at v3.7-rc6 70 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23#include <linux/pm_runtime.h> /* for runtime PM */ 24 25struct usb_device; 26struct usb_driver; 27struct wusb_dev; 28 29/*-------------------------------------------------------------------------*/ 30 31/* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47struct ep_device; 48 49/** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @urb_list: urbs queued to this endpoint; maintained by usbcore 54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 55 * with one or more transfer descriptors (TDs) per urb 56 * @ep_dev: ep_device for sysfs info 57 * @extra: descriptors following this endpoint in the configuration 58 * @extralen: how many bytes of "extra" are valid 59 * @enabled: URBs may be submitted to this endpoint 60 * 61 * USB requests are always queued to a given endpoint, identified by a 62 * descriptor within an active interface in a given USB configuration. 63 */ 64struct usb_host_endpoint { 65 struct usb_endpoint_descriptor desc; 66 struct usb_ss_ep_comp_descriptor ss_ep_comp; 67 struct list_head urb_list; 68 void *hcpriv; 69 struct ep_device *ep_dev; /* For sysfs info */ 70 71 unsigned char *extra; /* Extra descriptors */ 72 int extralen; 73 int enabled; 74}; 75 76/* host-side wrapper for one interface setting's parsed descriptors */ 77struct usb_host_interface { 78 struct usb_interface_descriptor desc; 79 80 int extralen; 81 unsigned char *extra; /* Extra descriptors */ 82 83 /* array of desc.bNumEndpoint endpoints associated with this 84 * interface setting. these will be in no particular order. 85 */ 86 struct usb_host_endpoint *endpoint; 87 88 char *string; /* iInterface string, if present */ 89}; 90 91enum usb_interface_condition { 92 USB_INTERFACE_UNBOUND = 0, 93 USB_INTERFACE_BINDING, 94 USB_INTERFACE_BOUND, 95 USB_INTERFACE_UNBINDING, 96}; 97 98/** 99 * struct usb_interface - what usb device drivers talk to 100 * @altsetting: array of interface structures, one for each alternate 101 * setting that may be selected. Each one includes a set of 102 * endpoint configurations. They will be in no particular order. 103 * @cur_altsetting: the current altsetting. 104 * @num_altsetting: number of altsettings defined. 105 * @intf_assoc: interface association descriptor 106 * @minor: the minor number assigned to this interface, if this 107 * interface is bound to a driver that uses the USB major number. 108 * If this interface does not use the USB major, this field should 109 * be unused. The driver should set this value in the probe() 110 * function of the driver, after it has been assigned a minor 111 * number from the USB core by calling usb_register_dev(). 112 * @condition: binding state of the interface: not bound, binding 113 * (in probe()), bound to a driver, or unbinding (in disconnect()) 114 * @sysfs_files_created: sysfs attributes exist 115 * @ep_devs_created: endpoint child pseudo-devices exist 116 * @unregistering: flag set when the interface is being unregistered 117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 118 * capability during autosuspend. 119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 120 * has been deferred. 121 * @needs_binding: flag set when the driver should be re-probed or unbound 122 * following a reset or suspend operation it doesn't support. 123 * @dev: driver model's view of this device 124 * @usb_dev: if an interface is bound to the USB major, this will point 125 * to the sysfs representation for that device. 126 * @pm_usage_cnt: PM usage counter for this interface 127 * @reset_ws: Used for scheduling resets from atomic context. 128 * @reset_running: set to 1 if the interface is currently running a 129 * queued reset so that usb_cancel_queued_reset() doesn't try to 130 * remove from the workqueue when running inside the worker 131 * thread. See __usb_queue_reset_device(). 132 * @resetting_device: USB core reset the device, so use alt setting 0 as 133 * current; needs bandwidth alloc after reset. 134 * 135 * USB device drivers attach to interfaces on a physical device. Each 136 * interface encapsulates a single high level function, such as feeding 137 * an audio stream to a speaker or reporting a change in a volume control. 138 * Many USB devices only have one interface. The protocol used to talk to 139 * an interface's endpoints can be defined in a usb "class" specification, 140 * or by a product's vendor. The (default) control endpoint is part of 141 * every interface, but is never listed among the interface's descriptors. 142 * 143 * The driver that is bound to the interface can use standard driver model 144 * calls such as dev_get_drvdata() on the dev member of this structure. 145 * 146 * Each interface may have alternate settings. The initial configuration 147 * of a device sets altsetting 0, but the device driver can change 148 * that setting using usb_set_interface(). Alternate settings are often 149 * used to control the use of periodic endpoints, such as by having 150 * different endpoints use different amounts of reserved USB bandwidth. 151 * All standards-conformant USB devices that use isochronous endpoints 152 * will use them in non-default settings. 153 * 154 * The USB specification says that alternate setting numbers must run from 155 * 0 to one less than the total number of alternate settings. But some 156 * devices manage to mess this up, and the structures aren't necessarily 157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 158 * look up an alternate setting in the altsetting array based on its number. 159 */ 160struct usb_interface { 161 /* array of alternate settings for this interface, 162 * stored in no particular order */ 163 struct usb_host_interface *altsetting; 164 165 struct usb_host_interface *cur_altsetting; /* the currently 166 * active alternate setting */ 167 unsigned num_altsetting; /* number of alternate settings */ 168 169 /* If there is an interface association descriptor then it will list 170 * the associated interfaces */ 171 struct usb_interface_assoc_descriptor *intf_assoc; 172 173 int minor; /* minor number this interface is 174 * bound to */ 175 enum usb_interface_condition condition; /* state of binding */ 176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 177 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 178 unsigned unregistering:1; /* unregistration is in progress */ 179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 181 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 182 unsigned reset_running:1; 183 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 184 185 struct device dev; /* interface specific device info */ 186 struct device *usb_dev; 187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 188 struct work_struct reset_ws; /* for resets in atomic context */ 189}; 190#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 191 192static inline void *usb_get_intfdata(struct usb_interface *intf) 193{ 194 return dev_get_drvdata(&intf->dev); 195} 196 197static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 198{ 199 dev_set_drvdata(&intf->dev, data); 200} 201 202struct usb_interface *usb_get_intf(struct usb_interface *intf); 203void usb_put_intf(struct usb_interface *intf); 204 205/* this maximum is arbitrary */ 206#define USB_MAXINTERFACES 32 207#define USB_MAXIADS (USB_MAXINTERFACES/2) 208 209/** 210 * struct usb_interface_cache - long-term representation of a device interface 211 * @num_altsetting: number of altsettings defined. 212 * @ref: reference counter. 213 * @altsetting: variable-length array of interface structures, one for 214 * each alternate setting that may be selected. Each one includes a 215 * set of endpoint configurations. They will be in no particular order. 216 * 217 * These structures persist for the lifetime of a usb_device, unlike 218 * struct usb_interface (which persists only as long as its configuration 219 * is installed). The altsetting arrays can be accessed through these 220 * structures at any time, permitting comparison of configurations and 221 * providing support for the /proc/bus/usb/devices pseudo-file. 222 */ 223struct usb_interface_cache { 224 unsigned num_altsetting; /* number of alternate settings */ 225 struct kref ref; /* reference counter */ 226 227 /* variable-length array of alternate settings for this interface, 228 * stored in no particular order */ 229 struct usb_host_interface altsetting[0]; 230}; 231#define ref_to_usb_interface_cache(r) \ 232 container_of(r, struct usb_interface_cache, ref) 233#define altsetting_to_usb_interface_cache(a) \ 234 container_of(a, struct usb_interface_cache, altsetting[0]) 235 236/** 237 * struct usb_host_config - representation of a device's configuration 238 * @desc: the device's configuration descriptor. 239 * @string: pointer to the cached version of the iConfiguration string, if 240 * present for this configuration. 