at v3.7-rc4 3604 lines 108 kB view raw
1/* 2 * linux/fs/ext3/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Goal-directed block allocation by Stephen Tweedie 16 * (sct@redhat.com), 1993, 1998 17 * Big-endian to little-endian byte-swapping/bitmaps by 18 * David S. Miller (davem@caip.rutgers.edu), 1995 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 20 * (jj@sunsite.ms.mff.cuni.cz) 21 * 22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000 23 */ 24 25#include <linux/highuid.h> 26#include <linux/quotaops.h> 27#include <linux/writeback.h> 28#include <linux/mpage.h> 29#include <linux/namei.h> 30#include "ext3.h" 31#include "xattr.h" 32#include "acl.h" 33 34static int ext3_writepage_trans_blocks(struct inode *inode); 35static int ext3_block_truncate_page(struct inode *inode, loff_t from); 36 37/* 38 * Test whether an inode is a fast symlink. 39 */ 40static int ext3_inode_is_fast_symlink(struct inode *inode) 41{ 42 int ea_blocks = EXT3_I(inode)->i_file_acl ? 43 (inode->i_sb->s_blocksize >> 9) : 0; 44 45 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 46} 47 48/* 49 * The ext3 forget function must perform a revoke if we are freeing data 50 * which has been journaled. Metadata (eg. indirect blocks) must be 51 * revoked in all cases. 52 * 53 * "bh" may be NULL: a metadata block may have been freed from memory 54 * but there may still be a record of it in the journal, and that record 55 * still needs to be revoked. 56 */ 57int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode, 58 struct buffer_head *bh, ext3_fsblk_t blocknr) 59{ 60 int err; 61 62 might_sleep(); 63 64 trace_ext3_forget(inode, is_metadata, blocknr); 65 BUFFER_TRACE(bh, "enter"); 66 67 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 68 "data mode %lx\n", 69 bh, is_metadata, inode->i_mode, 70 test_opt(inode->i_sb, DATA_FLAGS)); 71 72 /* Never use the revoke function if we are doing full data 73 * journaling: there is no need to, and a V1 superblock won't 74 * support it. Otherwise, only skip the revoke on un-journaled 75 * data blocks. */ 76 77 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA || 78 (!is_metadata && !ext3_should_journal_data(inode))) { 79 if (bh) { 80 BUFFER_TRACE(bh, "call journal_forget"); 81 return ext3_journal_forget(handle, bh); 82 } 83 return 0; 84 } 85 86 /* 87 * data!=journal && (is_metadata || should_journal_data(inode)) 88 */ 89 BUFFER_TRACE(bh, "call ext3_journal_revoke"); 90 err = ext3_journal_revoke(handle, blocknr, bh); 91 if (err) 92 ext3_abort(inode->i_sb, __func__, 93 "error %d when attempting revoke", err); 94 BUFFER_TRACE(bh, "exit"); 95 return err; 96} 97 98/* 99 * Work out how many blocks we need to proceed with the next chunk of a 100 * truncate transaction. 101 */ 102static unsigned long blocks_for_truncate(struct inode *inode) 103{ 104 unsigned long needed; 105 106 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 107 108 /* Give ourselves just enough room to cope with inodes in which 109 * i_blocks is corrupt: we've seen disk corruptions in the past 110 * which resulted in random data in an inode which looked enough 111 * like a regular file for ext3 to try to delete it. Things 112 * will go a bit crazy if that happens, but at least we should 113 * try not to panic the whole kernel. */ 114 if (needed < 2) 115 needed = 2; 116 117 /* But we need to bound the transaction so we don't overflow the 118 * journal. */ 119 if (needed > EXT3_MAX_TRANS_DATA) 120 needed = EXT3_MAX_TRANS_DATA; 121 122 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 123} 124 125/* 126 * Truncate transactions can be complex and absolutely huge. So we need to 127 * be able to restart the transaction at a conventient checkpoint to make 128 * sure we don't overflow the journal. 129 * 130 * start_transaction gets us a new handle for a truncate transaction, 131 * and extend_transaction tries to extend the existing one a bit. If 132 * extend fails, we need to propagate the failure up and restart the 133 * transaction in the top-level truncate loop. --sct 134 */ 135static handle_t *start_transaction(struct inode *inode) 136{ 137 handle_t *result; 138 139 result = ext3_journal_start(inode, blocks_for_truncate(inode)); 140 if (!IS_ERR(result)) 141 return result; 142 143 ext3_std_error(inode->i_sb, PTR_ERR(result)); 144 return result; 145} 146 147/* 148 * Try to extend this transaction for the purposes of truncation. 149 * 150 * Returns 0 if we managed to create more room. If we can't create more 151 * room, and the transaction must be restarted we return 1. 152 */ 153static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 154{ 155 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS) 156 return 0; 157 if (!ext3_journal_extend(handle, blocks_for_truncate(inode))) 158 return 0; 159 return 1; 160} 161 162/* 163 * Restart the transaction associated with *handle. This does a commit, 164 * so before we call here everything must be consistently dirtied against 165 * this transaction. 166 */ 167static int truncate_restart_transaction(handle_t *handle, struct inode *inode) 168{ 169 int ret; 170 171 jbd_debug(2, "restarting handle %p\n", handle); 172 /* 173 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle 174 * At this moment, get_block can be called only for blocks inside 175 * i_size since page cache has been already dropped and writes are 176 * blocked by i_mutex. So we can safely drop the truncate_mutex. 177 */ 178 mutex_unlock(&EXT3_I(inode)->truncate_mutex); 179 ret = ext3_journal_restart(handle, blocks_for_truncate(inode)); 180 mutex_lock(&EXT3_I(inode)->truncate_mutex); 181 return ret; 182} 183 184/* 185 * Called at inode eviction from icache 186 */ 187void ext3_evict_inode (struct inode *inode) 188{ 189 struct ext3_inode_info *ei = EXT3_I(inode); 190 struct ext3_block_alloc_info *rsv; 191 handle_t *handle; 192 int want_delete = 0; 193 194 trace_ext3_evict_inode(inode); 195 if (!inode->i_nlink && !is_bad_inode(inode)) { 196 dquot_initialize(inode); 197 want_delete = 1; 198 } 199 200 /* 201 * When journalling data dirty buffers are tracked only in the journal. 202 * So although mm thinks everything is clean and ready for reaping the 203 * inode might still have some pages to write in the running 204 * transaction or waiting to be checkpointed. Thus calling 205 * journal_invalidatepage() (via truncate_inode_pages()) to discard 206 * these buffers can cause data loss. Also even if we did not discard 207 * these buffers, we would have no way to find them after the inode 208 * is reaped and thus user could see stale data if he tries to read 209 * them before the transaction is checkpointed. So be careful and 210 * force everything to disk here... We use ei->i_datasync_tid to 211 * store the newest transaction containing inode's data. 212 * 213 * Note that directories do not have this problem because they don't 214 * use page cache. 215 * 216 * The s_journal check handles the case when ext3_get_journal() fails 217 * and puts the journal inode. 218 */ 219 if (inode->i_nlink && ext3_should_journal_data(inode) && 220 EXT3_SB(inode->i_sb)->s_journal && 221 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) { 222 tid_t commit_tid = atomic_read(&ei->i_datasync_tid); 223 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal; 224 225 log_start_commit(journal, commit_tid); 226 log_wait_commit(journal, commit_tid); 227 filemap_write_and_wait(&inode->i_data); 228 } 229 truncate_inode_pages(&inode->i_data, 0); 230 231 ext3_discard_reservation(inode); 232 rsv = ei->i_block_alloc_info; 233 ei->i_block_alloc_info = NULL; 234 if (unlikely(rsv)) 235 kfree(rsv); 236 237 if (!want_delete) 238 goto no_delete; 239 240 handle = start_transaction(inode); 241 if (IS_ERR(handle)) { 242 /* 243 * If we're going to skip the normal cleanup, we still need to 244 * make sure that the in-core orphan linked list is properly 245 * cleaned up. 246 */ 247 ext3_orphan_del(NULL, inode); 248 goto no_delete; 249 } 250 251 if (IS_SYNC(inode)) 252 handle->h_sync = 1; 253 inode->i_size = 0; 254 if (inode->i_blocks) 255 ext3_truncate(inode); 256 /* 257 * Kill off the orphan record created when the inode lost the last 258 * link. Note that ext3_orphan_del() has to be able to cope with the 259 * deletion of a non-existent orphan - ext3_truncate() could 260 * have removed the record. 261 */ 262 ext3_orphan_del(handle, inode); 263 ei->i_dtime = get_seconds(); 264 265 /* 266 * One subtle ordering requirement: if anything has gone wrong 267 * (transaction abort, IO errors, whatever), then we can still 268 * do these next steps (the fs will already have been marked as 269 * having errors), but we can't free the inode if the mark_dirty 270 * fails. 271 */ 272 if (ext3_mark_inode_dirty(handle, inode)) { 273 /* If that failed, just dquot_drop() and be done with that */ 274 dquot_drop(inode); 275 clear_inode(inode); 276 } else { 277 ext3_xattr_delete_inode(handle, inode); 278 dquot_free_inode(inode); 279 dquot_drop(inode); 280 clear_inode(inode); 281 ext3_free_inode(handle, inode); 282 } 283 ext3_journal_stop(handle); 284 return; 285no_delete: 286 clear_inode(inode); 287 dquot_drop(inode); 288} 289 290typedef struct { 291 __le32 *p; 292 __le32 key; 293 struct buffer_head *bh; 294} Indirect; 295 296static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 297{ 298 p->key = *(p->p = v); 299 p->bh = bh; 300} 301 302static int verify_chain(Indirect *from, Indirect *to) 303{ 304 while (from <= to && from->key == *from->p) 305 from++; 306 return (from > to); 307} 308 309/** 310 * ext3_block_to_path - parse the block number into array of offsets 311 * @inode: inode in question (we are only interested in its superblock) 312 * @i_block: block number to be parsed 313 * @offsets: array to store the offsets in 314 * @boundary: set this non-zero if the referred-to block is likely to be 315 * followed (on disk) by an indirect block. 316 * 317 * To store the locations of file's data ext3 uses a data structure common 318 * for UNIX filesystems - tree of pointers anchored in the inode, with 319 * data blocks at leaves and indirect blocks in intermediate nodes. 320 * This function translates the block number into path in that tree - 321 * return value is the path length and @offsets[n] is the offset of 322 * pointer to (n+1)th node in the nth one. If @block is out of range 323 * (negative or too large) warning is printed and zero returned. 324 * 325 * Note: function doesn't find node addresses, so no IO is needed. All 326 * we need to know is the capacity of indirect blocks (taken from the 327 * inode->i_sb). 328 */ 329 330/* 331 * Portability note: the last comparison (check that we fit into triple 332 * indirect block) is spelled differently, because otherwise on an 333 * architecture with 32-bit longs and 8Kb pages we might get into trouble 334 * if our filesystem had 8Kb blocks. We might use long long, but that would 335 * kill us on x86. Oh, well, at least the sign propagation does not matter - 336 * i_block would have to be negative in the very beginning, so we would not 337 * get there at all. 338 */ 339 340static int ext3_block_to_path(struct inode *inode, 341 long i_block, int offsets[4], int *boundary) 342{ 343 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb); 344 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb); 345 const long direct_blocks = EXT3_NDIR_BLOCKS, 346 indirect_blocks = ptrs, 347 double_blocks = (1 << (ptrs_bits * 2)); 348 int n = 0; 349 int final = 0; 350 351 if (i_block < 0) { 352 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0"); 353 } else if (i_block < direct_blocks) { 354 offsets[n++] = i_block; 355 final = direct_blocks; 356 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 357 offsets[n++] = EXT3_IND_BLOCK; 358 offsets[n++] = i_block; 359 final = ptrs; 360 } else if ((i_block -= indirect_blocks) < double_blocks) { 361 offsets[n++] = EXT3_DIND_BLOCK; 362 offsets[n++] = i_block >> ptrs_bits; 363 offsets[n++] = i_block & (ptrs - 1); 364 final = ptrs; 365 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 366 offsets[n++] = EXT3_TIND_BLOCK; 367 offsets[n++] = i_block >> (ptrs_bits * 2); 368 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 369 offsets[n++] = i_block & (ptrs - 1); 370 final = ptrs; 371 } else { 372 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big"); 373 } 374 if (boundary) 375 *boundary = final - 1 - (i_block & (ptrs - 1)); 376 return n; 377} 378 379/** 380 * ext3_get_branch - read the chain of indirect blocks leading to data 381 * @inode: inode in question 382 * @depth: depth of the chain (1 - direct pointer, etc.) 383 * @offsets: offsets of pointers in inode/indirect blocks 384 * @chain: place to store the result 385 * @err: here we store the error value 386 * 387 * Function fills the array of triples <key, p, bh> and returns %NULL 388 * if everything went OK or the pointer to the last filled triple 389 * (incomplete one) otherwise. Upon the return chain[i].key contains 390 * the number of (i+1)-th block in the chain (as it is stored in memory, 391 * i.e. little-endian 32-bit), chain[i].p contains the address of that 392 * number (it points into struct inode for i==0 and into the bh->b_data 393 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 394 * block for i>0 and NULL for i==0. In other words, it holds the block 395 * numbers of the chain, addresses they were taken from (and where we can 396 * verify that chain did not change) and buffer_heads hosting these 397 * numbers. 398 * 399 * Function stops when it stumbles upon zero pointer (absent block) 400 * (pointer to last triple returned, *@err == 0) 401 * or when it gets an IO error reading an indirect block 402 * (ditto, *@err == -EIO) 403 * or when it notices that chain had been changed while it was reading 404 * (ditto, *@err == -EAGAIN) 405 * or when it reads all @depth-1 indirect blocks successfully and finds 406 * the whole chain, all way to the data (returns %NULL, *err == 0). 407 */ 408static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets, 409 Indirect chain[4], int *err) 410{ 411 struct super_block *sb = inode->i_sb; 412 Indirect *p = chain; 413 struct buffer_head *bh; 414 415 *err = 0; 416 /* i_data is not going away, no lock needed */ 417 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets); 418 if (!p->key) 419 goto no_block; 420 while (--depth) { 421 bh = sb_bread(sb, le32_to_cpu(p->key)); 422 if (!bh) 423 goto failure; 424 /* Reader: pointers */ 425 if (!verify_chain(chain, p)) 426 goto changed; 427 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 428 /* Reader: end */ 429 if (!p->key) 430 goto no_block; 431 } 432 return NULL; 433 434changed: 435 brelse(bh); 436 *err = -EAGAIN; 437 goto no_block; 438failure: 439 *err = -EIO; 440no_block: 441 return p; 442} 443 444/** 445 * ext3_find_near - find a place for allocation with sufficient locality 446 * @inode: owner 447 * @ind: descriptor of indirect block. 