, there are no other options and
2550 * retrying is unlikely to help.
2551 */
2552 if (order > PAGE_ALLOC_COSTLY_ORDER)
2553 goto nopage;
2554 /*
2555 * The oom killer is not called for lowmem
2556 * allocations to prevent needlessly killing
2557 * innocent tasks.
2558 */
2559 if (high_zoneidx < ZONE_NORMAL)
2560 goto nopage;
2561 }
2562
2563 goto restart;
2564 }
2565 }
2566
2567 /* Check if we should retry the allocation */
2568 pages_reclaimed += did_some_progress;
2569 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2570 pages_reclaimed)) {
2571 /* Wait for some write requests to complete then retry */
2572 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2573 goto rebalance;
2574 } else {
2575 /*
2576 * High-order allocations do not necessarily loop after
2577 * direct reclaim and reclaim/compaction depends on compaction
2578 * being called after reclaim so call directly if necessary
2579 */
2580 page = __alloc_pages_direct_compact(gfp_mask, order,
2581 zonelist, high_zoneidx,
2582 nodemask,
2583 alloc_flags, preferred_zone,
2584 migratetype, sync_migration,
2585 &contended_compaction,
2586 &deferred_compaction,
2587 &did_some_progress);
2588 if (page)
2589 goto got_pg;
2590 }
2591
2592nopage:
2593 warn_alloc_failed(gfp_mask, order, NULL);
2594 return page;
2595got_pg:
2596 if (kmemcheck_enabled)
2597 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2598
2599 return page;
2600}
2601
2602/*
2603 * This is the 'heart' of the zoned buddy allocator.
2604 */
2605struct page *
2606__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2607 struct zonelist *zonelist, nodemask_t *nodemask)
2608{
2609 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2610 struct zone *preferred_zone;
2611 struct page *page = NULL;
2612 int migratetype = allocflags_to_migratetype(gfp_mask);
2613 unsigned int cpuset_mems_cookie;
2614 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2615
2616 gfp_mask &= gfp_allowed_mask;
2617
2618 lockdep_trace_alloc(gfp_mask);
2619
2620 might_sleep_if(gfp_mask & __GFP_WAIT);
2621
2622 if (should_fail_alloc_page(gfp_mask, order))
2623 return NULL;
2624
2625 /*
2626 * Check the zones suitable for the gfp_mask contain at least one
2627 * valid zone. It's possible to have an empty zonelist as a result
2628 * of GFP_THISNODE and a memoryless node
2629 */
2630 if (unlikely(!zonelist->_zonerefs->zone))
2631 return NULL;
2632
2633retry_cpuset:
2634 cpuset_mems_cookie = get_mems_allowed();
2635
2636 /* The preferred zone is used for statistics later */
2637 first_zones_zonelist(zonelist, high_zoneidx,
2638 nodemask ? : &cpuset_current_mems_allowed,
2639 &preferred_zone);
2640 if (!preferred_zone)
2641 goto out;
2642
2643#ifdef CONFIG_CMA
2644 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2645 alloc_flags |= ALLOC_CMA;
2646#endif
2647 /* First allocation attempt */
2648 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2649 zonelist, high_zoneidx, alloc_flags,
2650 preferred_zone, migratetype);
2651 if (unlikely(!page))
2652 page = __alloc_pages_slowpath(gfp_mask, order,
2653 zonelist, high_zoneidx, nodemask,
2654 preferred_zone, migratetype);
2655
2656 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2657
2658out:
2659 /*
2660 * When updating a task's mems_allowed, it is possible to race with
2661 * parallel threads in such a way that an allocation can fail while
2662 * the mask is being updated. If a page allocation is about to fail,
2663 * check if the cpuset changed during allocation and if so, retry.
2664 */
2665 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2666 goto retry_cpuset;
2667
2668 return page;
2669}
2670EXPORT_SYMBOL(__alloc_pages_nodemask);
2671
2672/*
2673 * Common helper functions.
2674 */
2675unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2676{
2677 struct page *page;
2678
2679 /*
2680 * __get_free_pages() returns a 32-bit address, which cannot represent
2681 * a highmem page
2682 */
2683 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2684
2685 page = alloc_pages(gfp_mask, order);
2686 if (!page)
2687 return 0;
2688 return (unsigned long) page_address(page);
2689}
2690EXPORT_SYMBOL(__get_free_pages);
2691
2692unsigned long get_zeroed_page(gfp_t gfp_mask)
2693{
2694 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2695}
2696EXPORT_SYMBOL(get_zeroed_page);
2697
2698void __free_pages(struct page *page, unsigned int order)
2699{
2700 if (put_page_testzero(page)) {
2701 if (order == 0)
2702 free_hot_cold_page(page, 0);
2703 else
2704 __free_pages_ok(page, order);
2705 }
2706}
2707
2708EXPORT_SYMBOL(__free_pages);
2709
2710void free_pages(unsigned long addr, unsigned int order)
2711{
2712 if (addr != 0) {
2713 VM_BUG_ON(!virt_addr_valid((void *)addr));
2714 __free_pages(virt_to_page((void *)addr), order);
2715 }
2716}
2717
2718EXPORT_SYMBOL(free_pages);
2719
2720static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2721{
2722 if (addr) {
2723 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2724 unsigned long used = addr + PAGE_ALIGN(size);
2725
2726 split_page(virt_to_page((void *)addr), order);
2727 while (used < alloc_end) {
2728 free_page(used);
2729 used += PAGE_SIZE;
2730 }
2731 }
2732 return (void *)addr;
2733}
2734
2735/**
2736 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2737 * @size: the number of bytes to allocate
2738 * @gfp_mask: GFP flags for the allocation
2739 *
2740 * This function is similar to alloc_pages(), except that it allocates the
2741 * minimum number of pages to satisfy the request. alloc_pages() can only
2742 * allocate memory in power-of-two pages.
2743 *
2744 * This function is also limited by MAX_ORDER.
2745 *
2746 * Memory allocated by this function must be released by free_pages_exact().
2747 */
2748void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2749{
2750 unsigned int order = get_order(size);
2751 unsigned long addr;
2752
2753 addr = __get_free_pages(gfp_mask, order);
2754 return make_alloc_exact(addr, order, size);
2755}
2756EXPORT_SYMBOL(alloc_pages_exact);
2757
2758/**
2759 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2760 * pages on a node.
2761 * @nid: the preferred node ID where memory should be allocated
2762 * @size: the number of bytes to allocate
2763 * @gfp_mask: GFP flags for the allocation
2764 *
2765 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2766 * back.
2767 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2768 * but is not exact.
2769 */
2770void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2771{
2772 unsigned order = get_order(size);
2773 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2774 if (!p)
2775 return NULL;
2776 return make_alloc_exact((unsigned long)page_address(p), order, size);
2777}
2778EXPORT_SYMBOL(alloc_pages_exact_nid);
2779
2780/**
2781 * free_pages_exact - release memory allocated via alloc_pages_exact()
2782 * @virt: the value returned by alloc_pages_exact.
2783 * @size: size of allocation, same value as passed to alloc_pages_exact().
2784 *
2785 * Release the memory allocated by a previous call to alloc_pages_exact.
2786 */
2787void free_pages_exact(void *virt, size_t size)
2788{
2789 unsigned long addr = (unsigned long)virt;
2790 unsigned long end = addr + PAGE_ALIGN(size);
2791
2792 while (addr < end) {
2793 free_page(addr);
2794 addr += PAGE_SIZE;
2795 }
2796}
2797EXPORT_SYMBOL(free_pages_exact);
2798
2799static unsigned int nr_free_zone_pages(int offset)
2800{
2801 struct zoneref *z;
2802 struct zone *zone;
2803
2804 /* Just pick one node, since fallback list is circular */
2805 unsigned int sum = 0;
2806
2807 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2808
2809 for_each_zone_zonelist(zone, z, zonelist, offset) {
2810 unsigned long size = zone->present_pages;
2811 unsigned long high = high_wmark_pages(zone);
2812 if (size > high)
2813 sum += size - high;
2814 }
2815
2816 return sum;
2817}
2818
2819/*
2820 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2821 */
2822unsigned int nr_free_buffer_pages(void)
2823{
2824 return nr_free_zone_pages(gfp_zone(GFP_USER));
2825}
2826EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2827
2828/*
2829 * Amount of free RAM allocatable within all zones
2830 */
2831unsigned int nr_free_pagecache_pages(void)
2832{
2833 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2834}
2835
2836static inline void show_node(struct zone *zone)
2837{
2838 if (NUMA_BUILD)
2839 printk("Node %d ", zone_to_nid(zone));
2840}
2841
2842void si_meminfo(struct sysinfo *val)
2843{
2844 val->totalram = totalram_pages;
2845 val->sharedram = 0;
2846 val->freeram = global_page_state(NR_FREE_PAGES);
2847 val->bufferram = nr_blockdev_pages();
2848 val->totalhigh = totalhigh_pages;
2849 val->freehigh = nr_free_highpages();
2850 val->mem_unit = PAGE_SIZE;
2851}
2852
2853EXPORT_SYMBOL(si_meminfo);
2854
2855#ifdef CONFIG_NUMA
2856void si_meminfo_node(struct sysinfo *val, int nid)
2857{
2858 pg_data_t *pgdat = NODE_DATA(nid);
2859
2860 val->totalram = pgdat->node_present_pages;
2861 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2862#ifdef CONFIG_HIGHMEM
2863 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2864 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2865 NR_FREE_PAGES);
2866#else
2867 val->totalhigh = 0;
2868 val->freehigh = 0;
2869#endif
2870 val->mem_unit = PAGE_SIZE;
2871}
2872#endif
2873
2874/*
2875 * Determine whether the node should be displayed or not, depending on whether
2876 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2877 */
2878bool skip_free_areas_node(unsigned int flags, int nid)
2879{
2880 bool ret = false;
2881 unsigned int cpuset_mems_cookie;
2882
2883 if (!(flags & SHOW_MEM_FILTER_NODES))
2884 goto out;
2885
2886 do {
2887 cpuset_mems_cookie = get_mems_allowed();
2888 ret = !node_isset(nid, cpuset_current_mems_allowed);
2889 } while (!put_mems_allowed(cpuset_mems_cookie));
2890out:
2891 return ret;
2892}
2893
2894#define K(x) ((x) << (PAGE_SHIFT-10))
2895
2896/*
2897 * Show free area list (used inside shift_scroll-lock stuff)
2898 * We also calculate the percentage fragmentation. We do this by counting the
2899 * memory on each free list with the exception of the first item on the list.
2900 * Suppresses nodes that are not allowed by current's cpuset if
2901 * SHOW_MEM_FILTER_NODES is passed.
2902 */
2903void show_free_areas(unsigned int filter)
2904{
2905 int cpu;
2906 struct zone *zone;
2907
2908 for_each_populated_zone(zone) {
2909 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2910 continue;
2911 show_node(zone);
2912 printk("%s per-cpu:\n", zone->name);
2913
2914 for_each_online_cpu(cpu) {
2915 struct per_cpu_pageset *pageset;
2916
2917 pageset = per_cpu_ptr(zone->pageset, cpu);
2918
2919 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2920 cpu, pageset->pcp.high,
2921 pageset->pcp.batch, pageset->pcp.count);
2922 }
2923 }
2924
2925 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2926 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2927 " unevictable:%lu"
2928 " dirty:%lu writeback:%lu unstable:%lu\n"
2929 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2930 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2931 " free_cma:%lu\n",
2932 global_page_state(NR_ACTIVE_ANON),
2933 global_page_state(NR_INACTIVE_ANON),
2934 global_page_state(NR_ISOLATED_ANON),
2935 global_page_state(NR_ACTIVE_FILE),
2936 global_page_state(NR_INACTIVE_FILE),
2937 global_page_state(NR_ISOLATED_FILE),
2938 global_page_state(NR_UNEVICTABLE),
2939 global_page_state(NR_FILE_DIRTY),
2940 global_page_state(NR_WRITEBACK),
2941 global_page_state(NR_UNSTABLE_NFS),
2942 global_page_state(NR_FREE_PAGES),
2943 global_page_state(NR_SLAB_RECLAIMABLE),
2944 global_page_state(NR_SLAB_UNRECLAIMABLE),
2945 global_page_state(NR_FILE_MAPPED),
2946 global_page_state(NR_SHMEM),
2947 global_page_state(NR_PAGETABLE),
2948 global_page_state(NR_BOUNCE),
2949 global_page_state(NR_FREE_CMA_PAGES));
2950
2951 for_each_populated_zone(zone) {
2952 int i;
2953
2954 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2955 continue;
2956 show_node(zone);
2957 printk("%s"
2958 " free:%lukB"
2959 " min:%lukB"
2960 " low:%lukB"
2961 " high:%lukB"
2962 " active_anon:%lukB"
2963 " inactive_anon:%lukB"
2964 " active_file:%lukB"
2965 " inactive_file:%lukB"
2966 " unevictable:%lukB"
2967 " isolated(anon):%lukB"
2968 " isolated(file):%lukB"
2969 " present:%lukB"
2970 " mlocked:%lukB"
2971 " dirty:%lukB"
2972 " writeback:%lukB"
2973 " mapped:%lukB"
2974 " shmem:%lukB"
2975 " slab_reclaimable:%lukB"
2976 " slab_unreclaimable:%lukB"
2977 " kernel_stack:%lukB"
2978 " pagetables:%lukB"
2979 " unstable:%lukB"
2980 " bounce:%lukB"
2981 " free_cma:%lukB"
2982 " writeback_tmp:%lukB"
2983 " pages_scanned:%lu"
2984 " all_unreclaimable? %s"
2985 "\n",
2986 zone->name,
2987 K(zone_page_state(zone, NR_FREE_PAGES)),
2988 K(min_wmark_pages(zone)),
2989 K(low_wmark_pages(zone)),
2990 K(high_wmark_pages(zone)),
2991 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2992 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2993 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2994 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2995 K(zone_page_state(zone, NR_UNEVICTABLE)),
2996 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2997 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2998 K(zone->present_pages),
2999 K(zone_page_state(zone, NR_MLOCK)),
3000 K(zone_page_state(zone, NR_FILE_DIRTY)),
3001 K(zone_page_state(zone, NR_WRITEBACK)),
3002 K(zone_page_state(zone, NR_FILE_MAPPED)),
3003 K(zone_page_state(zone, NR_SHMEM)),
3004 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3005 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3006 zone_page_state(zone, NR_KERNEL_STACK) *
3007 THREAD_SIZE / 1024,
3008 K(zone_page_state(zone, NR_PAGETABLE)),
3009 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3010 K(zone_page_state(zone, NR_BOUNCE)),
3011 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3012 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3013 zone->pages_scanned,
3014 (zone->all_unreclaimable ? "yes" : "no")
3015 );
3016 printk("lowmem_reserve[]:");
3017 for (i = 0; i < MAX_NR_ZONES; i++)
3018 printk(" %lu", zone->lowmem_reserve[i]);
3019 printk("\n");
3020 }
3021
3022 for_each_populated_zone(zone) {
3023 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3024
3025 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3026 continue;
3027 show_node(zone);
3028 printk("%s: ", zone->name);
3029
3030 spin_lock_irqsave(&zone->lock, flags);
3031 for (order = 0; order < MAX_ORDER; order++) {
3032 nr[order] = zone->free_area[order].nr_free;
3033 total += nr[order] << order;
3034 }
3035 spin_unlock_irqrestore(&zone->lock, flags);
3036 for (order = 0; order < MAX_ORDER; order++)
3037 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3038 printk("= %lukB\n", K(total));
3039 }
3040
3041 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3042
3043 show_swap_cache_info();
3044}
3045
3046static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3047{
3048 zoneref->zone = zone;
3049 zoneref->zone_idx = zone_idx(zone);
3050}
3051
3052/*
3053 * Builds allocation fallback zone lists.
