at v3.7-rc8 87 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/pm_qos.h> 29#include <linux/timer.h> 30#include <linux/bug.h> 31#include <linux/delay.h> 32#include <linux/atomic.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#include <net/dsa.h> 45#ifdef CONFIG_DCB 46#include <net/dcbnl.h> 47#endif 48#include <net/netprio_cgroup.h> 49 50#include <linux/netdev_features.h> 51#include <linux/neighbour.h> 52#include <uapi/linux/netdevice.h> 53 54struct netpoll_info; 55struct device; 56struct phy_device; 57/* 802.11 specific */ 58struct wireless_dev; 59 /* source back-compat hooks */ 60#define SET_ETHTOOL_OPS(netdev,ops) \ 61 ( (netdev)->ethtool_ops = (ops) ) 62 63/* hardware address assignment types */ 64#define NET_ADDR_PERM 0 /* address is permanent (default) */ 65#define NET_ADDR_RANDOM 1 /* address is generated randomly */ 66#define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 67 68/* Backlog congestion levels */ 69#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 70#define NET_RX_DROP 1 /* packet dropped */ 71 72/* 73 * Transmit return codes: transmit return codes originate from three different 74 * namespaces: 75 * 76 * - qdisc return codes 77 * - driver transmit return codes 78 * - errno values 79 * 80 * Drivers are allowed to return any one of those in their hard_start_xmit() 81 * function. Real network devices commonly used with qdiscs should only return 82 * the driver transmit return codes though - when qdiscs are used, the actual 83 * transmission happens asynchronously, so the value is not propagated to 84 * higher layers. Virtual network devices transmit synchronously, in this case 85 * the driver transmit return codes are consumed by dev_queue_xmit(), all 86 * others are propagated to higher layers. 87 */ 88 89/* qdisc ->enqueue() return codes. */ 90#define NET_XMIT_SUCCESS 0x00 91#define NET_XMIT_DROP 0x01 /* skb dropped */ 92#define NET_XMIT_CN 0x02 /* congestion notification */ 93#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 94#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 95 96/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 97 * indicates that the device will soon be dropping packets, or already drops 98 * some packets of the same priority; prompting us to send less aggressively. */ 99#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 100#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 101 102/* Driver transmit return codes */ 103#define NETDEV_TX_MASK 0xf0 104 105enum netdev_tx { 106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 107 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 110}; 111typedef enum netdev_tx netdev_tx_t; 112 113/* 114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 116 */ 117static inline bool dev_xmit_complete(int rc) 118{ 119 /* 120 * Positive cases with an skb consumed by a driver: 121 * - successful transmission (rc == NETDEV_TX_OK) 122 * - error while transmitting (rc < 0) 123 * - error while queueing to a different device (rc & NET_XMIT_MASK) 124 */ 125 if (likely(rc < NET_XMIT_MASK)) 126 return true; 127 128 return false; 129} 130 131/* 132 * Compute the worst case header length according to the protocols 133 * used. 134 */ 135 136#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 137# if defined(CONFIG_MAC80211_MESH) 138# define LL_MAX_HEADER 128 139# else 140# define LL_MAX_HEADER 96 141# endif 142#elif IS_ENABLED(CONFIG_TR) 143# define LL_MAX_HEADER 48 144#else 145# define LL_MAX_HEADER 32 146#endif 147 148#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 149 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 150#define MAX_HEADER LL_MAX_HEADER 151#else 152#define MAX_HEADER (LL_MAX_HEADER + 48) 153#endif 154 155/* 156 * Old network device statistics. Fields are native words 157 * (unsigned long) so they can be read and written atomically. 158 */ 159 160struct net_device_stats { 161 unsigned long rx_packets; 162 unsigned long tx_packets; 163 unsigned long rx_bytes; 164 unsigned long tx_bytes; 165 unsigned long rx_errors; 166 unsigned long tx_errors; 167 unsigned long rx_dropped; 168 unsigned long tx_dropped; 169 unsigned long multicast; 170 unsigned long collisions; 171 unsigned long rx_length_errors; 172 unsigned long rx_over_errors; 173 unsigned long rx_crc_errors; 174 unsigned long rx_frame_errors; 175 unsigned long rx_fifo_errors; 176 unsigned long rx_missed_errors; 177 unsigned long tx_aborted_errors; 178 unsigned long tx_carrier_errors; 179 unsigned long tx_fifo_errors; 180 unsigned long tx_heartbeat_errors; 181 unsigned long tx_window_errors; 182 unsigned long rx_compressed; 183 unsigned long tx_compressed; 184}; 185 186 187#include <linux/cache.h> 188#include <linux/skbuff.h> 189 190#ifdef CONFIG_RPS 191#include <linux/static_key.h> 192extern struct static_key rps_needed; 193#endif 194 195struct neighbour; 196struct neigh_parms; 197struct sk_buff; 198 199struct netdev_hw_addr { 200 struct list_head list; 201 unsigned char addr[MAX_ADDR_LEN]; 202 unsigned char type; 203#define NETDEV_HW_ADDR_T_LAN 1 204#define NETDEV_HW_ADDR_T_SAN 2 205#define NETDEV_HW_ADDR_T_SLAVE 3 206#define NETDEV_HW_ADDR_T_UNICAST 4 207#define NETDEV_HW_ADDR_T_MULTICAST 5 208 bool synced; 209 bool global_use; 210 int refcount; 211 struct rcu_head rcu_head; 212}; 213 214struct netdev_hw_addr_list { 215 struct list_head list; 216 int count; 217}; 218 219#define netdev_hw_addr_list_count(l) ((l)->count) 220#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 221#define netdev_hw_addr_list_for_each(ha, l) \ 222 list_for_each_entry(ha, &(l)->list, list) 223 224#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 225#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 226#define netdev_for_each_uc_addr(ha, dev) \ 227 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 228 229#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 230#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 231#define netdev_for_each_mc_addr(ha, dev) \ 232 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 233 234struct hh_cache { 235 u16 hh_len; 236 u16 __pad; 237 seqlock_t hh_lock; 238 239 /* cached hardware header; allow for machine alignment needs. */ 240#define HH_DATA_MOD 16 241#define HH_DATA_OFF(__len) \ 242 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 243#define HH_DATA_ALIGN(__len) \ 244 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 245 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 246}; 247 248/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 249 * Alternative is: 250 * dev->hard_header_len ? (dev->hard_header_len + 251 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 252 * 253 * We could use other alignment values, but we must maintain the 254 * relationship HH alignment <= LL alignment. 255 */ 256#define LL_RESERVED_SPACE(dev) \ 257 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 258#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 259 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 260 261struct header_ops { 262 int (*create) (struct sk_buff *skb, struct net_device *dev, 263 unsigned short type, const void *daddr, 264 const void *saddr, unsigned int len); 265 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 266 int (*rebuild)(struct sk_buff *skb); 267 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 268 void (*cache_update)(struct hh_cache *hh, 269 const struct net_device *dev, 270 const unsigned char *haddr); 271}; 272 273/* These flag bits are private to the generic network queueing 274 * layer, they may not be explicitly referenced by any other 275 * code. 276 */ 277 278enum netdev_state_t { 279 __LINK_STATE_START, 280 __LINK_STATE_PRESENT, 281 __LINK_STATE_NOCARRIER, 282 __LINK_STATE_LINKWATCH_PENDING, 283 __LINK_STATE_DORMANT, 284}; 285 286 287/* 288 * This structure holds at boot time configured netdevice settings. They 289 * are then used in the device probing. 290 */ 291struct netdev_boot_setup { 292 char name[IFNAMSIZ]; 293 struct ifmap map; 294}; 295#define NETDEV_BOOT_SETUP_MAX 8 296 297extern int __init netdev_boot_setup(char *str); 298 299/* 300 * Structure for NAPI scheduling similar to tasklet but with weighting 301 */ 302struct napi_struct { 303 /* The poll_list must only be managed by the entity which 304 * changes the state of the NAPI_STATE_SCHED bit. This means 305 * whoever atomically sets that bit can add this napi_struct 306 * to the per-cpu poll_list, and whoever clears that bit 307 * can remove from the list right before clearing the bit. 308 */ 309 struct list_head poll_list; 310 311 unsigned long state; 312 int weight; 313 unsigned int gro_count; 314 int (*poll)(struct napi_struct *, int); 315#ifdef CONFIG_NETPOLL 316 spinlock_t poll_lock; 317 int poll_owner; 318#endif 319 struct net_device *dev; 320 struct sk_buff *gro_list; 321 struct sk_buff *skb; 322 struct list_head dev_list; 323}; 324 325enum { 326 NAPI_STATE_SCHED, /* Poll is scheduled */ 327 NAPI_STATE_DISABLE, /* Disable pending */ 328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 329}; 330 331enum gro_result { 332 GRO_MERGED, 333 GRO_MERGED_FREE, 334 GRO_HELD, 335 GRO_NORMAL, 336 GRO_DROP, 337}; 338typedef enum gro_result gro_result_t; 339 340/* 341 * enum rx_handler_result - Possible return values for rx_handlers. 342 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 343 * further. 344 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 345 * case skb->dev was changed by rx_handler. 346 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 347 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 348 * 349 * rx_handlers are functions called from inside __netif_receive_skb(), to do 350 * special processing of the skb, prior to delivery to protocol handlers. 351 * 352 * Currently, a net_device can only have a single rx_handler registered. Trying 353 * to register a second rx_handler will return -EBUSY. 354 * 355 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 356 * To unregister a rx_handler on a net_device, use 357 * netdev_rx_handler_unregister(). 358 * 359 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 360 * do with the skb. 361 * 362 * If the rx_handler consumed to skb in some way, it should return 363 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 364 * the skb to be delivered in some other ways. 365 * 366 * If the rx_handler changed skb->dev, to divert the skb to another 367 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 368 * new device will be called if it exists. 369 * 370 * If the rx_handler consider the skb should be ignored, it should return 371 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 372 * are registred on exact device (ptype->dev == skb->dev). 373 * 374 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 375 * delivered, it should return RX_HANDLER_PASS. 376 * 377 * A device without a registered rx_handler will behave as if rx_handler 378 * returned RX_HANDLER_PASS. 379 */ 380 381enum rx_handler_result { 382 RX_HANDLER_CONSUMED, 383 RX_HANDLER_ANOTHER, 384 RX_HANDLER_EXACT, 385 RX_HANDLER_PASS, 386}; 387typedef enum rx_handler_result rx_handler_result_t; 388typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 389 390extern void __napi_schedule(struct napi_struct *n); 391 392static inline bool napi_disable_pending(struct napi_struct *n) 393{ 394 return test_bit(NAPI_STATE_DISABLE, &n->state); 395} 396 397/** 398 * napi_schedule_prep - check if napi can be scheduled 399 * @n: napi context 400 * 401 * Test if NAPI routine is already running, and if not mark 402 * it as running. This is used as a condition variable 403 * insure only one NAPI poll instance runs. We also make 404 * sure there is no pending NAPI disable. 