448 * 449 * This function returns the preferred place for block allocation. 450 * It is used when heuristic for sequential allocation fails. 451 * Rules are: 452 * + if there is a block to the left of our position - allocate near it. 453 * + if pointer will live in indirect block - allocate near that block. 454 * + if pointer will live in inode - allocate in the same 455 * cylinder group. 456 * 457 * In the latter case we colour the starting block by the callers PID to 458 * prevent it from clashing with concurrent allocations for a different inode 459 * in the same block group. The PID is used here so that functionally related 460 * files will be close-by on-disk. 461 * 462 * Caller must make sure that @ind is valid and will stay that way. 463 */ 464static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind) 465{ 466 struct ext3_inode_info *ei = EXT3_I(inode); 467 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 468 __le32 *p; 469 ext3_fsblk_t bg_start; 470 ext3_grpblk_t colour; 471 472 /* Try to find previous block */ 473 for (p = ind->p - 1; p >= start; p--) { 474 if (*p) 475 return le32_to_cpu(*p); 476 } 477 478 /* No such thing, so let's try location of indirect block */ 479 if (ind->bh) 480 return ind->bh->b_blocknr; 481 482 /* 483 * It is going to be referred to from the inode itself? OK, just put it 484 * into the same cylinder group then. 485 */ 486 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group); 487 colour = (current->pid % 16) * 488 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16); 489 return bg_start + colour; 490} 491 492/** 493 * ext3_find_goal - find a preferred place for allocation. 494 * @inode: owner 495 * @block: block we want 496 * @partial: pointer to the last triple within a chain 497 * 498 * Normally this function find the preferred place for block allocation, 499 * returns it. 500 */ 501 502static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block, 503 Indirect *partial) 504{ 505 struct ext3_block_alloc_info *block_i; 506 507 block_i = EXT3_I(inode)->i_block_alloc_info; 508 509 /* 510 * try the heuristic for sequential allocation, 511 * failing that at least try to get decent locality. 512 */ 513 if (block_i && (block == block_i->last_alloc_logical_block + 1) 514 && (block_i->last_alloc_physical_block != 0)) { 515 return block_i->last_alloc_physical_block + 1; 516 } 517 518 return ext3_find_near(inode, partial); 519} 520 521/** 522 * ext3_blks_to_allocate - Look up the block map and count the number 523 * of direct blocks need to be allocated for the given branch. 524 * 525 * @branch: chain of indirect blocks 526 * @k: number of blocks need for indirect blocks 527 * @blks: number of data blocks to be mapped. 528 * @blocks_to_boundary: the offset in the indirect block 529 * 530 * return the total number of blocks to be allocate, including the 531 * direct and indirect blocks. 532 */ 533static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 534 int blocks_to_boundary) 535{ 536 unsigned long count = 0; 537 538 /* 539 * Simple case, [t,d]Indirect block(s) has not allocated yet 540 * then it's clear blocks on that path have not allocated 541 */ 542 if (k > 0) { 543 /* right now we don't handle cross boundary allocation */ 544 if (blks < blocks_to_boundary + 1) 545 count += blks; 546 else 547 count += blocks_to_boundary + 1; 548 return count; 549 } 550 551 count++; 552 while (count < blks && count <= blocks_to_boundary && 553 le32_to_cpu(*(branch[0].p + count)) == 0) { 554 count++; 555 } 556 return count; 557} 558 559/** 560 * ext3_alloc_blocks - multiple allocate blocks needed for a branch 561 * @handle: handle for this transaction 562 * @inode: owner 563 * @goal: preferred place for allocation 564 * @indirect_blks: the number of blocks need to allocate for indirect 565 * blocks 566 * @blks: number of blocks need to allocated for direct blocks 567 * @new_blocks: on return it will store the new block numbers for 568 * the indirect blocks(if needed) and the first direct block, 569 * @err: here we store the error value 570 * 571 * return the number of direct blocks allocated 572 */ 573static int ext3_alloc_blocks(handle_t *handle, struct inode *inode, 574 ext3_fsblk_t goal, int indirect_blks, int blks, 575 ext3_fsblk_t new_blocks[4], int *err) 576{ 577 int target, i; 578 unsigned long count = 0; 579 int index = 0; 580 ext3_fsblk_t current_block = 0; 581 int ret = 0; 582 583 /* 584 * Here we try to allocate the requested multiple blocks at once, 585 * on a best-effort basis. 586 * To build a branch, we should allocate blocks for 587 * the indirect blocks(if not allocated yet), and at least 588 * the first direct block of this branch. That's the 589 * minimum number of blocks need to allocate(required) 590 */ 591 target = blks + indirect_blks; 592 593 while (1) { 594 count = target; 595 /* allocating blocks for indirect blocks and direct blocks */ 596 current_block = ext3_new_blocks(handle,inode,goal,&count,err); 597 if (*err) 598 goto failed_out; 599 600 target -= count; 601 /* allocate blocks for indirect blocks */ 602 while (index < indirect_blks && count) { 603 new_blocks[index++] = current_block++; 604 count--; 605 } 606 607 if (count > 0) 608 break; 609 } 610 611 /* save the new block number for the first direct block */ 612 new_blocks[index] = current_block; 613 614 /* total number of blocks allocated for direct blocks */ 615 ret = count; 616 *err = 0; 617 return ret; 618failed_out: 619 for (i = 0; i <index; i++) 620 ext3_free_blocks(handle, inode, new_blocks[i], 1); 621 return ret; 622} 623 624/** 625 * ext3_alloc_branch - allocate and set up a chain of blocks. 626 * @handle: handle for this transaction 627 * @inode: owner 628 * @indirect_blks: number of allocated indirect blocks 629 * @blks: number of allocated direct blocks 630 * @goal: preferred place for allocation 631 * @offsets: offsets (in the blocks) to store the pointers to next. 632 * @branch: place to store the chain in. 633 * 634 * This function allocates blocks, zeroes out all but the last one, 635 * links them into chain and (if we are synchronous) writes them to disk. 636 * In other words, it prepares a branch that can be spliced onto the 637 * inode. It stores the information about that chain in the branch[], in 638 * the same format as ext3_get_branch() would do. We are calling it after 639 * we had read the existing part of chain and partial points to the last 640 * triple of that (one with zero ->key). Upon the exit we have the same 641 * picture as after the successful ext3_get_block(), except that in one 642 * place chain is disconnected - *branch->p is still zero (we did not 643 * set the last link), but branch->key contains the number that should 644 * be placed into *branch->p to fill that gap. 645 * 646 * If allocation fails we free all blocks we've allocated (and forget 647 * their buffer_heads) and return the error value the from failed 648 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain 649 * as described above and return 0. 650 */ 651static int ext3_alloc_branch(handle_t *handle, struct inode *inode, 652 int indirect_blks, int *blks, ext3_fsblk_t goal, 653 int *offsets, Indirect *branch) 654{ 655 int blocksize = inode->i_sb->s_blocksize; 656 int i, n = 0; 657 int err = 0; 658 struct buffer_head *bh; 659 int num; 660 ext3_fsblk_t new_blocks[4]; 661 ext3_fsblk_t current_block; 662 663 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks, 664 *blks, new_blocks, &err); 665 if (err) 666 return err; 667 668 branch[0].key = cpu_to_le32(new_blocks[0]); 669 /* 670 * metadata blocks and data blocks are allocated. 671 */ 672 for (n = 1; n <= indirect_blks; n++) { 673 /* 674 * Get buffer_head for parent block, zero it out 675 * and set the pointer to new one, then send 676 * parent to disk. 677 */ 678 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 679 branch[n].bh = bh; 680 lock_buffer(bh); 681 BUFFER_TRACE(bh, "call get_create_access"); 682 err = ext3_journal_get_create_access(handle, bh); 683 if (err) { 684 unlock_buffer(bh); 685 brelse(bh); 686 goto failed; 687 } 688 689 memset(bh->b_data, 0, blocksize); 690 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 691 branch[n].key = cpu_to_le32(new_blocks[n]); 692 *branch[n].p = branch[n].key; 693 if ( n == indirect_blks) { 694 current_block = new_blocks[n]; 695 /* 696 * End of chain, update the last new metablock of 697 * the chain to point to the new allocated 698 * data blocks numbers 699 */ 700 for (i=1; i < num; i++) 701 *(branch[n].p + i) = cpu_to_le32(++current_block); 702 } 703 BUFFER_TRACE(bh, "marking uptodate"); 704 set_buffer_uptodate(bh); 705 unlock_buffer(bh); 706 707 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 708 err = ext3_journal_dirty_metadata(handle, bh); 709 if (err) 710 goto failed; 711 } 712 *blks = num; 713 return err; 714failed: 715 /* Allocation failed, free what we already allocated */ 716 for (i = 1; i <= n ; i++) { 717 BUFFER_TRACE(branch[i].bh, "call journal_forget"); 718 ext3_journal_forget(handle, branch[i].bh); 719 } 720 for (i = 0; i <indirect_blks; i++) 721 ext3_free_blocks(handle, inode, new_blocks[i], 1); 722 723 ext3_free_blocks(handle, inode, new_blocks[i], num); 724 725 return err; 726} 727 728/** 729 * ext3_splice_branch - splice the allocated branch onto inode. 730 * @handle: handle for this transaction 731 * @inode: owner 732 * @block: (logical) number of block we are adding 733 * @where: location of missing link 734 * @num: number of indirect blocks we are adding 735 * @blks: number of direct blocks we are adding 736 * 737 * This function fills the missing link and does all housekeeping needed in 738 * inode (->i_blocks, etc.). In case of success we end up with the full 739 * chain to new block and return 0. 740 */ 741static int ext3_splice_branch(handle_t *handle, struct inode *inode, 742 long block, Indirect *where, int num, int blks) 743{ 744 int i; 745 int err = 0; 746 struct ext3_block_alloc_info *block_i; 747 ext3_fsblk_t current_block; 748 struct ext3_inode_info *ei = EXT3_I(inode); 749 struct timespec now; 750 751 block_i = ei->i_block_alloc_info; 752 /* 753 * If we're splicing into a [td]indirect block (as opposed to the 754 * inode) then we need to get write access to the [td]indirect block 755 * before the splice. 756 */ 757 if (where->bh) { 758 BUFFER_TRACE(where->bh, "get_write_access"); 759 err = ext3_journal_get_write_access(handle, where->bh); 760 if (err) 761 goto err_out; 762 } 763 /* That's it */ 764 765 *where->p = where->key; 766 767 /* 768 * Update the host buffer_head or inode to point to more just allocated 769 * direct blocks blocks 770 */ 771 if (num == 0 && blks > 1) { 772 current_block = le32_to_cpu(where->key) + 1; 773 for (i = 1; i < blks; i++) 774 *(where->p + i ) = cpu_to_le32(current_block++); 775 } 776 777 /* 778 * update the most recently allocated logical & physical block 779 * in i_block_alloc_info, to assist find the proper goal block for next 780 * allocation 781 */ 782 if (block_i) { 783 block_i->last_alloc_logical_block = block + blks - 1; 784 block_i->last_alloc_physical_block = 785 le32_to_cpu(where[num].key) + blks - 1; 786 } 787 788 /* We are done with atomic stuff, now do the rest of housekeeping */ 789 now = CURRENT_TIME_SEC; 790 if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) { 791 inode->i_ctime = now; 792 ext3_mark_inode_dirty(handle, inode); 793 } 794 /* ext3_mark_inode_dirty already updated i_sync_tid */ 795 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); 796 797 /* had we spliced it onto indirect block? */ 798 if (where->bh) { 799 /* 800 * If we spliced it onto an indirect block, we haven't 801 * altered the inode. Note however that if it is being spliced 802 * onto an indirect block at the very end of the file (the 803 * file is growing) then we *will* alter the inode to reflect 804 * the new i_size. But that is not done here - it is done in 805 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode. 806 */ 807 jbd_debug(5, "splicing indirect only\n"); 808 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata"); 809 err = ext3_journal_dirty_metadata(handle, where->bh); 810 if (err) 811 goto err_out; 812 } else { 813 /* 814 * OK, we spliced it into the inode itself on a direct block. 815 * Inode was dirtied above. 816 */ 817 jbd_debug(5, "splicing direct\n"); 818 } 819 return err; 820 821err_out: 822 for (i = 1; i <= num; i++) { 823 BUFFER_TRACE(where[i].bh, "call journal_forget"); 824 ext3_journal_forget(handle, where[i].bh); 825 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1); 826 } 827 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks); 828 829 return err; 830} 831 832/* 833 * Allocation strategy is simple: if we have to allocate something, we will 834 * have to go the whole way to leaf. So let's do it before attaching anything 835 * to tree, set linkage between the newborn blocks, write them if sync is 836 * required, recheck the path, free and repeat if check fails, otherwise 837 * set the last missing link (that will protect us from any truncate-generated 838 * removals - all blocks on the path are immune now) and possibly force the 839 * write on the parent block. 840 * That has a nice additional property: no special recovery from the failed 841 * allocations is needed - we simply release blocks and do not touch anything 842 * reachable from inode. 843 * 844 * `handle' can be NULL if create == 0. 845 * 846 * The BKL may not be held on entry here. Be sure to take it early. 847 * return > 0, # of blocks mapped or allocated. 848 * return = 0, if plain lookup failed. 849 * return < 0, error case. 850 */ 851int ext3_get_blocks_handle(handle_t *handle, struct inode *inode, 852 sector_t iblock, unsigned long maxblocks, 853 struct buffer_head *bh_result, 854 int create) 855{ 856 int err = -EIO; 857 int offsets[4]; 858 Indirect chain[4]; 859 Indirect *partial; 860 ext3_fsblk_t goal; 861 int indirect_blks; 862 int blocks_to_boundary = 0; 863 int depth; 864 struct ext3_inode_info *ei = EXT3_I(inode); 865 int count = 0; 866 ext3_fsblk_t first_block = 0; 867 868 869 trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create); 870 J_ASSERT(handle != NULL || create == 0); 871 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary); 872 873 if (depth == 0) 874 goto out; 875 876 partial = ext3_get_branch(inode, depth, offsets, chain, &err); 877 878 /* Simplest case - block found, no allocation needed */ 879 if (!partial) { 880 first_block = le32_to_cpu(chain[depth - 1].key); 881 clear_buffer_new(bh_result); 882 count++; 883 /*map more blocks*/ 884 while (count < maxblocks && count <= blocks_to_boundary) { 885 ext3_fsblk_t blk; 886 887 if (!verify_chain(chain, chain + depth - 1)) { 888 /* 889 * Indirect block might be removed by 890 * truncate while we were reading it. 891 * Handling of that case: forget what we've 892 * got now. Flag the err as EAGAIN, so it 893 * will reread. 