3054 *
3055 * Add all populated zones of a node to the zonelist.
3056 */
3057static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3058 int nr_zones, enum zone_type zone_type)
3059{
3060 struct zone *zone;
3061
3062 BUG_ON(zone_type >= MAX_NR_ZONES);
3063 zone_type++;
3064
3065 do {
3066 zone_type--;
3067 zone = pgdat->node_zones + zone_type;
3068 if (populated_zone(zone)) {
3069 zoneref_set_zone(zone,
3070 &zonelist->_zonerefs[nr_zones++]);
3071 check_highest_zone(zone_type);
3072 }
3073
3074 } while (zone_type);
3075 return nr_zones;
3076}
3077
3078
3079/*
3080 * zonelist_order:
3081 * 0 = automatic detection of better ordering.
3082 * 1 = order by ([node] distance, -zonetype)
3083 * 2 = order by (-zonetype, [node] distance)
3084 *
3085 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3086 * the same zonelist. So only NUMA can configure this param.
3087 */
3088#define ZONELIST_ORDER_DEFAULT 0
3089#define ZONELIST_ORDER_NODE 1
3090#define ZONELIST_ORDER_ZONE 2
3091
3092/* zonelist order in the kernel.
3093 * set_zonelist_order() will set this to NODE or ZONE.
3094 */
3095static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3096static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3097
3098
3099#ifdef CONFIG_NUMA
3100/* The value user specified ....changed by config */
3101static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3102/* string for sysctl */
3103#define NUMA_ZONELIST_ORDER_LEN 16
3104char numa_zonelist_order[16] = "default";
3105
3106/*
3107 * interface for configure zonelist ordering.
3108 * command line option "numa_zonelist_order"
3109 * = "[dD]efault - default, automatic configuration.
3110 * = "[nN]ode - order by node locality, then by zone within node
3111 * = "[zZ]one - order by zone, then by locality within zone
3112 */
3113
3114static int __parse_numa_zonelist_order(char *s)
3115{
3116 if (*s == 'd' || *s == 'D') {
3117 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3118 } else if (*s == 'n' || *s == 'N') {
3119 user_zonelist_order = ZONELIST_ORDER_NODE;
3120 } else if (*s == 'z' || *s == 'Z') {
3121 user_zonelist_order = ZONELIST_ORDER_ZONE;
3122 } else {
3123 printk(KERN_WARNING
3124 "Ignoring invalid numa_zonelist_order value: "
3125 "%s\n", s);
3126 return -EINVAL;
3127 }
3128 return 0;
3129}
3130
3131static __init int setup_numa_zonelist_order(char *s)
3132{
3133 int ret;
3134
3135 if (!s)
3136 return 0;
3137
3138 ret = __parse_numa_zonelist_order(s);
3139 if (ret == 0)
3140 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3141
3142 return ret;
3143}
3144early_param("numa_zonelist_order", setup_numa_zonelist_order);
3145
3146/*
3147 * sysctl handler for numa_zonelist_order
3148 */
3149int numa_zonelist_order_handler(ctl_table *table, int write,
3150 void __user *buffer, size_t *length,
3151 loff_t *ppos)
3152{
3153 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3154 int ret;
3155 static DEFINE_MUTEX(zl_order_mutex);
3156
3157 mutex_lock(&zl_order_mutex);
3158 if (write)
3159 strcpy(saved_string, (char*)table->data);
3160 ret = proc_dostring(table, write, buffer, length, ppos);
3161 if (ret)
3162 goto out;
3163 if (write) {
3164 int oldval = user_zonelist_order;
3165 if (__parse_numa_zonelist_order((char*)table->data)) {
3166 /*
3167 * bogus value. restore saved string
3168 */
3169 strncpy((char*)table->data, saved_string,
3170 NUMA_ZONELIST_ORDER_LEN);
3171 user_zonelist_order = oldval;
3172 } else if (oldval != user_zonelist_order) {
3173 mutex_lock(&zonelists_mutex);
3174 build_all_zonelists(NULL, NULL);
3175 mutex_unlock(&zonelists_mutex);
3176 }
3177 }
3178out:
3179 mutex_unlock(&zl_order_mutex);
3180 return ret;
3181}
3182
3183
3184#define MAX_NODE_LOAD (nr_online_nodes)
3185static int node_load[MAX_NUMNODES];
3186
3187/**
3188 * find_next_best_node - find the next node that should appear in a given node's fallback list
3189 * @node: node whose fallback list we're appending
3190 * @used_node_mask: nodemask_t of already used nodes
3191 *
3192 * We use a number of factors to determine which is the next node that should
3193 * appear on a given node's fallback list. The node should not have appeared
3194 * already in @node's fallback list, and it should be the next closest node
3195 * according to the distance array (which contains arbitrary distance values
3196 * from each node to each node in the system), and should also prefer nodes
3197 * with no CPUs, since presumably they'll have very little allocation pressure
3198 * on them otherwise.
3199 * It returns -1 if no node is found.
3200 */
3201static int find_next_best_node(int node, nodemask_t *used_node_mask)
3202{
3203 int n, val;
3204 int min_val = INT_MAX;
3205 int best_node = -1;
3206 const struct cpumask *tmp = cpumask_of_node(0);
3207
3208 /* Use the local node if we haven't already */
3209 if (!node_isset(node, *used_node_mask)) {
3210 node_set(node, *used_node_mask);
3211 return node;
3212 }
3213
3214 for_each_node_state(n, N_HIGH_MEMORY) {
3215
3216 /* Don't want a node to appear more than once */
3217 if (node_isset(n, *used_node_mask))
3218 continue;
3219
3220 /* Use the distance array to find the distance */
3221 val = node_distance(node, n);
3222
3223 /* Penalize nodes under us ("prefer the next node") */
3224 val += (n < node);
3225
3226 /* Give preference to headless and unused nodes */
3227 tmp = cpumask_of_node(n);
3228 if (!cpumask_empty(tmp))
3229 val += PENALTY_FOR_NODE_WITH_CPUS;
3230
3231 /* Slight preference for less loaded node */
3232 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3233 val += node_load[n];
3234
3235 if (val < min_val) {
3236 min_val = val;
3237 best_node = n;
3238 }
3239 }
3240
3241 if (best_node >= 0)
3242 node_set(best_node, *used_node_mask);
3243
3244 return best_node;
3245}
3246
3247
3248/*
3249 * Build zonelists ordered by node and zones within node.
3250 * This results in maximum locality--normal zone overflows into local
3251 * DMA zone, if any--but risks exhausting DMA zone.
3252 */
3253static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3254{
3255 int j;
3256 struct zonelist *zonelist;
3257
3258 zonelist = &pgdat->node_zonelists[0];
3259 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3260 ;
3261 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3262 MAX_NR_ZONES - 1);
3263 zonelist->_zonerefs[j].zone = NULL;
3264 zonelist->_zonerefs[j].zone_idx = 0;
3265}
3266
3267/*
3268 * Build gfp_thisnode zonelists
3269 */
3270static void build_thisnode_zonelists(pg_data_t *pgdat)
3271{
3272 int j;
3273 struct zonelist *zonelist;
3274
3275 zonelist = &pgdat->node_zonelists[1];
3276 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3277 zonelist->_zonerefs[j].zone = NULL;
3278 zonelist->_zonerefs[j].zone_idx = 0;
3279}
3280
3281/*
3282 * Build zonelists ordered by zone and nodes within zones.
3283 * This results in conserving DMA zone[s] until all Normal memory is
3284 * exhausted, but results in overflowing to remote node while memory
3285 * may still exist in local DMA zone.
3286 */
3287static int node_order[MAX_NUMNODES];
3288
3289static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3290{
3291 int pos, j, node;
3292 int zone_type; /* needs to be signed */
3293 struct zone *z;
3294 struct zonelist *zonelist;
3295
3296 zonelist = &pgdat->node_zonelists[0];
3297 pos = 0;
3298 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3299 for (j = 0; j < nr_nodes; j++) {
3300 node = node_order[j];
3301 z = &NODE_DATA(node)->node_zones[zone_type];
3302 if (populated_zone(z)) {
3303 zoneref_set_zone(z,
3304 &zonelist->_zonerefs[pos++]);
3305 check_highest_zone(zone_type);
3306 }
3307 }
3308 }
3309 zonelist->_zonerefs[pos].zone = NULL;
3310 zonelist->_zonerefs[pos].zone_idx = 0;
3311}
3312
3313static int default_zonelist_order(void)
3314{
3315 int nid, zone_type;
3316 unsigned long low_kmem_size,total_size;
3317 struct zone *z;
3318 int average_size;
3319 /*
3320 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3321 * If they are really small and used heavily, the system can fall
3322 * into OOM very easily.
3323 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3324 */
3325 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3326 low_kmem_size = 0;
3327 total_size = 0;
3328 for_each_online_node(nid) {
3329 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3330 z = &NODE_DATA(nid)->node_zones[zone_type];
3331 if (populated_zone(z)) {
3332 if (zone_type < ZONE_NORMAL)
3333 low_kmem_size += z->present_pages;
3334 total_size += z->present_pages;
3335 } else if (zone_type == ZONE_NORMAL) {
3336 /*
3337 * If any node has only lowmem, then node order
3338 * is preferred to allow kernel allocations
3339 * locally; otherwise, they can easily infringe
3340 * on other nodes when there is an abundance of
3341 * lowmem available to allocate from.
3342 */
3343 return ZONELIST_ORDER_NODE;
3344 }
3345 }
3346 }
3347 if (!low_kmem_size || /* there are no DMA area. */
3348 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3349 return ZONELIST_ORDER_NODE;
3350 /*
3351 * look into each node's config.
3352 * If there is a node whose DMA/DMA32 memory is very big area on
3353 * local memory, NODE_ORDER may be suitable.
3354 */
3355 average_size = total_size /
3356 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3357 for_each_online_node(nid) {
3358 low_kmem_size = 0;
3359 total_size = 0;
3360 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3361 z = &NODE_DATA(nid)->node_zones[zone_type];
3362 if (populated_zone(z)) {
3363 if (zone_type < ZONE_NORMAL)
3364 low_kmem_size += z->present_pages;
3365 total_size += z->present_pages;
3366 }
3367 }
3368 if (low_kmem_size &&
3369 total_size > average_size && /* ignore small node */
3370 low_kmem_size > total_size * 70/100)
3371 return ZONELIST_ORDER_NODE;
3372 }
3373 return ZONELIST_ORDER_ZONE;
3374}
3375
3376static void set_zonelist_order(void)
3377{
3378 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3379 current_zonelist_order = default_zonelist_order();
3380 else
3381 current_zonelist_order = user_zonelist_order;
3382}
3383
3384static void build_zonelists(pg_data_t *pgdat)
3385{
3386 int j, node, load;
3387 enum zone_type i;
3388 nodemask_t used_mask;
3389 int local_node, prev_node;
3390 struct zonelist *zonelist;
3391 int order = current_zonelist_order;
3392
3393 /* initialize zonelists */
3394 for (i = 0; i < MAX_ZONELISTS; i++) {
3395 zonelist = pgdat->node_zonelists + i;
3396 zonelist->_zonerefs[0].zone = NULL;
3397 zonelist->_zonerefs[0].zone_idx = 0;
3398 }
3399
3400 /* NUMA-aware ordering of nodes */
3401 local_node = pgdat->node_id;
3402 load = nr_online_nodes;
3403 prev_node = local_node;
3404 nodes_clear(used_mask);
3405
3406 memset(node_order, 0, sizeof(node_order));
3407 j = 0;
3408
3409 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3410 /*
3411 * We don't want to pressure a particular node.
3412 * So adding penalty to the first node in same
3413 * distance group to make it round-robin.