241 * @intf_assoc: list of any interface association descriptors in this config 242 * @interface: array of pointers to usb_interface structures, one for each 243 * interface in the configuration. The number of interfaces is stored 244 * in desc.bNumInterfaces. These pointers are valid only while the 245 * the configuration is active. 246 * @intf_cache: array of pointers to usb_interface_cache structures, one 247 * for each interface in the configuration. These structures exist 248 * for the entire life of the device. 249 * @extra: pointer to buffer containing all extra descriptors associated 250 * with this configuration (those preceding the first interface 251 * descriptor). 252 * @extralen: length of the extra descriptors buffer. 253 * 254 * USB devices may have multiple configurations, but only one can be active 255 * at any time. Each encapsulates a different operational environment; 256 * for example, a dual-speed device would have separate configurations for 257 * full-speed and high-speed operation. The number of configurations 258 * available is stored in the device descriptor as bNumConfigurations. 259 * 260 * A configuration can contain multiple interfaces. Each corresponds to 261 * a different function of the USB device, and all are available whenever 262 * the configuration is active. The USB standard says that interfaces 263 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 264 * of devices get this wrong. In addition, the interface array is not 265 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 266 * look up an interface entry based on its number. 267 * 268 * Device drivers should not attempt to activate configurations. The choice 269 * of which configuration to install is a policy decision based on such 270 * considerations as available power, functionality provided, and the user's 271 * desires (expressed through userspace tools). However, drivers can call 272 * usb_reset_configuration() to reinitialize the current configuration and 273 * all its interfaces. 274 */ 275struct usb_host_config { 276 struct usb_config_descriptor desc; 277 278 char *string; /* iConfiguration string, if present */ 279 280 /* List of any Interface Association Descriptors in this 281 * configuration. */ 282 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 283 284 /* the interfaces associated with this configuration, 285 * stored in no particular order */ 286 struct usb_interface *interface[USB_MAXINTERFACES]; 287 288 /* Interface information available even when this is not the 289 * active configuration */ 290 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 291 292 unsigned char *extra; /* Extra descriptors */ 293 int extralen; 294}; 295 296/* USB2.0 and USB3.0 device BOS descriptor set */ 297struct usb_host_bos { 298 struct usb_bos_descriptor *desc; 299 300 /* wireless cap descriptor is handled by wusb */ 301 struct usb_ext_cap_descriptor *ext_cap; 302 struct usb_ss_cap_descriptor *ss_cap; 303 struct usb_ss_container_id_descriptor *ss_id; 304}; 305 306int __usb_get_extra_descriptor(char *buffer, unsigned size, 307 unsigned char type, void **ptr); 308#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 309 __usb_get_extra_descriptor((ifpoint)->extra, \ 310 (ifpoint)->extralen, \ 311 type, (void **)ptr) 312 313/* ----------------------------------------------------------------------- */ 314 315/* USB device number allocation bitmap */ 316struct usb_devmap { 317 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 318}; 319 320/* 321 * Allocated per bus (tree of devices) we have: 322 */ 323struct usb_bus { 324 struct device *controller; /* host/master side hardware */ 325 int busnum; /* Bus number (in order of reg) */ 326 const char *bus_name; /* stable id (PCI slot_name etc) */ 327 u8 uses_dma; /* Does the host controller use DMA? */ 328 u8 uses_pio_for_control; /* 329 * Does the host controller use PIO 330 * for control transfers? 331 */ 332 u8 otg_port; /* 0, or number of OTG/HNP port */ 333 unsigned is_b_host:1; /* true during some HNP roleswitches */ 334 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 335 unsigned no_stop_on_short:1; /* 336 * Quirk: some controllers don't stop 337 * the ep queue on a short transfer 338 * with the URB_SHORT_NOT_OK flag set. 339 */ 340 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 341 342 int devnum_next; /* Next open device number in 343 * round-robin allocation */ 344 345 struct usb_devmap devmap; /* device address allocation map */ 346 struct usb_device *root_hub; /* Root hub */ 347 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 348 struct list_head bus_list; /* list of busses */ 349 350 int bandwidth_allocated; /* on this bus: how much of the time 351 * reserved for periodic (intr/iso) 352 * requests is used, on average? 353 * Units: microseconds/frame. 354 * Limits: Full/low speed reserve 90%, 355 * while high speed reserves 80%. 356 */ 357 int bandwidth_int_reqs; /* number of Interrupt requests */ 358 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 359 360#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 361 struct mon_bus *mon_bus; /* non-null when associated */ 362 int monitored; /* non-zero when monitored */ 363#endif 364}; 365 366/* ----------------------------------------------------------------------- */ 367 368/* This is arbitrary. 369 * From USB 2.0 spec Table 11-13, offset 7, a hub can 370 * have up to 255 ports. The most yet reported is 10. 371 * 372 * Current Wireless USB host hardware (Intel i1480 for example) allows 373 * up to 22 devices to connect. Upcoming hardware might raise that 374 * limit. Because the arrays need to add a bit for hub status data, we 375 * do 31, so plus one evens out to four bytes. 376 */ 377#define USB_MAXCHILDREN (31) 378 379struct usb_tt; 380 381enum usb_device_removable { 382 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 383 USB_DEVICE_REMOVABLE, 384 USB_DEVICE_FIXED, 385}; 386 387enum usb_port_connect_type { 388 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 389 USB_PORT_CONNECT_TYPE_HOT_PLUG, 390 USB_PORT_CONNECT_TYPE_HARD_WIRED, 391 USB_PORT_NOT_USED, 392}; 393 394/* 395 * USB 3.0 Link Power Management (LPM) parameters. 396 * 397 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 398 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 399 * All three are stored in nanoseconds. 400 */ 401struct usb3_lpm_parameters { 402 /* 403 * Maximum exit latency (MEL) for the host to send a packet to the 404 * device (either a Ping for isoc endpoints, or a data packet for 405 * interrupt endpoints), the hubs to decode the packet, and for all hubs 406 * in the path to transition the links to U0. 407 */ 408 unsigned int mel; 409 /* 410 * Maximum exit latency for a device-initiated LPM transition to bring 411 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 412 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 413 */ 414 unsigned int pel; 415 416 /* 417 * The System Exit Latency (SEL) includes PEL, and three other 418 * latencies. After a device initiates a U0 transition, it will take 419 * some time from when the device sends the ERDY to when it will finally 420 * receive the data packet. Basically, SEL should be the worse-case 421 * latency from when a device starts initiating a U0 transition to when 422 * it will get data. 423 */ 424 unsigned int sel; 425 /* 426 * The idle timeout value that is currently programmed into the parent 427 * hub for this device. When the timer counts to zero, the parent hub 428 * will initiate an LPM transition to either U1 or U2. 429 */ 430 int timeout; 431}; 432 433/** 434 * struct usb_device - kernel's representation of a USB device 435 * @devnum: device number; address on a USB bus 436 * @devpath: device ID string for use in messages (e.g., /port/...) 437 * @route: tree topology hex string for use with xHCI 438 * @state: device state: configured, not attached, etc. 439 * @speed: device speed: high/full/low (or error) 440 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 441 * @ttport: device port on that tt hub 442 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 443 * @parent: our hub, unless we're the root 444 * @bus: bus we're part of 445 * @ep0: endpoint 0 data (default control pipe) 446 * @dev: generic device interface 447 * @descriptor: USB device descriptor 448 * @bos: USB device BOS descriptor set 449 * @config: all of the device's configs 450 * @actconfig: the active configuration 451 * @ep_in: array of IN endpoints 452 * @ep_out: array of OUT endpoints 453 * @rawdescriptors: raw descriptors for each config 454 * @bus_mA: Current available from the bus 455 * @portnum: parent port number (origin 1) 456 * @level: number of USB hub ancestors 457 * @can_submit: URBs may be submitted 458 * @persist_enabled: USB_PERSIST enabled for this device 459 * @have_langid: whether string_langid is valid 460 * @authorized: policy has said we can use it; 461 * (user space) policy determines if we authorize this device to be 462 * used or not. By default, wired USB devices are authorized. 