894 */ 895 err = -EAGAIN; 896 count = 0; 897 break; 898 } 899 blk = le32_to_cpu(*(chain[depth-1].p + count)); 900 901 if (blk == first_block + count) 902 count++; 903 else 904 break; 905 } 906 if (err != -EAGAIN) 907 goto got_it; 908 } 909 910 /* Next simple case - plain lookup or failed read of indirect block */ 911 if (!create || err == -EIO) 912 goto cleanup; 913 914 /* 915 * Block out ext3_truncate while we alter the tree 916 */ 917 mutex_lock(&ei->truncate_mutex); 918 919 /* 920 * If the indirect block is missing while we are reading 921 * the chain(ext3_get_branch() returns -EAGAIN err), or 922 * if the chain has been changed after we grab the semaphore, 923 * (either because another process truncated this branch, or 924 * another get_block allocated this branch) re-grab the chain to see if 925 * the request block has been allocated or not. 926 * 927 * Since we already block the truncate/other get_block 928 * at this point, we will have the current copy of the chain when we 929 * splice the branch into the tree. 930 */ 931 if (err == -EAGAIN || !verify_chain(chain, partial)) { 932 while (partial > chain) { 933 brelse(partial->bh); 934 partial--; 935 } 936 partial = ext3_get_branch(inode, depth, offsets, chain, &err); 937 if (!partial) { 938 count++; 939 mutex_unlock(&ei->truncate_mutex); 940 if (err) 941 goto cleanup; 942 clear_buffer_new(bh_result); 943 goto got_it; 944 } 945 } 946 947 /* 948 * Okay, we need to do block allocation. Lazily initialize the block 949 * allocation info here if necessary 950 */ 951 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 952 ext3_init_block_alloc_info(inode); 953 954 goal = ext3_find_goal(inode, iblock, partial); 955 956 /* the number of blocks need to allocate for [d,t]indirect blocks */ 957 indirect_blks = (chain + depth) - partial - 1; 958 959 /* 960 * Next look up the indirect map to count the totoal number of 961 * direct blocks to allocate for this branch. 962 */ 963 count = ext3_blks_to_allocate(partial, indirect_blks, 964 maxblocks, blocks_to_boundary); 965 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal, 966 offsets + (partial - chain), partial); 967 968 /* 969 * The ext3_splice_branch call will free and forget any buffers 970 * on the new chain if there is a failure, but that risks using 971 * up transaction credits, especially for bitmaps where the 972 * credits cannot be returned. Can we handle this somehow? We 973 * may need to return -EAGAIN upwards in the worst case. --sct 974 */ 975 if (!err) 976 err = ext3_splice_branch(handle, inode, iblock, 977 partial, indirect_blks, count); 978 mutex_unlock(&ei->truncate_mutex); 979 if (err) 980 goto cleanup; 981 982 set_buffer_new(bh_result); 983got_it: 984 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 985 if (count > blocks_to_boundary) 986 set_buffer_boundary(bh_result); 987 err = count; 988 /* Clean up and exit */ 989 partial = chain + depth - 1; /* the whole chain */ 990cleanup: 991 while (partial > chain) { 992 BUFFER_TRACE(partial->bh, "call brelse"); 993 brelse(partial->bh); 994 partial--; 995 } 996 BUFFER_TRACE(bh_result, "returned"); 997out: 998 trace_ext3_get_blocks_exit(inode, iblock, 999 depth ? le32_to_cpu(chain[depth-1].key) : 0, 1000 count, err); 1001 return err; 1002} 1003 1004/* Maximum number of blocks we map for direct IO at once. */ 1005#define DIO_MAX_BLOCKS 4096 1006/* 1007 * Number of credits we need for writing DIO_MAX_BLOCKS: 1008 * We need sb + group descriptor + bitmap + inode -> 4 1009 * For B blocks with A block pointers per block we need: 1010 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect). 1011 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25. 1012 */ 1013#define DIO_CREDITS 25 1014 1015static int ext3_get_block(struct inode *inode, sector_t iblock, 1016 struct buffer_head *bh_result, int create) 1017{ 1018 handle_t *handle = ext3_journal_current_handle(); 1019 int ret = 0, started = 0; 1020 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1021 1022 if (create && !handle) { /* Direct IO write... */ 1023 if (max_blocks > DIO_MAX_BLOCKS) 1024 max_blocks = DIO_MAX_BLOCKS; 1025 handle = ext3_journal_start(inode, DIO_CREDITS + 1026 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb)); 1027 if (IS_ERR(handle)) { 1028 ret = PTR_ERR(handle); 1029 goto out; 1030 } 1031 started = 1; 1032 } 1033 1034 ret = ext3_get_blocks_handle(handle, inode, iblock, 1035 max_blocks, bh_result, create); 1036 if (ret > 0) { 1037 bh_result->b_size = (ret << inode->i_blkbits); 1038 ret = 0; 1039 } 1040 if (started) 1041 ext3_journal_stop(handle); 1042out: 1043 return ret; 1044} 1045 1046int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1047 u64 start, u64 len) 1048{ 1049 return generic_block_fiemap(inode, fieinfo, start, len, 1050 ext3_get_block); 1051} 1052 1053/* 1054 * `handle' can be NULL if create is zero 1055 */ 1056struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode, 1057 long block, int create, int *errp) 1058{ 1059 struct buffer_head dummy; 1060 int fatal = 0, err; 1061 1062 J_ASSERT(handle != NULL || create == 0); 1063 1064 dummy.b_state = 0; 1065 dummy.b_blocknr = -1000; 1066 buffer_trace_init(&dummy.b_history); 1067 err = ext3_get_blocks_handle(handle, inode, block, 1, 1068 &dummy, create); 1069 /* 1070 * ext3_get_blocks_handle() returns number of blocks 1071 * mapped. 0 in case of a HOLE. 1072 */ 1073 if (err > 0) { 1074 if (err > 1) 1075 WARN_ON(1); 1076 err = 0; 1077 } 1078 *errp = err; 1079 if (!err && buffer_mapped(&dummy)) { 1080 struct buffer_head *bh; 1081 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1082 if (!bh) { 1083 *errp = -EIO; 1084 goto err; 1085 } 1086 if (buffer_new(&dummy)) { 1087 J_ASSERT(create != 0); 1088 J_ASSERT(handle != NULL); 1089 1090 /* 1091 * Now that we do not always journal data, we should 1092 * keep in mind whether this should always journal the 1093 * new buffer as metadata. For now, regular file 1094 * writes use ext3_get_block instead, so it's not a 1095 * problem. 1096 */ 1097 lock_buffer(bh); 1098 BUFFER_TRACE(bh, "call get_create_access"); 1099 fatal = ext3_journal_get_create_access(handle, bh); 1100 if (!fatal && !buffer_uptodate(bh)) { 1101 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1102 set_buffer_uptodate(bh); 1103 } 1104 unlock_buffer(bh); 1105 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 1106 err = ext3_journal_dirty_metadata(handle, bh); 1107 if (!fatal) 1108 fatal = err; 1109 } else { 1110 BUFFER_TRACE(bh, "not a new buffer"); 1111 } 1112 if (fatal) { 1113 *errp = fatal; 1114 brelse(bh); 1115 bh = NULL; 1116 } 1117 return bh; 1118 } 1119err: 1120 return NULL; 1121} 1122 1123struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode, 1124 int block, int create, int *err) 1125{ 1126 struct buffer_head * bh; 1127 1128 bh = ext3_getblk(handle, inode, block, create, err); 1129 if (!bh) 1130 return bh; 1131 if (bh_uptodate_or_lock(bh)) 1132 return bh; 1133 get_bh(bh); 1134 bh->b_end_io = end_buffer_read_sync; 1135 submit_bh(READ | REQ_META | REQ_PRIO, bh); 1136 wait_on_buffer(bh); 1137 if (buffer_uptodate(bh)) 1138 return bh; 1139 put_bh(bh); 1140 *err = -EIO; 1141 return NULL; 1142} 1143 1144static int walk_page_buffers( handle_t *handle, 1145 struct buffer_head *head, 1146 unsigned from, 1147 unsigned to, 1148 int *partial, 1149 int (*fn)( handle_t *handle, 1150 struct buffer_head *bh)) 1151{ 1152 struct buffer_head *bh; 1153 unsigned block_start, block_end; 1154 unsigned blocksize = head->b_size; 1155 int err, ret = 0; 1156 struct buffer_head *next; 1157 1158 for ( bh = head, block_start = 0; 1159 ret == 0 && (bh != head || !block_start); 1160 block_start = block_end, bh = next) 1161 { 1162 next = bh->b_this_page; 1163 block_end = block_start + blocksize; 1164 if (block_end <= from || block_start >= to) { 1165 if (partial && !buffer_uptodate(bh)) 1166 *partial = 1; 1167 continue; 1168 } 1169 err = (*fn)(handle, bh); 1170 if (!ret) 1171 ret = err; 1172 } 1173 return ret; 1174} 1175 1176/* 1177 * To preserve ordering, it is essential that the hole instantiation and 1178 * the data write be encapsulated in a single transaction. We cannot 1179 * close off a transaction and start a new one between the ext3_get_block() 1180 * and the commit_write(). So doing the journal_start at the start of 1181 * prepare_write() is the right place. 1182 * 1183 * Also, this function can nest inside ext3_writepage() -> 1184 * block_write_full_page(). In that case, we *know* that ext3_writepage() 1185 * has generated enough buffer credits to do the whole page. So we won't 1186 * block on the journal in that case, which is good, because the caller may 1187 * be PF_MEMALLOC. 1188 * 1189 * By accident, ext3 can be reentered when a transaction is open via 1190 * quota file writes. If we were to commit the transaction while thus 1191 * reentered, there can be a deadlock - we would be holding a quota 1192 * lock, and the commit would never complete if another thread had a 1193 * transaction open and was blocking on the quota lock - a ranking 1194 * violation. 1195 * 1196 * So what we do is to rely on the fact that journal_stop/journal_start 1197 * will _not_ run commit under these circumstances because handle->h_ref 1198 * is elevated. We'll still have enough credits for the tiny quotafile 1199 * write. 1200 */ 1201static int do_journal_get_write_access(handle_t *handle, 1202 struct buffer_head *bh) 1203{ 1204 int dirty = buffer_dirty(bh); 1205 int ret; 1206 1207 if (!buffer_mapped(bh) || buffer_freed(bh)) 1208 return 0; 1209 /* 1210 * __block_prepare_write() could have dirtied some buffers. Clean 1211 * the dirty bit as jbd2_journal_get_write_access() could complain 1212 * otherwise about fs integrity issues. Setting of the dirty bit 1213 * by __block_prepare_write() isn't a real problem here as we clear 1214 * the bit before releasing a page lock and thus writeback cannot 1215 * ever write the buffer. 1216 */ 1217 if (dirty) 1218 clear_buffer_dirty(bh); 1219 ret = ext3_journal_get_write_access(handle, bh); 1220 if (!ret && dirty) 1221 ret = ext3_journal_dirty_metadata(handle, bh); 1222 return ret; 1223} 1224 1225/* 1226 * Truncate blocks that were not used by write. We have to truncate the 1227 * pagecache as well so that corresponding buffers get properly unmapped. 1228 */ 1229static void ext3_truncate_failed_write(struct inode *inode) 1230{ 1231 truncate_inode_pages(inode->i_mapping, inode->i_size); 1232 ext3_truncate(inode); 1233} 1234 1235/* 1236 * Truncate blocks that were not used by direct IO write. We have to zero out 1237 * the last file block as well because direct IO might have written to it. 1238 */ 1239static void ext3_truncate_failed_direct_write(struct inode *inode) 1240{ 1241 ext3_block_truncate_page(inode, inode->i_size); 1242 ext3_truncate(inode); 1243} 1244 1245static int ext3_write_begin(struct file *file, struct address_space *mapping, 1246 loff_t pos, unsigned len, unsigned flags, 1247 struct page **pagep, void **fsdata) 1248{ 1249 struct inode *inode = mapping->host; 1250 int ret; 1251 handle_t *handle; 1252 int retries = 0; 1253 struct page *page; 1254 pgoff_t index; 1255 unsigned from, to; 1256 /* Reserve one block more for addition to orphan list in case 1257 * we allocate blocks but write fails for some reason */ 1258 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1; 1259 1260 trace_ext3_write_begin(inode, pos, len, flags); 1261 1262 index = pos >> PAGE_CACHE_SHIFT; 1263 from = pos & (PAGE_CACHE_SIZE - 1); 1264 to = from + len; 1265 1266retry: 1267 page = grab_cache_page_write_begin(mapping, index, flags); 1268 if (!page) 1269 return -ENOMEM; 1270 *pagep = page; 1271 1272 handle = ext3_journal_start(inode, needed_blocks); 1273 if (IS_ERR(handle)) { 1274 unlock_page(page); 1275 page_cache_release(page); 1276 ret = PTR_ERR(handle); 1277 goto out; 1278 } 1279 ret = __block_write_begin(page, pos, len, ext3_get_block); 1280 if (ret) 1281 goto write_begin_failed; 1282 1283 if (ext3_should_journal_data(inode)) { 1284 ret = walk_page_buffers(handle, page_buffers(page), 1285 from, to, NULL, do_journal_get_write_access); 1286 } 1287write_begin_failed: 1288 if (ret) { 1289 /* 1290 * block_write_begin may have instantiated a few blocks 1291 * outside i_size. Trim these off again. Don't need 1292 * i_size_read because we hold i_mutex. 1293 * 1294 * Add inode to orphan list in case we crash before truncate 1295 * finishes. Do this only if ext3_can_truncate() agrees so 1296 * that orphan processing code is happy. 1297 */ 1298 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1299 ext3_orphan_add(handle, inode); 1300 ext3_journal_stop(handle); 1301 unlock_page(page); 1302 page_cache_release(page); 1303 if (pos + len > inode->i_size) 1304 ext3_truncate_failed_write(inode); 1305 } 1306 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries)) 1307 goto retry; 1308out: 1309 return ret; 1310} 1311 1312 1313int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh) 1314{ 1315 int err = journal_dirty_data(handle, bh); 1316 if (err) 1317 ext3_journal_abort_handle(__func__, __func__, 1318 bh, handle, err); 1319 return err; 1320} 1321 1322/* For ordered writepage and write_end functions */ 1323static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) 1324{ 1325 /* 1326 * Write could have mapped the buffer but it didn't copy the data in 1327 * yet. So avoid filing such buffer into a transaction. 1328 */ 1329 if (buffer_mapped(bh) && buffer_uptodate(bh)) 1330 return ext3_journal_dirty_data(handle, bh); 1331 return 0; 1332} 1333 1334/* For write_end() in data=journal mode */ 1335static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1336{ 1337 if (!buffer_mapped(bh) || buffer_freed(bh)) 1338 return 0; 1339 set_buffer_uptodate(bh); 1340 return ext3_journal_dirty_metadata(handle, bh); 1341} 1342 1343/* 1344 * This is nasty and subtle: ext3_write_begin() could have allocated blocks 1345 * for the whole page but later we failed to copy the data in. Update inode 1346 * size according to what we managed to copy. The rest is going to be 1347 * truncated in write_end function. 1348 */ 1349static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied) 1350{ 1351 /* What matters to us is i_disksize. We don't write i_size anywhere */ 1352 if (pos + copied > inode->i_size) 1353 i_size_write(inode, pos + copied); 1354 if (pos + copied > EXT3_I(inode)->i_disksize) { 1355 EXT3_I(inode)->i_disksize = pos + copied; 1356 mark_inode_dirty(inode); 1357 } 1358} 1359 1360/* 1361 * We need to pick up the new inode size which generic_commit_write gave us 1362 * `file' can be NULL - eg, when called from page_symlink(). 