405 */ 406static inline bool napi_schedule_prep(struct napi_struct *n) 407{ 408 return !napi_disable_pending(n) && 409 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 410} 411 412/** 413 * napi_schedule - schedule NAPI poll 414 * @n: napi context 415 * 416 * Schedule NAPI poll routine to be called if it is not already 417 * running. 418 */ 419static inline void napi_schedule(struct napi_struct *n) 420{ 421 if (napi_schedule_prep(n)) 422 __napi_schedule(n); 423} 424 425/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 426static inline bool napi_reschedule(struct napi_struct *napi) 427{ 428 if (napi_schedule_prep(napi)) { 429 __napi_schedule(napi); 430 return true; 431 } 432 return false; 433} 434 435/** 436 * napi_complete - NAPI processing complete 437 * @n: napi context 438 * 439 * Mark NAPI processing as complete. 440 */ 441extern void __napi_complete(struct napi_struct *n); 442extern void napi_complete(struct napi_struct *n); 443 444/** 445 * napi_disable - prevent NAPI from scheduling 446 * @n: napi context 447 * 448 * Stop NAPI from being scheduled on this context. 449 * Waits till any outstanding processing completes. 450 */ 451static inline void napi_disable(struct napi_struct *n) 452{ 453 set_bit(NAPI_STATE_DISABLE, &n->state); 454 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 455 msleep(1); 456 clear_bit(NAPI_STATE_DISABLE, &n->state); 457} 458 459/** 460 * napi_enable - enable NAPI scheduling 461 * @n: napi context 462 * 463 * Resume NAPI from being scheduled on this context. 464 * Must be paired with napi_disable. 465 */ 466static inline void napi_enable(struct napi_struct *n) 467{ 468 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 469 smp_mb__before_clear_bit(); 470 clear_bit(NAPI_STATE_SCHED, &n->state); 471} 472 473#ifdef CONFIG_SMP 474/** 475 * napi_synchronize - wait until NAPI is not running 476 * @n: napi context 477 * 478 * Wait until NAPI is done being scheduled on this context. 479 * Waits till any outstanding processing completes but 480 * does not disable future activations. 481 */ 482static inline void napi_synchronize(const struct napi_struct *n) 483{ 484 while (test_bit(NAPI_STATE_SCHED, &n->state)) 485 msleep(1); 486} 487#else 488# define napi_synchronize(n) barrier() 489#endif 490 491enum netdev_queue_state_t { 492 __QUEUE_STATE_DRV_XOFF, 493 __QUEUE_STATE_STACK_XOFF, 494 __QUEUE_STATE_FROZEN, 495#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 496 (1 << __QUEUE_STATE_STACK_XOFF)) 497#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 498 (1 << __QUEUE_STATE_FROZEN)) 499}; 500/* 501 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 502 * netif_tx_* functions below are used to manipulate this flag. The 503 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 504 * queue independently. The netif_xmit_*stopped functions below are called 505 * to check if the queue has been stopped by the driver or stack (either 506 * of the XOFF bits are set in the state). Drivers should not need to call 507 * netif_xmit*stopped functions, they should only be using netif_tx_*. 508 */ 509 510struct netdev_queue { 511/* 512 * read mostly part 513 */ 514 struct net_device *dev; 515 struct Qdisc *qdisc; 516 struct Qdisc *qdisc_sleeping; 517#ifdef CONFIG_SYSFS 518 struct kobject kobj; 519#endif 520#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 521 int numa_node; 522#endif 523/* 524 * write mostly part 525 */ 526 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 527 int xmit_lock_owner; 528 /* 529 * please use this field instead of dev->trans_start 530 */ 531 unsigned long trans_start; 532 533 /* 534 * Number of TX timeouts for this queue 535 * (/sys/class/net/DEV/Q/trans_timeout) 536 */ 537 unsigned long trans_timeout; 538 539 unsigned long state; 540 541#ifdef CONFIG_BQL 542 struct dql dql; 543#endif 544} ____cacheline_aligned_in_smp; 545 546static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 547{ 548#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 549 return q->numa_node; 550#else 551 return NUMA_NO_NODE; 552#endif 553} 554 555static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 556{ 557#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 558 q->numa_node = node; 559#endif 560} 561 562#ifdef CONFIG_RPS 563/* 564 * This structure holds an RPS map which can be of variable length. The 565 * map is an array of CPUs. 566 */ 567struct rps_map { 568 unsigned int len; 569 struct rcu_head rcu; 570 u16 cpus[0]; 571}; 572#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 573 574/* 575 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 576 * tail pointer for that CPU's input queue at the time of last enqueue, and 577 * a hardware filter index. 578 */ 579struct rps_dev_flow { 580 u16 cpu; 581 u16 filter; 582 unsigned int last_qtail; 583}; 584#define RPS_NO_FILTER 0xffff 585 586/* 587 * The rps_dev_flow_table structure contains a table of flow mappings. 588 */ 589struct rps_dev_flow_table { 590 unsigned int mask; 591 struct rcu_head rcu; 592 struct work_struct free_work; 593 struct rps_dev_flow flows[0]; 594}; 595#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 596 ((_num) * sizeof(struct rps_dev_flow))) 597 598/* 599 * The rps_sock_flow_table contains mappings of flows to the last CPU 600 * on which they were processed by the application (set in recvmsg). 601 */ 602struct rps_sock_flow_table { 603 unsigned int mask; 604 u16 ents[0]; 605}; 606#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 607 ((_num) * sizeof(u16))) 608 609#define RPS_NO_CPU 0xffff 610 611static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 612 u32 hash) 613{ 614 if (table && hash) { 615 unsigned int cpu, index = hash & table->mask; 616 617 /* We only give a hint, preemption can change cpu under us */ 618 cpu = raw_smp_processor_id(); 619 620 if (table->ents[index] != cpu) 621 table->ents[index] = cpu; 622 } 623} 624 625static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 626 u32 hash) 627{ 628 if (table && hash) 629 table->ents[hash & table->mask] = RPS_NO_CPU; 630} 631 632extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 633 634#ifdef CONFIG_RFS_ACCEL 635extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 636 u32 flow_id, u16 filter_id); 637#endif 638 639/* This structure contains an instance of an RX queue. */ 640struct netdev_rx_queue { 641 struct rps_map __rcu *rps_map; 642 struct rps_dev_flow_table __rcu *rps_flow_table; 643 struct kobject kobj; 644 struct net_device *dev; 645} ____cacheline_aligned_in_smp; 646#endif /* CONFIG_RPS */ 647 648#ifdef CONFIG_XPS 649/* 650 * This structure holds an XPS map which can be of variable length. The 651 * map is an array of queues. 652 */ 653struct xps_map { 654 unsigned int len; 655 unsigned int alloc_len; 656 struct rcu_head rcu; 657 u16 queues[0]; 658}; 659#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 660#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 661 / sizeof(u16)) 662 663/* 664 * This structure holds all XPS maps for device. Maps are indexed by CPU. 665 */ 666struct xps_dev_maps { 667 struct rcu_head rcu; 668 struct xps_map __rcu *cpu_map[0]; 669}; 670#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 671 (nr_cpu_ids * sizeof(struct xps_map *))) 672#endif /* CONFIG_XPS */ 673 674#define TC_MAX_QUEUE 16 675#define TC_BITMASK 15 676/* HW offloaded queuing disciplines txq count and offset maps */ 677struct netdev_tc_txq { 678 u16 count; 679 u16 offset; 680}; 681 682#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 683/* 684 * This structure is to hold information about the device 685 * configured to run FCoE protocol stack. 686 */ 687struct netdev_fcoe_hbainfo { 688 char manufacturer[64]; 689 char serial_number[64]; 690 char hardware_version[64]; 691 char driver_version[64]; 692 char optionrom_version[64]; 693 char firmware_version[64]; 694 char model[256]; 695 char model_description[256]; 696}; 697#endif 698 699/* 700 * This structure defines the management hooks for network devices. 701 * The following hooks can be defined; unless noted otherwise, they are 702 * optional and can be filled with a null pointer. 703 * 704 * int (*ndo_init)(struct net_device *dev); 705 * This function is called once when network device is registered. 706 * The network device can use this to any late stage initializaton 707 * or semantic validattion. It can fail with an error code which will 708 * be propogated back to register_netdev 709 * 710 * void (*ndo_uninit)(struct net_device *dev); 711 * This function is called when device is unregistered or when registration 712 * fails. It is not called if init fails. 713 * 714 * int (*ndo_open)(struct net_device *dev); 715 * This function is called when network device transistions to the up 716 * state. 717 * 718 * int (*ndo_stop)(struct net_device *dev); 719 * This function is called when network device transistions to the down 720 * state. 721 * 722 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 723 * struct net_device *dev); 724 * Called when a packet needs to be transmitted. 725 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 726 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 727 * Required can not be NULL. 728 * 729 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 730 * Called to decide which queue to when device supports multiple 731 * transmit queues. 732 * 733 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 734 * This function is called to allow device receiver to make 735 * changes to configuration when multicast or promiscious is enabled. 736 * 737 * void (*ndo_set_rx_mode)(struct net_device *dev); 738 * This function is called device changes address list filtering. 739 * If driver handles unicast address filtering, it should set 740 * IFF_UNICAST_FLT to its priv_flags. 741 * 742 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 743 * This function is called when the Media Access Control address 744 * needs to be changed. If this interface is not defined, the 745 * mac address can not be changed. 746 * 747 * int (*ndo_validate_addr)(struct net_device *dev); 748 * Test if Media Access Control address is valid for the device. 749 * 750 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 751 * Called when a user request an ioctl which can't be handled by 752 * the generic interface code. If not defined ioctl's return 753 * not supported error code. 754 * 755 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 756 * Used to set network devices bus interface parameters. This interface 757 * is retained for legacy reason, new devices should use the bus 758 * interface (PCI) for low level management. 759 * 760 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 761 * Called when a user wants to change the Maximum Transfer Unit 762 * of a device. If not defined, any request to change MTU will 763 * will return an error. 764 * 765 * void (*ndo_tx_timeout)(struct net_device *dev); 766 * Callback uses when the transmitter has not made any progress 767 * for dev->watchdog ticks. 