3414 */
3415 if (node_distance(local_node, node) !=
3416 node_distance(local_node, prev_node))
3417 node_load[node] = load;
3418
3419 prev_node = node;
3420 load--;
3421 if (order == ZONELIST_ORDER_NODE)
3422 build_zonelists_in_node_order(pgdat, node);
3423 else
3424 node_order[j++] = node; /* remember order */
3425 }
3426
3427 if (order == ZONELIST_ORDER_ZONE) {
3428 /* calculate node order -- i.e., DMA last! */
3429 build_zonelists_in_zone_order(pgdat, j);
3430 }
3431
3432 build_thisnode_zonelists(pgdat);
3433}
3434
3435/* Construct the zonelist performance cache - see further mmzone.h */
3436static void build_zonelist_cache(pg_data_t *pgdat)
3437{
3438 struct zonelist *zonelist;
3439 struct zonelist_cache *zlc;
3440 struct zoneref *z;
3441
3442 zonelist = &pgdat->node_zonelists[0];
3443 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3444 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3445 for (z = zonelist->_zonerefs; z->zone; z++)
3446 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3447}
3448
3449#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3450/*
3451 * Return node id of node used for "local" allocations.
3452 * I.e., first node id of first zone in arg node's generic zonelist.
3453 * Used for initializing percpu 'numa_mem', which is used primarily
3454 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3455 */
3456int local_memory_node(int node)
3457{
3458 struct zone *zone;
3459
3460 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3461 gfp_zone(GFP_KERNEL),
3462 NULL,
3463 &zone);
3464 return zone->node;
3465}
3466#endif
3467
3468#else /* CONFIG_NUMA */
3469
3470static void set_zonelist_order(void)
3471{
3472 current_zonelist_order = ZONELIST_ORDER_ZONE;
3473}
3474
3475static void build_zonelists(pg_data_t *pgdat)
3476{
3477 int node, local_node;
3478 enum zone_type j;
3479 struct zonelist *zonelist;
3480
3481 local_node = pgdat->node_id;
3482
3483 zonelist = &pgdat->node_zonelists[0];
3484 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3485
3486 /*
3487 * Now we build the zonelist so that it contains the zones
3488 * of all the other nodes.
3489 * We don't want to pressure a particular node, so when
3490 * building the zones for node N, we make sure that the
3491 * zones coming right after the local ones are those from
3492 * node N+1 (modulo N)
3493 */
3494 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3495 if (!node_online(node))
3496 continue;
3497 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3498 MAX_NR_ZONES - 1);
3499 }
3500 for (node = 0; node < local_node; node++) {
3501 if (!node_online(node))
3502 continue;
3503 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3504 MAX_NR_ZONES - 1);
3505 }
3506
3507 zonelist->_zonerefs[j].zone = NULL;
3508 zonelist->_zonerefs[j].zone_idx = 0;
3509}
3510
3511/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3512static void build_zonelist_cache(pg_data_t *pgdat)
3513{
3514 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3515}
3516
3517#endif /* CONFIG_NUMA */
3518
3519/*
3520 * Boot pageset table. One per cpu which is going to be used for all
3521 * zones and all nodes. The parameters will be set in such a way
3522 * that an item put on a list will immediately be handed over to
3523 * the buddy list. This is safe since pageset manipulation is done
3524 * with interrupts disabled.
3525 *
3526 * The boot_pagesets must be kept even after bootup is complete for
3527 * unused processors and/or zones. They do play a role for bootstrapping
3528 * hotplugged processors.
3529 *
3530 * zoneinfo_show() and maybe other functions do
3531 * not check if the processor is online before following the pageset pointer.
3532 * Other parts of the kernel may not check if the zone is available.
3533 */
3534static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3535static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3536static void setup_zone_pageset(struct zone *zone);
3537
3538/*
3539 * Global mutex to protect against size modification of zonelists
3540 * as well as to serialize pageset setup for the new populated zone.
3541 */
3542DEFINE_MUTEX(zonelists_mutex);
3543
3544/* return values int ....just for stop_machine() */
3545static int __build_all_zonelists(void *data)
3546{
3547 int nid;
3548 int cpu;
3549 pg_data_t *self = data;
3550
3551#ifdef CONFIG_NUMA
3552 memset(node_load, 0, sizeof(node_load));
3553#endif
3554
3555 if (self && !node_online(self->node_id)) {
3556 build_zonelists(self);
3557 build_zonelist_cache(self);
3558 }
3559
3560 for_each_online_node(nid) {
3561 pg_data_t *pgdat = NODE_DATA(nid);
3562
3563 build_zonelists(pgdat);
3564 build_zonelist_cache(pgdat);
3565 }
3566
3567 /*
3568 * Initialize the boot_pagesets that are going to be used
3569 * for bootstrapping processors. The real pagesets for
3570 * each zone will be allocated later when the per cpu
3571 * allocator is available.
3572 *
3573 * boot_pagesets are used also for bootstrapping offline
3574 * cpus if the system is already booted because the pagesets
3575 * are needed to initialize allocators on a specific cpu too.
3576 * F.e. the percpu allocator needs the page allocator which
3577 * needs the percpu allocator in order to allocate its pagesets
3578 * (a chicken-egg dilemma).
3579 */
3580 for_each_possible_cpu(cpu) {
3581 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3582
3583#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3584 /*
3585 * We now know the "local memory node" for each node--
3586 * i.e., the node of the first zone in the generic zonelist.
3587 * Set up numa_mem percpu variable for on-line cpus. During
3588 * boot, only the boot cpu should be on-line; we'll init the
3589 * secondary cpus' numa_mem as they come on-line. During
3590 * node/memory hotplug, we'll fixup all on-line cpus.
3591 */
3592 if (cpu_online(cpu))
3593 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3594#endif
3595 }
3596
3597 return 0;
3598}
3599
3600/*
3601 * Called with zonelists_mutex held always
3602 * unless system_state == SYSTEM_BOOTING.
3603 */
3604void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3605{
3606 set_zonelist_order();
3607
3608 if (system_state == SYSTEM_BOOTING) {
3609 __build_all_zonelists(NULL);
3610 mminit_verify_zonelist();
3611 cpuset_init_current_mems_allowed();
3612 } else {
3613 /* we have to stop all cpus to guarantee there is no user
3614 of zonelist */
3615#ifdef CONFIG_MEMORY_HOTPLUG
3616 if (zone)
3617 setup_zone_pageset(zone);
3618#endif
3619 stop_machine(__build_all_zonelists, pgdat, NULL);
3620 /* cpuset refresh routine should be here */
3621 }
3622 vm_total_pages = nr_free_pagecache_pages();
3623 /*
3624 * Disable grouping by mobility if the number of pages in the
3625 * system is too low to allow the mechanism to work. It would be
3626 * more accurate, but expensive to check per-zone. This check is
3627 * made on memory-hotadd so a system can start with mobility
3628 * disabled and enable it later
3629 */
3630 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3631 page_group_by_mobility_disabled = 1;
3632 else
3633 page_group_by_mobility_disabled = 0;
3634
3635 printk("Built %i zonelists in %s order, mobility grouping %s. "
3636 "Total pages: %ld\n",
3637 nr_online_nodes,
3638 zonelist_order_name[current_zonelist_order],
3639 page_group_by_mobility_disabled ? "off" : "on",
3640 vm_total_pages);
3641#ifdef CONFIG_NUMA
3642 printk("Policy zone: %s\n", zone_names[policy_zone]);
3643#endif
3644}
3645
3646/*
3647 * Helper functions to size the waitqueue hash table.
3648 * Essentially these want to choose hash table sizes sufficiently
3649 * large so that collisions trying to wait on pages are rare.
3650 * But in fact, the number of active page waitqueues on typical
3651 * systems is ridiculously low, less than 200. So this is even
3652 * conservative, even though it seems large.
3653 *
3654 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3655 * waitqueues, i.e. the size of the waitq table given the number of pages.
3656 */
3657#define PAGES_PER_WAITQUEUE 256
3658
3659#ifndef CONFIG_MEMORY_HOTPLUG
3660static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3661{
3662 unsigned long size = 1;
3663
3664 pages /= PAGES_PER_WAITQUEUE;
3665
3666 while (size < pages)
3667 size <<= 1;
3668
3669 /*
3670 * Once we have dozens or even hundreds of threads sleeping
3671 * on IO we've got bigger problems than wait queue collision.
3672 * Limit the size of the wait table to a reasonable size.
3673 */
3674 size = min(size, 4096UL);
3675
3676 return max(size, 4UL);
3677}
3678#else
3679/*
3680 * A zone's size might be changed by hot-add, so it is not possible to determine
3681 * a suitable size for its wait_table. So we use the maximum size now.
3682 *
3683 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3684 *
3685 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3686 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3687 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3688 *
3689 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3690 * or more by the traditional way. (See above). It equals:
3691 *
3692 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3693 * ia64(16K page size) : = ( 8G + 4M)byte.
3694 * powerpc (64K page size) : = (32G +16M)byte.
3695 */
3696static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3697{
3698 return 4096UL;
3699}
3700#endif
3701
3702/*
3703 * This is an integer logarithm so that shifts can be used later
3704 * to extract the more random high bits from the multiplicative
3705 * hash function before the remainder is taken.
3706 */
3707static inline unsigned long wait_table_bits(unsigned long size)
3708{
3709 return ffz(~size);
3710}
3711
3712#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3713
3714/*
3715 * Check if a pageblock contains reserved pages
3716 */
3717static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3718{
3719 unsigned long pfn;
3720
3721 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3722 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3723 return 1;
3724 }
3725 return 0;
3726}
3727
3728/*
3729 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3730 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3731 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3732 * higher will lead to a bigger reserve which will get freed as contiguous
3733 * blocks as reclaim kicks in
3734 */
3735static void setup_zone_migrate_reserve(struct zone *zone)
3736{
3737 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3738 struct page *page;
3739 unsigned long block_migratetype;
3740 int reserve;
3741
3742 /*
3743 * Get the start pfn, end pfn and the number of blocks to reserve
3744 * We have to be careful to be aligned to pageblock_nr_pages to
3745 * make sure that we always check pfn_valid for the first page in
3746 * the block.
3747 */
3748 start_pfn = zone->zone_start_pfn;
3749 end_pfn = start_pfn + zone->spanned_pages;
3750 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3751 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3752 pageblock_order;
3753
3754 /*
3755 * Reserve blocks are generally in place to help high-order atomic
3756 * allocations that are short-lived. A min_free_kbytes value that
3757 * would result in more than 2 reserve blocks for atomic allocations
3758 * is assumed to be in place to help anti-fragmentation for the
3759 * future allocation of hugepages at runtime.
3760 */
3761 reserve = min(2, reserve);
3762
3763 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3764 if (!pfn_valid(pfn))
3765 continue;
3766 page = pfn_to_page(pfn);
3767
3768 /* Watch out for overlapping nodes */
3769 if (page_to_nid(page) != zone_to_nid(zone))
3770 continue;
3771
3772 block_migratetype = get_pageblock_migratetype(page);
3773
3774 /* Only test what is necessary when the reserves are not met */
3775 if (reserve > 0) {
3776 /*
3777 * Blocks with reserved pages will never free, skip
3778 * them.
3779 */
3780 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3781 if (pageblock_is_reserved(pfn, block_end_pfn))
3782 continue;
3783
3784 /* If this block is reserved, account for it */
3785 if (block_migratetype == MIGRATE_RESERVE) {
3786 reserve--;
3787 continue;
3788 }
3789
3790 /* Suitable for reserving if this block is movable */
3791 if (block_migratetype == MIGRATE_MOVABLE) {
3792 set_pageblock_migratetype(page,
3793 MIGRATE_RESERVE);
3794 move_freepages_block(zone, page,
3795 MIGRATE_RESERVE);
3796 reserve--;
3797 continue;
3798 }
3799 }
3800
3801 /*
3802 * If the reserve is met and this is a previous reserved block,
3803 * take it back
3804 */
3805 if (block_migratetype == MIGRATE_RESERVE) {
3806 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3807 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3808 }
3809 }
3810}
3811
3812/*
3813 * Initially all pages are reserved - free ones are freed
3814 * up by free_all_bootmem() once the early boot process is
3815 * done. Non-atomic initialization, single-pass.
3816 */
3817void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3818 unsigned long start_pfn, enum memmap_context context)
3819{
3820 struct page *page;
3821 unsigned long end_pfn = start_pfn + size;
3822 unsigned long pfn;
3823 struct zone *z;
3824
3825 if (highest_memmap_pfn < end_pfn - 1)
3826 highest_memmap_pfn = end_pfn - 1;
3827
3828 z = &NODE_DATA(nid)->node_zones[zone];
3829 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3830 /*
3831 * There can be holes in boot-time mem_map[]s
3832 * handed to this function. They do not
3833 * exist on hotplugged memory.
3834 */
3835 if (context == MEMMAP_EARLY) {
3836 if (!early_pfn_valid(pfn))
3837 continue;
3838 if (!early_pfn_in_nid(pfn, nid))
3839 continue;
3840 }
3841 page = pfn_to_page(pfn);
3842 set_page_links(page, zone, nid, pfn);
3843 mminit_verify_page_links(page, zone, nid, pfn);
3844 init_page_count(page);
3845 reset_page_mapcount(page);
3846 SetPageReserved(page);
3847 /*
3848 * Mark the block movable so that blocks are reserved for
3849 * movable at startup. This will force kernel allocations
3850 * to reserve their blocks rather than leaking throughout
3851 * the address space during boot when many long-lived
3852 * kernel allocations are made. Later some blocks near
3853 * the start are marked MIGRATE_RESERVE by
3854 * setup_zone_migrate_reserve()
3855 *
3856 * bitmap is created for zone's valid pfn range. but memmap
3857 * can be created for invalid pages (for alignment)
3858 * check here not to call set_pageblock_migratetype() against
3859 * pfn out of zone.