463 * WUSB devices are not, until we authorize them from user space. 464 * FIXME -- complete doc 465 * @authenticated: Crypto authentication passed 466 * @wusb: device is Wireless USB 467 * @lpm_capable: device supports LPM 468 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 469 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled 470 * @string_langid: language ID for strings 471 * @product: iProduct string, if present (static) 472 * @manufacturer: iManufacturer string, if present (static) 473 * @serial: iSerialNumber string, if present (static) 474 * @filelist: usbfs files that are open to this device 475 * @usb_classdev: USB class device that was created for usbfs device 476 * access from userspace 477 * @usbfs_dentry: usbfs dentry entry for the device 478 * @maxchild: number of ports if hub 479 * @quirks: quirks of the whole device 480 * @urbnum: number of URBs submitted for the whole device 481 * @active_duration: total time device is not suspended 482 * @connect_time: time device was first connected 483 * @do_remote_wakeup: remote wakeup should be enabled 484 * @reset_resume: needs reset instead of resume 485 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 486 * specific data for the device. 487 * @slot_id: Slot ID assigned by xHCI 488 * @removable: Device can be physically removed from this port 489 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 490 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 491 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 492 * to keep track of the number of functions that require USB 3.0 Link Power 493 * Management to be disabled for this usb_device. This count should only 494 * be manipulated by those functions, with the bandwidth_mutex is held. 495 * 496 * Notes: 497 * Usbcore drivers should not set usbdev->state directly. Instead use 498 * usb_set_device_state(). 499 */ 500struct usb_device { 501 int devnum; 502 char devpath[16]; 503 u32 route; 504 enum usb_device_state state; 505 enum usb_device_speed speed; 506 507 struct usb_tt *tt; 508 int ttport; 509 510 unsigned int toggle[2]; 511 512 struct usb_device *parent; 513 struct usb_bus *bus; 514 struct usb_host_endpoint ep0; 515 516 struct device dev; 517 518 struct usb_device_descriptor descriptor; 519 struct usb_host_bos *bos; 520 struct usb_host_config *config; 521 522 struct usb_host_config *actconfig; 523 struct usb_host_endpoint *ep_in[16]; 524 struct usb_host_endpoint *ep_out[16]; 525 526 char **rawdescriptors; 527 528 unsigned short bus_mA; 529 u8 portnum; 530 u8 level; 531 532 unsigned can_submit:1; 533 unsigned persist_enabled:1; 534 unsigned have_langid:1; 535 unsigned authorized:1; 536 unsigned authenticated:1; 537 unsigned wusb:1; 538 unsigned lpm_capable:1; 539 unsigned usb2_hw_lpm_capable:1; 540 unsigned usb2_hw_lpm_enabled:1; 541 unsigned usb3_lpm_enabled:1; 542 int string_langid; 543 544 /* static strings from the device */ 545 char *product; 546 char *manufacturer; 547 char *serial; 548 549 struct list_head filelist; 550 551 int maxchild; 552 553 u32 quirks; 554 atomic_t urbnum; 555 556 unsigned long active_duration; 557 558#ifdef CONFIG_PM 559 unsigned long connect_time; 560 561 unsigned do_remote_wakeup:1; 562 unsigned reset_resume:1; 563#endif 564 struct wusb_dev *wusb_dev; 565 int slot_id; 566 enum usb_device_removable removable; 567 struct usb3_lpm_parameters u1_params; 568 struct usb3_lpm_parameters u2_params; 569 unsigned lpm_disable_count; 570}; 571#define to_usb_device(d) container_of(d, struct usb_device, dev) 572 573static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 574{ 575 return to_usb_device(intf->dev.parent); 576} 577 578extern struct usb_device *usb_get_dev(struct usb_device *dev); 579extern void usb_put_dev(struct usb_device *dev); 580extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 581 int port1); 582 583/** 584 * usb_hub_for_each_child - iterate over all child devices on the hub 585 * @hdev: USB device belonging to the usb hub 586 * @port1: portnum associated with child device 587 * @child: child device pointer 588 */ 589#define usb_hub_for_each_child(hdev, port1, child) \ 590 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 591 port1 <= hdev->maxchild; \ 592 child = usb_hub_find_child(hdev, ++port1)) 593 594/* USB device locking */ 595#define usb_lock_device(udev) device_lock(&(udev)->dev) 596#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 597#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 598extern int usb_lock_device_for_reset(struct usb_device *udev, 599 const struct usb_interface *iface); 600 601/* USB port reset for device reinitialization */ 602extern int usb_reset_device(struct usb_device *dev); 603extern void usb_queue_reset_device(struct usb_interface *dev); 604 605#ifdef CONFIG_ACPI 606extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 607 bool enable); 608extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 609#else 610static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 611 bool enable) { return 0; } 612static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 613 { return true; } 614#endif 615 616/* USB autosuspend and autoresume */ 617#ifdef CONFIG_USB_SUSPEND 618extern void usb_enable_autosuspend(struct usb_device *udev); 619extern void usb_disable_autosuspend(struct usb_device *udev); 620 621extern int usb_autopm_get_interface(struct usb_interface *intf); 622extern void usb_autopm_put_interface(struct usb_interface *intf); 623extern int usb_autopm_get_interface_async(struct usb_interface *intf); 624extern void usb_autopm_put_interface_async(struct usb_interface *intf); 625extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 626extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 627 628static inline void usb_mark_last_busy(struct usb_device *udev) 629{ 630 pm_runtime_mark_last_busy(&udev->dev); 631} 632 633#else 634 635static inline int usb_enable_autosuspend(struct usb_device *udev) 636{ return 0; } 637static inline int usb_disable_autosuspend(struct usb_device *udev) 638{ return 0; } 639 640static inline int usb_autopm_get_interface(struct usb_interface *intf) 641{ return 0; } 642static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 643{ return 0; } 644 645static inline void usb_autopm_put_interface(struct usb_interface *intf) 646{ } 647static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 648{ } 649static inline void usb_autopm_get_interface_no_resume( 650 struct usb_interface *intf) 651{ } 652static inline void usb_autopm_put_interface_no_suspend( 653 struct usb_interface *intf) 654{ } 655static inline void usb_mark_last_busy(struct usb_device *udev) 656{ } 657#endif 658 659extern int usb_disable_lpm(struct usb_device *udev); 660extern void usb_enable_lpm(struct usb_device *udev); 661/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 662extern int usb_unlocked_disable_lpm(struct usb_device *udev); 663extern void usb_unlocked_enable_lpm(struct usb_device *udev); 664 665extern int usb_disable_ltm(struct usb_device *udev); 666extern void usb_enable_ltm(struct usb_device *udev); 667 668static inline bool usb_device_supports_ltm(struct usb_device *udev) 669{ 670 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 671 return false; 672 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 673} 674 675 676/*-------------------------------------------------------------------------*/ 677 678/* for drivers using iso endpoints */ 679extern int usb_get_current_frame_number(struct usb_device *usb_dev); 680 681/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 682extern int usb_alloc_streams(struct usb_interface *interface, 683 struct usb_host_endpoint **eps, unsigned int num_eps, 684 unsigned int num_streams, gfp_t mem_flags); 685 686/* Reverts a group of bulk endpoints back to not using stream IDs. */ 687extern void usb_free_streams(struct usb_interface *interface, 688 struct usb_host_endpoint **eps, unsigned int num_eps, 689 gfp_t mem_flags); 690 691/* used these for multi-interface device registration */ 692extern int usb_driver_claim_interface(struct usb_driver *driver, 693 struct usb_interface *iface, void *priv); 694 695/** 696 * usb_interface_claimed - returns true iff an interface is claimed 697 * @iface: the interface being checked 698 * 699 * Returns true (nonzero) iff the interface is claimed, else false (zero). 