768 * 769 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 770 * struct rtnl_link_stats64 *storage); 771 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 772 * Called when a user wants to get the network device usage 773 * statistics. Drivers must do one of the following: 774 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 775 * rtnl_link_stats64 structure passed by the caller. 776 * 2. Define @ndo_get_stats to update a net_device_stats structure 777 * (which should normally be dev->stats) and return a pointer to 778 * it. The structure may be changed asynchronously only if each 779 * field is written atomically. 780 * 3. Update dev->stats asynchronously and atomically, and define 781 * neither operation. 782 * 783 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 784 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 785 * this function is called when a VLAN id is registered. 786 * 787 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 788 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 789 * this function is called when a VLAN id is unregistered. 790 * 791 * void (*ndo_poll_controller)(struct net_device *dev); 792 * 793 * SR-IOV management functions. 794 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 795 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 796 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 797 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 798 * int (*ndo_get_vf_config)(struct net_device *dev, 799 * int vf, struct ifla_vf_info *ivf); 800 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 801 * struct nlattr *port[]); 802 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 803 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 804 * Called to setup 'tc' number of traffic classes in the net device. This 805 * is always called from the stack with the rtnl lock held and netif tx 806 * queues stopped. This allows the netdevice to perform queue management 807 * safely. 808 * 809 * Fiber Channel over Ethernet (FCoE) offload functions. 810 * int (*ndo_fcoe_enable)(struct net_device *dev); 811 * Called when the FCoE protocol stack wants to start using LLD for FCoE 812 * so the underlying device can perform whatever needed configuration or 813 * initialization to support acceleration of FCoE traffic. 814 * 815 * int (*ndo_fcoe_disable)(struct net_device *dev); 816 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 817 * so the underlying device can perform whatever needed clean-ups to 818 * stop supporting acceleration of FCoE traffic. 819 * 820 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 821 * struct scatterlist *sgl, unsigned int sgc); 822 * Called when the FCoE Initiator wants to initialize an I/O that 823 * is a possible candidate for Direct Data Placement (DDP). The LLD can 824 * perform necessary setup and returns 1 to indicate the device is set up 825 * successfully to perform DDP on this I/O, otherwise this returns 0. 826 * 827 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 828 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 829 * indicated by the FC exchange id 'xid', so the underlying device can 830 * clean up and reuse resources for later DDP requests. 831 * 832 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 833 * struct scatterlist *sgl, unsigned int sgc); 834 * Called when the FCoE Target wants to initialize an I/O that 835 * is a possible candidate for Direct Data Placement (DDP). The LLD can 836 * perform necessary setup and returns 1 to indicate the device is set up 837 * successfully to perform DDP on this I/O, otherwise this returns 0. 838 * 839 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 840 * struct netdev_fcoe_hbainfo *hbainfo); 841 * Called when the FCoE Protocol stack wants information on the underlying 842 * device. This information is utilized by the FCoE protocol stack to 843 * register attributes with Fiber Channel management service as per the 844 * FC-GS Fabric Device Management Information(FDMI) specification. 845 * 846 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 847 * Called when the underlying device wants to override default World Wide 848 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 849 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 850 * protocol stack to use. 851 * 852 * RFS acceleration. 853 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 854 * u16 rxq_index, u32 flow_id); 855 * Set hardware filter for RFS. rxq_index is the target queue index; 856 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 857 * Return the filter ID on success, or a negative error code. 858 * 859 * Slave management functions (for bridge, bonding, etc). User should 860 * call netdev_set_master() to set dev->master properly. 861 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 862 * Called to make another netdev an underling. 863 * 864 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 865 * Called to release previously enslaved netdev. 866 * 867 * Feature/offload setting functions. 868 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 869 * netdev_features_t features); 870 * Adjusts the requested feature flags according to device-specific 871 * constraints, and returns the resulting flags. Must not modify 872 * the device state. 873 * 874 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 875 * Called to update device configuration to new features. Passed 876 * feature set might be less than what was returned by ndo_fix_features()). 877 * Must return >0 or -errno if it changed dev->features itself. 878 * 879 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 880 * struct net_device *dev, 881 * const unsigned char *addr, u16 flags) 882 * Adds an FDB entry to dev for addr. 883 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev, 884 * const unsigned char *addr) 885 * Deletes the FDB entry from dev coresponding to addr. 886 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 887 * struct net_device *dev, int idx) 888 * Used to add FDB entries to dump requests. Implementers should add 889 * entries to skb and update idx with the number of entries. 890 */ 891struct net_device_ops { 892 int (*ndo_init)(struct net_device *dev); 893 void (*ndo_uninit)(struct net_device *dev); 894 int (*ndo_open)(struct net_device *dev); 895 int (*ndo_stop)(struct net_device *dev); 896 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 897 struct net_device *dev); 898 u16 (*ndo_select_queue)(struct net_device *dev, 899 struct sk_buff *skb); 900 void (*ndo_change_rx_flags)(struct net_device *dev, 901 int flags); 902 void (*ndo_set_rx_mode)(struct net_device *dev); 903 int (*ndo_set_mac_address)(struct net_device *dev, 904 void *addr); 905 int (*ndo_validate_addr)(struct net_device *dev); 906 int (*ndo_do_ioctl)(struct net_device *dev, 907 struct ifreq *ifr, int cmd); 908 int (*ndo_set_config)(struct net_device *dev, 909 struct ifmap *map); 910 int (*ndo_change_mtu)(struct net_device *dev, 911 int new_mtu); 912 int (*ndo_neigh_setup)(struct net_device *dev, 913 struct neigh_parms *); 914 void (*ndo_tx_timeout) (struct net_device *dev); 915 916 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 917 struct rtnl_link_stats64 *storage); 918 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 919 920 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 921 unsigned short vid); 922 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 923 unsigned short vid); 924#ifdef CONFIG_NET_POLL_CONTROLLER 925 void (*ndo_poll_controller)(struct net_device *dev); 926 int (*ndo_netpoll_setup)(struct net_device *dev, 927 struct netpoll_info *info, 928 gfp_t gfp); 929 void (*ndo_netpoll_cleanup)(struct net_device *dev); 930#endif 931 int (*ndo_set_vf_mac)(struct net_device *dev, 932 int queue, u8 *mac); 933 int (*ndo_set_vf_vlan)(struct net_device *dev, 934 int queue, u16 vlan, u8 qos); 935 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 936 int vf, int rate); 937 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 938 int vf, bool setting); 939 int (*ndo_get_vf_config)(struct net_device *dev, 940 int vf, 941 struct ifla_vf_info *ivf); 942 int (*ndo_set_vf_port)(struct net_device *dev, 943 int vf, 944 struct nlattr *port[]); 945 int (*ndo_get_vf_port)(struct net_device *dev, 946 int vf, struct sk_buff *skb); 947 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 948#if IS_ENABLED(CONFIG_FCOE) 949 int (*ndo_fcoe_enable)(struct net_device *dev); 950 int (*ndo_fcoe_disable)(struct net_device *dev); 951 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 952 u16 xid, 953 struct scatterlist *sgl, 954 unsigned int sgc); 955 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 956 u16 xid); 957 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 958 u16 xid, 959 struct scatterlist *sgl, 960 unsigned int sgc); 961 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 962 struct netdev_fcoe_hbainfo *hbainfo); 963#endif 964 965#if IS_ENABLED(CONFIG_LIBFCOE) 966#define NETDEV_FCOE_WWNN 0 967#define NETDEV_FCOE_WWPN 1 968 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 969 u64 *wwn, int type); 970#endif 971 972#ifdef CONFIG_RFS_ACCEL 973 int (*ndo_rx_flow_steer)(struct net_device *dev, 974 const struct sk_buff *skb, 975 u16 rxq_index, 976 u32 flow_id); 977#endif 978 int (*ndo_add_slave)(struct net_device *dev, 979 struct net_device *slave_dev); 980 int (*ndo_del_slave)(struct net_device *dev, 981 struct net_device *slave_dev); 982 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 983 netdev_features_t features); 984 int (*ndo_set_features)(struct net_device *dev, 985 netdev_features_t features); 986 int (*ndo_neigh_construct)(struct neighbour *n); 987 void (*ndo_neigh_destroy)(struct neighbour *n); 988 989 int (*ndo_fdb_add)(struct ndmsg *ndm, 990 struct nlattr *tb[], 991 struct net_device *dev, 992 const unsigned char *addr, 993 u16 flags); 994 int (*ndo_fdb_del)(struct ndmsg *ndm, 995 struct net_device *dev, 996 const unsigned char *addr); 997 int (*ndo_fdb_dump)(struct sk_buff *skb, 998 struct netlink_callback *cb, 999 struct net_device *dev, 1000 int idx); 1001}; 1002 1003/* 1004 * The DEVICE structure. 1005 * Actually, this whole structure is a big mistake. It mixes I/O 1006 * data with strictly "high-level" data, and it has to know about 1007 * almost every data structure used in the INET module. 1008 * 1009 * FIXME: cleanup struct net_device such that network protocol info 1010 * moves out. 1011 */ 1012 1013struct net_device { 1014 1015 /* 1016 * This is the first field of the "visible" part of this structure 1017 * (i.e. as seen by users in the "Space.c" file). It is the name 1018 * of the interface. 