3860 */
3861 if ((z->zone_start_pfn <= pfn)
3862 && (pfn < z->zone_start_pfn + z->spanned_pages)
3863 && !(pfn & (pageblock_nr_pages - 1)))
3864 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3865
3866 INIT_LIST_HEAD(&page->lru);
3867#ifdef WANT_PAGE_VIRTUAL
3868 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3869 if (!is_highmem_idx(zone))
3870 set_page_address(page, __va(pfn << PAGE_SHIFT));
3871#endif
3872 }
3873}
3874
3875static void __meminit zone_init_free_lists(struct zone *zone)
3876{
3877 int order, t;
3878 for_each_migratetype_order(order, t) {
3879 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3880 zone->free_area[order].nr_free = 0;
3881 }
3882}
3883
3884#ifndef __HAVE_ARCH_MEMMAP_INIT
3885#define memmap_init(size, nid, zone, start_pfn) \
3886 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3887#endif
3888
3889static int __meminit zone_batchsize(struct zone *zone)
3890{
3891#ifdef CONFIG_MMU
3892 int batch;
3893
3894 /*
3895 * The per-cpu-pages pools are set to around 1000th of the
3896 * size of the zone. But no more than 1/2 of a meg.
3897 *
3898 * OK, so we don't know how big the cache is. So guess.
3899 */
3900 batch = zone->present_pages / 1024;
3901 if (batch * PAGE_SIZE > 512 * 1024)
3902 batch = (512 * 1024) / PAGE_SIZE;
3903 batch /= 4; /* We effectively *= 4 below */
3904 if (batch < 1)
3905 batch = 1;
3906
3907 /*
3908 * Clamp the batch to a 2^n - 1 value. Having a power
3909 * of 2 value was found to be more likely to have
3910 * suboptimal cache aliasing properties in some cases.
3911 *
3912 * For example if 2 tasks are alternately allocating
3913 * batches of pages, one task can end up with a lot
3914 * of pages of one half of the possible page colors
3915 * and the other with pages of the other colors.
3916 */
3917 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3918
3919 return batch;
3920
3921#else
3922 /* The deferral and batching of frees should be suppressed under NOMMU
3923 * conditions.
3924 *
3925 * The problem is that NOMMU needs to be able to allocate large chunks
3926 * of contiguous memory as there's no hardware page translation to
3927 * assemble apparent contiguous memory from discontiguous pages.
3928 *
3929 * Queueing large contiguous runs of pages for batching, however,
3930 * causes the pages to actually be freed in smaller chunks. As there
3931 * can be a significant delay between the individual batches being
3932 * recycled, this leads to the once large chunks of space being
3933 * fragmented and becoming unavailable for high-order allocations.
3934 */
3935 return 0;
3936#endif
3937}
3938
3939static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3940{
3941 struct per_cpu_pages *pcp;
3942 int migratetype;
3943
3944 memset(p, 0, sizeof(*p));
3945
3946 pcp = &p->pcp;
3947 pcp->count = 0;
3948 pcp->high = 6 * batch;
3949 pcp->batch = max(1UL, 1 * batch);
3950 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3951 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3952}
3953
3954/*
3955 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3956 * to the value high for the pageset p.
3957 */
3958
3959static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3960 unsigned long high)
3961{
3962 struct per_cpu_pages *pcp;
3963
3964 pcp = &p->pcp;
3965 pcp->high = high;
3966 pcp->batch = max(1UL, high/4);
3967 if ((high/4) > (PAGE_SHIFT * 8))
3968 pcp->batch = PAGE_SHIFT * 8;
3969}
3970
3971static void __meminit setup_zone_pageset(struct zone *zone)
3972{
3973 int cpu;
3974
3975 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3976
3977 for_each_possible_cpu(cpu) {
3978 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3979
3980 setup_pageset(pcp, zone_batchsize(zone));
3981
3982 if (percpu_pagelist_fraction)
3983 setup_pagelist_highmark(pcp,
3984 (zone->present_pages /
3985 percpu_pagelist_fraction));
3986 }
3987}
3988
3989/*
3990 * Allocate per cpu pagesets and initialize them.
3991 * Before this call only boot pagesets were available.
3992 */
3993void __init setup_per_cpu_pageset(void)
3994{
3995 struct zone *zone;
3996
3997 for_each_populated_zone(zone)
3998 setup_zone_pageset(zone);
3999}
4000
4001static noinline __init_refok
4002int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4003{
4004 int i;
4005 struct pglist_data *pgdat = zone->zone_pgdat;
4006 size_t alloc_size;
4007
4008 /*
4009 * The per-page waitqueue mechanism uses hashed waitqueues
4010 * per zone.
4011 */
4012 zone->wait_table_hash_nr_entries =
4013 wait_table_hash_nr_entries(zone_size_pages);
4014 zone->wait_table_bits =
4015 wait_table_bits(zone->wait_table_hash_nr_entries);
4016 alloc_size = zone->wait_table_hash_nr_entries
4017 * sizeof(wait_queue_head_t);
4018
4019 if (!slab_is_available()) {
4020 zone->wait_table = (wait_queue_head_t *)
4021 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4022 } else {
4023 /*
4024 * This case means that a zone whose size was 0 gets new memory
4025 * via memory hot-add.
4026 * But it may be the case that a new node was hot-added. In
4027 * this case vmalloc() will not be able to use this new node's
4028 * memory - this wait_table must be initialized to use this new
4029 * node itself as well.
4030 * To use this new node's memory, further consideration will be
4031 * necessary.
4032 */
4033 zone->wait_table = vmalloc(alloc_size);
4034 }
4035 if (!zone->wait_table)
4036 return -ENOMEM;
4037
4038 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4039 init_waitqueue_head(zone->wait_table + i);
4040
4041 return 0;
4042}
4043
4044static __meminit void zone_pcp_init(struct zone *zone)
4045{
4046 /*
4047 * per cpu subsystem is not up at this point. The following code
4048 * relies on the ability of the linker to provide the
4049 * offset of a (static) per cpu variable into the per cpu area.
4050 */
4051 zone->pageset = &boot_pageset;
4052
4053 if (zone->present_pages)
4054 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4055 zone->name, zone->present_pages,
4056 zone_batchsize(zone));
4057}
4058
4059int __meminit init_currently_empty_zone(struct zone *zone,
4060 unsigned long zone_start_pfn,
4061 unsigned long size,
4062 enum memmap_context context)
4063{
4064 struct pglist_data *pgdat = zone->zone_pgdat;
4065 int ret;
4066 ret = zone_wait_table_init(zone, size);
4067 if (ret)
4068 return ret;
4069 pgdat->nr_zones = zone_idx(zone) + 1;
4070
4071 zone->zone_start_pfn = zone_start_pfn;
4072
4073 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4074 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4075 pgdat->node_id,
4076 (unsigned long)zone_idx(zone),
4077 zone_start_pfn, (zone_start_pfn + size));
4078
4079 zone_init_free_lists(zone);
4080
4081 return 0;
4082}
4083
4084#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4085#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4086/*
4087 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4088 * Architectures may implement their own version but if add_active_range()
4089 * was used and there are no special requirements, this is a convenient
4090 * alternative
4091 */
4092int __meminit __early_pfn_to_nid(unsigned long pfn)
4093{
4094 unsigned long start_pfn, end_pfn;
4095 int i, nid;
4096
4097 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4098 if (start_pfn <= pfn && pfn < end_pfn)
4099 return nid;
4100 /* This is a memory hole */
4101 return -1;
4102}
4103#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4104
4105int __meminit early_pfn_to_nid(unsigned long pfn)
4106{
4107 int nid;
4108
4109 nid = __early_pfn_to_nid(pfn);
4110 if (nid >= 0)
4111 return nid;
4112 /* just returns 0 */
4113 return 0;
4114}
4115
4116#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4117bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4118{
4119 int nid;
4120
4121 nid = __early_pfn_to_nid(pfn);
4122 if (nid >= 0 && nid != node)
4123 return false;
4124 return true;
4125}
4126#endif
4127
4128/**
4129 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4130 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4131 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4132 *
4133 * If an architecture guarantees that all ranges registered with
4134 * add_active_ranges() contain no holes and may be freed, this
4135 * this function may be used instead of calling free_bootmem() manually.
4136 */
4137void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4138{
4139 unsigned long start_pfn, end_pfn;
4140 int i, this_nid;
4141
4142 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4143 start_pfn = min(start_pfn, max_low_pfn);
4144 end_pfn = min(end_pfn, max_low_pfn);
4145
4146 if (start_pfn < end_pfn)
4147 free_bootmem_node(NODE_DATA(this_nid),
4148 PFN_PHYS(start_pfn),
4149 (end_pfn - start_pfn) << PAGE_SHIFT);
4150 }
4151}
4152
4153/**
4154 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4155 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4156 *
4157 * If an architecture guarantees that all ranges registered with
4158 * add_active_ranges() contain no holes and may be freed, this
4159 * function may be used instead of calling memory_present() manually.
4160 */
4161void __init sparse_memory_present_with_active_regions(int nid)
4162{
4163 unsigned long start_pfn, end_pfn;
4164 int i, this_nid;
4165
4166 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4167 memory_present(this_nid, start_pfn, end_pfn);
4168}
4169
4170/**
4171 * get_pfn_range_for_nid - Return the start and end page frames for a node
4172 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4173 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4174 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4175 *
4176 * It returns the start and end page frame of a node based on information
4177 * provided by an arch calling add_active_range(). If called for a node
4178 * with no available memory, a warning is printed and the start and end
4179 * PFNs will be 0.
4180 */
4181void __meminit get_pfn_range_for_nid(unsigned int nid,
4182 unsigned long *start_pfn, unsigned long *end_pfn)
4183{
4184 unsigned long this_start_pfn, this_end_pfn;
4185 int i;
4186
4187 *start_pfn = -1UL;
4188 *end_pfn = 0;
4189
4190 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4191 *start_pfn = min(*start_pfn, this_start_pfn);
4192 *end_pfn = max(*end_pfn, this_end_pfn);
4193 }
4194
4195 if (*start_pfn == -1UL)
4196 *start_pfn = 0;
4197}
4198
4199/*
4200 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4201 * assumption is made that zones within a node are ordered in monotonic
4202 * increasing memory addresses so that the "highest" populated zone is used
4203 */
4204static void __init find_usable_zone_for_movable(void)
4205{
4206 int zone_index;
4207 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4208 if (zone_index == ZONE_MOVABLE)
4209 continue;
4210
4211 if (arch_zone_highest_possible_pfn[zone_index] >
4212 arch_zone_lowest_possible_pfn[zone_index])
4213 break;
4214 }
4215
4216 VM_BUG_ON(zone_index == -1);
4217 movable_zone = zone_index;
4218}
4219
4220/*
4221 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4222 * because it is sized independent of architecture. Unlike the other zones,
4223 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4224 * in each node depending on the size of each node and how evenly kernelcore
4225 * is distributed. This helper function adjusts the zone ranges
4226 * provided by the architecture for a given node by using the end of the
4227 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4228 * zones within a node are in order of monotonic increases memory addresses
4229 */
4230static void __meminit adjust_zone_range_for_zone_movable(int nid,
4231 unsigned long zone_type,
4232 unsigned long node_start_pfn,
4233 unsigned long node_end_pfn,
4234 unsigned long *zone_start_pfn,
4235 unsigned long *zone_end_pfn)
4236{
4237 /* Only adjust if ZONE_MOVABLE is on this node */
4238 if (zone_movable_pfn[nid]) {
4239 /* Size ZONE_MOVABLE */
4240 if (zone_type == ZONE_MOVABLE) {
4241 *zone_start_pfn = zone_movable_pfn[nid];
4242 *zone_end_pfn = min(node_end_pfn,
4243 arch_zone_highest_possible_pfn[movable_zone]);
4244
4245 /* Adjust for ZONE_MOVABLE starting within this range */
4246 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4247 *zone_end_pfn > zone_movable_pfn[nid]) {
4248 *zone_end_pfn = zone_movable_pfn[nid];
4249
4250 /* Check if this whole range is within ZONE_MOVABLE */
4251 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4252 *zone_start_pfn = *zone_end_pfn;
4253 }
4254}
4255
4256/*
4257 * Return the number of pages a zone spans in a node, including holes
4258 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4259 */
4260static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4261 unsigned long zone_type,
4262 unsigned long *ignored)
4263{
4264 unsigned long node_start_pfn, node_end_pfn;
4265 unsigned long zone_start_pfn, zone_end_pfn;
4266
4267 /* Get the start and end of the node and zone */
4268 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4269 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4270 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4271 adjust_zone_range_for_zone_movable(nid, zone_type,
4272 node_start_pfn, node_end_pfn,
4273 &zone_start_pfn, &zone_end_pfn);
4274
4275 /* Check that this node has pages within the zone's required range */
4276 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4277 return 0;
4278
4279 /* Move the zone boundaries inside the node if necessary */
4280 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4281 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4282
4283 /* Return the spanned pages */
4284 return zone_end_pfn - zone_start_pfn;
4285}
4286
4287/*
4288 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4289 * then all holes in the requested range will be accounted for.
4290 */
4291unsigned long __meminit __absent_pages_in_range(int nid,
4292 unsigned long range_start_pfn,
4293 unsigned long range_end_pfn)
4294{
4295 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4296 unsigned long start_pfn, end_pfn;
4297 int i;
4298
4299 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4300 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4301 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4302 nr_absent -= end_pfn - start_pfn;
4303 }
4304 return nr_absent;
4305}
4306
4307/**
4308 * absent_pages_in_range - Return number of page frames in holes within a range
4309 * @start_pfn: The start PFN to start searching for holes
4310 * @end_pfn: The end PFN to stop searching for holes
4311 *
4312 * It returns the number of pages frames in memory holes within a range.