700 * Callers must own the driver model's usb bus readlock. So driver 701 * probe() entries don't need extra locking, but other call contexts 702 * may need to explicitly claim that lock. 703 * 704 */ 705static inline int usb_interface_claimed(struct usb_interface *iface) 706{ 707 return (iface->dev.driver != NULL); 708} 709 710extern void usb_driver_release_interface(struct usb_driver *driver, 711 struct usb_interface *iface); 712const struct usb_device_id *usb_match_id(struct usb_interface *interface, 713 const struct usb_device_id *id); 714extern int usb_match_one_id(struct usb_interface *interface, 715 const struct usb_device_id *id); 716 717extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 718 int minor); 719extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 720 unsigned ifnum); 721extern struct usb_host_interface *usb_altnum_to_altsetting( 722 const struct usb_interface *intf, unsigned int altnum); 723extern struct usb_host_interface *usb_find_alt_setting( 724 struct usb_host_config *config, 725 unsigned int iface_num, 726 unsigned int alt_num); 727 728 729/** 730 * usb_make_path - returns stable device path in the usb tree 731 * @dev: the device whose path is being constructed 732 * @buf: where to put the string 733 * @size: how big is "buf"? 734 * 735 * Returns length of the string (> 0) or negative if size was too small. 736 * 737 * This identifier is intended to be "stable", reflecting physical paths in 738 * hardware such as physical bus addresses for host controllers or ports on 739 * USB hubs. That makes it stay the same until systems are physically 740 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 741 * controllers. Adding and removing devices, including virtual root hubs 742 * in host controller driver modules, does not change these path identifiers; 743 * neither does rebooting or re-enumerating. These are more useful identifiers 744 * than changeable ("unstable") ones like bus numbers or device addresses. 745 * 746 * With a partial exception for devices connected to USB 2.0 root hubs, these 747 * identifiers are also predictable. So long as the device tree isn't changed, 748 * plugging any USB device into a given hub port always gives it the same path. 749 * Because of the use of "companion" controllers, devices connected to ports on 750 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 751 * high speed, and a different one if they are full or low speed. 752 */ 753static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 754{ 755 int actual; 756 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 757 dev->devpath); 758 return (actual >= (int)size) ? -1 : actual; 759} 760 761/*-------------------------------------------------------------------------*/ 762 763#define USB_DEVICE_ID_MATCH_DEVICE \ 764 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 765#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 766 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 767#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 768 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 769#define USB_DEVICE_ID_MATCH_DEV_INFO \ 770 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 771 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 772 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 773#define USB_DEVICE_ID_MATCH_INT_INFO \ 774 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 775 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 776 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 777 778/** 779 * USB_DEVICE - macro used to describe a specific usb device 780 * @vend: the 16 bit USB Vendor ID 781 * @prod: the 16 bit USB Product ID 782 * 783 * This macro is used to create a struct usb_device_id that matches a 784 * specific device. 785 */ 786#define USB_DEVICE(vend, prod) \ 787 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 788 .idVendor = (vend), \ 789 .idProduct = (prod) 790/** 791 * USB_DEVICE_VER - describe a specific usb device with a version range 792 * @vend: the 16 bit USB Vendor ID 793 * @prod: the 16 bit USB Product ID 794 * @lo: the bcdDevice_lo value 795 * @hi: the bcdDevice_hi value 796 * 797 * This macro is used to create a struct usb_device_id that matches a 798 * specific device, with a version range. 799 */ 800#define USB_DEVICE_VER(vend, prod, lo, hi) \ 801 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 802 .idVendor = (vend), \ 803 .idProduct = (prod), \ 804 .bcdDevice_lo = (lo), \ 805 .bcdDevice_hi = (hi) 806 807/** 808 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 809 * @vend: the 16 bit USB Vendor ID 810 * @prod: the 16 bit USB Product ID 811 * @pr: bInterfaceProtocol value 812 * 813 * This macro is used to create a struct usb_device_id that matches a 814 * specific interface protocol of devices. 815 */ 816#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 817 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 818 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 819 .idVendor = (vend), \ 820 .idProduct = (prod), \ 821 .bInterfaceProtocol = (pr) 822 823/** 824 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 825 * @vend: the 16 bit USB Vendor ID 826 * @prod: the 16 bit USB Product ID 827 * @num: bInterfaceNumber value 828 * 829 * This macro is used to create a struct usb_device_id that matches a 830 * specific interface number of devices. 831 */ 832#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 833 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 834 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 835 .idVendor = (vend), \ 836 .idProduct = (prod), \ 837 .bInterfaceNumber = (num) 838 839/** 840 * USB_DEVICE_INFO - macro used to describe a class of usb devices 841 * @cl: bDeviceClass value 842 * @sc: bDeviceSubClass value 843 * @pr: bDeviceProtocol value 844 * 845 * This macro is used to create a struct usb_device_id that matches a 846 * specific class of devices. 847 */ 848#define USB_DEVICE_INFO(cl, sc, pr) \ 849 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 850 .bDeviceClass = (cl), \ 851 .bDeviceSubClass = (sc), \ 852 .bDeviceProtocol = (pr) 853 854/** 855 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 856 * @cl: bInterfaceClass value 857 * @sc: bInterfaceSubClass value 858 * @pr: bInterfaceProtocol value 859 * 860 * This macro is used to create a struct usb_device_id that matches a 861 * specific class of interfaces. 862 */ 863#define USB_INTERFACE_INFO(cl, sc, pr) \ 864 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 865 .bInterfaceClass = (cl), \ 866 .bInterfaceSubClass = (sc), \ 867 .bInterfaceProtocol = (pr) 868 869/** 870 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 871 * @vend: the 16 bit USB Vendor ID 872 * @prod: the 16 bit USB Product ID 873 * @cl: bInterfaceClass value 874 * @sc: bInterfaceSubClass value 875 * @pr: bInterfaceProtocol value 876 * 877 * This macro is used to create a struct usb_device_id that matches a 878 * specific device with a specific class of interfaces. 879 * 880 * This is especially useful when explicitly matching devices that have 881 * vendor specific bDeviceClass values, but standards-compliant interfaces. 882 */ 883#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 884 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 885 | USB_DEVICE_ID_MATCH_DEVICE, \ 886 .idVendor = (vend), \ 887 .idProduct = (prod), \ 888 .bInterfaceClass = (cl), \ 889 .bInterfaceSubClass = (sc), \ 890 .bInterfaceProtocol = (pr) 891 892/** 893 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 894 * @vend: the 16 bit USB Vendor ID 895 * @cl: bInterfaceClass value 896 * @sc: bInterfaceSubClass value 897 * @pr: bInterfaceProtocol value 898 * 899 * This macro is used to create a struct usb_device_id that matches a 900 * specific vendor with a specific class of interfaces. 901 * 902 * This is especially useful when explicitly matching devices that have 903 * vendor specific bDeviceClass values, but standards-compliant interfaces. 904 */ 905#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 906 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 907 | USB_DEVICE_ID_MATCH_VENDOR, \ 908 .idVendor = (vend), \ 909 .bInterfaceClass = (cl), \ 910 .bInterfaceSubClass = (sc), \ 911 .bInterfaceProtocol = (pr) 912 913/* ----------------------------------------------------------------------- */ 914 915/* Stuff for dynamic usb ids */ 916struct usb_dynids { 917 spinlock_t lock; 918 struct list_head list; 919}; 920 921struct usb_dynid { 922 struct list_head node; 923 struct usb_device_id id; 924}; 925 926extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 927 struct device_driver *driver, 928 const char *buf, size_t count); 929 930extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 931 932/** 933 * struct usbdrv_wrap - wrapper for driver-model structure 934 * @driver: The driver-model core driver structure. 935 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 936 */ 937struct usbdrv_wrap { 938 struct device_driver driver; 939 int for_devices; 940}; 941 942/** 943 * struct usb_driver - identifies USB interface driver to usbcore 944 * @name: The driver name should be unique among USB drivers, 945 * and should normally be the same as the module name. 946 * @probe: Called to see if the driver is willing to manage a particular 947 * interface on a device. If it is, probe returns zero and uses 948 * usb_set_intfdata() to associate driver-specific data with the 949 * interface. It may also use usb_set_interface() to specify the 950 * appropriate altsetting. If unwilling to manage the interface, 951 * return -ENODEV, if genuine IO errors occurred, an appropriate 952 * negative errno value. 