1019 */ 1020 char name[IFNAMSIZ]; 1021 1022 /* device name hash chain, please keep it close to name[] */ 1023 struct hlist_node name_hlist; 1024 1025 /* snmp alias */ 1026 char *ifalias; 1027 1028 /* 1029 * I/O specific fields 1030 * FIXME: Merge these and struct ifmap into one 1031 */ 1032 unsigned long mem_end; /* shared mem end */ 1033 unsigned long mem_start; /* shared mem start */ 1034 unsigned long base_addr; /* device I/O address */ 1035 unsigned int irq; /* device IRQ number */ 1036 1037 /* 1038 * Some hardware also needs these fields, but they are not 1039 * part of the usual set specified in Space.c. 1040 */ 1041 1042 unsigned long state; 1043 1044 struct list_head dev_list; 1045 struct list_head napi_list; 1046 struct list_head unreg_list; 1047 1048 /* currently active device features */ 1049 netdev_features_t features; 1050 /* user-changeable features */ 1051 netdev_features_t hw_features; 1052 /* user-requested features */ 1053 netdev_features_t wanted_features; 1054 /* mask of features inheritable by VLAN devices */ 1055 netdev_features_t vlan_features; 1056 1057 /* Interface index. Unique device identifier */ 1058 int ifindex; 1059 int iflink; 1060 1061 struct net_device_stats stats; 1062 atomic_long_t rx_dropped; /* dropped packets by core network 1063 * Do not use this in drivers. 1064 */ 1065 1066#ifdef CONFIG_WIRELESS_EXT 1067 /* List of functions to handle Wireless Extensions (instead of ioctl). 1068 * See <net/iw_handler.h> for details. Jean II */ 1069 const struct iw_handler_def * wireless_handlers; 1070 /* Instance data managed by the core of Wireless Extensions. */ 1071 struct iw_public_data * wireless_data; 1072#endif 1073 /* Management operations */ 1074 const struct net_device_ops *netdev_ops; 1075 const struct ethtool_ops *ethtool_ops; 1076 1077 /* Hardware header description */ 1078 const struct header_ops *header_ops; 1079 1080 unsigned int flags; /* interface flags (a la BSD) */ 1081 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1082 * See if.h for definitions. */ 1083 unsigned short gflags; 1084 unsigned short padded; /* How much padding added by alloc_netdev() */ 1085 1086 unsigned char operstate; /* RFC2863 operstate */ 1087 unsigned char link_mode; /* mapping policy to operstate */ 1088 1089 unsigned char if_port; /* Selectable AUI, TP,..*/ 1090 unsigned char dma; /* DMA channel */ 1091 1092 unsigned int mtu; /* interface MTU value */ 1093 unsigned short type; /* interface hardware type */ 1094 unsigned short hard_header_len; /* hardware hdr length */ 1095 1096 /* extra head- and tailroom the hardware may need, but not in all cases 1097 * can this be guaranteed, especially tailroom. Some cases also use 1098 * LL_MAX_HEADER instead to allocate the skb. 1099 */ 1100 unsigned short needed_headroom; 1101 unsigned short needed_tailroom; 1102 1103 /* Interface address info. */ 1104 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1105 unsigned char addr_assign_type; /* hw address assignment type */ 1106 unsigned char addr_len; /* hardware address length */ 1107 unsigned char neigh_priv_len; 1108 unsigned short dev_id; /* for shared network cards */ 1109 1110 spinlock_t addr_list_lock; 1111 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1112 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1113 bool uc_promisc; 1114 unsigned int promiscuity; 1115 unsigned int allmulti; 1116 1117 1118 /* Protocol specific pointers */ 1119 1120#if IS_ENABLED(CONFIG_VLAN_8021Q) 1121 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1122#endif 1123#if IS_ENABLED(CONFIG_NET_DSA) 1124 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1125#endif 1126 void *atalk_ptr; /* AppleTalk link */ 1127 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1128 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1129 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1130 void *ax25_ptr; /* AX.25 specific data */ 1131 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1132 assign before registering */ 1133 1134/* 1135 * Cache lines mostly used on receive path (including eth_type_trans()) 1136 */ 1137 unsigned long last_rx; /* Time of last Rx 1138 * This should not be set in 1139 * drivers, unless really needed, 1140 * because network stack (bonding) 1141 * use it if/when necessary, to 1142 * avoid dirtying this cache line. 1143 */ 1144 1145 struct net_device *master; /* Pointer to master device of a group, 1146 * which this device is member of. 1147 */ 1148 1149 /* Interface address info used in eth_type_trans() */ 1150 unsigned char *dev_addr; /* hw address, (before bcast 1151 because most packets are 1152 unicast) */ 1153 1154 struct netdev_hw_addr_list dev_addrs; /* list of device 1155 hw addresses */ 1156 1157 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1158 1159#ifdef CONFIG_SYSFS 1160 struct kset *queues_kset; 1161#endif 1162 1163#ifdef CONFIG_RPS 1164 struct netdev_rx_queue *_rx; 1165 1166 /* Number of RX queues allocated at register_netdev() time */ 1167 unsigned int num_rx_queues; 1168 1169 /* Number of RX queues currently active in device */ 1170 unsigned int real_num_rx_queues; 1171 1172#ifdef CONFIG_RFS_ACCEL 1173 /* CPU reverse-mapping for RX completion interrupts, indexed 1174 * by RX queue number. Assigned by driver. This must only be 1175 * set if the ndo_rx_flow_steer operation is defined. */ 1176 struct cpu_rmap *rx_cpu_rmap; 1177#endif 1178#endif 1179 1180 rx_handler_func_t __rcu *rx_handler; 1181 void __rcu *rx_handler_data; 1182 1183 struct netdev_queue __rcu *ingress_queue; 1184 1185/* 1186 * Cache lines mostly used on transmit path 1187 */ 1188 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1189 1190 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1191 unsigned int num_tx_queues; 1192 1193 /* Number of TX queues currently active in device */ 1194 unsigned int real_num_tx_queues; 1195 1196 /* root qdisc from userspace point of view */ 1197 struct Qdisc *qdisc; 1198 1199 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1200 spinlock_t tx_global_lock; 1201 1202#ifdef CONFIG_XPS 1203 struct xps_dev_maps __rcu *xps_maps; 1204#endif 1205 1206 /* These may be needed for future network-power-down code. */ 1207 1208 /* 1209 * trans_start here is expensive for high speed devices on SMP, 1210 * please use netdev_queue->trans_start instead. 1211 */ 1212 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1213 1214 int watchdog_timeo; /* used by dev_watchdog() */ 1215 struct timer_list watchdog_timer; 1216 1217 /* Number of references to this device */ 1218 int __percpu *pcpu_refcnt; 1219 1220 /* delayed register/unregister */ 1221 struct list_head todo_list; 1222 /* device index hash chain */ 1223 struct hlist_node index_hlist; 1224 1225 struct list_head link_watch_list; 1226 1227 /* register/unregister state machine */ 1228 enum { NETREG_UNINITIALIZED=0, 1229 NETREG_REGISTERED, /* completed register_netdevice */ 1230 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1231 NETREG_UNREGISTERED, /* completed unregister todo */ 1232 NETREG_RELEASED, /* called free_netdev */ 1233 NETREG_DUMMY, /* dummy device for NAPI poll */ 1234 } reg_state:8; 1235 1236 bool dismantle; /* device is going do be freed */ 1237 1238 enum { 1239 RTNL_LINK_INITIALIZED, 1240 RTNL_LINK_INITIALIZING, 1241 } rtnl_link_state:16; 1242 1243 /* Called from unregister, can be used to call free_netdev */ 1244 void (*destructor)(struct net_device *dev); 1245 1246#ifdef CONFIG_NETPOLL 1247 struct netpoll_info *npinfo; 1248#endif 1249 1250#ifdef CONFIG_NET_NS 1251 /* Network namespace this network device is inside */ 1252 struct net *nd_net; 1253#endif 1254 1255 /* mid-layer private */ 1256 union { 1257 void *ml_priv; 1258 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1259 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1260 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1261 }; 1262 /* GARP */ 1263 struct garp_port __rcu *garp_port; 1264 1265 /* class/net/name entry */ 1266 struct device dev; 1267 /* space for optional device, statistics, and wireless sysfs groups */ 1268 const struct attribute_group *sysfs_groups[4]; 1269 1270 /* rtnetlink link ops */ 1271 const struct rtnl_link_ops *rtnl_link_ops; 1272 1273 /* for setting kernel sock attribute on TCP connection setup */ 1274#define GSO_MAX_SIZE 65536 1275 unsigned int gso_max_size; 1276#define GSO_MAX_SEGS 65535 1277 u16 gso_max_segs; 1278 1279#ifdef CONFIG_DCB 1280 /* Data Center Bridging netlink ops */ 1281 const struct dcbnl_rtnl_ops *dcbnl_ops; 1282#endif 1283 u8 num_tc; 1284 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1285 u8 prio_tc_map[TC_BITMASK + 1]; 1286 1287#if IS_ENABLED(CONFIG_FCOE) 1288 /* max exchange id for FCoE LRO by ddp */ 1289 unsigned int fcoe_ddp_xid; 1290#endif 1291#if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 1292 struct netprio_map __rcu *priomap; 1293#endif 1294 /* phy device may attach itself for hardware timestamping */ 1295 struct phy_device *phydev; 1296 1297 struct lock_class_key *qdisc_tx_busylock; 1298 1299 /* group the device belongs to */ 1300 int group; 1301 1302 struct pm_qos_request pm_qos_req; 1303}; 1304#define to_net_dev(d) container_of(d, struct net_device, dev) 1305 1306#define NETDEV_ALIGN 32 1307 1308static inline 1309int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1310{ 1311 return dev->prio_tc_map[prio & TC_BITMASK]; 1312} 1313 1314static inline 1315int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1316{ 1317 if (tc >= dev->num_tc) 1318 return -EINVAL; 1319 1320 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1321 return 0; 1322} 1323 1324static inline 1325void netdev_reset_tc(struct net_device *dev) 1326{ 1327 dev->num_tc = 0; 1328 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1329 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1330} 1331 1332static inline 1333int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1334{ 1335 if (tc >= dev->num_tc) 1336 return -EINVAL; 1337 1338 dev->tc_to_txq[tc].count = count; 1339 dev->tc_to_txq[tc].offset = offset; 1340 return 0; 1341} 1342 1343static inline 1344int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1345{ 1346 if (num_tc > TC_MAX_QUEUE) 1347 return -EINVAL; 1348 1349 dev->num_tc = num_tc; 1350 return 0; 1351} 1352 1353static inline 1354int netdev_get_num_tc(struct net_device *dev) 1355{ 1356 return dev->num_tc; 1357} 1358 1359static inline 1360struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1361 unsigned int index) 1362{ 1363 return &dev->_tx[index]; 1364} 1365 1366static inline void netdev_for_each_tx_queue(struct net_device *dev, 1367 void (*f)(struct net_device *, 1368 struct netdev_queue *, 1369 void *), 1370 void *arg) 1371{ 1372 unsigned int i; 1373 1374 for (i = 0; i < dev->num_tx_queues; i++) 1375 f(dev, &dev->_tx[i], arg); 1376} 1377 1378extern struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1379 struct sk_buff *skb); 1380 1381/* 1382 * Net namespace inlines 1383 */ 1384static inline 1385struct net *dev_net(const struct net_device *dev) 1386{ 1387 return read_pnet(&dev->nd_net); 1388} 1389 1390static inline 1391void dev_net_set(struct net_device *dev, struct net *net) 1392{ 1393#ifdef CONFIG_NET_NS 1394 release_net(dev->nd_net); 1395 dev->nd_net = hold_net(net); 1396#endif 1397} 1398 1399static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1400{ 1401#ifdef CONFIG_NET_DSA_TAG_DSA 1402 if (dev->dsa_ptr != NULL) 1403 return dsa_uses_dsa_tags(dev->dsa_ptr); 1404#endif 1405 1406 return 0; 1407} 1408 1409static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1410{ 1411#ifdef CONFIG_NET_DSA_TAG_TRAILER 1412 if (dev->dsa_ptr != NULL) 1413 return dsa_uses_trailer_tags(dev->dsa_ptr); 1414#endif 1415 1416 return 0; 1417} 1418 1419/** 1420 * netdev_priv - access network device private data 1421 * @dev: network device 1422 * 1423 * Get network device private data 1424 */ 1425static inline void *netdev_priv(const struct net_device *dev) 1426{ 1427 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1428} 1429 1430/* Set the sysfs physical device reference for the network logical device 1431 * if set prior to registration will cause a symlink during initialization. 