4313 */
4314unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4315 unsigned long end_pfn)
4316{
4317 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4318}
4319
4320/* Return the number of page frames in holes in a zone on a node */
4321static unsigned long __meminit zone_absent_pages_in_node(int nid,
4322 unsigned long zone_type,
4323 unsigned long *ignored)
4324{
4325 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4326 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4327 unsigned long node_start_pfn, node_end_pfn;
4328 unsigned long zone_start_pfn, zone_end_pfn;
4329
4330 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4331 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4332 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4333
4334 adjust_zone_range_for_zone_movable(nid, zone_type,
4335 node_start_pfn, node_end_pfn,
4336 &zone_start_pfn, &zone_end_pfn);
4337 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4338}
4339
4340#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4341static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4342 unsigned long zone_type,
4343 unsigned long *zones_size)
4344{
4345 return zones_size[zone_type];
4346}
4347
4348static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4349 unsigned long zone_type,
4350 unsigned long *zholes_size)
4351{
4352 if (!zholes_size)
4353 return 0;
4354
4355 return zholes_size[zone_type];
4356}
4357
4358#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4359
4360static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4361 unsigned long *zones_size, unsigned long *zholes_size)
4362{
4363 unsigned long realtotalpages, totalpages = 0;
4364 enum zone_type i;
4365
4366 for (i = 0; i < MAX_NR_ZONES; i++)
4367 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4368 zones_size);
4369 pgdat->node_spanned_pages = totalpages;
4370
4371 realtotalpages = totalpages;
4372 for (i = 0; i < MAX_NR_ZONES; i++)
4373 realtotalpages -=
4374 zone_absent_pages_in_node(pgdat->node_id, i,
4375 zholes_size);
4376 pgdat->node_present_pages = realtotalpages;
4377 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4378 realtotalpages);
4379}
4380
4381#ifndef CONFIG_SPARSEMEM
4382/*
4383 * Calculate the size of the zone->blockflags rounded to an unsigned long
4384 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4385 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4386 * round what is now in bits to nearest long in bits, then return it in
4387 * bytes.
4388 */
4389static unsigned long __init usemap_size(unsigned long zonesize)
4390{
4391 unsigned long usemapsize;
4392
4393 usemapsize = roundup(zonesize, pageblock_nr_pages);
4394 usemapsize = usemapsize >> pageblock_order;
4395 usemapsize *= NR_PAGEBLOCK_BITS;
4396 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4397
4398 return usemapsize / 8;
4399}
4400
4401static void __init setup_usemap(struct pglist_data *pgdat,
4402 struct zone *zone, unsigned long zonesize)
4403{
4404 unsigned long usemapsize = usemap_size(zonesize);
4405 zone->pageblock_flags = NULL;
4406 if (usemapsize)
4407 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4408 usemapsize);
4409}
4410#else
4411static inline void setup_usemap(struct pglist_data *pgdat,
4412 struct zone *zone, unsigned long zonesize) {}
4413#endif /* CONFIG_SPARSEMEM */
4414
4415#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4416
4417/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4418void __init set_pageblock_order(void)
4419{
4420 unsigned int order;
4421
4422 /* Check that pageblock_nr_pages has not already been setup */
4423 if (pageblock_order)
4424 return;
4425
4426 if (HPAGE_SHIFT > PAGE_SHIFT)
4427 order = HUGETLB_PAGE_ORDER;
4428 else
4429 order = MAX_ORDER - 1;
4430
4431 /*
4432 * Assume the largest contiguous order of interest is a huge page.
4433 * This value may be variable depending on boot parameters on IA64 and
4434 * powerpc.
4435 */
4436 pageblock_order = order;
4437}
4438#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4439
4440/*
4441 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4442 * is unused as pageblock_order is set at compile-time. See
4443 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4444 * the kernel config
4445 */
4446void __init set_pageblock_order(void)
4447{
4448}
4449
4450#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4451
4452/*
4453 * Set up the zone data structures:
4454 * - mark all pages reserved
4455 * - mark all memory queues empty
4456 * - clear the memory bitmaps
4457 *
4458 * NOTE: pgdat should get zeroed by caller.
4459 */
4460static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4461 unsigned long *zones_size, unsigned long *zholes_size)
4462{
4463 enum zone_type j;
4464 int nid = pgdat->node_id;
4465 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4466 int ret;
4467
4468 pgdat_resize_init(pgdat);
4469 init_waitqueue_head(&pgdat->kswapd_wait);
4470 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4471 pgdat_page_cgroup_init(pgdat);
4472
4473 for (j = 0; j < MAX_NR_ZONES; j++) {
4474 struct zone *zone = pgdat->node_zones + j;
4475 unsigned long size, realsize, memmap_pages;
4476
4477 size = zone_spanned_pages_in_node(nid, j, zones_size);
4478 realsize = size - zone_absent_pages_in_node(nid, j,
4479 zholes_size);
4480
4481 /*
4482 * Adjust realsize so that it accounts for how much memory
4483 * is used by this zone for memmap. This affects the watermark
4484 * and per-cpu initialisations
4485 */
4486 memmap_pages =
4487 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4488 if (realsize >= memmap_pages) {
4489 realsize -= memmap_pages;
4490 if (memmap_pages)
4491 printk(KERN_DEBUG
4492 " %s zone: %lu pages used for memmap\n",
4493 zone_names[j], memmap_pages);
4494 } else
4495 printk(KERN_WARNING
4496 " %s zone: %lu pages exceeds realsize %lu\n",
4497 zone_names[j], memmap_pages, realsize);
4498
4499 /* Account for reserved pages */
4500 if (j == 0 && realsize > dma_reserve) {
4501 realsize -= dma_reserve;
4502 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4503 zone_names[0], dma_reserve);
4504 }
4505
4506 if (!is_highmem_idx(j))
4507 nr_kernel_pages += realsize;
4508 nr_all_pages += realsize;
4509
4510 zone->spanned_pages = size;
4511 zone->present_pages = realsize;
4512#ifdef CONFIG_NUMA
4513 zone->node = nid;
4514 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4515 / 100;
4516 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4517#endif
4518 zone->name = zone_names[j];
4519 spin_lock_init(&zone->lock);
4520 spin_lock_init(&zone->lru_lock);
4521 zone_seqlock_init(zone);
4522 zone->zone_pgdat = pgdat;
4523
4524 zone_pcp_init(zone);
4525 lruvec_init(&zone->lruvec);
4526 if (!size)
4527 continue;
4528
4529 set_pageblock_order();
4530 setup_usemap(pgdat, zone, size);
4531 ret = init_currently_empty_zone(zone, zone_start_pfn,
4532 size, MEMMAP_EARLY);
4533 BUG_ON(ret);
4534 memmap_init(size, nid, j, zone_start_pfn);
4535 zone_start_pfn += size;
4536 }
4537}
4538
4539static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4540{
4541 /* Skip empty nodes */
4542 if (!pgdat->node_spanned_pages)
4543 return;
4544
4545#ifdef CONFIG_FLAT_NODE_MEM_MAP
4546 /* ia64 gets its own node_mem_map, before this, without bootmem */
4547 if (!pgdat->node_mem_map) {
4548 unsigned long size, start, end;
4549 struct page *map;
4550
4551 /*
4552 * The zone's endpoints aren't required to be MAX_ORDER
4553 * aligned but the node_mem_map endpoints must be in order
4554 * for the buddy allocator to function correctly.
4555 */
4556 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4557 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4558 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4559 size = (end - start) * sizeof(struct page);
4560 map = alloc_remap(pgdat->node_id, size);
4561 if (!map)
4562 map = alloc_bootmem_node_nopanic(pgdat, size);
4563 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4564 }
4565#ifndef CONFIG_NEED_MULTIPLE_NODES
4566 /*
4567 * With no DISCONTIG, the global mem_map is just set as node 0's
4568 */
4569 if (pgdat == NODE_DATA(0)) {
4570 mem_map = NODE_DATA(0)->node_mem_map;
4571#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4572 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4573 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4574#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4575 }
4576#endif
4577#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4578}
4579
4580void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4581 unsigned long node_start_pfn, unsigned long *zholes_size)
4582{
4583 pg_data_t *pgdat = NODE_DATA(nid);
4584
4585 /* pg_data_t should be reset to zero when it's allocated */
4586 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4587
4588 pgdat->node_id = nid;
4589 pgdat->node_start_pfn = node_start_pfn;
4590 init_zone_allows_reclaim(nid);
4591 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4592
4593 alloc_node_mem_map(pgdat);
4594#ifdef CONFIG_FLAT_NODE_MEM_MAP
4595 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4596 nid, (unsigned long)pgdat,
4597 (unsigned long)pgdat->node_mem_map);
4598#endif
4599
4600 free_area_init_core(pgdat, zones_size, zholes_size);
4601}
4602
4603#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4604
4605#if MAX_NUMNODES > 1
4606/*
4607 * Figure out the number of possible node ids.
4608 */
4609static void __init setup_nr_node_ids(void)
4610{
4611 unsigned int node;
4612 unsigned int highest = 0;
4613
4614 for_each_node_mask(node, node_possible_map)
4615 highest = node;
4616 nr_node_ids = highest + 1;
4617}
4618#else
4619static inline void setup_nr_node_ids(void)
4620{
4621}
4622#endif
4623
4624/**
4625 * node_map_pfn_alignment - determine the maximum internode alignment
4626 *
4627 * This function should be called after node map is populated and sorted.
4628 * It calculates the maximum power of two alignment which can distinguish
4629 * all the nodes.
4630 *
4631 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4632 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4633 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4634 * shifted, 1GiB is enough and this function will indicate so.
4635 *
4636 * This is used to test whether pfn -> nid mapping of the chosen memory
4637 * model has fine enough granularity to avoid incorrect mapping for the
4638 * populated node map.
4639 *
4640 * Returns the determined alignment in pfn's. 0 if there is no alignment
4641 * requirement (single node).
4642 */
4643unsigned long __init node_map_pfn_alignment(void)
4644{
4645 unsigned long accl_mask = 0, last_end = 0;
4646 unsigned long start, end, mask;
4647 int last_nid = -1;
4648 int i, nid;
4649
4650 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4651 if (!start || last_nid < 0 || last_nid == nid) {
4652 last_nid = nid;
4653 last_end = end;
4654 continue;
4655 }
4656
4657 /*
4658 * Start with a mask granular enough to pin-point to the
4659 * start pfn and tick off bits one-by-one until it becomes
4660 * too coarse to separate the current node from the last.
4661 */
4662 mask = ~((1 << __ffs(start)) - 1);
4663 while (mask && last_end <= (start & (mask << 1)))
4664 mask <<= 1;
4665
4666 /* accumulate all internode masks */
4667 accl_mask |= mask;
4668 }
4669
4670 /* convert mask to number of pages */
4671 return ~accl_mask + 1;
4672}
4673
4674/* Find the lowest pfn for a node */
4675static unsigned long __init find_min_pfn_for_node(int nid)
4676{
4677 unsigned long min_pfn = ULONG_MAX;
4678 unsigned long start_pfn;
4679 int i;
4680
4681 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4682 min_pfn = min(min_pfn, start_pfn);
4683
4684 if (min_pfn == ULONG_MAX) {
4685 printk(KERN_WARNING
4686 "Could not find start_pfn for node %d\n", nid);
4687 return 0;
4688 }
4689
4690 return min_pfn;
4691}
4692
4693/**
4694 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4695 *
4696 * It returns the minimum PFN based on information provided via
4697 * add_active_range().
4698 */
4699unsigned long __init find_min_pfn_with_active_regions(void)
4700{
4701 return find_min_pfn_for_node(MAX_NUMNODES);
4702}
4703
4704/*
4705 * early_calculate_totalpages()
4706 * Sum pages in active regions for movable zone.
4707 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4708 */
4709static unsigned long __init early_calculate_totalpages(void)
4710{
4711 unsigned long totalpages = 0;
4712 unsigned long start_pfn, end_pfn;
4713 int i, nid;
4714
4715 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4716 unsigned long pages = end_pfn - start_pfn;
4717
4718 totalpages += pages;
4719 if (pages)
4720 node_set_state(nid, N_HIGH_MEMORY);
4721 }
4722 return totalpages;
4723}
4724
4725/*
4726 * Find the PFN the Movable zone begins in each node. Kernel memory
4727 * is spread evenly between nodes as long as the nodes have enough
4728 * memory. When they don't, some nodes will have more kernelcore than
4729 * others
4730 */
4731static void __init find_zone_movable_pfns_for_nodes(void)
4732{
4733 int i, nid;
4734 unsigned long usable_startpfn;
4735 unsigned long kernelcore_node, kernelcore_remaining;
4736 /* save the state before borrow the nodemask */
4737 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4738 unsigned long totalpages = early_calculate_totalpages();
4739 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4740
4741 /*
4742 * If movablecore was specified, calculate what size of
4743 * kernelcore that corresponds so that memory usable for
4744 * any allocation type is evenly spread. If both kernelcore
4745 * and movablecore are specified, then the value of kernelcore
4746 * will be used for required_kernelcore if it's greater than
4747 * what movablecore would have allowed.