953 * @disconnect: Called when the interface is no longer accessible, usually 954 * because its device has been (or is being) disconnected or the 955 * driver module is being unloaded. 956 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 957 * the "usbfs" filesystem. This lets devices provide ways to 958 * expose information to user space regardless of where they 959 * do (or don't) show up otherwise in the filesystem. 960 * @suspend: Called when the device is going to be suspended by the system. 961 * @resume: Called when the device is being resumed by the system. 962 * @reset_resume: Called when the suspended device has been reset instead 963 * of being resumed. 964 * @pre_reset: Called by usb_reset_device() when the device is about to be 965 * reset. This routine must not return until the driver has no active 966 * URBs for the device, and no more URBs may be submitted until the 967 * post_reset method is called. 968 * @post_reset: Called by usb_reset_device() after the device 969 * has been reset 970 * @id_table: USB drivers use ID table to support hotplugging. 971 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 972 * or your driver's probe function will never get called. 973 * @dynids: used internally to hold the list of dynamically added device 974 * ids for this driver. 975 * @drvwrap: Driver-model core structure wrapper. 976 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 977 * added to this driver by preventing the sysfs file from being created. 978 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 979 * for interfaces bound to this driver. 980 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 981 * endpoints before calling the driver's disconnect method. 982 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs 983 * to initiate lower power link state transitions when an idle timeout 984 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 985 * 986 * USB interface drivers must provide a name, probe() and disconnect() 987 * methods, and an id_table. Other driver fields are optional. 988 * 989 * The id_table is used in hotplugging. It holds a set of descriptors, 990 * and specialized data may be associated with each entry. That table 991 * is used by both user and kernel mode hotplugging support. 992 * 993 * The probe() and disconnect() methods are called in a context where 994 * they can sleep, but they should avoid abusing the privilege. Most 995 * work to connect to a device should be done when the device is opened, 996 * and undone at the last close. The disconnect code needs to address 997 * concurrency issues with respect to open() and close() methods, as 998 * well as forcing all pending I/O requests to complete (by unlinking 999 * them as necessary, and blocking until the unlinks complete). 1000 */ 1001struct usb_driver { 1002 const char *name; 1003 1004 int (*probe) (struct usb_interface *intf, 1005 const struct usb_device_id *id); 1006 1007 void (*disconnect) (struct usb_interface *intf); 1008 1009 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1010 void *buf); 1011 1012 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1013 int (*resume) (struct usb_interface *intf); 1014 int (*reset_resume)(struct usb_interface *intf); 1015 1016 int (*pre_reset)(struct usb_interface *intf); 1017 int (*post_reset)(struct usb_interface *intf); 1018 1019 const struct usb_device_id *id_table; 1020 1021 struct usb_dynids dynids; 1022 struct usbdrv_wrap drvwrap; 1023 unsigned int no_dynamic_id:1; 1024 unsigned int supports_autosuspend:1; 1025 unsigned int disable_hub_initiated_lpm:1; 1026 unsigned int soft_unbind:1; 1027}; 1028#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1029 1030/** 1031 * struct usb_device_driver - identifies USB device driver to usbcore 1032 * @name: The driver name should be unique among USB drivers, 1033 * and should normally be the same as the module name. 1034 * @probe: Called to see if the driver is willing to manage a particular 1035 * device. If it is, probe returns zero and uses dev_set_drvdata() 1036 * to associate driver-specific data with the device. If unwilling 1037 * to manage the device, return a negative errno value. 1038 * @disconnect: Called when the device is no longer accessible, usually 1039 * because it has been (or is being) disconnected or the driver's 1040 * module is being unloaded. 1041 * @suspend: Called when the device is going to be suspended by the system. 1042 * @resume: Called when the device is being resumed by the system. 1043 * @drvwrap: Driver-model core structure wrapper. 1044 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1045 * for devices bound to this driver. 1046 * 1047 * USB drivers must provide all the fields listed above except drvwrap. 1048 */ 1049struct usb_device_driver { 1050 const char *name; 1051 1052 int (*probe) (struct usb_device *udev); 1053 void (*disconnect) (struct usb_device *udev); 1054 1055 int (*suspend) (struct usb_device *udev, pm_message_t message); 1056 int (*resume) (struct usb_device *udev, pm_message_t message); 1057 struct usbdrv_wrap drvwrap; 1058 unsigned int supports_autosuspend:1; 1059}; 1060#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1061 drvwrap.driver) 1062 1063extern struct bus_type usb_bus_type; 1064 1065/** 1066 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1067 * @name: the usb class device name for this driver. Will show up in sysfs. 1068 * @devnode: Callback to provide a naming hint for a possible 1069 * device node to create. 1070 * @fops: pointer to the struct file_operations of this driver. 1071 * @minor_base: the start of the minor range for this driver. 1072 * 1073 * This structure is used for the usb_register_dev() and 1074 * usb_unregister_dev() functions, to consolidate a number of the 1075 * parameters used for them. 1076 */ 1077struct usb_class_driver { 1078 char *name; 1079 char *(*devnode)(struct device *dev, umode_t *mode); 1080 const struct file_operations *fops; 1081 int minor_base; 1082}; 1083 1084/* 1085 * use these in module_init()/module_exit() 1086 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1087 */ 1088extern int usb_register_driver(struct usb_driver *, struct module *, 1089 const char *); 1090 1091/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1092#define usb_register(driver) \ 1093 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1094 1095extern void usb_deregister(struct usb_driver *); 1096 1097/** 1098 * module_usb_driver() - Helper macro for registering a USB driver 1099 * @__usb_driver: usb_driver struct 1100 * 1101 * Helper macro for USB drivers which do not do anything special in module 1102 * init/exit. This eliminates a lot of boilerplate. Each module may only 1103 * use this macro once, and calling it replaces module_init() and module_exit() 1104 */ 1105#define module_usb_driver(__usb_driver) \ 1106 module_driver(__usb_driver, usb_register, \ 1107 usb_deregister) 1108 1109extern int usb_register_device_driver(struct usb_device_driver *, 1110 struct module *); 1111extern void usb_deregister_device_driver(struct usb_device_driver *); 1112 1113extern int usb_register_dev(struct usb_interface *intf, 1114 struct usb_class_driver *class_driver); 1115extern void usb_deregister_dev(struct usb_interface *intf, 1116 struct usb_class_driver *class_driver); 1117 1118extern int usb_disabled(void); 1119 1120/* ----------------------------------------------------------------------- */ 1121 1122/* 1123 * URB support, for asynchronous request completions 1124 */ 1125 1126/* 1127 * urb->transfer_flags: 1128 * 1129 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1130 */ 1131#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1132#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1133 * ignored */ 1134#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1135#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1136#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1137#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1138 * needed */ 1139#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1140 1141/* The following flags are used internally by usbcore and HCDs */ 1142#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1143#define URB_DIR_OUT 0 1144#define URB_DIR_MASK URB_DIR_IN 1145 1146#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1147#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1148#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1149#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1150#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1151#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1152#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1153#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1154 