1432 */ 1433#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1434 1435/* Set the sysfs device type for the network logical device to allow 1436 * fin grained indentification of different network device types. For 1437 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1438 */ 1439#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1440 1441/** 1442 * netif_napi_add - initialize a napi context 1443 * @dev: network device 1444 * @napi: napi context 1445 * @poll: polling function 1446 * @weight: default weight 1447 * 1448 * netif_napi_add() must be used to initialize a napi context prior to calling 1449 * *any* of the other napi related functions. 1450 */ 1451void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1452 int (*poll)(struct napi_struct *, int), int weight); 1453 1454/** 1455 * netif_napi_del - remove a napi context 1456 * @napi: napi context 1457 * 1458 * netif_napi_del() removes a napi context from the network device napi list 1459 */ 1460void netif_napi_del(struct napi_struct *napi); 1461 1462struct napi_gro_cb { 1463 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1464 void *frag0; 1465 1466 /* Length of frag0. */ 1467 unsigned int frag0_len; 1468 1469 /* This indicates where we are processing relative to skb->data. */ 1470 int data_offset; 1471 1472 /* This is non-zero if the packet cannot be merged with the new skb. */ 1473 int flush; 1474 1475 /* Number of segments aggregated. */ 1476 u16 count; 1477 1478 /* This is non-zero if the packet may be of the same flow. */ 1479 u8 same_flow; 1480 1481 /* Free the skb? */ 1482 u8 free; 1483#define NAPI_GRO_FREE 1 1484#define NAPI_GRO_FREE_STOLEN_HEAD 2 1485 1486 /* jiffies when first packet was created/queued */ 1487 unsigned long age; 1488 1489 /* Used in ipv6_gro_receive() */ 1490 int proto; 1491}; 1492 1493#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1494 1495struct packet_type { 1496 __be16 type; /* This is really htons(ether_type). */ 1497 struct net_device *dev; /* NULL is wildcarded here */ 1498 int (*func) (struct sk_buff *, 1499 struct net_device *, 1500 struct packet_type *, 1501 struct net_device *); 1502 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1503 netdev_features_t features); 1504 int (*gso_send_check)(struct sk_buff *skb); 1505 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1506 struct sk_buff *skb); 1507 int (*gro_complete)(struct sk_buff *skb); 1508 bool (*id_match)(struct packet_type *ptype, 1509 struct sock *sk); 1510 void *af_packet_priv; 1511 struct list_head list; 1512}; 1513 1514#include <linux/notifier.h> 1515 1516/* netdevice notifier chain. Please remember to update the rtnetlink 1517 * notification exclusion list in rtnetlink_event() when adding new 1518 * types. 1519 */ 1520#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1521#define NETDEV_DOWN 0x0002 1522#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1523 detected a hardware crash and restarted 1524 - we can use this eg to kick tcp sessions 1525 once done */ 1526#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1527#define NETDEV_REGISTER 0x0005 1528#define NETDEV_UNREGISTER 0x0006 1529#define NETDEV_CHANGEMTU 0x0007 1530#define NETDEV_CHANGEADDR 0x0008 1531#define NETDEV_GOING_DOWN 0x0009 1532#define NETDEV_CHANGENAME 0x000A 1533#define NETDEV_FEAT_CHANGE 0x000B 1534#define NETDEV_BONDING_FAILOVER 0x000C 1535#define NETDEV_PRE_UP 0x000D 1536#define NETDEV_PRE_TYPE_CHANGE 0x000E 1537#define NETDEV_POST_TYPE_CHANGE 0x000F 1538#define NETDEV_POST_INIT 0x0010 1539#define NETDEV_UNREGISTER_FINAL 0x0011 1540#define NETDEV_RELEASE 0x0012 1541#define NETDEV_NOTIFY_PEERS 0x0013 1542#define NETDEV_JOIN 0x0014 1543 1544extern int register_netdevice_notifier(struct notifier_block *nb); 1545extern int unregister_netdevice_notifier(struct notifier_block *nb); 1546extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1547 1548 1549extern rwlock_t dev_base_lock; /* Device list lock */ 1550 1551 1552#define for_each_netdev(net, d) \ 1553 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1554#define for_each_netdev_reverse(net, d) \ 1555 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1556#define for_each_netdev_rcu(net, d) \ 1557 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1558#define for_each_netdev_safe(net, d, n) \ 1559 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1560#define for_each_netdev_continue(net, d) \ 1561 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1562#define for_each_netdev_continue_rcu(net, d) \ 1563 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1564#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1565 1566static inline struct net_device *next_net_device(struct net_device *dev) 1567{ 1568 struct list_head *lh; 1569 struct net *net; 1570 1571 net = dev_net(dev); 1572 lh = dev->dev_list.next; 1573 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1574} 1575 1576static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1577{ 1578 struct list_head *lh; 1579 struct net *net; 1580 1581 net = dev_net(dev); 1582 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1583 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1584} 1585 1586static inline struct net_device *first_net_device(struct net *net) 1587{ 1588 return list_empty(&net->dev_base_head) ? NULL : 1589 net_device_entry(net->dev_base_head.next); 1590} 1591 1592static inline struct net_device *first_net_device_rcu(struct net *net) 1593{ 1594 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1595 1596 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1597} 1598 1599extern int netdev_boot_setup_check(struct net_device *dev); 1600extern unsigned long netdev_boot_base(const char *prefix, int unit); 1601extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1602 const char *hwaddr); 1603extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1604extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1605extern void dev_add_pack(struct packet_type *pt); 1606extern void dev_remove_pack(struct packet_type *pt); 1607extern void __dev_remove_pack(struct packet_type *pt); 1608 1609extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1610 unsigned short mask); 1611extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1612extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1613extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1614extern int dev_alloc_name(struct net_device *dev, const char *name); 1615extern int dev_open(struct net_device *dev); 1616extern int dev_close(struct net_device *dev); 1617extern void dev_disable_lro(struct net_device *dev); 1618extern int dev_loopback_xmit(struct sk_buff *newskb); 1619extern int dev_queue_xmit(struct sk_buff *skb); 1620extern int register_netdevice(struct net_device *dev); 1621extern void unregister_netdevice_queue(struct net_device *dev, 1622 struct list_head *head); 1623extern void unregister_netdevice_many(struct list_head *head); 1624static inline void unregister_netdevice(struct net_device *dev) 1625{ 1626 unregister_netdevice_queue(dev, NULL); 1627} 1628 1629extern int netdev_refcnt_read(const struct net_device *dev); 1630extern void free_netdev(struct net_device *dev); 1631extern void synchronize_net(void); 1632extern int init_dummy_netdev(struct net_device *dev); 1633extern void netdev_resync_ops(struct net_device *dev); 1634 1635extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1636extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1637extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1638extern int dev_restart(struct net_device *dev); 1639#ifdef CONFIG_NETPOLL_TRAP 1640extern int netpoll_trap(void); 1641#endif 1642extern int skb_gro_receive(struct sk_buff **head, 1643 struct sk_buff *skb); 1644 1645static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1646{ 1647 return NAPI_GRO_CB(skb)->data_offset; 1648} 1649 1650static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1651{ 1652 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1653} 1654 1655static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1656{ 1657 NAPI_GRO_CB(skb)->data_offset += len; 1658} 1659 1660static inline void *skb_gro_header_fast(struct sk_buff *skb, 1661 unsigned int offset) 1662{ 1663 return NAPI_GRO_CB(skb)->frag0 + offset; 1664} 1665 1666static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1667{ 1668 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1669} 1670 1671static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1672 unsigned int offset) 1673{ 1674 if (!pskb_may_pull(skb, hlen)) 1675 return NULL; 1676 1677 NAPI_GRO_CB(skb)->frag0 = NULL; 1678 NAPI_GRO_CB(skb)->frag0_len = 0; 1679 return skb->data + offset; 1680} 1681 1682static inline void *skb_gro_mac_header(struct sk_buff *skb) 1683{ 1684 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1685} 1686 1687static inline void *skb_gro_network_header(struct sk_buff *skb) 1688{ 1689 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1690 skb_network_offset(skb); 1691} 1692 1693static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1694 unsigned short type, 1695 const void *daddr, const void *saddr, 1696 unsigned int len) 1697{ 1698 if (!dev->header_ops || !dev->header_ops->create) 1699 return 0; 1700 1701 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1702} 1703 1704static inline int dev_parse_header(const struct sk_buff *skb, 1705 unsigned char *haddr) 1706{ 1707 const struct net_device *dev = skb->dev; 1708 1709 if (!dev->header_ops || !dev->header_ops->parse) 1710 return 0; 1711 return dev->header_ops->parse(skb, haddr); 1712} 1713 1714typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1715extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1716static inline int unregister_gifconf(unsigned int family) 1717{ 1718 return register_gifconf(family, NULL); 1719} 1720 1721/* 1722 * Incoming packets are placed on per-cpu queues 1723 */ 1724struct softnet_data { 1725 struct Qdisc *output_queue; 1726 struct Qdisc **output_queue_tailp; 1727 struct list_head poll_list; 1728 struct sk_buff *completion_queue; 1729 struct sk_buff_head process_queue; 1730 1731 /* stats */ 1732 unsigned int processed; 1733 unsigned int time_squeeze; 1734 unsigned int cpu_collision; 1735 unsigned int received_rps; 1736 1737#ifdef CONFIG_RPS 1738 struct softnet_data *rps_ipi_list; 1739 1740 /* Elements below can be accessed between CPUs for RPS */ 1741 struct call_single_data csd ____cacheline_aligned_in_smp; 1742 struct softnet_data *rps_ipi_next; 1743 unsigned int cpu; 1744 unsigned int input_queue_head; 1745 unsigned int input_queue_tail; 1746#endif 1747 unsigned int dropped; 1748 struct sk_buff_head input_pkt_queue; 1749 struct napi_struct backlog; 1750}; 1751 1752static inline void input_queue_head_incr(struct softnet_data *sd) 1753{ 1754#ifdef CONFIG_RPS 1755 sd->input_queue_head++; 1756#endif 1757} 1758 1759static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1760 unsigned int *qtail) 1761{ 1762#ifdef CONFIG_RPS 1763 *qtail = ++sd->input_queue_tail; 1764#endif 1765} 1766 1767DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1768 1769extern void __netif_schedule(struct Qdisc *q); 1770 1771static inline void netif_schedule_queue(struct netdev_queue *txq) 1772{ 1773 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 1774 __netif_schedule(txq->qdisc); 1775} 1776 1777static inline void netif_tx_schedule_all(struct net_device *dev) 1778{ 1779 unsigned int i; 1780 1781 for (i = 0; i < dev->num_tx_queues; i++) 1782 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1783} 1784 1785static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1786{ 1787 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1788} 1789 1790/** 1791 * netif_start_queue - allow transmit 1792 * @dev: network device 1793 * 1794 * Allow upper layers to call the device hard_start_xmit routine. 