4748 */
4749 if (required_movablecore) {
4750 unsigned long corepages;
4751
4752 /*
4753 * Round-up so that ZONE_MOVABLE is at least as large as what
4754 * was requested by the user
4755 */
4756 required_movablecore =
4757 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4758 corepages = totalpages - required_movablecore;
4759
4760 required_kernelcore = max(required_kernelcore, corepages);
4761 }
4762
4763 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4764 if (!required_kernelcore)
4765 goto out;
4766
4767 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4768 find_usable_zone_for_movable();
4769 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4770
4771restart:
4772 /* Spread kernelcore memory as evenly as possible throughout nodes */
4773 kernelcore_node = required_kernelcore / usable_nodes;
4774 for_each_node_state(nid, N_HIGH_MEMORY) {
4775 unsigned long start_pfn, end_pfn;
4776
4777 /*
4778 * Recalculate kernelcore_node if the division per node
4779 * now exceeds what is necessary to satisfy the requested
4780 * amount of memory for the kernel
4781 */
4782 if (required_kernelcore < kernelcore_node)
4783 kernelcore_node = required_kernelcore / usable_nodes;
4784
4785 /*
4786 * As the map is walked, we track how much memory is usable
4787 * by the kernel using kernelcore_remaining. When it is
4788 * 0, the rest of the node is usable by ZONE_MOVABLE
4789 */
4790 kernelcore_remaining = kernelcore_node;
4791
4792 /* Go through each range of PFNs within this node */
4793 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4794 unsigned long size_pages;
4795
4796 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4797 if (start_pfn >= end_pfn)
4798 continue;
4799
4800 /* Account for what is only usable for kernelcore */
4801 if (start_pfn < usable_startpfn) {
4802 unsigned long kernel_pages;
4803 kernel_pages = min(end_pfn, usable_startpfn)
4804 - start_pfn;
4805
4806 kernelcore_remaining -= min(kernel_pages,
4807 kernelcore_remaining);
4808 required_kernelcore -= min(kernel_pages,
4809 required_kernelcore);
4810
4811 /* Continue if range is now fully accounted */
4812 if (end_pfn <= usable_startpfn) {
4813
4814 /*
4815 * Push zone_movable_pfn to the end so
4816 * that if we have to rebalance
4817 * kernelcore across nodes, we will
4818 * not double account here
4819 */
4820 zone_movable_pfn[nid] = end_pfn;
4821 continue;
4822 }
4823 start_pfn = usable_startpfn;
4824 }
4825
4826 /*
4827 * The usable PFN range for ZONE_MOVABLE is from
4828 * start_pfn->end_pfn. Calculate size_pages as the
4829 * number of pages used as kernelcore
4830 */
4831 size_pages = end_pfn - start_pfn;
4832 if (size_pages > kernelcore_remaining)
4833 size_pages = kernelcore_remaining;
4834 zone_movable_pfn[nid] = start_pfn + size_pages;
4835
4836 /*
4837 * Some kernelcore has been met, update counts and
4838 * break if the kernelcore for this node has been
4839 * satisified
4840 */
4841 required_kernelcore -= min(required_kernelcore,
4842 size_pages);
4843 kernelcore_remaining -= size_pages;
4844 if (!kernelcore_remaining)
4845 break;
4846 }
4847 }
4848
4849 /*
4850 * If there is still required_kernelcore, we do another pass with one
4851 * less node in the count. This will push zone_movable_pfn[nid] further
4852 * along on the nodes that still have memory until kernelcore is
4853 * satisified
4854 */
4855 usable_nodes--;
4856 if (usable_nodes && required_kernelcore > usable_nodes)
4857 goto restart;
4858
4859 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4860 for (nid = 0; nid < MAX_NUMNODES; nid++)
4861 zone_movable_pfn[nid] =
4862 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4863
4864out:
4865 /* restore the node_state */
4866 node_states[N_HIGH_MEMORY] = saved_node_state;
4867}
4868
4869/* Any regular memory on that node ? */
4870static void __init check_for_regular_memory(pg_data_t *pgdat)
4871{
4872#ifdef CONFIG_HIGHMEM
4873 enum zone_type zone_type;
4874
4875 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4876 struct zone *zone = &pgdat->node_zones[zone_type];
4877 if (zone->present_pages) {
4878 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4879 break;
4880 }
4881 }
4882#endif
4883}
4884
4885/**
4886 * free_area_init_nodes - Initialise all pg_data_t and zone data
4887 * @max_zone_pfn: an array of max PFNs for each zone
4888 *
4889 * This will call free_area_init_node() for each active node in the system.
4890 * Using the page ranges provided by add_active_range(), the size of each
4891 * zone in each node and their holes is calculated. If the maximum PFN
4892 * between two adjacent zones match, it is assumed that the zone is empty.
4893 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4894 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4895 * starts where the previous one ended. For example, ZONE_DMA32 starts
4896 * at arch_max_dma_pfn.
4897 */
4898void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4899{
4900 unsigned long start_pfn, end_pfn;
4901 int i, nid;
4902
4903 /* Record where the zone boundaries are */
4904 memset(arch_zone_lowest_possible_pfn, 0,
4905 sizeof(arch_zone_lowest_possible_pfn));
4906 memset(arch_zone_highest_possible_pfn, 0,
4907 sizeof(arch_zone_highest_possible_pfn));
4908 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4909 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4910 for (i = 1; i < MAX_NR_ZONES; i++) {
4911 if (i == ZONE_MOVABLE)
4912 continue;
4913 arch_zone_lowest_possible_pfn[i] =
4914 arch_zone_highest_possible_pfn[i-1];
4915 arch_zone_highest_possible_pfn[i] =
4916 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4917 }
4918 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4919 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4920
4921 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4922 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4923 find_zone_movable_pfns_for_nodes();
4924
4925 /* Print out the zone ranges */
4926 printk("Zone ranges:\n");
4927 for (i = 0; i < MAX_NR_ZONES; i++) {
4928 if (i == ZONE_MOVABLE)
4929 continue;
4930 printk(KERN_CONT " %-8s ", zone_names[i]);
4931 if (arch_zone_lowest_possible_pfn[i] ==
4932 arch_zone_highest_possible_pfn[i])
4933 printk(KERN_CONT "empty\n");
4934 else
4935 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4936 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4937 (arch_zone_highest_possible_pfn[i]
4938 << PAGE_SHIFT) - 1);
4939 }
4940
4941 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4942 printk("Movable zone start for each node\n");
4943 for (i = 0; i < MAX_NUMNODES; i++) {
4944 if (zone_movable_pfn[i])
4945 printk(" Node %d: %#010lx\n", i,
4946 zone_movable_pfn[i] << PAGE_SHIFT);
4947 }
4948
4949 /* Print out the early node map */
4950 printk("Early memory node ranges\n");
4951 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4952 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4953 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4954
4955 /* Initialise every node */
4956 mminit_verify_pageflags_layout();
4957 setup_nr_node_ids();
4958 for_each_online_node(nid) {
4959 pg_data_t *pgdat = NODE_DATA(nid);
4960 free_area_init_node(nid, NULL,
4961 find_min_pfn_for_node(nid), NULL);
4962
4963 /* Any memory on that node */
4964 if (pgdat->node_present_pages)
4965 node_set_state(nid, N_HIGH_MEMORY);
4966 check_for_regular_memory(pgdat);
4967 }
4968}
4969
4970static int __init cmdline_parse_core(char *p, unsigned long *core)
4971{
4972 unsigned long long coremem;
4973 if (!p)
4974 return -EINVAL;
4975
4976 coremem = memparse(p, &p);
4977 *core = coremem >> PAGE_SHIFT;
4978
4979 /* Paranoid check that UL is enough for the coremem value */
4980 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4981
4982 return 0;
4983}
4984
4985/*
4986 * kernelcore=size sets the amount of memory for use for allocations that
4987 * cannot be reclaimed or migrated.
4988 */
4989static int __init cmdline_parse_kernelcore(char *p)
4990{
4991 return cmdline_parse_core(p, &required_kernelcore);
4992}
4993
4994/*
4995 * movablecore=size sets the amount of memory for use for allocations that
4996 * can be reclaimed or migrated.
4997 */
4998static int __init cmdline_parse_movablecore(char *p)
4999{
5000 return cmdline_parse_core(p, &required_movablecore);
5001}
5002
5003early_param("kernelcore", cmdline_parse_kernelcore);
5004early_param("movablecore", cmdline_parse_movablecore);
5005
5006#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5007
5008/**
5009 * set_dma_reserve - set the specified number of pages reserved in the first zone
5010 * @new_dma_reserve: The number of pages to mark reserved
5011 *
5012 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5013 * In the DMA zone, a significant percentage may be consumed by kernel image
5014 * and other unfreeable allocations which can skew the watermarks badly. This
5015 * function may optionally be used to account for unfreeable pages in the
5016 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5017 * smaller per-cpu batchsize.
5018 */
5019void __init set_dma_reserve(unsigned long new_dma_reserve)
5020{
5021 dma_reserve = new_dma_reserve;
5022}
5023
5024void __init free_area_init(unsigned long *zones_size)
5025{
5026 free_area_init_node(0, zones_size,
5027 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5028}
5029
5030static int page_alloc_cpu_notify(struct notifier_block *self,
5031 unsigned long action, void *hcpu)
5032{
5033 int cpu = (unsigned long)hcpu;
5034
5035 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5036 lru_add_drain_cpu(cpu);
5037 drain_pages(cpu);
5038
5039 /*
5040 * Spill the event counters of the dead processor
5041 * into the current processors event counters.
5042 * This artificially elevates the count of the current
5043 * processor.
5044 */
5045 vm_events_fold_cpu(cpu);
5046
5047 /*
5048 * Zero the differential counters of the dead processor
5049 * so that the vm statistics are consistent.
5050 *
5051 * This is only okay since the processor is dead and cannot
5052 * race with what we are doing.
5053 */
5054 refresh_cpu_vm_stats(cpu);
5055 }
5056 return NOTIFY_OK;
5057}
5058
5059void __init page_alloc_init(void)
5060{
5061 hotcpu_notifier(page_alloc_cpu_notify, 0);
5062}
5063
5064/*
5065 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5066 * or min_free_kbytes changes.
5067 */
5068static void calculate_totalreserve_pages(void)
5069{
5070 struct pglist_data *pgdat;
5071 unsigned long reserve_pages = 0;
5072 enum zone_type i, j;
5073
5074 for_each_online_pgdat(pgdat) {
5075 for (i = 0; i < MAX_NR_ZONES; i++) {
5076 struct zone *zone = pgdat->node_zones + i;
5077 unsigned long max = 0;
5078
5079 /* Find valid and maximum lowmem_reserve in the zone */
5080 for (j = i; j < MAX_NR_ZONES; j++) {
5081 if (zone->lowmem_reserve[j] > max)
5082 max = zone->lowmem_reserve[j];
5083 }
5084
5085 /* we treat the high watermark as reserved pages. */
5086 max += high_wmark_pages(zone);
5087
5088 if (max > zone->present_pages)
5089 max = zone->present_pages;
5090 reserve_pages += max;
5091 /*
5092 * Lowmem reserves are not available to
5093 * GFP_HIGHUSER page cache allocations and
5094 * kswapd tries to balance zones to their high
5095 * watermark. As a result, neither should be
5096 * regarded as dirtyable memory, to prevent a
5097 * situation where reclaim has to clean pages
5098 * in order to balance the zones.
5099 */
5100 zone->dirty_balance_reserve = max;
5101 }
5102 }
5103 dirty_balance_reserve = reserve_pages;
5104 totalreserve_pages = reserve_pages;
5105}
5106
5107/*
5108 * setup_per_zone_lowmem_reserve - called whenever
5109 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5110 * has a correct pages reserved value, so an adequate number of
5111 * pages are left in the zone after a successful __alloc_pages().
5112 */
5113static void setup_per_zone_lowmem_reserve(void)
5114{
5115 struct pglist_data *pgdat;
5116 enum zone_type j, idx;
5117
5118 for_each_online_pgdat(pgdat) {
5119 for (j = 0; j < MAX_NR_ZONES; j++) {
5120 struct zone *zone = pgdat->node_zones + j;
5121 unsigned long present_pages = zone->present_pages;
5122
5123 zone->lowmem_reserve[j] = 0;
5124
5125 idx = j;
5126 while (idx) {
5127 struct zone *lower_zone;
5128
5129 idx--;
5130
5131 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5132 sysctl_lowmem_reserve_ratio[idx] = 1;
5133
5134 lower_zone = pgdat->node_zones + idx;
5135 lower_zone->lowmem_reserve[j] = present_pages /
5136 sysctl_lowmem_reserve_ratio[idx];
5137 present_pages += lower_zone->present_pages;
5138 }
5139 }
5140 }
5141
5142 /* update totalreserve_pages */
5143 calculate_totalreserve_pages();
5144}
5145
5146static void __setup_per_zone_wmarks(void)
5147{
5148 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5149 unsigned long lowmem_pages = 0;
5150 struct zone *zone;
5151 unsigned long flags;
5152
5153 /* Calculate total number of !ZONE_HIGHMEM pages */
5154 for_each_zone(zone) {
5155 if (!is_highmem(zone))
5156 lowmem_pages += zone->present_pages;
5157 }
5158
5159 for_each_zone(zone) {
5160 u64 tmp;
5161
5162 spin_lock_irqsave(&zone->lock, flags);
5163 tmp = (u64)pages_min * zone->present_pages;
5164 do_div(tmp, lowmem_pages);
5165 if (is_highmem(zone)) {
5166 /*
5167 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5168 * need highmem pages, so cap pages_min to a small
5169 * value here.
5170 *
5171 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5172 * deltas controls asynch page reclaim, and so should
5173 * not be capped for highmem.
5174 */
5175 int min_pages;
5176
5177 min_pages = zone->present_pages / 1024;
5178 if (min_pages < SWAP_CLUSTER_MAX)
5179 min_pages = SWAP_CLUSTER_MAX;
5180 if (min_pages > 128)
5181 min_pages = 128;
5182 zone->watermark[WMARK_MIN] = min_pages;
5183 } else {
5184 /*
5185 * If it's a lowmem zone, reserve a number of pages
5186 * proportionate to the zone's size.
5187 */
5188 zone->watermark[WMARK_MIN] = tmp;
5189 }
5190
5191 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5192 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5193
5194 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5195 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5196 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5197
5198 setup_zone_migrate_reserve(zone);
5199 spin_unlock_irqrestore(&zone->lock, flags);
5200 }
5201
5202 /* update totalreserve_pages */
5203 calculate_totalreserve_pages();
5204}
5205
5206/**
5207 * setup_per_zone_wmarks - called when min_free_kbytes changes
5208 * or when memory is hot-{added|removed}
5209 *
5210 * Ensures that the watermark[min,low,high] values for each zone are set
5211 * correctly with respect to min_free_kbytes.
5212 */
5213void setup_per_zone_wmarks(void)
5214{
5215 mutex_lock(&zonelists_mutex);
5216 __setup_per_zone_wmarks();
5217 mutex_unlock(&zonelists_mutex);
5218}
5219
5220/*
5221 * The inactive anon list should be small enough that the VM never has to
5222 * do too much work, but large enough that each inactive page has a chance
5223 * to be referenced again before it is swapped out.
5224 *
5225 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5226 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5227 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5228 * the anonymous pages are kept on the inactive list.