1363 * 1364 * ext3 never places buffers on inode->i_mapping->private_list. metadata 1365 * buffers are managed internally. 1366 */ 1367static int ext3_ordered_write_end(struct file *file, 1368 struct address_space *mapping, 1369 loff_t pos, unsigned len, unsigned copied, 1370 struct page *page, void *fsdata) 1371{ 1372 handle_t *handle = ext3_journal_current_handle(); 1373 struct inode *inode = file->f_mapping->host; 1374 unsigned from, to; 1375 int ret = 0, ret2; 1376 1377 trace_ext3_ordered_write_end(inode, pos, len, copied); 1378 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1379 1380 from = pos & (PAGE_CACHE_SIZE - 1); 1381 to = from + copied; 1382 ret = walk_page_buffers(handle, page_buffers(page), 1383 from, to, NULL, journal_dirty_data_fn); 1384 1385 if (ret == 0) 1386 update_file_sizes(inode, pos, copied); 1387 /* 1388 * There may be allocated blocks outside of i_size because 1389 * we failed to copy some data. Prepare for truncate. 1390 */ 1391 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1392 ext3_orphan_add(handle, inode); 1393 ret2 = ext3_journal_stop(handle); 1394 if (!ret) 1395 ret = ret2; 1396 unlock_page(page); 1397 page_cache_release(page); 1398 1399 if (pos + len > inode->i_size) 1400 ext3_truncate_failed_write(inode); 1401 return ret ? ret : copied; 1402} 1403 1404static int ext3_writeback_write_end(struct file *file, 1405 struct address_space *mapping, 1406 loff_t pos, unsigned len, unsigned copied, 1407 struct page *page, void *fsdata) 1408{ 1409 handle_t *handle = ext3_journal_current_handle(); 1410 struct inode *inode = file->f_mapping->host; 1411 int ret; 1412 1413 trace_ext3_writeback_write_end(inode, pos, len, copied); 1414 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1415 update_file_sizes(inode, pos, copied); 1416 /* 1417 * There may be allocated blocks outside of i_size because 1418 * we failed to copy some data. Prepare for truncate. 1419 */ 1420 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1421 ext3_orphan_add(handle, inode); 1422 ret = ext3_journal_stop(handle); 1423 unlock_page(page); 1424 page_cache_release(page); 1425 1426 if (pos + len > inode->i_size) 1427 ext3_truncate_failed_write(inode); 1428 return ret ? ret : copied; 1429} 1430 1431static int ext3_journalled_write_end(struct file *file, 1432 struct address_space *mapping, 1433 loff_t pos, unsigned len, unsigned copied, 1434 struct page *page, void *fsdata) 1435{ 1436 handle_t *handle = ext3_journal_current_handle(); 1437 struct inode *inode = mapping->host; 1438 struct ext3_inode_info *ei = EXT3_I(inode); 1439 int ret = 0, ret2; 1440 int partial = 0; 1441 unsigned from, to; 1442 1443 trace_ext3_journalled_write_end(inode, pos, len, copied); 1444 from = pos & (PAGE_CACHE_SIZE - 1); 1445 to = from + len; 1446 1447 if (copied < len) { 1448 if (!PageUptodate(page)) 1449 copied = 0; 1450 page_zero_new_buffers(page, from + copied, to); 1451 to = from + copied; 1452 } 1453 1454 ret = walk_page_buffers(handle, page_buffers(page), from, 1455 to, &partial, write_end_fn); 1456 if (!partial) 1457 SetPageUptodate(page); 1458 1459 if (pos + copied > inode->i_size) 1460 i_size_write(inode, pos + copied); 1461 /* 1462 * There may be allocated blocks outside of i_size because 1463 * we failed to copy some data. Prepare for truncate. 1464 */ 1465 if (pos + len > inode->i_size && ext3_can_truncate(inode)) 1466 ext3_orphan_add(handle, inode); 1467 ext3_set_inode_state(inode, EXT3_STATE_JDATA); 1468 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); 1469 if (inode->i_size > ei->i_disksize) { 1470 ei->i_disksize = inode->i_size; 1471 ret2 = ext3_mark_inode_dirty(handle, inode); 1472 if (!ret) 1473 ret = ret2; 1474 } 1475 1476 ret2 = ext3_journal_stop(handle); 1477 if (!ret) 1478 ret = ret2; 1479 unlock_page(page); 1480 page_cache_release(page); 1481 1482 if (pos + len > inode->i_size) 1483 ext3_truncate_failed_write(inode); 1484 return ret ? ret : copied; 1485} 1486 1487/* 1488 * bmap() is special. It gets used by applications such as lilo and by 1489 * the swapper to find the on-disk block of a specific piece of data. 1490 * 1491 * Naturally, this is dangerous if the block concerned is still in the 1492 * journal. If somebody makes a swapfile on an ext3 data-journaling 1493 * filesystem and enables swap, then they may get a nasty shock when the 1494 * data getting swapped to that swapfile suddenly gets overwritten by 1495 * the original zero's written out previously to the journal and 1496 * awaiting writeback in the kernel's buffer cache. 1497 * 1498 * So, if we see any bmap calls here on a modified, data-journaled file, 1499 * take extra steps to flush any blocks which might be in the cache. 1500 */ 1501static sector_t ext3_bmap(struct address_space *mapping, sector_t block) 1502{ 1503 struct inode *inode = mapping->host; 1504 journal_t *journal; 1505 int err; 1506 1507 if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) { 1508 /* 1509 * This is a REALLY heavyweight approach, but the use of 1510 * bmap on dirty files is expected to be extremely rare: 1511 * only if we run lilo or swapon on a freshly made file 1512 * do we expect this to happen. 1513 * 1514 * (bmap requires CAP_SYS_RAWIO so this does not 1515 * represent an unprivileged user DOS attack --- we'd be 1516 * in trouble if mortal users could trigger this path at 1517 * will.) 1518 * 1519 * NB. EXT3_STATE_JDATA is not set on files other than 1520 * regular files. If somebody wants to bmap a directory 1521 * or symlink and gets confused because the buffer 1522 * hasn't yet been flushed to disk, they deserve 1523 * everything they get. 1524 */ 1525 1526 ext3_clear_inode_state(inode, EXT3_STATE_JDATA); 1527 journal = EXT3_JOURNAL(inode); 1528 journal_lock_updates(journal); 1529 err = journal_flush(journal); 1530 journal_unlock_updates(journal); 1531 1532 if (err) 1533 return 0; 1534 } 1535 1536 return generic_block_bmap(mapping,block,ext3_get_block); 1537} 1538 1539static int bget_one(handle_t *handle, struct buffer_head *bh) 1540{ 1541 get_bh(bh); 1542 return 0; 1543} 1544 1545static int bput_one(handle_t *handle, struct buffer_head *bh) 1546{ 1547 put_bh(bh); 1548 return 0; 1549} 1550 1551static int buffer_unmapped(handle_t *handle, struct buffer_head *bh) 1552{ 1553 return !buffer_mapped(bh); 1554} 1555 1556/* 1557 * Note that we always start a transaction even if we're not journalling 1558 * data. This is to preserve ordering: any hole instantiation within 1559 * __block_write_full_page -> ext3_get_block() should be journalled 1560 * along with the data so we don't crash and then get metadata which 1561 * refers to old data. 1562 * 1563 * In all journalling modes block_write_full_page() will start the I/O. 1564 * 1565 * Problem: 1566 * 1567 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1568 * ext3_writepage() 1569 * 1570 * Similar for: 1571 * 1572 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ... 1573 * 1574 * Same applies to ext3_get_block(). We will deadlock on various things like 1575 * lock_journal and i_truncate_mutex. 1576 * 1577 * Setting PF_MEMALLOC here doesn't work - too many internal memory 1578 * allocations fail. 1579 * 1580 * 16May01: If we're reentered then journal_current_handle() will be 1581 * non-zero. We simply *return*. 1582 * 1583 * 1 July 2001: @@@ FIXME: 1584 * In journalled data mode, a data buffer may be metadata against the 1585 * current transaction. But the same file is part of a shared mapping 1586 * and someone does a writepage() on it. 1587 * 1588 * We will move the buffer onto the async_data list, but *after* it has 1589 * been dirtied. So there's a small window where we have dirty data on 1590 * BJ_Metadata. 1591 * 1592 * Note that this only applies to the last partial page in the file. The 1593 * bit which block_write_full_page() uses prepare/commit for. (That's 1594 * broken code anyway: it's wrong for msync()). 1595 * 1596 * It's a rare case: affects the final partial page, for journalled data 1597 * where the file is subject to bith write() and writepage() in the same 1598 * transction. To fix it we'll need a custom block_write_full_page(). 1599 * We'll probably need that anyway for journalling writepage() output. 1600 * 1601 * We don't honour synchronous mounts for writepage(). That would be 1602 * disastrous. Any write() or metadata operation will sync the fs for 1603 * us. 1604 * 1605 * AKPM2: if all the page's buffers are mapped to disk and !data=journal, 1606 * we don't need to open a transaction here. 1607 */ 1608static int ext3_ordered_writepage(struct page *page, 1609 struct writeback_control *wbc) 1610{ 1611 struct inode *inode = page->mapping->host; 1612 struct buffer_head *page_bufs; 1613 handle_t *handle = NULL; 1614 int ret = 0; 1615 int err; 1616 1617 J_ASSERT(PageLocked(page)); 1618 /* 1619 * We don't want to warn for emergency remount. The condition is 1620 * ordered to avoid dereferencing inode->i_sb in non-error case to 1621 * avoid slow-downs. 1622 */ 1623 WARN_ON_ONCE(IS_RDONLY(inode) && 1624 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); 1625 1626 /* 1627 * We give up here if we're reentered, because it might be for a 1628 * different filesystem. 1629 */ 1630 if (ext3_journal_current_handle()) 1631 goto out_fail; 1632 1633 trace_ext3_ordered_writepage(page); 1634 if (!page_has_buffers(page)) { 1635 create_empty_buffers(page, inode->i_sb->s_blocksize, 1636 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1637 page_bufs = page_buffers(page); 1638 } else { 1639 page_bufs = page_buffers(page); 1640 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE, 1641 NULL, buffer_unmapped)) { 1642 /* Provide NULL get_block() to catch bugs if buffers 1643 * weren't really mapped */ 1644 return block_write_full_page(page, NULL, wbc); 1645 } 1646 } 1647 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); 1648 1649 if (IS_ERR(handle)) { 1650 ret = PTR_ERR(handle); 1651 goto out_fail; 1652 } 1653 1654 walk_page_buffers(handle, page_bufs, 0, 1655 PAGE_CACHE_SIZE, NULL, bget_one); 1656 1657 ret = block_write_full_page(page, ext3_get_block, wbc); 1658 1659 /* 1660 * The page can become unlocked at any point now, and 1661 * truncate can then come in and change things. So we 1662 * can't touch *page from now on. But *page_bufs is 1663 * safe due to elevated refcount. 1664 */ 1665 1666 /* 1667 * And attach them to the current transaction. But only if 1668 * block_write_full_page() succeeded. Otherwise they are unmapped, 1669 * and generally junk. 1670 */ 1671 if (ret == 0) { 1672 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, 1673 NULL, journal_dirty_data_fn); 1674 if (!ret) 1675 ret = err; 1676 } 1677 walk_page_buffers(handle, page_bufs, 0, 1678 PAGE_CACHE_SIZE, NULL, bput_one); 1679 err = ext3_journal_stop(handle); 1680 if (!ret) 1681 ret = err; 1682 return ret; 1683 1684out_fail: 1685 redirty_page_for_writepage(wbc, page); 1686 unlock_page(page); 1687 return ret; 1688} 1689 1690static int ext3_writeback_writepage(struct page *page, 1691 struct writeback_control *wbc) 1692{ 1693 struct inode *inode = page->mapping->host; 1694 handle_t *handle = NULL; 1695 int ret = 0; 1696 int err; 1697 1698 J_ASSERT(PageLocked(page)); 1699 /* 1700 * We don't want to warn for emergency remount. The condition is 1701 * ordered to avoid dereferencing inode->i_sb in non-error case to 1702 * avoid slow-downs. 1703 */ 1704 WARN_ON_ONCE(IS_RDONLY(inode) && 1705 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); 1706 1707 if (ext3_journal_current_handle()) 1708 goto out_fail; 1709 1710 trace_ext3_writeback_writepage(page); 1711 if (page_has_buffers(page)) { 1712 if (!walk_page_buffers(NULL, page_buffers(page), 0, 1713 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) { 1714 /* Provide NULL get_block() to catch bugs if buffers 1715 * weren't really mapped */ 1716 return block_write_full_page(page, NULL, wbc); 1717 } 1718 } 1719 1720 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); 1721 if (IS_ERR(handle)) { 1722 ret = PTR_ERR(handle); 1723 goto out_fail; 1724 } 1725 1726 ret = block_write_full_page(page, ext3_get_block, wbc); 1727 1728 err = ext3_journal_stop(handle); 1729 if (!ret) 1730 ret = err; 1731 return ret; 1732 1733out_fail: 1734 redirty_page_for_writepage(wbc, page); 1735 unlock_page(page); 1736 return ret; 1737} 1738 1739static int ext3_journalled_writepage(struct page *page, 1740 struct writeback_control *wbc) 1741{ 1742 struct inode *inode = page->mapping->host; 1743 handle_t *handle = NULL; 1744 int ret = 0; 1745 int err; 1746 1747 J_ASSERT(PageLocked(page)); 1748 /* 1749 * We don't want to warn for emergency remount. The condition is 1750 * ordered to avoid dereferencing inode->i_sb in non-error case to 1751 * avoid slow-downs. 1752 */ 1753 WARN_ON_ONCE(IS_RDONLY(inode) && 1754 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS)); 1755 1756 if (ext3_journal_current_handle()) 1757 goto no_write; 1758 1759 trace_ext3_journalled_writepage(page); 1760 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode)); 1761 if (IS_ERR(handle)) { 1762 ret = PTR_ERR(handle); 1763 goto no_write; 1764 } 1765 1766 if (!page_has_buffers(page) || PageChecked(page)) { 1767 /* 1768 * It's mmapped pagecache. Add buffers and journal it. There 1769 * doesn't seem much point in redirtying the page here. 1770 */ 1771 ClearPageChecked(page); 1772 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE, 1773 ext3_get_block); 1774 if (ret != 0) { 1775 ext3_journal_stop(handle); 1776 goto out_unlock; 1777 } 1778 ret = walk_page_buffers(handle, page_buffers(page), 0, 1779 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 1780 1781 err = walk_page_buffers(handle, page_buffers(page), 0, 1782 PAGE_CACHE_SIZE, NULL, write_end_fn); 1783 if (ret == 0) 1784 ret = err; 1785 ext3_set_inode_state(inode, EXT3_STATE_JDATA); 1786 atomic_set(&EXT3_I(inode)->i_datasync_tid, 1787 handle->h_transaction->t_tid); 1788 unlock_page(page); 1789 } else { 1790 /* 1791 * It may be a page full of checkpoint-mode buffers. We don't 1792 * really know unless we go poke around in the buffer_heads. 1793 * But block_write_full_page will do the right thing. 