1795 */ 1796static inline void netif_start_queue(struct net_device *dev) 1797{ 1798 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1799} 1800 1801static inline void netif_tx_start_all_queues(struct net_device *dev) 1802{ 1803 unsigned int i; 1804 1805 for (i = 0; i < dev->num_tx_queues; i++) { 1806 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1807 netif_tx_start_queue(txq); 1808 } 1809} 1810 1811static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1812{ 1813#ifdef CONFIG_NETPOLL_TRAP 1814 if (netpoll_trap()) { 1815 netif_tx_start_queue(dev_queue); 1816 return; 1817 } 1818#endif 1819 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 1820 __netif_schedule(dev_queue->qdisc); 1821} 1822 1823/** 1824 * netif_wake_queue - restart transmit 1825 * @dev: network device 1826 * 1827 * Allow upper layers to call the device hard_start_xmit routine. 1828 * Used for flow control when transmit resources are available. 1829 */ 1830static inline void netif_wake_queue(struct net_device *dev) 1831{ 1832 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1833} 1834 1835static inline void netif_tx_wake_all_queues(struct net_device *dev) 1836{ 1837 unsigned int i; 1838 1839 for (i = 0; i < dev->num_tx_queues; i++) { 1840 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1841 netif_tx_wake_queue(txq); 1842 } 1843} 1844 1845static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1846{ 1847 if (WARN_ON(!dev_queue)) { 1848 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1849 return; 1850 } 1851 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1852} 1853 1854/** 1855 * netif_stop_queue - stop transmitted packets 1856 * @dev: network device 1857 * 1858 * Stop upper layers calling the device hard_start_xmit routine. 1859 * Used for flow control when transmit resources are unavailable. 1860 */ 1861static inline void netif_stop_queue(struct net_device *dev) 1862{ 1863 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1864} 1865 1866static inline void netif_tx_stop_all_queues(struct net_device *dev) 1867{ 1868 unsigned int i; 1869 1870 for (i = 0; i < dev->num_tx_queues; i++) { 1871 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1872 netif_tx_stop_queue(txq); 1873 } 1874} 1875 1876static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1877{ 1878 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1879} 1880 1881/** 1882 * netif_queue_stopped - test if transmit queue is flowblocked 1883 * @dev: network device 1884 * 1885 * Test if transmit queue on device is currently unable to send. 1886 */ 1887static inline bool netif_queue_stopped(const struct net_device *dev) 1888{ 1889 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1890} 1891 1892static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 1893{ 1894 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 1895} 1896 1897static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 1898{ 1899 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 1900} 1901 1902static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 1903 unsigned int bytes) 1904{ 1905#ifdef CONFIG_BQL 1906 dql_queued(&dev_queue->dql, bytes); 1907 1908 if (likely(dql_avail(&dev_queue->dql) >= 0)) 1909 return; 1910 1911 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1912 1913 /* 1914 * The XOFF flag must be set before checking the dql_avail below, 1915 * because in netdev_tx_completed_queue we update the dql_completed 1916 * before checking the XOFF flag. 1917 */ 1918 smp_mb(); 1919 1920 /* check again in case another CPU has just made room avail */ 1921 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 1922 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1923#endif 1924} 1925 1926static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 1927{ 1928 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 1929} 1930 1931static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 1932 unsigned int pkts, unsigned int bytes) 1933{ 1934#ifdef CONFIG_BQL 1935 if (unlikely(!bytes)) 1936 return; 1937 1938 dql_completed(&dev_queue->dql, bytes); 1939 1940 /* 1941 * Without the memory barrier there is a small possiblity that 1942 * netdev_tx_sent_queue will miss the update and cause the queue to 1943 * be stopped forever 1944 */ 1945 smp_mb(); 1946 1947 if (dql_avail(&dev_queue->dql) < 0) 1948 return; 1949 1950 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 1951 netif_schedule_queue(dev_queue); 1952#endif 1953} 1954 1955static inline void netdev_completed_queue(struct net_device *dev, 1956 unsigned int pkts, unsigned int bytes) 1957{ 1958 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 1959} 1960 1961static inline void netdev_tx_reset_queue(struct netdev_queue *q) 1962{ 1963#ifdef CONFIG_BQL 1964 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 1965 dql_reset(&q->dql); 1966#endif 1967} 1968 1969static inline void netdev_reset_queue(struct net_device *dev_queue) 1970{ 1971 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 1972} 1973 1974/** 1975 * netif_running - test if up 1976 * @dev: network device 1977 * 1978 * Test if the device has been brought up. 1979 */ 1980static inline bool netif_running(const struct net_device *dev) 1981{ 1982 return test_bit(__LINK_STATE_START, &dev->state); 1983} 1984 1985/* 1986 * Routines to manage the subqueues on a device. We only need start 1987 * stop, and a check if it's stopped. All other device management is 1988 * done at the overall netdevice level. 1989 * Also test the device if we're multiqueue. 1990 */ 1991 1992/** 1993 * netif_start_subqueue - allow sending packets on subqueue 1994 * @dev: network device 1995 * @queue_index: sub queue index 1996 * 1997 * Start individual transmit queue of a device with multiple transmit queues. 1998 */ 1999static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2000{ 2001 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2002 2003 netif_tx_start_queue(txq); 2004} 2005 2006/** 2007 * netif_stop_subqueue - stop sending packets on subqueue 2008 * @dev: network device 2009 * @queue_index: sub queue index 2010 * 2011 * Stop individual transmit queue of a device with multiple transmit queues. 2012 */ 2013static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2014{ 2015 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2016#ifdef CONFIG_NETPOLL_TRAP 2017 if (netpoll_trap()) 2018 return; 2019#endif 2020 netif_tx_stop_queue(txq); 2021} 2022 2023/** 2024 * netif_subqueue_stopped - test status of subqueue 2025 * @dev: network device 2026 * @queue_index: sub queue index 2027 * 2028 * Check individual transmit queue of a device with multiple transmit queues. 2029 */ 2030static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2031 u16 queue_index) 2032{ 2033 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2034 2035 return netif_tx_queue_stopped(txq); 2036} 2037 2038static inline bool netif_subqueue_stopped(const struct net_device *dev, 2039 struct sk_buff *skb) 2040{ 2041 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2042} 2043 2044/** 2045 * netif_wake_subqueue - allow sending packets on subqueue 2046 * @dev: network device 2047 * @queue_index: sub queue index 2048 * 2049 * Resume individual transmit queue of a device with multiple transmit queues. 2050 */ 2051static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2052{ 2053 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2054#ifdef CONFIG_NETPOLL_TRAP 2055 if (netpoll_trap()) 2056 return; 2057#endif 2058 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2059 __netif_schedule(txq->qdisc); 2060} 2061 2062/* 2063 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2064 * as a distribution range limit for the returned value. 2065 */ 2066static inline u16 skb_tx_hash(const struct net_device *dev, 2067 const struct sk_buff *skb) 2068{ 2069 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2070} 2071 2072/** 2073 * netif_is_multiqueue - test if device has multiple transmit queues 2074 * @dev: network device 2075 * 2076 * Check if device has multiple transmit queues 2077 */ 2078static inline bool netif_is_multiqueue(const struct net_device *dev) 2079{ 2080 return dev->num_tx_queues > 1; 2081} 2082 2083extern int netif_set_real_num_tx_queues(struct net_device *dev, 2084 unsigned int txq); 2085 2086#ifdef CONFIG_RPS 2087extern int netif_set_real_num_rx_queues(struct net_device *dev, 2088 unsigned int rxq); 2089#else 2090static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2091 unsigned int rxq) 2092{ 2093 return 0; 2094} 2095#endif 2096 2097static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2098 const struct net_device *from_dev) 2099{ 2100 int err; 2101 2102 err = netif_set_real_num_tx_queues(to_dev, 2103 from_dev->real_num_tx_queues); 2104 if (err) 2105 return err; 2106#ifdef CONFIG_RPS 2107 return netif_set_real_num_rx_queues(to_dev, 2108 from_dev->real_num_rx_queues); 2109#else 2110 return 0; 2111#endif 2112} 2113 2114#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2115extern int netif_get_num_default_rss_queues(void); 2116 2117/* Use this variant when it is known for sure that it 2118 * is executing from hardware interrupt context or with hardware interrupts 2119 * disabled. 2120 */ 2121extern void dev_kfree_skb_irq(struct sk_buff *skb); 2122 2123/* Use this variant in places where it could be invoked 2124 * from either hardware interrupt or other context, with hardware interrupts 2125 * either disabled or enabled. 