5229 *
5230 * total target max
5231 * memory ratio inactive anon
5232 * -------------------------------------
5233 * 10MB 1 5MB
5234 * 100MB 1 50MB
5235 * 1GB 3 250MB
5236 * 10GB 10 0.9GB
5237 * 100GB 31 3GB
5238 * 1TB 101 10GB
5239 * 10TB 320 32GB
5240 */
5241static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5242{
5243 unsigned int gb, ratio;
5244
5245 /* Zone size in gigabytes */
5246 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5247 if (gb)
5248 ratio = int_sqrt(10 * gb);
5249 else
5250 ratio = 1;
5251
5252 zone->inactive_ratio = ratio;
5253}
5254
5255static void __meminit setup_per_zone_inactive_ratio(void)
5256{
5257 struct zone *zone;
5258
5259 for_each_zone(zone)
5260 calculate_zone_inactive_ratio(zone);
5261}
5262
5263/*
5264 * Initialise min_free_kbytes.
5265 *
5266 * For small machines we want it small (128k min). For large machines
5267 * we want it large (64MB max). But it is not linear, because network
5268 * bandwidth does not increase linearly with machine size. We use
5269 *
5270 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5271 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5272 *
5273 * which yields
5274 *
5275 * 16MB: 512k
5276 * 32MB: 724k
5277 * 64MB: 1024k
5278 * 128MB: 1448k
5279 * 256MB: 2048k
5280 * 512MB: 2896k
5281 * 1024MB: 4096k
5282 * 2048MB: 5792k
5283 * 4096MB: 8192k
5284 * 8192MB: 11584k
5285 * 16384MB: 16384k
5286 */
5287int __meminit init_per_zone_wmark_min(void)
5288{
5289 unsigned long lowmem_kbytes;
5290
5291 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5292
5293 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5294 if (min_free_kbytes < 128)
5295 min_free_kbytes = 128;
5296 if (min_free_kbytes > 65536)
5297 min_free_kbytes = 65536;
5298 setup_per_zone_wmarks();
5299 refresh_zone_stat_thresholds();
5300 setup_per_zone_lowmem_reserve();
5301 setup_per_zone_inactive_ratio();
5302 return 0;
5303}
5304module_init(init_per_zone_wmark_min)
5305
5306/*
5307 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5308 * that we can call two helper functions whenever min_free_kbytes
5309 * changes.
5310 */
5311int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5312 void __user *buffer, size_t *length, loff_t *ppos)
5313{
5314 proc_dointvec(table, write, buffer, length, ppos);
5315 if (write)
5316 setup_per_zone_wmarks();
5317 return 0;
5318}
5319
5320#ifdef CONFIG_NUMA
5321int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5322 void __user *buffer, size_t *length, loff_t *ppos)
5323{
5324 struct zone *zone;
5325 int rc;
5326
5327 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5328 if (rc)
5329 return rc;
5330
5331 for_each_zone(zone)
5332 zone->min_unmapped_pages = (zone->present_pages *
5333 sysctl_min_unmapped_ratio) / 100;
5334 return 0;
5335}
5336
5337int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5338 void __user *buffer, size_t *length, loff_t *ppos)
5339{
5340 struct zone *zone;
5341 int rc;
5342
5343 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5344 if (rc)
5345 return rc;
5346
5347 for_each_zone(zone)
5348 zone->min_slab_pages = (zone->present_pages *
5349 sysctl_min_slab_ratio) / 100;
5350 return 0;
5351}
5352#endif
5353
5354/*
5355 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5356 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5357 * whenever sysctl_lowmem_reserve_ratio changes.
5358 *
5359 * The reserve ratio obviously has absolutely no relation with the
5360 * minimum watermarks. The lowmem reserve ratio can only make sense
5361 * if in function of the boot time zone sizes.
5362 */
5363int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5364 void __user *buffer, size_t *length, loff_t *ppos)
5365{
5366 proc_dointvec_minmax(table, write, buffer, length, ppos);
5367 setup_per_zone_lowmem_reserve();
5368 return 0;
5369}
5370
5371/*
5372 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5373 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5374 * can have before it gets flushed back to buddy allocator.
5375 */
5376
5377int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5378 void __user *buffer, size_t *length, loff_t *ppos)
5379{
5380 struct zone *zone;
5381 unsigned int cpu;
5382 int ret;
5383
5384 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5385 if (!write || (ret < 0))
5386 return ret;
5387 for_each_populated_zone(zone) {
5388 for_each_possible_cpu(cpu) {
5389 unsigned long high;
5390 high = zone->present_pages / percpu_pagelist_fraction;
5391 setup_pagelist_highmark(
5392 per_cpu_ptr(zone->pageset, cpu), high);
5393 }
5394 }
5395 return 0;
5396}
5397
5398int hashdist = HASHDIST_DEFAULT;
5399
5400#ifdef CONFIG_NUMA
5401static int __init set_hashdist(char *str)
5402{
5403 if (!str)
5404 return 0;
5405 hashdist = simple_strtoul(str, &str, 0);
5406 return 1;
5407}
5408__setup("hashdist=", set_hashdist);
5409#endif
5410
5411/*
5412 * allocate a large system hash table from bootmem
5413 * - it is assumed that the hash table must contain an exact power-of-2
5414 * quantity of entries
5415 * - limit is the number of hash buckets, not the total allocation size
5416 */
5417void *__init alloc_large_system_hash(const char *tablename,
5418 unsigned long bucketsize,
5419 unsigned long numentries,
5420 int scale,
5421 int flags,
5422 unsigned int *_hash_shift,
5423 unsigned int *_hash_mask,
5424 unsigned long low_limit,
5425 unsigned long high_limit)
5426{
5427 unsigned long long max = high_limit;
5428 unsigned long log2qty, size;
5429 void *table = NULL;
5430
5431 /* allow the kernel cmdline to have a say */
5432 if (!numentries) {
5433 /* round applicable memory size up to nearest megabyte */
5434 numentries = nr_kernel_pages;
5435 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5436 numentries >>= 20 - PAGE_SHIFT;
5437 numentries <<= 20 - PAGE_SHIFT;
5438
5439 /* limit to 1 bucket per 2^scale bytes of low memory */
5440 if (scale > PAGE_SHIFT)
5441 numentries >>= (scale - PAGE_SHIFT);
5442 else
5443 numentries <<= (PAGE_SHIFT - scale);
5444
5445 /* Make sure we've got at least a 0-order allocation.. */
5446 if (unlikely(flags & HASH_SMALL)) {
5447 /* Makes no sense without HASH_EARLY */
5448 WARN_ON(!(flags & HASH_EARLY));
5449 if (!(numentries >> *_hash_shift)) {
5450 numentries = 1UL << *_hash_shift;
5451 BUG_ON(!numentries);
5452 }
5453 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5454 numentries = PAGE_SIZE / bucketsize;
5455 }
5456 numentries = roundup_pow_of_two(numentries);
5457
5458 /* limit allocation size to 1/16 total memory by default */
5459 if (max == 0) {
5460 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5461 do_div(max, bucketsize);
5462 }
5463 max = min(max, 0x80000000ULL);
5464
5465 if (numentries < low_limit)
5466 numentries = low_limit;
5467 if (numentries > max)
5468 numentries = max;
5469
5470 log2qty = ilog2(numentries);
5471
5472 do {
5473 size = bucketsize << log2qty;
5474 if (flags & HASH_EARLY)
5475 table = alloc_bootmem_nopanic(size);
5476 else if (hashdist)
5477 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5478 else {
5479 /*
5480 * If bucketsize is not a power-of-two, we may free
5481 * some pages at the end of hash table which
5482 * alloc_pages_exact() automatically does
5483 */
5484 if (get_order(size) < MAX_ORDER) {
5485 table = alloc_pages_exact(size, GFP_ATOMIC);
5486 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5487 }
5488 }
5489 } while (!table && size > PAGE_SIZE && --log2qty);
5490
5491 if (!table)
5492 panic("Failed to allocate %s hash table\n", tablename);
5493
5494 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5495 tablename,
5496 (1UL << log2qty),
5497 ilog2(size) - PAGE_SHIFT,
5498 size);
5499
5500 if (_hash_shift)
5501 *_hash_shift = log2qty;
5502 if (_hash_mask)
5503 *_hash_mask = (1 << log2qty) - 1;
5504
5505 return table;
5506}
5507
5508/* Return a pointer to the bitmap storing bits affecting a block of pages */
5509static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5510 unsigned long pfn)
5511{
5512#ifdef CONFIG_SPARSEMEM
5513 return __pfn_to_section(pfn)->pageblock_flags;
5514#else
5515 return zone->pageblock_flags;
5516#endif /* CONFIG_SPARSEMEM */
5517}
5518
5519static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5520{
5521#ifdef CONFIG_SPARSEMEM
5522 pfn &= (PAGES_PER_SECTION-1);
5523 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5524#else
5525 pfn = pfn - zone->zone_start_pfn;
5526 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5527#endif /* CONFIG_SPARSEMEM */
5528}
5529
5530/**
5531 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5532 * @page: The page within the block of interest
5533 * @start_bitidx: The first bit of interest to retrieve
5534 * @end_bitidx: The last bit of interest
5535 * returns pageblock_bits flags
5536 */
5537unsigned long get_pageblock_flags_group(struct page *page,
5538 int start_bitidx, int end_bitidx)
5539{
5540 struct zone *zone;
5541 unsigned long *bitmap;
5542 unsigned long pfn, bitidx;
5543 unsigned long flags = 0;
5544 unsigned long value = 1;
5545
5546 zone = page_zone(page);
5547 pfn = page_to_pfn(page);
5548 bitmap = get_pageblock_bitmap(zone, pfn);
5549 bitidx = pfn_to_bitidx(zone, pfn);
5550
5551 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5552 if (test_bit(bitidx + start_bitidx, bitmap))
5553 flags |= value;
5554
5555 return flags;
5556}
5557
5558/**
5559 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5560 * @page: The page within the block of interest
5561 * @start_bitidx: The first bit of interest
5562 * @end_bitidx: The last bit of interest
5563 * @flags: The flags to set
5564 */
5565void set_pageblock_flags_group(struct page *page, unsigned long flags,
5566 int start_bitidx, int end_bitidx)
5567{
5568 struct zone *zone;
5569 unsigned long *bitmap;
5570 unsigned long pfn, bitidx;
5571 unsigned long value = 1;
5572
5573 zone = page_zone(page);
5574 pfn = page_to_pfn(page);
5575 bitmap = get_pageblock_bitmap(zone, pfn);
5576 bitidx = pfn_to_bitidx(zone, pfn);
5577 VM_BUG_ON(pfn < zone->zone_start_pfn);
5578 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5579
5580 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5581 if (flags & value)
5582 __set_bit(bitidx + start_bitidx, bitmap);
5583 else
5584 __clear_bit(bitidx + start_bitidx, bitmap);
5585}
5586
5587/*
5588 * This function checks whether pageblock includes unmovable pages or not.
5589 * If @count is not zero, it is okay to include less @count unmovable pages
5590 *
5591 * PageLRU check wihtout isolation or lru_lock could race so that
5592 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5593 * expect this function should be exact.
5594 */
5595bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
5596{
5597 unsigned long pfn, iter, found;
5598 int mt;
5599
5600 /*
5601 * For avoiding noise data, lru_add_drain_all() should be called
5602 * If ZONE_MOVABLE, the zone never contains unmovable pages
5603 */
5604 if (zone_idx(zone) == ZONE_MOVABLE)
5605 return false;
5606 mt = get_pageblock_migratetype(page);
5607 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5608 return false;
5609
5610 pfn = page_to_pfn(page);
5611 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5612 unsigned long check = pfn + iter;
5613
5614 if (!pfn_valid_within(check))
5615 continue;
5616
5617 page = pfn_to_page(check);
5618 /*
5619 * We can't use page_count without pin a page
5620 * because another CPU can free compound page.
5621 * This check already skips compound tails of THP
5622 * because their page->_count is zero at all time.
5623 */
5624 if (!atomic_read(&page->_count)) {
5625 if (PageBuddy(page))
5626 iter += (1 << page_order(page)) - 1;
5627 continue;
5628 }
5629
5630 if (!PageLRU(page))
5631 found++;
5632 /*
5633 * If there are RECLAIMABLE pages, we need to check it.
5634 * But now, memory offline itself doesn't call shrink_slab()
5635 * and it still to be fixed.
5636 */
5637 /*
5638 * If the page is not RAM, page_count()should be 0.
5639 * we don't need more check. This is an _used_ not-movable page.
5640 *
5641 * The problematic thing here is PG_reserved pages. PG_reserved
5642 * is set to both of a memory hole page and a _used_ kernel
5643 * page at boot.
5644 */
5645 if (found > count)
5646 return true;
5647 }
5648 return false;
5649}
5650
5651bool is_pageblock_removable_nolock(struct page *page)
5652{
5653 struct zone *zone;
5654 unsigned long pfn;
5655
5656 /*
5657 * We have to be careful here because we are iterating over memory
5658 * sections which are not zone aware so we might end up outside of
5659 * the zone but still within the section.
5660 * We have to take care about the node as well. If the node is offline
5661 * its NODE_DATA will be NULL - see page_zone.