1794 */ 1795 ret = block_write_full_page(page, ext3_get_block, wbc); 1796 } 1797 err = ext3_journal_stop(handle); 1798 if (!ret) 1799 ret = err; 1800out: 1801 return ret; 1802 1803no_write: 1804 redirty_page_for_writepage(wbc, page); 1805out_unlock: 1806 unlock_page(page); 1807 goto out; 1808} 1809 1810static int ext3_readpage(struct file *file, struct page *page) 1811{ 1812 trace_ext3_readpage(page); 1813 return mpage_readpage(page, ext3_get_block); 1814} 1815 1816static int 1817ext3_readpages(struct file *file, struct address_space *mapping, 1818 struct list_head *pages, unsigned nr_pages) 1819{ 1820 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block); 1821} 1822 1823static void ext3_invalidatepage(struct page *page, unsigned long offset) 1824{ 1825 journal_t *journal = EXT3_JOURNAL(page->mapping->host); 1826 1827 trace_ext3_invalidatepage(page, offset); 1828 1829 /* 1830 * If it's a full truncate we just forget about the pending dirtying 1831 */ 1832 if (offset == 0) 1833 ClearPageChecked(page); 1834 1835 journal_invalidatepage(journal, page, offset); 1836} 1837 1838static int ext3_releasepage(struct page *page, gfp_t wait) 1839{ 1840 journal_t *journal = EXT3_JOURNAL(page->mapping->host); 1841 1842 trace_ext3_releasepage(page); 1843 WARN_ON(PageChecked(page)); 1844 if (!page_has_buffers(page)) 1845 return 0; 1846 return journal_try_to_free_buffers(journal, page, wait); 1847} 1848 1849/* 1850 * If the O_DIRECT write will extend the file then add this inode to the 1851 * orphan list. So recovery will truncate it back to the original size 1852 * if the machine crashes during the write. 1853 * 1854 * If the O_DIRECT write is intantiating holes inside i_size and the machine 1855 * crashes then stale disk data _may_ be exposed inside the file. But current 1856 * VFS code falls back into buffered path in that case so we are safe. 1857 */ 1858static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb, 1859 const struct iovec *iov, loff_t offset, 1860 unsigned long nr_segs) 1861{ 1862 struct file *file = iocb->ki_filp; 1863 struct inode *inode = file->f_mapping->host; 1864 struct ext3_inode_info *ei = EXT3_I(inode); 1865 handle_t *handle; 1866 ssize_t ret; 1867 int orphan = 0; 1868 size_t count = iov_length(iov, nr_segs); 1869 int retries = 0; 1870 1871 trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 1872 1873 if (rw == WRITE) { 1874 loff_t final_size = offset + count; 1875 1876 if (final_size > inode->i_size) { 1877 /* Credits for sb + inode write */ 1878 handle = ext3_journal_start(inode, 2); 1879 if (IS_ERR(handle)) { 1880 ret = PTR_ERR(handle); 1881 goto out; 1882 } 1883 ret = ext3_orphan_add(handle, inode); 1884 if (ret) { 1885 ext3_journal_stop(handle); 1886 goto out; 1887 } 1888 orphan = 1; 1889 ei->i_disksize = inode->i_size; 1890 ext3_journal_stop(handle); 1891 } 1892 } 1893 1894retry: 1895 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs, 1896 ext3_get_block); 1897 /* 1898 * In case of error extending write may have instantiated a few 1899 * blocks outside i_size. Trim these off again. 1900 */ 1901 if (unlikely((rw & WRITE) && ret < 0)) { 1902 loff_t isize = i_size_read(inode); 1903 loff_t end = offset + iov_length(iov, nr_segs); 1904 1905 if (end > isize) 1906 ext3_truncate_failed_direct_write(inode); 1907 } 1908 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries)) 1909 goto retry; 1910 1911 if (orphan) { 1912 int err; 1913 1914 /* Credits for sb + inode write */ 1915 handle = ext3_journal_start(inode, 2); 1916 if (IS_ERR(handle)) { 1917 /* This is really bad luck. We've written the data 1918 * but cannot extend i_size. Truncate allocated blocks 1919 * and pretend the write failed... */ 1920 ext3_truncate_failed_direct_write(inode); 1921 ret = PTR_ERR(handle); 1922 goto out; 1923 } 1924 if (inode->i_nlink) 1925 ext3_orphan_del(handle, inode); 1926 if (ret > 0) { 1927 loff_t end = offset + ret; 1928 if (end > inode->i_size) { 1929 ei->i_disksize = end; 1930 i_size_write(inode, end); 1931 /* 1932 * We're going to return a positive `ret' 1933 * here due to non-zero-length I/O, so there's 1934 * no way of reporting error returns from 1935 * ext3_mark_inode_dirty() to userspace. So 1936 * ignore it. 1937 */ 1938 ext3_mark_inode_dirty(handle, inode); 1939 } 1940 } 1941 err = ext3_journal_stop(handle); 1942 if (ret == 0) 1943 ret = err; 1944 } 1945out: 1946 trace_ext3_direct_IO_exit(inode, offset, 1947 iov_length(iov, nr_segs), rw, ret); 1948 return ret; 1949} 1950 1951/* 1952 * Pages can be marked dirty completely asynchronously from ext3's journalling 1953 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 1954 * much here because ->set_page_dirty is called under VFS locks. The page is 1955 * not necessarily locked. 1956 * 1957 * We cannot just dirty the page and leave attached buffers clean, because the 1958 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 1959 * or jbddirty because all the journalling code will explode. 1960 * 1961 * So what we do is to mark the page "pending dirty" and next time writepage 1962 * is called, propagate that into the buffers appropriately. 1963 */ 1964static int ext3_journalled_set_page_dirty(struct page *page) 1965{ 1966 SetPageChecked(page); 1967 return __set_page_dirty_nobuffers(page); 1968} 1969 1970static const struct address_space_operations ext3_ordered_aops = { 1971 .readpage = ext3_readpage, 1972 .readpages = ext3_readpages, 1973 .writepage = ext3_ordered_writepage, 1974 .write_begin = ext3_write_begin, 1975 .write_end = ext3_ordered_write_end, 1976 .bmap = ext3_bmap, 1977 .invalidatepage = ext3_invalidatepage, 1978 .releasepage = ext3_releasepage, 1979 .direct_IO = ext3_direct_IO, 1980 .migratepage = buffer_migrate_page, 1981 .is_partially_uptodate = block_is_partially_uptodate, 1982 .error_remove_page = generic_error_remove_page, 1983}; 1984 1985static const struct address_space_operations ext3_writeback_aops = { 1986 .readpage = ext3_readpage, 1987 .readpages = ext3_readpages, 1988 .writepage = ext3_writeback_writepage, 1989 .write_begin = ext3_write_begin, 1990 .write_end = ext3_writeback_write_end, 1991 .bmap = ext3_bmap, 1992 .invalidatepage = ext3_invalidatepage, 1993 .releasepage = ext3_releasepage, 1994 .direct_IO = ext3_direct_IO, 1995 .migratepage = buffer_migrate_page, 1996 .is_partially_uptodate = block_is_partially_uptodate, 1997 .error_remove_page = generic_error_remove_page, 1998}; 1999 2000static const struct address_space_operations ext3_journalled_aops = { 2001 .readpage = ext3_readpage, 2002 .readpages = ext3_readpages, 2003 .writepage = ext3_journalled_writepage, 2004 .write_begin = ext3_write_begin, 2005 .write_end = ext3_journalled_write_end, 2006 .set_page_dirty = ext3_journalled_set_page_dirty, 2007 .bmap = ext3_bmap, 2008 .invalidatepage = ext3_invalidatepage, 2009 .releasepage = ext3_releasepage, 2010 .is_partially_uptodate = block_is_partially_uptodate, 2011 .error_remove_page = generic_error_remove_page, 2012}; 2013 2014void ext3_set_aops(struct inode *inode) 2015{ 2016 if (ext3_should_order_data(inode)) 2017 inode->i_mapping->a_ops = &ext3_ordered_aops; 2018 else if (ext3_should_writeback_data(inode)) 2019 inode->i_mapping->a_ops = &ext3_writeback_aops; 2020 else 2021 inode->i_mapping->a_ops = &ext3_journalled_aops; 2022} 2023 2024/* 2025 * ext3_block_truncate_page() zeroes out a mapping from file offset `from' 2026 * up to the end of the block which corresponds to `from'. 2027 * This required during truncate. We need to physically zero the tail end 2028 * of that block so it doesn't yield old data if the file is later grown. 2029 */ 2030static int ext3_block_truncate_page(struct inode *inode, loff_t from) 2031{ 2032 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT; 2033 unsigned offset = from & (PAGE_CACHE_SIZE - 1); 2034 unsigned blocksize, iblock, length, pos; 2035 struct page *page; 2036 handle_t *handle = NULL; 2037 struct buffer_head *bh; 2038 int err = 0; 2039 2040 /* Truncated on block boundary - nothing to do */ 2041 blocksize = inode->i_sb->s_blocksize; 2042 if ((from & (blocksize - 1)) == 0) 2043 return 0; 2044 2045 page = grab_cache_page(inode->i_mapping, index); 2046 if (!page) 2047 return -ENOMEM; 2048 length = blocksize - (offset & (blocksize - 1)); 2049 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2050 2051 if (!page_has_buffers(page)) 2052 create_empty_buffers(page, blocksize, 0); 2053 2054 /* Find the buffer that contains "offset" */ 2055 bh = page_buffers(page); 2056 pos = blocksize; 2057 while (offset >= pos) { 2058 bh = bh->b_this_page; 2059 iblock++; 2060 pos += blocksize; 2061 } 2062 2063 err = 0; 2064 if (buffer_freed(bh)) { 2065 BUFFER_TRACE(bh, "freed: skip"); 2066 goto unlock; 2067 } 2068 2069 if (!buffer_mapped(bh)) { 2070 BUFFER_TRACE(bh, "unmapped"); 2071 ext3_get_block(inode, iblock, bh, 0); 2072 /* unmapped? It's a hole - nothing to do */ 2073 if (!buffer_mapped(bh)) { 2074 BUFFER_TRACE(bh, "still unmapped"); 2075 goto unlock; 2076 } 2077 } 2078 2079 /* Ok, it's mapped. Make sure it's up-to-date */ 2080 if (PageUptodate(page)) 2081 set_buffer_uptodate(bh); 2082 2083 if (!bh_uptodate_or_lock(bh)) { 2084 err = bh_submit_read(bh); 2085 /* Uhhuh. Read error. Complain and punt. */ 2086 if (err) 2087 goto unlock; 2088 } 2089 2090 /* data=writeback mode doesn't need transaction to zero-out data */ 2091 if (!ext3_should_writeback_data(inode)) { 2092 /* We journal at most one block */ 2093 handle = ext3_journal_start(inode, 1); 2094 if (IS_ERR(handle)) { 2095 clear_highpage(page); 2096 flush_dcache_page(page); 2097 err = PTR_ERR(handle); 2098 goto unlock; 2099 } 2100 } 2101 2102 if (ext3_should_journal_data(inode)) { 2103 BUFFER_TRACE(bh, "get write access"); 2104 err = ext3_journal_get_write_access(handle, bh); 2105 if (err) 2106 goto stop; 2107 } 2108 2109 zero_user(page, offset, length); 2110 BUFFER_TRACE(bh, "zeroed end of block"); 2111 2112 err = 0; 2113 if (ext3_should_journal_data(inode)) { 2114 err = ext3_journal_dirty_metadata(handle, bh); 2115 } else { 2116 if (ext3_should_order_data(inode)) 2117 err = ext3_journal_dirty_data(handle, bh); 2118 mark_buffer_dirty(bh); 2119 } 2120stop: 2121 if (handle) 2122 ext3_journal_stop(handle); 2123 2124unlock: 2125 unlock_page(page); 2126 page_cache_release(page); 2127 return err; 2128} 2129 2130/* 2131 * Probably it should be a library function... search for first non-zero word 2132 * or memcmp with zero_page, whatever is better for particular architecture. 2133 * Linus? 2134 */ 2135static inline int all_zeroes(__le32 *p, __le32 *q) 2136{ 2137 while (p < q) 2138 if (*p++) 2139 return 0; 2140 return 1; 2141} 2142 2143/** 2144 * ext3_find_shared - find the indirect blocks for partial truncation. 2145 * @inode: inode in question 2146 * @depth: depth of the affected branch 2147 * @offsets: offsets of pointers in that branch (see ext3_block_to_path) 2148 * @chain: place to store the pointers to partial indirect blocks 2149 * @top: place to the (detached) top of branch 2150 * 2151 * This is a helper function used by ext3_truncate(). 2152 * 2153 * When we do truncate() we may have to clean the ends of several 2154 * indirect blocks but leave the blocks themselves alive. Block is 2155 * partially truncated if some data below the new i_size is referred 2156 * from it (and it is on the path to the first completely truncated 2157 * data block, indeed). We have to free the top of that path along 2158 * with everything to the right of the path. Since no allocation 2159 * past the truncation point is possible until ext3_truncate() 2160 * finishes, we may safely do the latter, but top of branch may 2161 * require special attention - pageout below the truncation point 2162 * might try to populate it. 2163 * 2164 * We atomically detach the top of branch from the tree, store the 2165 * block number of its root in *@top, pointers to buffer_heads of 2166 * partially truncated blocks - in @chain[].bh and pointers to 2167 * their last elements that should not be removed - in 2168 * @chain[].p. Return value is the pointer to last filled element 2169 * of @chain. 2170 * 2171 * The work left to caller to do the actual freeing of subtrees: 2172 * a) free the subtree starting from *@top 2173 * b) free the subtrees whose roots are stored in 2174 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 2175 * c) free the subtrees growing from the inode past the @chain[0]. 2176 * (no partially truncated stuff there). */ 2177 2178static Indirect *ext3_find_shared(struct inode *inode, int depth, 2179 int offsets[4], Indirect chain[4], __le32 *top) 2180{ 2181 Indirect *partial, *p; 2182 int k, err; 2183 2184 *top = 0; 2185 /* Make k index the deepest non-null offset + 1 */ 2186 for (k = depth; k > 1 && !offsets[k-1]; k--) 2187 ; 2188 partial = ext3_get_branch(inode, k, offsets, chain, &err); 2189 /* Writer: pointers */ 2190 if (!partial) 2191 partial = chain + k-1; 2192 /* 2193 * If the branch acquired continuation since we've looked at it - 2194 * fine, it should all survive and (new) top doesn't belong to us. 2195 */ 2196 if (!partial->key && *partial->p) 2197 /* Writer: end */ 2198 goto no_top; 2199 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 2200 ; 2201 /* 2202 * OK, we've found the last block that must survive. The rest of our 2203 * branch should be detached before unlocking. However, if that rest 2204 * of branch is all ours and does not grow immediately from the inode 2205 * it's easier to cheat and just decrement partial->p. 2206 */ 2207 if (p == chain + k - 1 && p > chain) { 2208 p->p--; 2209 } else { 2210 *top = *p->p; 2211 /* Nope, don't do this in ext3. Must leave the tree intact */ 2212#if 0 2213 *p->p = 0; 2214#endif 2215 } 2216 /* Writer: end */ 2217 2218 while(partial > p) { 2219 brelse(partial->bh); 2220 partial--; 2221 } 2222no_top: 2223 return partial; 2224} 2225 2226/* 2227 * Zero a number of block pointers in either an inode or an indirect block. 2228 * If we restart the transaction we must again get write access to the 2229 * indirect block for further modification. 2230 * 2231 * We release `count' blocks on disk, but (last - first) may be greater 2232 * than `count' because there can be holes in there. 2233 */ 2234static void ext3_clear_blocks(handle_t *handle, struct inode *inode, 2235 struct buffer_head *bh, ext3_fsblk_t block_to_free, 2236 unsigned long count, __le32 *first, __le32 *last) 2237{ 2238 __le32 *p; 2239 if (try_to_extend_transaction(handle, inode)) { 2240 if (bh) { 2241 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 2242 if (ext3_journal_dirty_metadata(handle, bh)) 2243 return; 2244 } 2245 ext3_mark_inode_dirty(handle, inode); 2246 truncate_restart_transaction(handle, inode); 2247 if (bh) { 2248 BUFFER_TRACE(bh, "retaking write access"); 2249 if (ext3_journal_get_write_access(handle, bh)) 2250 return; 2251 } 2252 } 2253 2254 /* 2255 * Any buffers which are on the journal will be in memory. We find 2256 * them on the hash table so journal_revoke() will run journal_forget() 2257 * on them. We've already detached each block from the file, so 2258 * bforget() in journal_forget() should be safe. 2259 * 2260 * AKPM: turn on bforget in journal_forget()!!! 