1155struct usb_iso_packet_descriptor { 1156 unsigned int offset; 1157 unsigned int length; /* expected length */ 1158 unsigned int actual_length; 1159 int status; 1160}; 1161 1162struct urb; 1163 1164struct usb_anchor { 1165 struct list_head urb_list; 1166 wait_queue_head_t wait; 1167 spinlock_t lock; 1168 unsigned int poisoned:1; 1169}; 1170 1171static inline void init_usb_anchor(struct usb_anchor *anchor) 1172{ 1173 INIT_LIST_HEAD(&anchor->urb_list); 1174 init_waitqueue_head(&anchor->wait); 1175 spin_lock_init(&anchor->lock); 1176} 1177 1178typedef void (*usb_complete_t)(struct urb *); 1179 1180/** 1181 * struct urb - USB Request Block 1182 * @urb_list: For use by current owner of the URB. 1183 * @anchor_list: membership in the list of an anchor 1184 * @anchor: to anchor URBs to a common mooring 1185 * @ep: Points to the endpoint's data structure. Will eventually 1186 * replace @pipe. 1187 * @pipe: Holds endpoint number, direction, type, and more. 1188 * Create these values with the eight macros available; 1189 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1190 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1191 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1192 * numbers range from zero to fifteen. Note that "in" endpoint two 1193 * is a different endpoint (and pipe) from "out" endpoint two. 1194 * The current configuration controls the existence, type, and 1195 * maximum packet size of any given endpoint. 1196 * @stream_id: the endpoint's stream ID for bulk streams 1197 * @dev: Identifies the USB device to perform the request. 1198 * @status: This is read in non-iso completion functions to get the 1199 * status of the particular request. ISO requests only use it 1200 * to tell whether the URB was unlinked; detailed status for 1201 * each frame is in the fields of the iso_frame-desc. 1202 * @transfer_flags: A variety of flags may be used to affect how URB 1203 * submission, unlinking, or operation are handled. Different 1204 * kinds of URB can use different flags. 1205 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1206 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1207 * (however, do not leave garbage in transfer_buffer even then). 1208 * This buffer must be suitable for DMA; allocate it with 1209 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1210 * of this buffer will be modified. This buffer is used for the data 1211 * stage of control transfers. 1212 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1213 * the device driver is saying that it provided this DMA address, 1214 * which the host controller driver should use in preference to the 1215 * transfer_buffer. 1216 * @sg: scatter gather buffer list 1217 * @num_mapped_sgs: (internal) number of mapped sg entries 1218 * @num_sgs: number of entries in the sg list 1219 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1220 * be broken up into chunks according to the current maximum packet 1221 * size for the endpoint, which is a function of the configuration 1222 * and is encoded in the pipe. When the length is zero, neither 1223 * transfer_buffer nor transfer_dma is used. 1224 * @actual_length: This is read in non-iso completion functions, and 1225 * it tells how many bytes (out of transfer_buffer_length) were 1226 * transferred. It will normally be the same as requested, unless 1227 * either an error was reported or a short read was performed. 1228 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1229 * short reads be reported as errors. 1230 * @setup_packet: Only used for control transfers, this points to eight bytes 1231 * of setup data. Control transfers always start by sending this data 1232 * to the device. Then transfer_buffer is read or written, if needed. 1233 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1234 * this field; setup_packet must point to a valid buffer. 1235 * @start_frame: Returns the initial frame for isochronous transfers. 1236 * @number_of_packets: Lists the number of ISO transfer buffers. 1237 * @interval: Specifies the polling interval for interrupt or isochronous 1238 * transfers. The units are frames (milliseconds) for full and low 1239 * speed devices, and microframes (1/8 millisecond) for highspeed 1240 * and SuperSpeed devices. 1241 * @error_count: Returns the number of ISO transfers that reported errors. 1242 * @context: For use in completion functions. This normally points to 1243 * request-specific driver context. 1244 * @complete: Completion handler. This URB is passed as the parameter to the 1245 * completion function. The completion function may then do what 1246 * it likes with the URB, including resubmitting or freeing it. 1247 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1248 * collect the transfer status for each buffer. 1249 * 1250 * This structure identifies USB transfer requests. URBs must be allocated by 1251 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1252 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1253 * are submitted using usb_submit_urb(), and pending requests may be canceled 1254 * using usb_unlink_urb() or usb_kill_urb(). 1255 * 1256 * Data Transfer Buffers: 1257 * 1258 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1259 * taken from the general page pool. That is provided by transfer_buffer 1260 * (control requests also use setup_packet), and host controller drivers 1261 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1262 * mapping operations can be expensive on some platforms (perhaps using a dma 1263 * bounce buffer or talking to an IOMMU), 1264 * although they're cheap on commodity x86 and ppc hardware. 1265 * 1266 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1267 * which tells the host controller driver that no such mapping is needed for 1268 * the transfer_buffer since 1269 * the device driver is DMA-aware. For example, a device driver might 1270 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1271 * When this transfer flag is provided, host controller drivers will 1272 * attempt to use the dma address found in the transfer_dma 1273 * field rather than determining a dma address themselves. 1274 * 1275 * Note that transfer_buffer must still be set if the controller 1276 * does not support DMA (as indicated by bus.uses_dma) and when talking 1277 * to root hub. If you have to trasfer between highmem zone and the device 1278 * on such controller, create a bounce buffer or bail out with an error. 1279 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1280 * capable, assign NULL to it, so that usbmon knows not to use the value. 1281 * The setup_packet must always be set, so it cannot be located in highmem. 1282 * 1283 * Initialization: 1284 * 1285 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1286 * zero), and complete fields. All URBs must also initialize 1287 * transfer_buffer and transfer_buffer_length. They may provide the 1288 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1289 * to be treated as errors; that flag is invalid for write requests. 1290 * 1291 * Bulk URBs may 1292 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1293 * should always terminate with a short packet, even if it means adding an 1294 * extra zero length packet. 1295 * 1296 * Control URBs must provide a valid pointer in the setup_packet field. 1297 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1298 * beforehand. 1299 * 1300 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1301 * or, for highspeed devices, 125 microsecond units) 1302 * to poll for transfers. After the URB has been submitted, the interval 1303 * field reflects how the transfer was actually scheduled. 1304 * The polling interval may be more frequent than requested. 1305 * For example, some controllers have a maximum interval of 32 milliseconds, 1306 * while others support intervals of up to 1024 milliseconds. 1307 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1308 * endpoints, as well as high speed interrupt endpoints, the encoding of 1309 * the transfer interval in the endpoint descriptor is logarithmic. 1310 * Device drivers must convert that value to linear units themselves.) 1311 * 1312 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1313 * the host controller to schedule the transfer as soon as bandwidth 1314 * utilization allows, and then set start_frame to reflect the actual frame 1315 * selected during submission. Otherwise drivers must specify the start_frame 1316 * and handle the case where the transfer can't begin then. However, drivers 1317 * won't know how bandwidth is currently allocated, and while they can 1318 * find the current frame using usb_get_current_frame_number () they can't 1319 * know the range for that frame number. (Ranges for frame counter values 1320 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1321 * 1322 * Isochronous URBs have a different data transfer model, in part because 1323 * the quality of service is only "best effort". Callers provide specially 1324 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1325 * at the end. Each such packet is an individual ISO transfer. Isochronous 1326 * URBs are normally queued, submitted by drivers to arrange that 1327 * transfers are at least double buffered, and then explicitly resubmitted 1328 * in completion handlers, so 1329 * that data (such as audio or video) streams at as constant a rate as the 1330 * host controller scheduler can support. 