5662 */
5663 if (!node_online(page_to_nid(page)))
5664 return false;
5665
5666 zone = page_zone(page);
5667 pfn = page_to_pfn(page);
5668 if (zone->zone_start_pfn > pfn ||
5669 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5670 return false;
5671
5672 return !has_unmovable_pages(zone, page, 0);
5673}
5674
5675#ifdef CONFIG_CMA
5676
5677static unsigned long pfn_max_align_down(unsigned long pfn)
5678{
5679 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5680 pageblock_nr_pages) - 1);
5681}
5682
5683static unsigned long pfn_max_align_up(unsigned long pfn)
5684{
5685 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5686 pageblock_nr_pages));
5687}
5688
5689/* [start, end) must belong to a single zone. */
5690static int __alloc_contig_migrate_range(struct compact_control *cc,
5691 unsigned long start, unsigned long end)
5692{
5693 /* This function is based on compact_zone() from compaction.c. */
5694 unsigned long nr_reclaimed;
5695 unsigned long pfn = start;
5696 unsigned int tries = 0;
5697 int ret = 0;
5698
5699 migrate_prep_local();
5700
5701 while (pfn < end || !list_empty(&cc->migratepages)) {
5702 if (fatal_signal_pending(current)) {
5703 ret = -EINTR;
5704 break;
5705 }
5706
5707 if (list_empty(&cc->migratepages)) {
5708 cc->nr_migratepages = 0;
5709 pfn = isolate_migratepages_range(cc->zone, cc,
5710 pfn, end, true);
5711 if (!pfn) {
5712 ret = -EINTR;
5713 break;
5714 }
5715 tries = 0;
5716 } else if (++tries == 5) {
5717 ret = ret < 0 ? ret : -EBUSY;
5718 break;
5719 }
5720
5721 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5722 &cc->migratepages);
5723 cc->nr_migratepages -= nr_reclaimed;
5724
5725 ret = migrate_pages(&cc->migratepages,
5726 alloc_migrate_target,
5727 0, false, MIGRATE_SYNC);
5728 }
5729
5730 putback_lru_pages(&cc->migratepages);
5731 return ret > 0 ? 0 : ret;
5732}
5733
5734/*
5735 * Update zone's cma pages counter used for watermark level calculation.
5736 */
5737static inline void __update_cma_watermarks(struct zone *zone, int count)
5738{
5739 unsigned long flags;
5740 spin_lock_irqsave(&zone->lock, flags);
5741 zone->min_cma_pages += count;
5742 spin_unlock_irqrestore(&zone->lock, flags);
5743 setup_per_zone_wmarks();
5744}
5745
5746/*
5747 * Trigger memory pressure bump to reclaim some pages in order to be able to
5748 * allocate 'count' pages in single page units. Does similar work as
5749 *__alloc_pages_slowpath() function.
5750 */
5751static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5752{
5753 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5754 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5755 int did_some_progress = 0;
5756 int order = 1;
5757
5758 /*
5759 * Increase level of watermarks to force kswapd do his job
5760 * to stabilise at new watermark level.
5761 */
5762 __update_cma_watermarks(zone, count);
5763
5764 /* Obey watermarks as if the page was being allocated */
5765 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5766 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5767
5768 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5769 NULL);
5770 if (!did_some_progress) {
5771 /* Exhausted what can be done so it's blamo time */
5772 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5773 }
5774 }
5775
5776 /* Restore original watermark levels. */
5777 __update_cma_watermarks(zone, -count);
5778
5779 return count;
5780}
5781
5782/**
5783 * alloc_contig_range() -- tries to allocate given range of pages
5784 * @start: start PFN to allocate
5785 * @end: one-past-the-last PFN to allocate
5786 * @migratetype: migratetype of the underlaying pageblocks (either
5787 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5788 * in range must have the same migratetype and it must
5789 * be either of the two.
5790 *
5791 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5792 * aligned, however it's the caller's responsibility to guarantee that
5793 * we are the only thread that changes migrate type of pageblocks the
5794 * pages fall in.
5795 *
5796 * The PFN range must belong to a single zone.
5797 *
5798 * Returns zero on success or negative error code. On success all
5799 * pages which PFN is in [start, end) are allocated for the caller and
5800 * need to be freed with free_contig_range().
5801 */
5802int alloc_contig_range(unsigned long start, unsigned long end,
5803 unsigned migratetype)
5804{
5805 struct zone *zone = page_zone(pfn_to_page(start));
5806 unsigned long outer_start, outer_end;
5807 int ret = 0, order;
5808
5809 struct compact_control cc = {
5810 .nr_migratepages = 0,
5811 .order = -1,
5812 .zone = page_zone(pfn_to_page(start)),
5813 .sync = true,
5814 .ignore_skip_hint = true,
5815 };
5816 INIT_LIST_HEAD(&cc.migratepages);
5817
5818 /*
5819 * What we do here is we mark all pageblocks in range as
5820 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5821 * have different sizes, and due to the way page allocator
5822 * work, we align the range to biggest of the two pages so
5823 * that page allocator won't try to merge buddies from
5824 * different pageblocks and change MIGRATE_ISOLATE to some
5825 * other migration type.
5826 *
5827 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5828 * migrate the pages from an unaligned range (ie. pages that
5829 * we are interested in). This will put all the pages in
5830 * range back to page allocator as MIGRATE_ISOLATE.
5831 *
5832 * When this is done, we take the pages in range from page
5833 * allocator removing them from the buddy system. This way
5834 * page allocator will never consider using them.
5835 *
5836 * This lets us mark the pageblocks back as
5837 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5838 * aligned range but not in the unaligned, original range are
5839 * put back to page allocator so that buddy can use them.
5840 */
5841
5842 ret = start_isolate_page_range(pfn_max_align_down(start),
5843 pfn_max_align_up(end), migratetype);
5844 if (ret)
5845 return ret;
5846
5847 ret = __alloc_contig_migrate_range(&cc, start, end);
5848 if (ret)
5849 goto done;
5850
5851 /*
5852 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5853 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5854 * more, all pages in [start, end) are free in page allocator.
5855 * What we are going to do is to allocate all pages from
5856 * [start, end) (that is remove them from page allocator).
5857 *
5858 * The only problem is that pages at the beginning and at the
5859 * end of interesting range may be not aligned with pages that
5860 * page allocator holds, ie. they can be part of higher order
5861 * pages. Because of this, we reserve the bigger range and
5862 * once this is done free the pages we are not interested in.
5863 *
5864 * We don't have to hold zone->lock here because the pages are
5865 * isolated thus they won't get removed from buddy.
5866 */
5867
5868 lru_add_drain_all();
5869 drain_all_pages();
5870
5871 order = 0;
5872 outer_start = start;
5873 while (!PageBuddy(pfn_to_page(outer_start))) {
5874 if (++order >= MAX_ORDER) {
5875 ret = -EBUSY;
5876 goto done;
5877 }
5878 outer_start &= ~0UL << order;
5879 }
5880
5881 /* Make sure the range is really isolated. */
5882 if (test_pages_isolated(outer_start, end)) {
5883 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5884 outer_start, end);
5885 ret = -EBUSY;
5886 goto done;
5887 }
5888
5889 /*
5890 * Reclaim enough pages to make sure that contiguous allocation
5891 * will not starve the system.
5892 */
5893 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5894
5895 /* Grab isolated pages from freelists. */
5896 outer_end = isolate_freepages_range(&cc, outer_start, end);
5897 if (!outer_end) {
5898 ret = -EBUSY;
5899 goto done;
5900 }
5901
5902 /* Free head and tail (if any) */
5903 if (start != outer_start)
5904 free_contig_range(outer_start, start - outer_start);
5905 if (end != outer_end)
5906 free_contig_range(end, outer_end - end);
5907
5908done:
5909 undo_isolate_page_range(pfn_max_align_down(start),
5910 pfn_max_align_up(end), migratetype);
5911 return ret;
5912}
5913
5914void free_contig_range(unsigned long pfn, unsigned nr_pages)
5915{
5916 for (; nr_pages--; ++pfn)
5917 __free_page(pfn_to_page(pfn));
5918}
5919#endif
5920
5921#ifdef CONFIG_MEMORY_HOTPLUG
5922static int __meminit __zone_pcp_update(void *data)
5923{
5924 struct zone *zone = data;
5925 int cpu;
5926 unsigned long batch = zone_batchsize(zone), flags;
5927
5928 for_each_possible_cpu(cpu) {
5929 struct per_cpu_pageset *pset;
5930 struct per_cpu_pages *pcp;
5931
5932 pset = per_cpu_ptr(zone->pageset, cpu);
5933 pcp = &pset->pcp;
5934
5935 local_irq_save(flags);
5936 if (pcp->count > 0)
5937 free_pcppages_bulk(zone, pcp->count, pcp);
5938 drain_zonestat(zone, pset);
5939 setup_pageset(pset, batch);
5940 local_irq_restore(flags);
5941 }
5942 return 0;
5943}
5944
5945void __meminit zone_pcp_update(struct zone *zone)
5946{
5947 stop_machine(__zone_pcp_update, zone, NULL);
5948}
5949#endif
5950
5951#ifdef CONFIG_MEMORY_HOTREMOVE
5952void zone_pcp_reset(struct zone *zone)
5953{
5954 unsigned long flags;
5955 int cpu;
5956 struct per_cpu_pageset *pset;
5957
5958 /* avoid races with drain_pages() */
5959 local_irq_save(flags);
5960 if (zone->pageset != &boot_pageset) {
5961 for_each_online_cpu(cpu) {
5962 pset = per_cpu_ptr(zone->pageset, cpu);
5963 drain_zonestat(zone, pset);
5964 }
5965 free_percpu(zone->pageset);
5966 zone->pageset = &boot_pageset;
5967 }
5968 local_irq_restore(flags);
5969}
5970
5971/*
5972 * All pages in the range must be isolated before calling this.
5973 */
5974void
5975__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5976{
5977 struct page *page;
5978 struct zone *zone;
5979 int order, i;
5980 unsigned long pfn;
5981 unsigned long flags;
5982 /* find the first valid pfn */
5983 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5984 if (pfn_valid(pfn))
5985 break;
5986 if (pfn == end_pfn)
5987 return;
5988 zone = page_zone(pfn_to_page(pfn));
5989 spin_lock_irqsave(&zone->lock, flags);
5990 pfn = start_pfn;
5991 while (pfn < end_pfn) {
5992 if (!pfn_valid(pfn)) {
5993 pfn++;
5994 continue;
5995 }
5996 page = pfn_to_page(pfn);
5997 BUG_ON(page_count(page));
5998 BUG_ON(!PageBuddy(page));
5999 order = page_order(page);
6000#ifdef CONFIG_DEBUG_VM
6001 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6002 pfn, 1 << order, end_pfn);
6003#endif
6004 list_del(&page->lru);
6005 rmv_page_order(page);
6006 zone->free_area[order].nr_free--;
6007 __mod_zone_page_state(zone, NR_FREE_PAGES,
6008 - (1UL << order));
6009 for (i = 0; i < (1 << order); i++)
6010 SetPageReserved((page+i));
6011 pfn += (1 << order);
6012 }
6013 spin_unlock_irqrestore(&zone->lock, flags);
6014}
6015#endif
6016
6017#ifdef CONFIG_MEMORY_FAILURE
6018bool is_free_buddy_page(struct page *page)
6019{
6020 struct zone *zone = page_zone(page);
6021 unsigned long pfn = page_to_pfn(page);
6022 unsigned long flags;
6023 int order;
6024
6025 spin_lock_irqsave(&zone->lock, flags);
6026 for (order = 0; order < MAX_ORDER; order++) {
6027 struct page *page_head = page - (pfn & ((1 << order) - 1));
6028
6029 if (PageBuddy(page_head) && page_order(page_head) >= order)
6030 break;
6031 }
6032 spin_unlock_irqrestore(&zone->lock, flags);
6033
6034 return order < MAX_ORDER;
6035}
6036#endif
6037
6038static const struct trace_print_flags pageflag_names[] = {
6039 {1UL << PG_locked, "locked" },
6040 {1UL << PG_error, "error" },
6041 {1UL << PG_referenced, "referenced" },
6042 {1UL << PG_uptodate, "uptodate" },
6043 {1UL << PG_dirty, "dirty" },
6044 {1UL << PG_lru, "lru" },
6045 {1UL << PG_active, "active" },
6046 {1UL << PG_slab, "slab" },
6047 {1UL << PG_owner_priv_1, "owner_priv_1" },
6048 {1UL << PG_arch_1, "arch_1" },
6049 {1UL << PG_reserved, "reserved" },
6050 {1UL << PG_private, "private" },
6051 {1UL << PG_private_2, "private_2" },
6052 {1UL << PG_writeback, "writeback" },
6053#ifdef CONFIG_PAGEFLAGS_EXTENDED
6054 {1UL << PG_head, "head" },
6055 {1UL << PG_tail, "tail" },
6056#else
6057 {1UL << PG_compound, "compound" },
6058#endif
6059 {1UL << PG_swapcache, "swapcache" },
6060 {1UL << PG_mappedtodisk, "mappedtodisk" },
6061 {1UL << PG_reclaim, "reclaim" },
6062 {1UL << PG_swapbacked, "swapbacked" },
6063 {1UL << PG_unevictable, "unevictable" },
6064#ifdef CONFIG_MMU
6065 {1UL << PG_mlocked, "mlocked" },
6066#endif
6067#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6068 {1UL << PG_uncached, "uncached" },
6069#endif
6070#ifdef CONFIG_MEMORY_FAILURE
6071 {1UL << PG_hwpoison, "hwpoison" },
6072#endif
6073#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6074 {1UL << PG_compound_lock, "compound_lock" },
6075#endif
6076};
6077
6078static void dump_page_flags(unsigned long flags)
6079{
6080 const char *delim = "";
6081 unsigned long mask;
6082 int i;
6083
6084 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6085
6086 printk(KERN_ALERT "page flags: %#lx(", flags);
6087
6088 /* remove zone id */
6089 flags &= (1UL << NR_PAGEFLAGS) - 1;
6090
6091 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6092
6093 mask = pageflag_names[i].mask;
6094 if ((flags & mask) != mask)
6095 continue;
6096
6097 flags &= ~mask;
6098 printk("%s%s", delim, pageflag_names[i].name);
6099 delim = "|";
6100 }
6101
6102 /* check for left over flags */
6103 if (flags)
6104 printk("%s%#lx", delim, flags);
6105
6106 printk(")\n");
6107}
6108
6109void dump_page(struct page *page)
6110{
6111 printk(KERN_ALERT
6112 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6113 page, atomic_read(&page->_count), page_mapcount(page),
6114 page->mapping, page->index);
6115 dump_page_flags(page->flags);
6116 mem_cgroup_print_bad_page(page);
6117}