2261 */ 2262 for (p = first; p < last; p++) { 2263 u32 nr = le32_to_cpu(*p); 2264 if (nr) { 2265 struct buffer_head *bh; 2266 2267 *p = 0; 2268 bh = sb_find_get_block(inode->i_sb, nr); 2269 ext3_forget(handle, 0, inode, bh, nr); 2270 } 2271 } 2272 2273 ext3_free_blocks(handle, inode, block_to_free, count); 2274} 2275 2276/** 2277 * ext3_free_data - free a list of data blocks 2278 * @handle: handle for this transaction 2279 * @inode: inode we are dealing with 2280 * @this_bh: indirect buffer_head which contains *@first and *@last 2281 * @first: array of block numbers 2282 * @last: points immediately past the end of array 2283 * 2284 * We are freeing all blocks referred from that array (numbers are stored as 2285 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 2286 * 2287 * We accumulate contiguous runs of blocks to free. Conveniently, if these 2288 * blocks are contiguous then releasing them at one time will only affect one 2289 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 2290 * actually use a lot of journal space. 2291 * 2292 * @this_bh will be %NULL if @first and @last point into the inode's direct 2293 * block pointers. 2294 */ 2295static void ext3_free_data(handle_t *handle, struct inode *inode, 2296 struct buffer_head *this_bh, 2297 __le32 *first, __le32 *last) 2298{ 2299 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */ 2300 unsigned long count = 0; /* Number of blocks in the run */ 2301 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 2302 corresponding to 2303 block_to_free */ 2304 ext3_fsblk_t nr; /* Current block # */ 2305 __le32 *p; /* Pointer into inode/ind 2306 for current block */ 2307 int err; 2308 2309 if (this_bh) { /* For indirect block */ 2310 BUFFER_TRACE(this_bh, "get_write_access"); 2311 err = ext3_journal_get_write_access(handle, this_bh); 2312 /* Important: if we can't update the indirect pointers 2313 * to the blocks, we can't free them. */ 2314 if (err) 2315 return; 2316 } 2317 2318 for (p = first; p < last; p++) { 2319 nr = le32_to_cpu(*p); 2320 if (nr) { 2321 /* accumulate blocks to free if they're contiguous */ 2322 if (count == 0) { 2323 block_to_free = nr; 2324 block_to_free_p = p; 2325 count = 1; 2326 } else if (nr == block_to_free + count) { 2327 count++; 2328 } else { 2329 ext3_clear_blocks(handle, inode, this_bh, 2330 block_to_free, 2331 count, block_to_free_p, p); 2332 block_to_free = nr; 2333 block_to_free_p = p; 2334 count = 1; 2335 } 2336 } 2337 } 2338 2339 if (count > 0) 2340 ext3_clear_blocks(handle, inode, this_bh, block_to_free, 2341 count, block_to_free_p, p); 2342 2343 if (this_bh) { 2344 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata"); 2345 2346 /* 2347 * The buffer head should have an attached journal head at this 2348 * point. However, if the data is corrupted and an indirect 2349 * block pointed to itself, it would have been detached when 2350 * the block was cleared. Check for this instead of OOPSing. 2351 */ 2352 if (bh2jh(this_bh)) 2353 ext3_journal_dirty_metadata(handle, this_bh); 2354 else 2355 ext3_error(inode->i_sb, "ext3_free_data", 2356 "circular indirect block detected, " 2357 "inode=%lu, block=%llu", 2358 inode->i_ino, 2359 (unsigned long long)this_bh->b_blocknr); 2360 } 2361} 2362 2363/** 2364 * ext3_free_branches - free an array of branches 2365 * @handle: JBD handle for this transaction 2366 * @inode: inode we are dealing with 2367 * @parent_bh: the buffer_head which contains *@first and *@last 2368 * @first: array of block numbers 2369 * @last: pointer immediately past the end of array 2370 * @depth: depth of the branches to free 2371 * 2372 * We are freeing all blocks referred from these branches (numbers are 2373 * stored as little-endian 32-bit) and updating @inode->i_blocks 2374 * appropriately. 2375 */ 2376static void ext3_free_branches(handle_t *handle, struct inode *inode, 2377 struct buffer_head *parent_bh, 2378 __le32 *first, __le32 *last, int depth) 2379{ 2380 ext3_fsblk_t nr; 2381 __le32 *p; 2382 2383 if (is_handle_aborted(handle)) 2384 return; 2385 2386 if (depth--) { 2387 struct buffer_head *bh; 2388 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb); 2389 p = last; 2390 while (--p >= first) { 2391 nr = le32_to_cpu(*p); 2392 if (!nr) 2393 continue; /* A hole */ 2394 2395 /* Go read the buffer for the next level down */ 2396 bh = sb_bread(inode->i_sb, nr); 2397 2398 /* 2399 * A read failure? Report error and clear slot 2400 * (should be rare). 2401 */ 2402 if (!bh) { 2403 ext3_error(inode->i_sb, "ext3_free_branches", 2404 "Read failure, inode=%lu, block="E3FSBLK, 2405 inode->i_ino, nr); 2406 continue; 2407 } 2408 2409 /* This zaps the entire block. Bottom up. */ 2410 BUFFER_TRACE(bh, "free child branches"); 2411 ext3_free_branches(handle, inode, bh, 2412 (__le32*)bh->b_data, 2413 (__le32*)bh->b_data + addr_per_block, 2414 depth); 2415 2416 /* 2417 * Everything below this this pointer has been 2418 * released. Now let this top-of-subtree go. 2419 * 2420 * We want the freeing of this indirect block to be 2421 * atomic in the journal with the updating of the 2422 * bitmap block which owns it. So make some room in 2423 * the journal. 2424 * 2425 * We zero the parent pointer *after* freeing its 2426 * pointee in the bitmaps, so if extend_transaction() 2427 * for some reason fails to put the bitmap changes and 2428 * the release into the same transaction, recovery 2429 * will merely complain about releasing a free block, 2430 * rather than leaking blocks. 2431 */ 2432 if (is_handle_aborted(handle)) 2433 return; 2434 if (try_to_extend_transaction(handle, inode)) { 2435 ext3_mark_inode_dirty(handle, inode); 2436 truncate_restart_transaction(handle, inode); 2437 } 2438 2439 /* 2440 * We've probably journalled the indirect block several 2441 * times during the truncate. But it's no longer 2442 * needed and we now drop it from the transaction via 2443 * journal_revoke(). 2444 * 2445 * That's easy if it's exclusively part of this 2446 * transaction. But if it's part of the committing 2447 * transaction then journal_forget() will simply 2448 * brelse() it. That means that if the underlying 2449 * block is reallocated in ext3_get_block(), 2450 * unmap_underlying_metadata() will find this block 2451 * and will try to get rid of it. damn, damn. Thus 2452 * we don't allow a block to be reallocated until 2453 * a transaction freeing it has fully committed. 2454 * 2455 * We also have to make sure journal replay after a 2456 * crash does not overwrite non-journaled data blocks 2457 * with old metadata when the block got reallocated for 2458 * data. Thus we have to store a revoke record for a 2459 * block in the same transaction in which we free the 2460 * block. 2461 */ 2462 ext3_forget(handle, 1, inode, bh, bh->b_blocknr); 2463 2464 ext3_free_blocks(handle, inode, nr, 1); 2465 2466 if (parent_bh) { 2467 /* 2468 * The block which we have just freed is 2469 * pointed to by an indirect block: journal it 2470 */ 2471 BUFFER_TRACE(parent_bh, "get_write_access"); 2472 if (!ext3_journal_get_write_access(handle, 2473 parent_bh)){ 2474 *p = 0; 2475 BUFFER_TRACE(parent_bh, 2476 "call ext3_journal_dirty_metadata"); 2477 ext3_journal_dirty_metadata(handle, 2478 parent_bh); 2479 } 2480 } 2481 } 2482 } else { 2483 /* We have reached the bottom of the tree. */ 2484 BUFFER_TRACE(parent_bh, "free data blocks"); 2485 ext3_free_data(handle, inode, parent_bh, first, last); 2486 } 2487} 2488 2489int ext3_can_truncate(struct inode *inode) 2490{ 2491 if (S_ISREG(inode->i_mode)) 2492 return 1; 2493 if (S_ISDIR(inode->i_mode)) 2494 return 1; 2495 if (S_ISLNK(inode->i_mode)) 2496 return !ext3_inode_is_fast_symlink(inode); 2497 return 0; 2498} 2499 2500/* 2501 * ext3_truncate() 2502 * 2503 * We block out ext3_get_block() block instantiations across the entire 2504 * transaction, and VFS/VM ensures that ext3_truncate() cannot run 2505 * simultaneously on behalf of the same inode. 2506 * 2507 * As we work through the truncate and commit bits of it to the journal there 2508 * is one core, guiding principle: the file's tree must always be consistent on 2509 * disk. We must be able to restart the truncate after a crash. 2510 * 2511 * The file's tree may be transiently inconsistent in memory (although it 2512 * probably isn't), but whenever we close off and commit a journal transaction, 2513 * the contents of (the filesystem + the journal) must be consistent and 2514 * restartable. It's pretty simple, really: bottom up, right to left (although 2515 * left-to-right works OK too). 2516 * 2517 * Note that at recovery time, journal replay occurs *before* the restart of 2518 * truncate against the orphan inode list. 2519 * 2520 * The committed inode has the new, desired i_size (which is the same as 2521 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see 2522 * that this inode's truncate did not complete and it will again call 2523 * ext3_truncate() to have another go. So there will be instantiated blocks 2524 * to the right of the truncation point in a crashed ext3 filesystem. But 2525 * that's fine - as long as they are linked from the inode, the post-crash 2526 * ext3_truncate() run will find them and release them. 2527 */ 2528void ext3_truncate(struct inode *inode) 2529{ 2530 handle_t *handle; 2531 struct ext3_inode_info *ei = EXT3_I(inode); 2532 __le32 *i_data = ei->i_data; 2533 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb); 2534 int offsets[4]; 2535 Indirect chain[4]; 2536 Indirect *partial; 2537 __le32 nr = 0; 2538 int n; 2539 long last_block; 2540 unsigned blocksize = inode->i_sb->s_blocksize; 2541 2542 trace_ext3_truncate_enter(inode); 2543 2544 if (!ext3_can_truncate(inode)) 2545 goto out_notrans; 2546 2547 if (inode->i_size == 0 && ext3_should_writeback_data(inode)) 2548 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE); 2549 2550 handle = start_transaction(inode); 2551 if (IS_ERR(handle)) 2552 goto out_notrans; 2553 2554 last_block = (inode->i_size + blocksize-1) 2555 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb); 2556 n = ext3_block_to_path(inode, last_block, offsets, NULL); 2557 if (n == 0) 2558 goto out_stop; /* error */ 2559 2560 /* 2561 * OK. This truncate is going to happen. We add the inode to the 2562 * orphan list, so that if this truncate spans multiple transactions, 2563 * and we crash, we will resume the truncate when the filesystem 2564 * recovers. It also marks the inode dirty, to catch the new size. 2565 * 2566 * Implication: the file must always be in a sane, consistent 2567 * truncatable state while each transaction commits. 2568 */ 2569 if (ext3_orphan_add(handle, inode)) 2570 goto out_stop; 2571 2572 /* 2573 * The orphan list entry will now protect us from any crash which 2574 * occurs before the truncate completes, so it is now safe to propagate 2575 * the new, shorter inode size (held for now in i_size) into the 2576 * on-disk inode. We do this via i_disksize, which is the value which 2577 * ext3 *really* writes onto the disk inode. 2578 */ 2579 ei->i_disksize = inode->i_size; 2580 2581 /* 2582 * From here we block out all ext3_get_block() callers who want to 2583 * modify the block allocation tree. 2584 */ 2585 mutex_lock(&ei->truncate_mutex); 2586 2587 if (n == 1) { /* direct blocks */ 2588 ext3_free_data(handle, inode, NULL, i_data+offsets[0], 2589 i_data + EXT3_NDIR_BLOCKS); 2590 goto do_indirects; 2591 } 2592 2593 partial = ext3_find_shared(inode, n, offsets, chain, &nr); 2594 /* Kill the top of shared branch (not detached) */ 2595 if (nr) { 2596 if (partial == chain) { 2597 /* Shared branch grows from the inode */ 2598 ext3_free_branches(handle, inode, NULL, 2599 &nr, &nr+1, (chain+n-1) - partial); 2600 *partial->p = 0; 2601 /* 2602 * We mark the inode dirty prior to restart, 2603 * and prior to stop. No need for it here. 2604 */ 2605 } else { 2606 /* Shared branch grows from an indirect block */ 2607 ext3_free_branches(handle, inode, partial->bh, 2608 partial->p, 2609 partial->p+1, (chain+n-1) - partial); 2610 } 2611 } 2612 /* Clear the ends of indirect blocks on the shared branch */ 2613 while (partial > chain) { 2614 ext3_free_branches(handle, inode, partial->bh, partial->p + 1, 2615 (__le32*)partial->bh->b_data+addr_per_block, 2616 (chain+n-1) - partial); 2617 BUFFER_TRACE(partial->bh, "call brelse"); 2618 brelse (partial->bh); 2619 partial--; 2620 } 2621do_indirects: 2622 /* Kill the remaining (whole) subtrees */ 2623 switch (offsets[0]) { 2624 default: 2625 nr = i_data[EXT3_IND_BLOCK]; 2626 if (nr) { 2627 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 2628 i_data[EXT3_IND_BLOCK] = 0; 2629 } 2630 case EXT3_IND_BLOCK: 2631 nr = i_data[EXT3_DIND_BLOCK]; 2632 if (nr) { 2633 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 2634 i_data[EXT3_DIND_BLOCK] = 0; 2635 } 2636 case EXT3_DIND_BLOCK: 2637 nr = i_data[EXT3_TIND_BLOCK]; 2638 if (nr) { 2639 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 2640 i_data[EXT3_TIND_BLOCK] = 0; 2641 } 2642 case EXT3_TIND_BLOCK: 2643 ; 2644 } 2645 2646 ext3_discard_reservation(inode); 2647 2648 mutex_unlock(&ei->truncate_mutex); 2649 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; 2650 ext3_mark_inode_dirty(handle, inode); 2651 2652 /* 2653 * In a multi-transaction truncate, we only make the final transaction 2654 * synchronous 2655 */ 2656 if (IS_SYNC(inode)) 2657 handle->h_sync = 1; 2658out_stop: 2659 /* 2660 * If this was a simple ftruncate(), and the file will remain alive 2661 * then we need to clear up the orphan record which we created above. 2662 * However, if this was a real unlink then we were called by 2663 * ext3_evict_inode(), and we allow that function to clean up the 2664 * orphan info for us. 2665 */ 2666 if (inode->i_nlink) 2667 ext3_orphan_del(handle, inode); 2668 2669 ext3_journal_stop(handle); 2670 trace_ext3_truncate_exit(inode); 2671 return; 2672out_notrans: 2673 /* 2674 * Delete the inode from orphan list so that it doesn't stay there 2675 * forever and trigger assertion on umount. 