2126 */ 2127extern void dev_kfree_skb_any(struct sk_buff *skb); 2128 2129extern int netif_rx(struct sk_buff *skb); 2130extern int netif_rx_ni(struct sk_buff *skb); 2131extern int netif_receive_skb(struct sk_buff *skb); 2132extern gro_result_t dev_gro_receive(struct napi_struct *napi, 2133 struct sk_buff *skb); 2134extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); 2135extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2136 struct sk_buff *skb); 2137extern void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2138extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2139extern gro_result_t napi_frags_finish(struct napi_struct *napi, 2140 struct sk_buff *skb, 2141 gro_result_t ret); 2142extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2143 2144static inline void napi_free_frags(struct napi_struct *napi) 2145{ 2146 kfree_skb(napi->skb); 2147 napi->skb = NULL; 2148} 2149 2150extern int netdev_rx_handler_register(struct net_device *dev, 2151 rx_handler_func_t *rx_handler, 2152 void *rx_handler_data); 2153extern void netdev_rx_handler_unregister(struct net_device *dev); 2154 2155extern bool dev_valid_name(const char *name); 2156extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2157extern int dev_ethtool(struct net *net, struct ifreq *); 2158extern unsigned int dev_get_flags(const struct net_device *); 2159extern int __dev_change_flags(struct net_device *, unsigned int flags); 2160extern int dev_change_flags(struct net_device *, unsigned int); 2161extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2162extern int dev_change_name(struct net_device *, const char *); 2163extern int dev_set_alias(struct net_device *, const char *, size_t); 2164extern int dev_change_net_namespace(struct net_device *, 2165 struct net *, const char *); 2166extern int dev_set_mtu(struct net_device *, int); 2167extern void dev_set_group(struct net_device *, int); 2168extern int dev_set_mac_address(struct net_device *, 2169 struct sockaddr *); 2170extern int dev_hard_start_xmit(struct sk_buff *skb, 2171 struct net_device *dev, 2172 struct netdev_queue *txq); 2173extern int dev_forward_skb(struct net_device *dev, 2174 struct sk_buff *skb); 2175 2176extern int netdev_budget; 2177 2178/* Called by rtnetlink.c:rtnl_unlock() */ 2179extern void netdev_run_todo(void); 2180 2181/** 2182 * dev_put - release reference to device 2183 * @dev: network device 2184 * 2185 * Release reference to device to allow it to be freed. 2186 */ 2187static inline void dev_put(struct net_device *dev) 2188{ 2189 this_cpu_dec(*dev->pcpu_refcnt); 2190} 2191 2192/** 2193 * dev_hold - get reference to device 2194 * @dev: network device 2195 * 2196 * Hold reference to device to keep it from being freed. 2197 */ 2198static inline void dev_hold(struct net_device *dev) 2199{ 2200 this_cpu_inc(*dev->pcpu_refcnt); 2201} 2202 2203/* Carrier loss detection, dial on demand. The functions netif_carrier_on 2204 * and _off may be called from IRQ context, but it is caller 2205 * who is responsible for serialization of these calls. 2206 * 2207 * The name carrier is inappropriate, these functions should really be 2208 * called netif_lowerlayer_*() because they represent the state of any 2209 * kind of lower layer not just hardware media. 2210 */ 2211 2212extern void linkwatch_init_dev(struct net_device *dev); 2213extern void linkwatch_fire_event(struct net_device *dev); 2214extern void linkwatch_forget_dev(struct net_device *dev); 2215 2216/** 2217 * netif_carrier_ok - test if carrier present 2218 * @dev: network device 2219 * 2220 * Check if carrier is present on device 2221 */ 2222static inline bool netif_carrier_ok(const struct net_device *dev) 2223{ 2224 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2225} 2226 2227extern unsigned long dev_trans_start(struct net_device *dev); 2228 2229extern void __netdev_watchdog_up(struct net_device *dev); 2230 2231extern void netif_carrier_on(struct net_device *dev); 2232 2233extern void netif_carrier_off(struct net_device *dev); 2234 2235/** 2236 * netif_dormant_on - mark device as dormant. 2237 * @dev: network device 2238 * 2239 * Mark device as dormant (as per RFC2863). 2240 * 2241 * The dormant state indicates that the relevant interface is not 2242 * actually in a condition to pass packets (i.e., it is not 'up') but is 2243 * in a "pending" state, waiting for some external event. For "on- 2244 * demand" interfaces, this new state identifies the situation where the 2245 * interface is waiting for events to place it in the up state. 2246 * 2247 */ 2248static inline void netif_dormant_on(struct net_device *dev) 2249{ 2250 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2251 linkwatch_fire_event(dev); 2252} 2253 2254/** 2255 * netif_dormant_off - set device as not dormant. 2256 * @dev: network device 2257 * 2258 * Device is not in dormant state. 2259 */ 2260static inline void netif_dormant_off(struct net_device *dev) 2261{ 2262 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2263 linkwatch_fire_event(dev); 2264} 2265 2266/** 2267 * netif_dormant - test if carrier present 2268 * @dev: network device 2269 * 2270 * Check if carrier is present on device 2271 */ 2272static inline bool netif_dormant(const struct net_device *dev) 2273{ 2274 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2275} 2276 2277 2278/** 2279 * netif_oper_up - test if device is operational 2280 * @dev: network device 2281 * 2282 * Check if carrier is operational 2283 */ 2284static inline bool netif_oper_up(const struct net_device *dev) 2285{ 2286 return (dev->operstate == IF_OPER_UP || 2287 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2288} 2289 2290/** 2291 * netif_device_present - is device available or removed 2292 * @dev: network device 2293 * 2294 * Check if device has not been removed from system. 2295 */ 2296static inline bool netif_device_present(struct net_device *dev) 2297{ 2298 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2299} 2300 2301extern void netif_device_detach(struct net_device *dev); 2302 2303extern void netif_device_attach(struct net_device *dev); 2304 2305/* 2306 * Network interface message level settings 2307 */ 2308 2309enum { 2310 NETIF_MSG_DRV = 0x0001, 2311 NETIF_MSG_PROBE = 0x0002, 2312 NETIF_MSG_LINK = 0x0004, 2313 NETIF_MSG_TIMER = 0x0008, 2314 NETIF_MSG_IFDOWN = 0x0010, 2315 NETIF_MSG_IFUP = 0x0020, 2316 NETIF_MSG_RX_ERR = 0x0040, 2317 NETIF_MSG_TX_ERR = 0x0080, 2318 NETIF_MSG_TX_QUEUED = 0x0100, 2319 NETIF_MSG_INTR = 0x0200, 2320 NETIF_MSG_TX_DONE = 0x0400, 2321 NETIF_MSG_RX_STATUS = 0x0800, 2322 NETIF_MSG_PKTDATA = 0x1000, 2323 NETIF_MSG_HW = 0x2000, 2324 NETIF_MSG_WOL = 0x4000, 2325}; 2326 2327#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2328#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2329#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2330#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2331#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2332#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2333#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2334#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2335#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2336#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2337#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2338#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2339#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2340#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2341#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2342 2343static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2344{ 2345 /* use default */ 2346 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2347 return default_msg_enable_bits; 2348 if (debug_value == 0) /* no output */ 2349 return 0; 2350 /* set low N bits */ 2351 return (1 << debug_value) - 1; 2352} 2353 2354static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2355{ 2356 spin_lock(&txq->_xmit_lock); 2357 txq->xmit_lock_owner = cpu; 2358} 2359 2360static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2361{ 2362 spin_lock_bh(&txq->_xmit_lock); 2363 txq->xmit_lock_owner = smp_processor_id(); 2364} 2365 2366static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2367{ 2368 bool ok = spin_trylock(&txq->_xmit_lock); 2369 if (likely(ok)) 2370 txq->xmit_lock_owner = smp_processor_id(); 2371 return ok; 2372} 2373 2374static inline void __netif_tx_unlock(struct netdev_queue *txq) 2375{ 2376 txq->xmit_lock_owner = -1; 2377 spin_unlock(&txq->_xmit_lock); 2378} 2379 2380static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2381{ 2382 txq->xmit_lock_owner = -1; 2383 spin_unlock_bh(&txq->_xmit_lock); 2384} 2385 2386static inline void txq_trans_update(struct netdev_queue *txq) 2387{ 2388 if (txq->xmit_lock_owner != -1) 2389 txq->trans_start = jiffies; 2390} 2391 2392/** 2393 * netif_tx_lock - grab network device transmit lock 2394 * @dev: network device 2395 * 2396 * Get network device transmit lock 2397 */ 2398static inline void netif_tx_lock(struct net_device *dev) 2399{ 2400 unsigned int i; 2401 int cpu; 2402 2403 spin_lock(&dev->tx_global_lock); 2404 cpu = smp_processor_id(); 2405 for (i = 0; i < dev->num_tx_queues; i++) { 2406 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2407 2408 /* We are the only thread of execution doing a 2409 * freeze, but we have to grab the _xmit_lock in 2410 * order to synchronize with threads which are in 2411 * the ->hard_start_xmit() handler and already 2412 * checked the frozen bit. 2413 */ 2414 __netif_tx_lock(txq, cpu); 2415 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2416 __netif_tx_unlock(txq); 2417 } 2418} 2419 2420static inline void netif_tx_lock_bh(struct net_device *dev) 2421{ 2422 local_bh_disable(); 2423 netif_tx_lock(dev); 2424} 2425 2426static inline void netif_tx_unlock(struct net_device *dev) 2427{ 2428 unsigned int i; 2429 2430 for (i = 0; i < dev->num_tx_queues; i++) { 2431 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2432 2433 /* No need to grab the _xmit_lock here. If the 2434 * queue is not stopped for another reason, we 2435 * force a schedule. 2436 */ 2437 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2438 netif_schedule_queue(txq); 2439 } 2440 spin_unlock(&dev->tx_global_lock); 2441} 2442 2443static inline void netif_tx_unlock_bh(struct net_device *dev) 2444{ 2445 netif_tx_unlock(dev); 2446 local_bh_enable(); 2447} 2448 2449#define HARD_TX_LOCK(dev, txq, cpu) { \ 2450 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2451 __netif_tx_lock(txq, cpu); \ 2452 } \ 2453} 2454 2455#define HARD_TX_UNLOCK(dev, txq) { \ 2456 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2457 __netif_tx_unlock(txq); \ 2458 } \ 2459} 2460 2461static inline void netif_tx_disable(struct net_device *dev) 2462{ 2463 unsigned int i; 2464 int cpu; 2465 2466 local_bh_disable(); 2467 cpu = smp_processor_id(); 2468 for (i = 0; i < dev->num_tx_queues; i++) { 2469 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2470 2471 __netif_tx_lock(txq, cpu); 2472 netif_tx_stop_queue(txq); 2473 __netif_tx_unlock(txq); 2474 } 2475 local_bh_enable(); 2476} 2477 2478static inline void netif_addr_lock(struct net_device *dev) 2479{ 2480 spin_lock(&dev->addr_list_lock); 2481} 2482 2483static inline void netif_addr_lock_nested(struct net_device *dev) 2484{ 2485 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2486} 2487 2488static inline void netif_addr_lock_bh(struct net_device *dev) 2489{ 2490 spin_lock_bh(&dev->addr_list_lock); 2491} 2492 2493static inline void netif_addr_unlock(struct net_device *dev) 2494{ 2495 spin_unlock(&dev->addr_list_lock); 2496} 2497 2498static inline void netif_addr_unlock_bh(struct net_device *dev) 2499{ 2500 spin_unlock_bh(&dev->addr_list_lock); 2501} 2502 2503/* 2504 * dev_addrs walker. Should be used only for read access. Call with 2505 * rcu_read_lock held. 2506 */ 2507#define for_each_dev_addr(dev, ha) \ 2508 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2509 2510/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2511 2512extern void ether_setup(struct net_device *dev); 2513 2514/* Support for loadable net-drivers */ 2515extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2516 void (*setup)(struct net_device *), 2517 unsigned int txqs, unsigned int rxqs); 2518#define alloc_netdev(sizeof_priv, name, setup) \ 2519 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2520 2521#define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2522 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2523 2524extern