1331 * 1332 * Completion Callbacks: 1333 * 1334 * The completion callback is made in_interrupt(), and one of the first 1335 * things that a completion handler should do is check the status field. 1336 * The status field is provided for all URBs. It is used to report 1337 * unlinked URBs, and status for all non-ISO transfers. It should not 1338 * be examined before the URB is returned to the completion handler. 1339 * 1340 * The context field is normally used to link URBs back to the relevant 1341 * driver or request state. 1342 * 1343 * When the completion callback is invoked for non-isochronous URBs, the 1344 * actual_length field tells how many bytes were transferred. This field 1345 * is updated even when the URB terminated with an error or was unlinked. 1346 * 1347 * ISO transfer status is reported in the status and actual_length fields 1348 * of the iso_frame_desc array, and the number of errors is reported in 1349 * error_count. Completion callbacks for ISO transfers will normally 1350 * (re)submit URBs to ensure a constant transfer rate. 1351 * 1352 * Note that even fields marked "public" should not be touched by the driver 1353 * when the urb is owned by the hcd, that is, since the call to 1354 * usb_submit_urb() till the entry into the completion routine. 1355 */ 1356struct urb { 1357 /* private: usb core and host controller only fields in the urb */ 1358 struct kref kref; /* reference count of the URB */ 1359 void *hcpriv; /* private data for host controller */ 1360 atomic_t use_count; /* concurrent submissions counter */ 1361 atomic_t reject; /* submissions will fail */ 1362 int unlinked; /* unlink error code */ 1363 1364 /* public: documented fields in the urb that can be used by drivers */ 1365 struct list_head urb_list; /* list head for use by the urb's 1366 * current owner */ 1367 struct list_head anchor_list; /* the URB may be anchored */ 1368 struct usb_anchor *anchor; 1369 struct usb_device *dev; /* (in) pointer to associated device */ 1370 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1371 unsigned int pipe; /* (in) pipe information */ 1372 unsigned int stream_id; /* (in) stream ID */ 1373 int status; /* (return) non-ISO status */ 1374 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1375 void *transfer_buffer; /* (in) associated data buffer */ 1376 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1377 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1378 int num_mapped_sgs; /* (internal) mapped sg entries */ 1379 int num_sgs; /* (in) number of entries in the sg list */ 1380 u32 transfer_buffer_length; /* (in) data buffer length */ 1381 u32 actual_length; /* (return) actual transfer length */ 1382 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1383 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1384 int start_frame; /* (modify) start frame (ISO) */ 1385 int number_of_packets; /* (in) number of ISO packets */ 1386 int interval; /* (modify) transfer interval 1387 * (INT/ISO) */ 1388 int error_count; /* (return) number of ISO errors */ 1389 void *context; /* (in) context for completion */ 1390 usb_complete_t complete; /* (in) completion routine */ 1391 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1392 /* (in) ISO ONLY */ 1393}; 1394 1395/* ----------------------------------------------------------------------- */ 1396 1397/** 1398 * usb_fill_control_urb - initializes a control urb 1399 * @urb: pointer to the urb to initialize. 1400 * @dev: pointer to the struct usb_device for this urb. 1401 * @pipe: the endpoint pipe 1402 * @setup_packet: pointer to the setup_packet buffer 1403 * @transfer_buffer: pointer to the transfer buffer 1404 * @buffer_length: length of the transfer buffer 1405 * @complete_fn: pointer to the usb_complete_t function 1406 * @context: what to set the urb context to. 1407 * 1408 * Initializes a control urb with the proper information needed to submit 1409 * it to a device. 1410 */ 1411static inline void usb_fill_control_urb(struct urb *urb, 1412 struct usb_device *dev, 1413 unsigned int pipe, 1414 unsigned char *setup_packet, 1415 void *transfer_buffer, 1416 int buffer_length, 1417 usb_complete_t complete_fn, 1418 void *context) 1419{ 1420 urb->dev = dev; 1421 urb->pipe = pipe; 1422 urb->setup_packet = setup_packet; 1423 urb->transfer_buffer = transfer_buffer; 1424 urb->transfer_buffer_length = buffer_length; 1425 urb->complete = complete_fn; 1426 urb->context = context; 1427} 1428 1429/** 1430 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1431 * @urb: pointer to the urb to initialize. 1432 * @dev: pointer to the struct usb_device for this urb. 1433 * @pipe: the endpoint pipe 1434 * @transfer_buffer: pointer to the transfer buffer 1435 * @buffer_length: length of the transfer buffer 1436 * @complete_fn: pointer to the usb_complete_t function 1437 * @context: what to set the urb context to. 1438 * 1439 * Initializes a bulk urb with the proper information needed to submit it 1440 * to a device. 1441 */ 1442static inline void usb_fill_bulk_urb(struct urb *urb, 1443 struct usb_device *dev, 1444 unsigned int pipe, 1445 void *transfer_buffer, 1446 int buffer_length, 1447 usb_complete_t complete_fn, 1448 void *context) 1449{ 1450 urb->dev = dev; 1451 urb->pipe = pipe; 1452 urb->transfer_buffer = transfer_buffer; 1453 urb->transfer_buffer_length = buffer_length; 1454 urb->complete = complete_fn; 1455 urb->context = context; 1456} 1457 1458/** 1459 * usb_fill_int_urb - macro to help initialize a interrupt urb 1460 * @urb: pointer to the urb to initialize. 1461 * @dev: pointer to the struct usb_device for this urb. 1462 * @pipe: the endpoint pipe 1463 * @transfer_buffer: pointer to the transfer buffer 1464 * @buffer_length: length of the transfer buffer 1465 * @complete_fn: pointer to the usb_complete_t function 1466 * @context: what to set the urb context to. 1467 * @interval: what to set the urb interval to, encoded like 1468 * the endpoint descriptor's bInterval value. 1469 * 1470 * Initializes a interrupt urb with the proper information needed to submit 1471 * it to a device. 1472 * 1473 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1474 * encoding of the endpoint interval, and express polling intervals in 1475 * microframes (eight per millisecond) rather than in frames (one per 1476 * millisecond). 1477 * 1478 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1479 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1480 * through to the host controller, rather than being translated into microframe 1481 * units. 1482 */ 1483static inline void usb_fill_int_urb(struct urb *urb, 1484 struct usb_device *dev, 1485 unsigned int pipe, 1486 void *transfer_buffer, 1487 int buffer_length, 1488 usb_complete_t complete_fn, 1489 void *context, 1490 int interval) 1491{ 1492 urb->dev = dev; 1493 urb->pipe = pipe; 1494 urb->transfer_buffer = transfer_buffer; 1495 urb->transfer_buffer_length = buffer_length; 1496 urb->complete = complete_fn; 1497 urb->context = context; 1498 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) 1499 urb->interval = 1 << (interval - 1); 1500 else 1501 urb->interval = interval; 1502 urb->start_frame = -1; 1503} 1504 1505extern void usb_init_urb(struct urb *urb); 1506extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1507extern void usb_free_urb(struct urb *urb); 1508#define usb_put_urb usb_free_urb 1509extern struct urb *usb_get_urb(struct urb *urb); 1510extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1511extern int usb_unlink_urb(struct urb *urb); 1512extern void usb_kill_urb(struct urb *urb); 1513extern void usb_poison_urb(struct urb *urb); 1514extern void usb_unpoison_urb(struct urb *urb); 1515extern void usb_block_urb(struct urb *urb); 1516extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1517extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1518extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1519extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1520extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1521extern void usb_unanchor_urb(struct urb *urb); 1522extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1523 unsigned int timeout); 1524extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1525extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1526extern int usb_anchor_empty(struct usb_anchor *anchor); 1527 1528#define usb_unblock_urb usb_unpoison_urb 1529 1530/** 1531 * usb_urb_dir_in - check if an URB describes an IN transfer 1532 * @urb: URB to be checked 1533 * 1534 * Returns 1 if @urb describes an IN transfer (device-to-host), 1535 * otherwise 0. 