2676 */ 2677 if (inode->i_nlink) 2678 ext3_orphan_del(NULL, inode); 2679 trace_ext3_truncate_exit(inode); 2680} 2681 2682static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb, 2683 unsigned long ino, struct ext3_iloc *iloc) 2684{ 2685 unsigned long block_group; 2686 unsigned long offset; 2687 ext3_fsblk_t block; 2688 struct ext3_group_desc *gdp; 2689 2690 if (!ext3_valid_inum(sb, ino)) { 2691 /* 2692 * This error is already checked for in namei.c unless we are 2693 * looking at an NFS filehandle, in which case no error 2694 * report is needed 2695 */ 2696 return 0; 2697 } 2698 2699 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb); 2700 gdp = ext3_get_group_desc(sb, block_group, NULL); 2701 if (!gdp) 2702 return 0; 2703 /* 2704 * Figure out the offset within the block group inode table 2705 */ 2706 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) * 2707 EXT3_INODE_SIZE(sb); 2708 block = le32_to_cpu(gdp->bg_inode_table) + 2709 (offset >> EXT3_BLOCK_SIZE_BITS(sb)); 2710 2711 iloc->block_group = block_group; 2712 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1); 2713 return block; 2714} 2715 2716/* 2717 * ext3_get_inode_loc returns with an extra refcount against the inode's 2718 * underlying buffer_head on success. If 'in_mem' is true, we have all 2719 * data in memory that is needed to recreate the on-disk version of this 2720 * inode. 2721 */ 2722static int __ext3_get_inode_loc(struct inode *inode, 2723 struct ext3_iloc *iloc, int in_mem) 2724{ 2725 ext3_fsblk_t block; 2726 struct buffer_head *bh; 2727 2728 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc); 2729 if (!block) 2730 return -EIO; 2731 2732 bh = sb_getblk(inode->i_sb, block); 2733 if (!bh) { 2734 ext3_error (inode->i_sb, "ext3_get_inode_loc", 2735 "unable to read inode block - " 2736 "inode=%lu, block="E3FSBLK, 2737 inode->i_ino, block); 2738 return -EIO; 2739 } 2740 if (!buffer_uptodate(bh)) { 2741 lock_buffer(bh); 2742 2743 /* 2744 * If the buffer has the write error flag, we have failed 2745 * to write out another inode in the same block. In this 2746 * case, we don't have to read the block because we may 2747 * read the old inode data successfully. 2748 */ 2749 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 2750 set_buffer_uptodate(bh); 2751 2752 if (buffer_uptodate(bh)) { 2753 /* someone brought it uptodate while we waited */ 2754 unlock_buffer(bh); 2755 goto has_buffer; 2756 } 2757 2758 /* 2759 * If we have all information of the inode in memory and this 2760 * is the only valid inode in the block, we need not read the 2761 * block. 2762 */ 2763 if (in_mem) { 2764 struct buffer_head *bitmap_bh; 2765 struct ext3_group_desc *desc; 2766 int inodes_per_buffer; 2767 int inode_offset, i; 2768 int block_group; 2769 int start; 2770 2771 block_group = (inode->i_ino - 1) / 2772 EXT3_INODES_PER_GROUP(inode->i_sb); 2773 inodes_per_buffer = bh->b_size / 2774 EXT3_INODE_SIZE(inode->i_sb); 2775 inode_offset = ((inode->i_ino - 1) % 2776 EXT3_INODES_PER_GROUP(inode->i_sb)); 2777 start = inode_offset & ~(inodes_per_buffer - 1); 2778 2779 /* Is the inode bitmap in cache? */ 2780 desc = ext3_get_group_desc(inode->i_sb, 2781 block_group, NULL); 2782 if (!desc) 2783 goto make_io; 2784 2785 bitmap_bh = sb_getblk(inode->i_sb, 2786 le32_to_cpu(desc->bg_inode_bitmap)); 2787 if (!bitmap_bh) 2788 goto make_io; 2789 2790 /* 2791 * If the inode bitmap isn't in cache then the 2792 * optimisation may end up performing two reads instead 2793 * of one, so skip it. 2794 */ 2795 if (!buffer_uptodate(bitmap_bh)) { 2796 brelse(bitmap_bh); 2797 goto make_io; 2798 } 2799 for (i = start; i < start + inodes_per_buffer; i++) { 2800 if (i == inode_offset) 2801 continue; 2802 if (ext3_test_bit(i, bitmap_bh->b_data)) 2803 break; 2804 } 2805 brelse(bitmap_bh); 2806 if (i == start + inodes_per_buffer) { 2807 /* all other inodes are free, so skip I/O */ 2808 memset(bh->b_data, 0, bh->b_size); 2809 set_buffer_uptodate(bh); 2810 unlock_buffer(bh); 2811 goto has_buffer; 2812 } 2813 } 2814 2815make_io: 2816 /* 2817 * There are other valid inodes in the buffer, this inode 2818 * has in-inode xattrs, or we don't have this inode in memory. 2819 * Read the block from disk. 2820 */ 2821 trace_ext3_load_inode(inode); 2822 get_bh(bh); 2823 bh->b_end_io = end_buffer_read_sync; 2824 submit_bh(READ | REQ_META | REQ_PRIO, bh); 2825 wait_on_buffer(bh); 2826 if (!buffer_uptodate(bh)) { 2827 ext3_error(inode->i_sb, "ext3_get_inode_loc", 2828 "unable to read inode block - " 2829 "inode=%lu, block="E3FSBLK, 2830 inode->i_ino, block); 2831 brelse(bh); 2832 return -EIO; 2833 } 2834 } 2835has_buffer: 2836 iloc->bh = bh; 2837 return 0; 2838} 2839 2840int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc) 2841{ 2842 /* We have all inode data except xattrs in memory here. */ 2843 return __ext3_get_inode_loc(inode, iloc, 2844 !ext3_test_inode_state(inode, EXT3_STATE_XATTR)); 2845} 2846 2847void ext3_set_inode_flags(struct inode *inode) 2848{ 2849 unsigned int flags = EXT3_I(inode)->i_flags; 2850 2851 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 2852 if (flags & EXT3_SYNC_FL) 2853 inode->i_flags |= S_SYNC; 2854 if (flags & EXT3_APPEND_FL) 2855 inode->i_flags |= S_APPEND; 2856 if (flags & EXT3_IMMUTABLE_FL) 2857 inode->i_flags |= S_IMMUTABLE; 2858 if (flags & EXT3_NOATIME_FL) 2859 inode->i_flags |= S_NOATIME; 2860 if (flags & EXT3_DIRSYNC_FL) 2861 inode->i_flags |= S_DIRSYNC; 2862} 2863 2864/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */ 2865void ext3_get_inode_flags(struct ext3_inode_info *ei) 2866{ 2867 unsigned int flags = ei->vfs_inode.i_flags; 2868 2869 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL| 2870 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL); 2871 if (flags & S_SYNC) 2872 ei->i_flags |= EXT3_SYNC_FL; 2873 if (flags & S_APPEND) 2874 ei->i_flags |= EXT3_APPEND_FL; 2875 if (flags & S_IMMUTABLE) 2876 ei->i_flags |= EXT3_IMMUTABLE_FL; 2877 if (flags & S_NOATIME) 2878 ei->i_flags |= EXT3_NOATIME_FL; 2879 if (flags & S_DIRSYNC) 2880 ei->i_flags |= EXT3_DIRSYNC_FL; 2881} 2882 2883struct inode *ext3_iget(struct super_block *sb, unsigned long ino) 2884{ 2885 struct ext3_iloc iloc; 2886 struct ext3_inode *raw_inode; 2887 struct ext3_inode_info *ei; 2888 struct buffer_head *bh; 2889 struct inode *inode; 2890 journal_t *journal = EXT3_SB(sb)->s_journal; 2891 transaction_t *transaction; 2892 long ret; 2893 int block; 2894 uid_t i_uid; 2895 gid_t i_gid; 2896 2897 inode = iget_locked(sb, ino); 2898 if (!inode) 2899 return ERR_PTR(-ENOMEM); 2900 if (!(inode->i_state & I_NEW)) 2901 return inode; 2902 2903 ei = EXT3_I(inode); 2904 ei->i_block_alloc_info = NULL; 2905 2906 ret = __ext3_get_inode_loc(inode, &iloc, 0); 2907 if (ret < 0) 2908 goto bad_inode; 2909 bh = iloc.bh; 2910 raw_inode = ext3_raw_inode(&iloc); 2911 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 2912 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 2913 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 2914 if(!(test_opt (inode->i_sb, NO_UID32))) { 2915 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 2916 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 2917 } 2918 i_uid_write(inode, i_uid); 2919 i_gid_write(inode, i_gid); 2920 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 2921 inode->i_size = le32_to_cpu(raw_inode->i_size); 2922 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime); 2923 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime); 2924 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime); 2925 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0; 2926 2927 ei->i_state_flags = 0; 2928 ei->i_dir_start_lookup = 0; 2929 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 2930 /* We now have enough fields to check if the inode was active or not. 2931 * This is needed because nfsd might try to access dead inodes 2932 * the test is that same one that e2fsck uses 2933 * NeilBrown 1999oct15 2934 */ 2935 if (inode->i_nlink == 0) { 2936 if (inode->i_mode == 0 || 2937 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) { 2938 /* this inode is deleted */ 2939 brelse (bh); 2940 ret = -ESTALE; 2941 goto bad_inode; 2942 } 2943 /* The only unlinked inodes we let through here have 2944 * valid i_mode and are being read by the orphan 2945 * recovery code: that's fine, we're about to complete 2946 * the process of deleting those. */ 2947 } 2948 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); 2949 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 2950#ifdef EXT3_FRAGMENTS 2951 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); 2952 ei->i_frag_no = raw_inode->i_frag; 2953 ei->i_frag_size = raw_inode->i_fsize; 2954#endif 2955 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); 2956 if (!S_ISREG(inode->i_mode)) { 2957 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); 2958 } else { 2959 inode->i_size |= 2960 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; 2961 } 2962 ei->i_disksize = inode->i_size; 2963 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 2964 ei->i_block_group = iloc.block_group; 2965 /* 2966 * NOTE! The in-memory inode i_data array is in little-endian order 2967 * even on big-endian machines: we do NOT byteswap the block numbers! 2968 */ 2969 for (block = 0; block < EXT3_N_BLOCKS; block++) 2970 ei->i_data[block] = raw_inode->i_block[block]; 2971 INIT_LIST_HEAD(&ei->i_orphan); 2972 2973 /* 2974 * Set transaction id's of transactions that have to be committed 2975 * to finish f[data]sync. We set them to currently running transaction 2976 * as we cannot be sure that the inode or some of its metadata isn't 2977 * part of the transaction - the inode could have been reclaimed and 2978 * now it is reread from disk. 2979 */ 2980 if (journal) { 2981 tid_t tid; 2982 2983 spin_lock(&journal->j_state_lock); 2984 if (journal->j_running_transaction) 2985 transaction = journal->j_running_transaction; 2986 else 2987 transaction = journal->j_committing_transaction; 2988 if (transaction) 2989 tid = transaction->t_tid; 2990 else 2991 tid = journal->j_commit_sequence; 2992 spin_unlock(&journal->j_state_lock); 2993 atomic_set(&ei->i_sync_tid, tid); 2994 atomic_set(&ei->i_datasync_tid, tid); 2995 } 2996 2997 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 && 2998 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) { 2999 /* 3000 * When mke2fs creates big inodes it does not zero out 3001 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE, 3002 * so ignore those first few inodes. 3003 */ 3004 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 3005 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 3006 EXT3_INODE_SIZE(inode->i_sb)) { 3007 brelse (bh); 3008 ret = -EIO; 3009 goto bad_inode; 3010 } 3011 if (ei->i_extra_isize == 0) { 3012 /* The extra space is currently unused. Use it. */ 3013 ei->i_extra_isize = sizeof(struct ext3_inode) - 3014 EXT3_GOOD_OLD_INODE_SIZE; 3015 } else { 3016 __le32 *magic = (void *)raw_inode + 3017 EXT3_GOOD_OLD_INODE_SIZE + 3018 ei->i_extra_isize; 3019 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC)) 3020 ext3_set_inode_state(inode, EXT3_STATE_XATTR); 3021 } 3022 } else 3023 ei->i_extra_isize = 0; 3024 3025 if (S_ISREG(inode->i_mode)) { 3026 inode->i_op = &ext3_file_inode_operations; 3027 inode->i_fop = &ext3_file_operations; 3028 ext3_set_aops(inode); 3029 } else if (S_ISDIR(inode->i_mode)) { 3030 inode->i_op = &ext3_dir_inode_operations; 3031 inode->i_fop = &ext3_dir_operations; 3032 } else if (S_ISLNK(inode->i_mode)) { 3033 if (ext3_inode_is_fast_symlink(inode)) { 3034 inode->i_op = &ext3_fast_symlink_inode_operations; 3035 nd_terminate_link(ei->i_data, inode->i_size, 3036 sizeof(ei->i_data) - 1); 3037 } else { 3038 inode->i_op = &ext3_symlink_inode_operations; 3039 ext3_set_aops(inode); 3040 } 3041 } else { 3042 inode->i_op = &ext3_special_inode_operations; 3043 if (raw_inode->i_block[0]) 3044 init_special_inode(inode, inode->i_mode, 3045 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 3046 else 3047 init_special_inode(inode, inode->i_mode, 3048 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 3049 } 3050 brelse (iloc.bh); 3051 ext3_set_inode_flags(inode); 3052 unlock_new_inode(inode); 3053 return inode; 3054 3055bad_inode: 3056 iget_failed(inode); 3057 return ERR_PTR(ret); 3058} 3059 3060/* 3061 * Post the struct inode info into an on-disk inode location in the 3062 * buffer-cache. This gobbles the caller's reference to the 3063 * buffer_head in the inode location struct. 3064 * 3065 * The caller must have write access to iloc->bh. 3066 */ 3067static int ext3_do_update_inode(handle_t *handle, 3068 struct inode *inode, 3069 struct ext3_iloc *iloc) 3070{ 3071 struct ext3_inode *raw_inode = ext3_raw_inode(iloc); 3072 struct ext3_inode_info *ei = EXT3_I(inode); 3073 struct buffer_head *bh = iloc->bh; 3074 int err = 0, rc, block; 3075 int need_datasync = 0; 3076 __le32 disksize; 3077 uid_t i_uid; 3078 gid_t i_gid; 3079 3080again: 3081 /* we can't allow multiple procs in here at once, its a bit racey */ 3082 lock_buffer(bh); 3083 3084 /* For fields not not tracking in the in-memory inode, 3085 * initialise them to zero for new inodes. */ 3086 if (ext3_test_inode_state(inode, EXT3_STATE_NEW)) 3087 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size); 3088 3089 ext3_get_inode_flags(ei); 3090 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 3091 i_uid = i_uid_read(inode); 3092 i_gid = i_gid_read(inode); 3093 if(!(test_opt(inode->i_sb, NO_UID32))) { 3094 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 3095 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 3096/* 3097 * Fix up interoperability with old kernels. Otherwise, old inodes get 3098 * re-used with the upper 16 bits of the uid/gid intact 3099 */ 3100 if(!ei->i_dtime) { 3101 raw_inode->i_uid_high = 3102 cpu_to_le16(high_16_bits(i_uid)); 3103 raw_inode->i_gid_high = 3104 cpu_to_le16(high_16_bits(i_gid)); 3105 } else { 3106 raw_inode->i_uid_high = 0; 3107 raw_inode->i_gid_high = 0; 3108 } 3109 } else { 3110 raw_inode->i_uid_low = 3111 cpu_to_le16(fs_high2lowuid(i_uid)); 3112 raw_inode->i_gid_low = 3113 cpu_to_le16(fs_high2lowgid(i_gid)); 3114 raw_inode->i_uid_high = 0; 3115 raw_inode->i_gid_high = 0; 3116 } 3117 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 3118 disksize = cpu_to_le32(ei->i_disksize); 3119 if (disksize != raw_inode->i_size) { 3120 need_datasync = 1; 3121 raw_inode->i_size = disksize; 3122 } 3123 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); 3124 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); 3125 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); 3126 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); 3127 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 3128 raw_inode->i_flags = cpu_to_le32(ei->i_flags); 3129#ifdef EXT3_FRAGMENTS 3130 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); 3131 raw_inode->i_frag = ei->i_frag_no; 3132 raw_inode->i_fsize = ei->i_frag_size; 3133#endif 3134 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); 3135 if (!S_ISREG(inode->i_mode)) { 3136 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); 3137 } else { 3138 disksize = cpu_to_le32(ei->i_disksize >> 32); 3139 if (disksize != raw_inode->i_size_high) { 3140 raw_inode->i_size_high = disksize; 3141 need_datasync = 1; 3142 } 3143 if (ei->i_disksize > 0x7fffffffULL) { 3144 struct super_block *sb = inode->i_sb; 3145 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb, 3146 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) || 3147 EXT3_SB(sb)->s_es->s_rev_level == 3148 cpu_to_le32(EXT3_GOOD_OLD_REV)) { 3149 /* If this is the first large file 3150 * created, add a flag to the superblock. 