int register_netdev(struct net_device *dev); 2525extern void unregister_netdev(struct net_device *dev); 2526 2527/* General hardware address lists handling functions */ 2528extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2529 struct netdev_hw_addr_list *from_list, 2530 int addr_len, unsigned char addr_type); 2531extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2532 struct netdev_hw_addr_list *from_list, 2533 int addr_len, unsigned char addr_type); 2534extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2535 struct netdev_hw_addr_list *from_list, 2536 int addr_len); 2537extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2538 struct netdev_hw_addr_list *from_list, 2539 int addr_len); 2540extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2541extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2542 2543/* Functions used for device addresses handling */ 2544extern int dev_addr_add(struct net_device *dev, const unsigned char *addr, 2545 unsigned char addr_type); 2546extern int dev_addr_del(struct net_device *dev, const unsigned char *addr, 2547 unsigned char addr_type); 2548extern int dev_addr_add_multiple(struct net_device *to_dev, 2549 struct net_device *from_dev, 2550 unsigned char addr_type); 2551extern int dev_addr_del_multiple(struct net_device *to_dev, 2552 struct net_device *from_dev, 2553 unsigned char addr_type); 2554extern void dev_addr_flush(struct net_device *dev); 2555extern int dev_addr_init(struct net_device *dev); 2556 2557/* Functions used for unicast addresses handling */ 2558extern int dev_uc_add(struct net_device *dev, const unsigned char *addr); 2559extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 2560extern int dev_uc_del(struct net_device *dev, const unsigned char *addr); 2561extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2562extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2563extern void dev_uc_flush(struct net_device *dev); 2564extern void dev_uc_init(struct net_device *dev); 2565 2566/* Functions used for multicast addresses handling */ 2567extern int dev_mc_add(struct net_device *dev, const unsigned char *addr); 2568extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 2569extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 2570extern int dev_mc_del(struct net_device *dev, const unsigned char *addr); 2571extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 2572extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2573extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2574extern void dev_mc_flush(struct net_device *dev); 2575extern void dev_mc_init(struct net_device *dev); 2576 2577/* Functions used for secondary unicast and multicast support */ 2578extern void dev_set_rx_mode(struct net_device *dev); 2579extern void __dev_set_rx_mode(struct net_device *dev); 2580extern int dev_set_promiscuity(struct net_device *dev, int inc); 2581extern int dev_set_allmulti(struct net_device *dev, int inc); 2582extern void netdev_state_change(struct net_device *dev); 2583extern void netdev_notify_peers(struct net_device *dev); 2584extern void netdev_features_change(struct net_device *dev); 2585/* Load a device via the kmod */ 2586extern void dev_load(struct net *net, const char *name); 2587extern void dev_mcast_init(void); 2588extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2589 struct rtnl_link_stats64 *storage); 2590extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 2591 const struct net_device_stats *netdev_stats); 2592 2593extern int netdev_max_backlog; 2594extern int netdev_tstamp_prequeue; 2595extern int weight_p; 2596extern int bpf_jit_enable; 2597extern int netdev_set_master(struct net_device *dev, struct net_device *master); 2598extern int netdev_set_bond_master(struct net_device *dev, 2599 struct net_device *master); 2600extern int skb_checksum_help(struct sk_buff *skb); 2601extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, 2602 netdev_features_t features); 2603#ifdef CONFIG_BUG 2604extern void netdev_rx_csum_fault(struct net_device *dev); 2605#else 2606static inline void netdev_rx_csum_fault(struct net_device *dev) 2607{ 2608} 2609#endif 2610/* rx skb timestamps */ 2611extern void net_enable_timestamp(void); 2612extern void net_disable_timestamp(void); 2613 2614#ifdef CONFIG_PROC_FS 2615extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); 2616extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2617extern void dev_seq_stop(struct seq_file *seq, void *v); 2618#endif 2619 2620extern int netdev_class_create_file(struct class_attribute *class_attr); 2621extern void netdev_class_remove_file(struct class_attribute *class_attr); 2622 2623extern struct kobj_ns_type_operations net_ns_type_operations; 2624 2625extern const char *netdev_drivername(const struct net_device *dev); 2626 2627extern void linkwatch_run_queue(void); 2628 2629static inline netdev_features_t netdev_get_wanted_features( 2630 struct net_device *dev) 2631{ 2632 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2633} 2634netdev_features_t netdev_increment_features(netdev_features_t all, 2635 netdev_features_t one, netdev_features_t mask); 2636int __netdev_update_features(struct net_device *dev); 2637void netdev_update_features(struct net_device *dev); 2638void netdev_change_features(struct net_device *dev); 2639 2640void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2641 struct net_device *dev); 2642 2643netdev_features_t netif_skb_features(struct sk_buff *skb); 2644 2645static inline bool net_gso_ok(netdev_features_t features, int gso_type) 2646{ 2647 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 2648 2649 /* check flags correspondence */ 2650 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 2651 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 2652 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 2653 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 2654 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 2655 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 2656 2657 return (features & feature) == feature; 2658} 2659 2660static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 2661{ 2662 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2663 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2664} 2665 2666static inline bool netif_needs_gso(struct sk_buff *skb, 2667 netdev_features_t features) 2668{ 2669 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2670 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 2671 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 2672} 2673 2674static inline void netif_set_gso_max_size(struct net_device *dev, 2675 unsigned int size) 2676{ 2677 dev->gso_max_size = size; 2678} 2679 2680static inline bool netif_is_bond_slave(struct net_device *dev) 2681{ 2682 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2683} 2684 2685static inline bool netif_supports_nofcs(struct net_device *dev) 2686{ 2687 return dev->priv_flags & IFF_SUPP_NOFCS; 2688} 2689 2690extern struct pernet_operations __net_initdata loopback_net_ops; 2691 2692/* Logging, debugging and troubleshooting/diagnostic helpers. */ 2693 2694/* netdev_printk helpers, similar to dev_printk */ 2695 2696static inline const char *netdev_name(const struct net_device *dev) 2697{ 2698 if (dev->reg_state != NETREG_REGISTERED) 2699 return "(unregistered net_device)"; 2700 return dev->name; 2701} 2702 2703extern __printf(3, 4) 2704int netdev_printk(const char *level, const struct net_device *dev, 2705 const char *format, ...); 2706extern __printf(2, 3) 2707int netdev_emerg(const struct net_device *dev, const char *format, ...); 2708extern __printf(2, 3) 2709int netdev_alert(const struct net_device *dev, const char *format, ...); 2710extern __printf(2, 3) 2711int netdev_crit(const struct net_device *dev, const char *format, ...); 2712extern __printf(2, 3) 2713int netdev_err(const struct net_device *dev, const char *format, ...); 2714extern __printf(2, 3) 2715int netdev_warn(const struct net_device *dev, const char *format, ...); 2716extern __printf(2, 3) 2717int netdev_notice(const struct net_device *dev, const char *format, ...); 2718extern __printf(2, 3) 2719int netdev_info(const struct net_device *dev, const char *format, ...); 2720 2721#define MODULE_ALIAS_NETDEV(device) \ 2722 MODULE_ALIAS("netdev-" device) 2723 2724#if defined(CONFIG_DYNAMIC_DEBUG) 2725#define netdev_dbg(__dev, format, args...) \ 2726do { \ 2727 dynamic_netdev_dbg(__dev, format, ##args); \ 2728} while (0) 2729#elif defined(DEBUG) 2730#define netdev_dbg(__dev, format, args...) \ 2731 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2732#else 2733#define netdev_dbg(__dev, format, args...) \ 2734({ \ 2735 if (0) \ 2736 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2737 0; \ 2738}) 2739#endif 2740 2741#if defined(VERBOSE_DEBUG) 2742#define netdev_vdbg netdev_dbg 2743#else 2744 2745#define netdev_vdbg(dev, format, args...) \ 2746({ \ 2747 if (0) \ 2748 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2749 0; \ 2750}) 2751#endif 2752 2753/* 2754 * netdev_WARN() acts like dev_printk(), but with the key difference 2755 * of using a WARN/WARN_ON to get the message out, including the 2756 * file/line information and a backtrace. 2757 */ 2758#define netdev_WARN(dev, format, args...) \ 2759 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2760 2761/* netif printk helpers, similar to netdev_printk */ 2762 2763#define netif_printk(priv, type, level, dev, fmt, args...) \ 2764do { \ 2765 if (netif_msg_##type(priv)) \ 2766 netdev_printk(level, (dev), fmt, ##args); \ 2767} while (0) 2768 2769#define netif_level(level, priv, type, dev, fmt, args...) \ 2770do { \ 2771 if (netif_msg_##type(priv)) \ 2772 netdev_##level(dev, fmt, ##args); \ 2773} while (0) 2774 2775#define netif_emerg(priv, type, dev, fmt, args...) \ 2776 netif_level(emerg, priv, type, dev, fmt, ##args) 2777#define netif_alert(priv, type, dev, fmt, args...) \ 2778 netif_level(alert, priv, type, dev, fmt, ##args) 2779#define netif_crit(priv, type, dev, fmt, args...) \ 2780 netif_level(crit, priv, type, dev, fmt, ##args) 2781#define netif_err(priv, type, dev, fmt, args...) \ 2782 netif_level(err, priv, type, dev, fmt, ##args) 2783#define netif_warn(priv, type, dev, fmt, args...) \ 2784 netif_level(warn, priv, type, dev, fmt, ##args) 2785#define netif_notice(priv, type, dev, fmt, args...) \ 2786 netif_level(notice, priv, type, dev, fmt, ##args) 2787#define netif_info(priv, type, dev, fmt, args...) \ 2788 netif_level(info, priv, type, dev, fmt, ##args) 2789 2790#if defined(CONFIG_DYNAMIC_DEBUG) 2791#define netif_dbg(priv, type, netdev, format, args...) \ 2792do { \ 2793 if (netif_msg_##type(priv)) \ 2794 dynamic_netdev_dbg(netdev, format, ##args); \ 2795} while (0) 2796#elif defined(DEBUG) 2797#define netif_dbg(priv, type, dev, format, args...) \ 2798 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2799#else 2800#define netif_dbg(priv, type, dev, format, args...) \ 2801({ \ 2802 if (0) \ 2803 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2804 0; \ 2805}) 2806#endif 2807 2808#if defined(VERBOSE_DEBUG) 2809#define netif_vdbg netif_dbg 2810#else 2811#define netif_vdbg(priv, type, dev, format, args...) \ 2812({ \ 2813 if (0) \ 2814 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2815 0; \ 2816}) 2817#endif 2818 2819#endif /* _LINUX_NETDEVICE_H */