1536 */ 1537static inline int usb_urb_dir_in(struct urb *urb) 1538{ 1539 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1540} 1541 1542/** 1543 * usb_urb_dir_out - check if an URB describes an OUT transfer 1544 * @urb: URB to be checked 1545 * 1546 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1547 * otherwise 0. 1548 */ 1549static inline int usb_urb_dir_out(struct urb *urb) 1550{ 1551 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1552} 1553 1554void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1555 gfp_t mem_flags, dma_addr_t *dma); 1556void usb_free_coherent(struct usb_device *dev, size_t size, 1557 void *addr, dma_addr_t dma); 1558 1559#if 0 1560struct urb *usb_buffer_map(struct urb *urb); 1561void usb_buffer_dmasync(struct urb *urb); 1562void usb_buffer_unmap(struct urb *urb); 1563#endif 1564 1565struct scatterlist; 1566int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1567 struct scatterlist *sg, int nents); 1568#if 0 1569void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1570 struct scatterlist *sg, int n_hw_ents); 1571#endif 1572void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1573 struct scatterlist *sg, int n_hw_ents); 1574 1575/*-------------------------------------------------------------------* 1576 * SYNCHRONOUS CALL SUPPORT * 1577 *-------------------------------------------------------------------*/ 1578 1579extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1580 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1581 void *data, __u16 size, int timeout); 1582extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1583 void *data, int len, int *actual_length, int timeout); 1584extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1585 void *data, int len, int *actual_length, 1586 int timeout); 1587 1588/* wrappers around usb_control_msg() for the most common standard requests */ 1589extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1590 unsigned char descindex, void *buf, int size); 1591extern int usb_get_status(struct usb_device *dev, 1592 int type, int target, void *data); 1593extern int usb_string(struct usb_device *dev, int index, 1594 char *buf, size_t size); 1595 1596/* wrappers that also update important state inside usbcore */ 1597extern int usb_clear_halt(struct usb_device *dev, int pipe); 1598extern int usb_reset_configuration(struct usb_device *dev); 1599extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1600extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1601 1602/* this request isn't really synchronous, but it belongs with the others */ 1603extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1604 1605/* 1606 * timeouts, in milliseconds, used for sending/receiving control messages 1607 * they typically complete within a few frames (msec) after they're issued 1608 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1609 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1610 */ 1611#define USB_CTRL_GET_TIMEOUT 5000 1612#define USB_CTRL_SET_TIMEOUT 5000 1613 1614 1615/** 1616 * struct usb_sg_request - support for scatter/gather I/O 1617 * @status: zero indicates success, else negative errno 1618 * @bytes: counts bytes transferred. 1619 * 1620 * These requests are initialized using usb_sg_init(), and then are used 1621 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1622 * members of the request object aren't for driver access. 1623 * 1624 * The status and bytecount values are valid only after usb_sg_wait() 1625 * returns. If the status is zero, then the bytecount matches the total 1626 * from the request. 1627 * 1628 * After an error completion, drivers may need to clear a halt condition 1629 * on the endpoint. 1630 */ 1631struct usb_sg_request { 1632 int status; 1633 size_t bytes; 1634 1635 /* private: 1636 * members below are private to usbcore, 1637 * and are not provided for driver access! 1638 */ 1639 spinlock_t lock; 1640 1641 struct usb_device *dev; 1642 int pipe; 1643 1644 int entries; 1645 struct urb **urbs; 1646 1647 int count; 1648 struct completion complete; 1649}; 1650 1651int usb_sg_init( 1652 struct usb_sg_request *io, 1653 struct usb_device *dev, 1654 unsigned pipe, 1655 unsigned period, 1656 struct scatterlist *sg, 1657 int nents, 1658 size_t length, 1659 gfp_t mem_flags 1660); 1661void usb_sg_cancel(struct usb_sg_request *io); 1662void usb_sg_wait(struct usb_sg_request *io); 1663 1664 1665/* ----------------------------------------------------------------------- */ 1666 1667/* 1668 * For various legacy reasons, Linux has a small cookie that's paired with 1669 * a struct usb_device to identify an endpoint queue. Queue characteristics 1670 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1671 * an unsigned int encoded as: 1672 * 1673 * - direction: bit 7 (0 = Host-to-Device [Out], 1674 * 1 = Device-to-Host [In] ... 1675 * like endpoint bEndpointAddress) 1676 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1677 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1678 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1679 * 10 = control, 11 = bulk) 1680 * 1681 * Given the device address and endpoint descriptor, pipes are redundant. 1682 */ 1683 1684/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1685/* (yet ... they're the values used by usbfs) */ 1686#define PIPE_ISOCHRONOUS 0 1687#define PIPE_INTERRUPT 1 1688#define PIPE_CONTROL 2 1689#define PIPE_BULK 3 1690 1691#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1692#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1693 1694#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1695#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1696 1697#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1698#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1699#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1700#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1701#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1702 1703static inline unsigned int __create_pipe(struct usb_device *dev, 1704 unsigned int endpoint) 1705{ 1706 return (dev->devnum << 8) | (endpoint << 15); 1707} 1708 1709/* Create various pipes... */ 1710#define usb_sndctrlpipe(dev, endpoint) \ 1711 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1712#define usb_rcvctrlpipe(dev, endpoint) \ 1713 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1714#define usb_sndisocpipe(dev, endpoint) \ 1715 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1716#define usb_rcvisocpipe(dev, endpoint) \ 1717 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1718#define usb_sndbulkpipe(dev, endpoint) \ 1719 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1720#define usb_rcvbulkpipe(dev, endpoint) \ 1721 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1722#define usb_sndintpipe(dev, endpoint) \ 1723 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1724#define usb_rcvintpipe(dev, endpoint) \ 1725 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1726 1727static inline struct usb_host_endpoint * 1728usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1729{ 1730 struct usb_host_endpoint **eps; 1731 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1732 return eps[usb_pipeendpoint(pipe)]; 1733} 1734 1735/*-------------------------------------------------------------------------*/ 1736 1737static inline __u16 1738usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1739{ 1740 struct usb_host_endpoint *ep; 1741 unsigned epnum = usb_pipeendpoint(pipe); 1742 1743 if (is_out) { 1744 WARN_ON(usb_pipein(pipe)); 1745 ep = udev->ep_out[epnum]; 1746 } else { 1747 WARN_ON(usb_pipeout(pipe)); 1748 ep = udev->ep_in[epnum]; 1749 } 1750 if (!ep) 1751 return 0; 1752 1753 /* NOTE: only 0x07ff bits are for packet size... */ 1754 return usb_endpoint_maxp(&ep->desc); 1755} 1756 1757/* ----------------------------------------------------------------------- */ 1758 1759/* translate USB error codes to codes user space understands */ 1760static inline int usb_translate_errors(int error_code) 1761{ 1762 switch (error_code) { 1763 case 0: 1764 case -ENOMEM: 1765 case -ENODEV: 1766 case -EOPNOTSUPP: 1767 return error_code; 1768 default: 1769 return -EIO; 1770 } 1771} 1772 1773/* Events from the usb core */ 1774#define USB_DEVICE_ADD 0x0001 1775#define USB_DEVICE_REMOVE 0x0002 1776#define USB_BUS_ADD 0x0003 1777#define USB_BUS_REMOVE 0x0004 1778extern void usb_register_notify(struct notifier_block *nb); 1779extern void usb_unregister_notify(struct notifier_block *nb); 1780 1781/* debugfs stuff */ 1782extern struct dentry *usb_debug_root; 1783 1784#endif /* __KERNEL__ */ 1785 1786#endif