3151 */ 3152 unlock_buffer(bh); 3153 err = ext3_journal_get_write_access(handle, 3154 EXT3_SB(sb)->s_sbh); 3155 if (err) 3156 goto out_brelse; 3157 3158 ext3_update_dynamic_rev(sb); 3159 EXT3_SET_RO_COMPAT_FEATURE(sb, 3160 EXT3_FEATURE_RO_COMPAT_LARGE_FILE); 3161 handle->h_sync = 1; 3162 err = ext3_journal_dirty_metadata(handle, 3163 EXT3_SB(sb)->s_sbh); 3164 /* get our lock and start over */ 3165 goto again; 3166 } 3167 } 3168 } 3169 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 3170 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 3171 if (old_valid_dev(inode->i_rdev)) { 3172 raw_inode->i_block[0] = 3173 cpu_to_le32(old_encode_dev(inode->i_rdev)); 3174 raw_inode->i_block[1] = 0; 3175 } else { 3176 raw_inode->i_block[0] = 0; 3177 raw_inode->i_block[1] = 3178 cpu_to_le32(new_encode_dev(inode->i_rdev)); 3179 raw_inode->i_block[2] = 0; 3180 } 3181 } else for (block = 0; block < EXT3_N_BLOCKS; block++) 3182 raw_inode->i_block[block] = ei->i_data[block]; 3183 3184 if (ei->i_extra_isize) 3185 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 3186 3187 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata"); 3188 unlock_buffer(bh); 3189 rc = ext3_journal_dirty_metadata(handle, bh); 3190 if (!err) 3191 err = rc; 3192 ext3_clear_inode_state(inode, EXT3_STATE_NEW); 3193 3194 atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid); 3195 if (need_datasync) 3196 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid); 3197out_brelse: 3198 brelse (bh); 3199 ext3_std_error(inode->i_sb, err); 3200 return err; 3201} 3202 3203/* 3204 * ext3_write_inode() 3205 * 3206 * We are called from a few places: 3207 * 3208 * - Within generic_file_write() for O_SYNC files. 3209 * Here, there will be no transaction running. We wait for any running 3210 * transaction to commit. 3211 * 3212 * - Within sys_sync(), kupdate and such. 3213 * We wait on commit, if tol to. 3214 * 3215 * - Within prune_icache() (PF_MEMALLOC == true) 3216 * Here we simply return. We can't afford to block kswapd on the 3217 * journal commit. 3218 * 3219 * In all cases it is actually safe for us to return without doing anything, 3220 * because the inode has been copied into a raw inode buffer in 3221 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 3222 * knfsd. 3223 * 3224 * Note that we are absolutely dependent upon all inode dirtiers doing the 3225 * right thing: they *must* call mark_inode_dirty() after dirtying info in 3226 * which we are interested. 3227 * 3228 * It would be a bug for them to not do this. The code: 3229 * 3230 * mark_inode_dirty(inode) 3231 * stuff(); 3232 * inode->i_size = expr; 3233 * 3234 * is in error because a kswapd-driven write_inode() could occur while 3235 * `stuff()' is running, and the new i_size will be lost. Plus the inode 3236 * will no longer be on the superblock's dirty inode list. 3237 */ 3238int ext3_write_inode(struct inode *inode, struct writeback_control *wbc) 3239{ 3240 if (current->flags & PF_MEMALLOC) 3241 return 0; 3242 3243 if (ext3_journal_current_handle()) { 3244 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 3245 dump_stack(); 3246 return -EIO; 3247 } 3248 3249 if (wbc->sync_mode != WB_SYNC_ALL) 3250 return 0; 3251 3252 return ext3_force_commit(inode->i_sb); 3253} 3254 3255/* 3256 * ext3_setattr() 3257 * 3258 * Called from notify_change. 3259 * 3260 * We want to trap VFS attempts to truncate the file as soon as 3261 * possible. In particular, we want to make sure that when the VFS 3262 * shrinks i_size, we put the inode on the orphan list and modify 3263 * i_disksize immediately, so that during the subsequent flushing of 3264 * dirty pages and freeing of disk blocks, we can guarantee that any 3265 * commit will leave the blocks being flushed in an unused state on 3266 * disk. (On recovery, the inode will get truncated and the blocks will 3267 * be freed, so we have a strong guarantee that no future commit will 3268 * leave these blocks visible to the user.) 3269 * 3270 * Called with inode->sem down. 3271 */ 3272int ext3_setattr(struct dentry *dentry, struct iattr *attr) 3273{ 3274 struct inode *inode = dentry->d_inode; 3275 int error, rc = 0; 3276 const unsigned int ia_valid = attr->ia_valid; 3277 3278 error = inode_change_ok(inode, attr); 3279 if (error) 3280 return error; 3281 3282 if (is_quota_modification(inode, attr)) 3283 dquot_initialize(inode); 3284 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 3285 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 3286 handle_t *handle; 3287 3288 /* (user+group)*(old+new) structure, inode write (sb, 3289 * inode block, ? - but truncate inode update has it) */ 3290 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 3291 EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3); 3292 if (IS_ERR(handle)) { 3293 error = PTR_ERR(handle); 3294 goto err_out; 3295 } 3296 error = dquot_transfer(inode, attr); 3297 if (error) { 3298 ext3_journal_stop(handle); 3299 return error; 3300 } 3301 /* Update corresponding info in inode so that everything is in 3302 * one transaction */ 3303 if (attr->ia_valid & ATTR_UID) 3304 inode->i_uid = attr->ia_uid; 3305 if (attr->ia_valid & ATTR_GID) 3306 inode->i_gid = attr->ia_gid; 3307 error = ext3_mark_inode_dirty(handle, inode); 3308 ext3_journal_stop(handle); 3309 } 3310 3311 if (attr->ia_valid & ATTR_SIZE) 3312 inode_dio_wait(inode); 3313 3314 if (S_ISREG(inode->i_mode) && 3315 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 3316 handle_t *handle; 3317 3318 handle = ext3_journal_start(inode, 3); 3319 if (IS_ERR(handle)) { 3320 error = PTR_ERR(handle); 3321 goto err_out; 3322 } 3323 3324 error = ext3_orphan_add(handle, inode); 3325 if (error) { 3326 ext3_journal_stop(handle); 3327 goto err_out; 3328 } 3329 EXT3_I(inode)->i_disksize = attr->ia_size; 3330 error = ext3_mark_inode_dirty(handle, inode); 3331 ext3_journal_stop(handle); 3332 if (error) { 3333 /* Some hard fs error must have happened. Bail out. */ 3334 ext3_orphan_del(NULL, inode); 3335 goto err_out; 3336 } 3337 rc = ext3_block_truncate_page(inode, attr->ia_size); 3338 if (rc) { 3339 /* Cleanup orphan list and exit */ 3340 handle = ext3_journal_start(inode, 3); 3341 if (IS_ERR(handle)) { 3342 ext3_orphan_del(NULL, inode); 3343 goto err_out; 3344 } 3345 ext3_orphan_del(handle, inode); 3346 ext3_journal_stop(handle); 3347 goto err_out; 3348 } 3349 } 3350 3351 if ((attr->ia_valid & ATTR_SIZE) && 3352 attr->ia_size != i_size_read(inode)) { 3353 truncate_setsize(inode, attr->ia_size); 3354 ext3_truncate(inode); 3355 } 3356 3357 setattr_copy(inode, attr); 3358 mark_inode_dirty(inode); 3359 3360 if (ia_valid & ATTR_MODE) 3361 rc = ext3_acl_chmod(inode); 3362 3363err_out: 3364 ext3_std_error(inode->i_sb, error); 3365 if (!error) 3366 error = rc; 3367 return error; 3368} 3369 3370 3371/* 3372 * How many blocks doth make a writepage()? 3373 * 3374 * With N blocks per page, it may be: 3375 * N data blocks 3376 * 2 indirect block 3377 * 2 dindirect 3378 * 1 tindirect 3379 * N+5 bitmap blocks (from the above) 3380 * N+5 group descriptor summary blocks 3381 * 1 inode block 3382 * 1 superblock. 3383 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files 3384 * 3385 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS 3386 * 3387 * With ordered or writeback data it's the same, less the N data blocks. 3388 * 3389 * If the inode's direct blocks can hold an integral number of pages then a 3390 * page cannot straddle two indirect blocks, and we can only touch one indirect 3391 * and dindirect block, and the "5" above becomes "3". 3392 * 3393 * This still overestimates under most circumstances. If we were to pass the 3394 * start and end offsets in here as well we could do block_to_path() on each 3395 * block and work out the exact number of indirects which are touched. Pah. 3396 */ 3397 3398static int ext3_writepage_trans_blocks(struct inode *inode) 3399{ 3400 int bpp = ext3_journal_blocks_per_page(inode); 3401 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3; 3402 int ret; 3403 3404 if (ext3_should_journal_data(inode)) 3405 ret = 3 * (bpp + indirects) + 2; 3406 else 3407 ret = 2 * (bpp + indirects) + indirects + 2; 3408 3409#ifdef CONFIG_QUOTA 3410 /* We know that structure was already allocated during dquot_initialize so 3411 * we will be updating only the data blocks + inodes */ 3412 ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); 3413#endif 3414 3415 return ret; 3416} 3417 3418/* 3419 * The caller must have previously called ext3_reserve_inode_write(). 3420 * Give this, we know that the caller already has write access to iloc->bh. 3421 */ 3422int ext3_mark_iloc_dirty(handle_t *handle, 3423 struct inode *inode, struct ext3_iloc *iloc) 3424{ 3425 int err = 0; 3426 3427 /* the do_update_inode consumes one bh->b_count */ 3428 get_bh(iloc->bh); 3429 3430 /* ext3_do_update_inode() does journal_dirty_metadata */ 3431 err = ext3_do_update_inode(handle, inode, iloc); 3432 put_bh(iloc->bh); 3433 return err; 3434} 3435 3436/* 3437 * On success, We end up with an outstanding reference count against 3438 * iloc->bh. This _must_ be cleaned up later. 3439 */ 3440 3441int 3442ext3_reserve_inode_write(handle_t *handle, struct inode *inode, 3443 struct ext3_iloc *iloc) 3444{ 3445 int err = 0; 3446 if (handle) { 3447 err = ext3_get_inode_loc(inode, iloc); 3448 if (!err) { 3449 BUFFER_TRACE(iloc->bh, "get_write_access"); 3450 err = ext3_journal_get_write_access(handle, iloc->bh); 3451 if (err) { 3452 brelse(iloc->bh); 3453 iloc->bh = NULL; 3454 } 3455 } 3456 } 3457 ext3_std_error(inode->i_sb, err); 3458 return err; 3459} 3460 3461/* 3462 * What we do here is to mark the in-core inode as clean with respect to inode 3463 * dirtiness (it may still be data-dirty). 3464 * This means that the in-core inode may be reaped by prune_icache 3465 * without having to perform any I/O. This is a very good thing, 3466 * because *any* task may call prune_icache - even ones which 3467 * have a transaction open against a different journal. 3468 * 3469 * Is this cheating? Not really. Sure, we haven't written the 3470 * inode out, but prune_icache isn't a user-visible syncing function. 3471 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 3472 * we start and wait on commits. 3473 */ 3474int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode) 3475{ 3476 struct ext3_iloc iloc; 3477 int err; 3478 3479 might_sleep(); 3480 trace_ext3_mark_inode_dirty(inode, _RET_IP_); 3481 err = ext3_reserve_inode_write(handle, inode, &iloc); 3482 if (!err) 3483 err = ext3_mark_iloc_dirty(handle, inode, &iloc); 3484 return err; 3485} 3486 3487/* 3488 * ext3_dirty_inode() is called from __mark_inode_dirty() 3489 * 3490 * We're really interested in the case where a file is being extended. 3491 * i_size has been changed by generic_commit_write() and we thus need 3492 * to include the updated inode in the current transaction. 3493 * 3494 * Also, dquot_alloc_space() will always dirty the inode when blocks 3495 * are allocated to the file. 3496 * 3497 * If the inode is marked synchronous, we don't honour that here - doing 3498 * so would cause a commit on atime updates, which we don't bother doing. 3499 * We handle synchronous inodes at the highest possible level. 3500 */ 3501void ext3_dirty_inode(struct inode *inode, int flags) 3502{ 3503 handle_t *current_handle = ext3_journal_current_handle(); 3504 handle_t *handle; 3505 3506 handle = ext3_journal_start(inode, 2); 3507 if (IS_ERR(handle)) 3508 goto out; 3509 if (current_handle && 3510 current_handle->h_transaction != handle->h_transaction) { 3511 /* This task has a transaction open against a different fs */ 3512 printk(KERN_EMERG "%s: transactions do not match!\n", 3513 __func__); 3514 } else { 3515 jbd_debug(5, "marking dirty. outer handle=%p\n", 3516 current_handle); 3517 ext3_mark_inode_dirty(handle, inode); 3518 } 3519 ext3_journal_stop(handle); 3520out: 3521 return; 3522} 3523 3524#if 0 3525/* 3526 * Bind an inode's backing buffer_head into this transaction, to prevent 3527 * it from being flushed to disk early. Unlike 3528 * ext3_reserve_inode_write, this leaves behind no bh reference and 3529 * returns no iloc structure, so the caller needs to repeat the iloc 3530 * lookup to mark the inode dirty later. 3531 */ 3532static int ext3_pin_inode(handle_t *handle, struct inode *inode) 3533{ 3534 struct ext3_iloc iloc; 3535 3536 int err = 0; 3537 if (handle) { 3538 err = ext3_get_inode_loc(inode, &iloc); 3539 if (!err) { 3540 BUFFER_TRACE(iloc.bh, "get_write_access"); 3541 err = journal_get_write_access(handle, iloc.bh); 3542 if (!err) 3543 err = ext3_journal_dirty_metadata(handle, 3544 iloc.bh); 3545 brelse(iloc.bh); 3546 } 3547 } 3548 ext3_std_error(inode->i_sb, err); 3549 return err; 3550} 3551#endif 3552 3553int ext3_change_inode_journal_flag(struct inode *inode, int val) 3554{ 3555 journal_t *journal; 3556 handle_t *handle; 3557 int err; 3558 3559 /* 3560 * We have to be very careful here: changing a data block's 3561 * journaling status dynamically is dangerous. If we write a 3562 * data block to the journal, change the status and then delete 3563 * that block, we risk forgetting to revoke the old log record 3564 * from the journal and so a subsequent replay can corrupt data. 3565 * So, first we make sure that the journal is empty and that 3566 * nobody is changing anything. 3567 */ 3568 3569 journal = EXT3_JOURNAL(inode); 3570 if (is_journal_aborted(journal)) 3571 return -EROFS; 3572 3573 journal_lock_updates(journal); 3574 journal_flush(journal); 3575 3576 /* 3577 * OK, there are no updates running now, and all cached data is 3578 * synced to disk. We are now in a completely consistent state 3579 * which doesn't have anything in the journal, and we know that 3580 * no filesystem updates are running, so it is safe to modify 3581 * the inode's in-core data-journaling state flag now. 3582 */ 3583 3584 if (val) 3585 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL; 3586 else 3587 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL; 3588 ext3_set_aops(inode); 3589 3590 journal_unlock_updates(journal); 3591 3592 /* Finally we can mark the inode as dirty. */ 3593 3594 handle = ext3_journal_start(inode, 1); 3595 if (IS_ERR(handle)) 3596 return PTR_ERR(handle); 3597 3598 err = ext3_mark_inode_dirty(handle, inode); 3599 handle->h_sync = 1; 3600 ext3_journal_stop(handle); 3601 ext3_std_error(inode->i_sb, err); 3602 3603 return err; 3604}