at v3.6 2227 lines 63 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40#ifndef _SOCK_H 41#define _SOCK_H 42 43#include <linux/hardirq.h> 44#include <linux/kernel.h> 45#include <linux/list.h> 46#include <linux/list_nulls.h> 47#include <linux/timer.h> 48#include <linux/cache.h> 49#include <linux/bitops.h> 50#include <linux/lockdep.h> 51#include <linux/netdevice.h> 52#include <linux/skbuff.h> /* struct sk_buff */ 53#include <linux/mm.h> 54#include <linux/security.h> 55#include <linux/slab.h> 56#include <linux/uaccess.h> 57#include <linux/memcontrol.h> 58#include <linux/res_counter.h> 59#include <linux/static_key.h> 60#include <linux/aio.h> 61#include <linux/sched.h> 62 63#include <linux/filter.h> 64#include <linux/rculist_nulls.h> 65#include <linux/poll.h> 66 67#include <linux/atomic.h> 68#include <net/dst.h> 69#include <net/checksum.h> 70 71struct cgroup; 72struct cgroup_subsys; 73#ifdef CONFIG_NET 74int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 75void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 76#else 77static inline 78int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 79{ 80 return 0; 81} 82static inline 83void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 84{ 85} 86#endif 87/* 88 * This structure really needs to be cleaned up. 89 * Most of it is for TCP, and not used by any of 90 * the other protocols. 91 */ 92 93/* Define this to get the SOCK_DBG debugging facility. */ 94#define SOCK_DEBUGGING 95#ifdef SOCK_DEBUGGING 96#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 97 printk(KERN_DEBUG msg); } while (0) 98#else 99/* Validate arguments and do nothing */ 100static inline __printf(2, 3) 101void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 102{ 103} 104#endif 105 106/* This is the per-socket lock. The spinlock provides a synchronization 107 * between user contexts and software interrupt processing, whereas the 108 * mini-semaphore synchronizes multiple users amongst themselves. 109 */ 110typedef struct { 111 spinlock_t slock; 112 int owned; 113 wait_queue_head_t wq; 114 /* 115 * We express the mutex-alike socket_lock semantics 116 * to the lock validator by explicitly managing 117 * the slock as a lock variant (in addition to 118 * the slock itself): 119 */ 120#ifdef CONFIG_DEBUG_LOCK_ALLOC 121 struct lockdep_map dep_map; 122#endif 123} socket_lock_t; 124 125struct sock; 126struct proto; 127struct net; 128 129/** 130 * struct sock_common - minimal network layer representation of sockets 131 * @skc_daddr: Foreign IPv4 addr 132 * @skc_rcv_saddr: Bound local IPv4 addr 133 * @skc_hash: hash value used with various protocol lookup tables 134 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 135 * @skc_family: network address family 136 * @skc_state: Connection state 137 * @skc_reuse: %SO_REUSEADDR setting 138 * @skc_bound_dev_if: bound device index if != 0 139 * @skc_bind_node: bind hash linkage for various protocol lookup tables 140 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 141 * @skc_prot: protocol handlers inside a network family 142 * @skc_net: reference to the network namespace of this socket 143 * @skc_node: main hash linkage for various protocol lookup tables 144 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 145 * @skc_tx_queue_mapping: tx queue number for this connection 146 * @skc_refcnt: reference count 147 * 148 * This is the minimal network layer representation of sockets, the header 149 * for struct sock and struct inet_timewait_sock. 150 */ 151struct sock_common { 152 /* skc_daddr and skc_rcv_saddr must be grouped : 153 * cf INET_MATCH() and INET_TW_MATCH() 154 */ 155 __be32 skc_daddr; 156 __be32 skc_rcv_saddr; 157 158 union { 159 unsigned int skc_hash; 160 __u16 skc_u16hashes[2]; 161 }; 162 unsigned short skc_family; 163 volatile unsigned char skc_state; 164 unsigned char skc_reuse; 165 int skc_bound_dev_if; 166 union { 167 struct hlist_node skc_bind_node; 168 struct hlist_nulls_node skc_portaddr_node; 169 }; 170 struct proto *skc_prot; 171#ifdef CONFIG_NET_NS 172 struct net *skc_net; 173#endif 174 /* 175 * fields between dontcopy_begin/dontcopy_end 176 * are not copied in sock_copy() 177 */ 178 /* private: */ 179 int skc_dontcopy_begin[0]; 180 /* public: */ 181 union { 182 struct hlist_node skc_node; 183 struct hlist_nulls_node skc_nulls_node; 184 }; 185 int skc_tx_queue_mapping; 186 atomic_t skc_refcnt; 187 /* private: */ 188 int skc_dontcopy_end[0]; 189 /* public: */ 190}; 191 192struct cg_proto; 193/** 194 * struct sock - network layer representation of sockets 195 * @__sk_common: shared layout with inet_timewait_sock 196 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 197 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 198 * @sk_lock: synchronizer 199 * @sk_rcvbuf: size of receive buffer in bytes 200 * @sk_wq: sock wait queue and async head 201 * @sk_rx_dst: receive input route used by early tcp demux 202 * @sk_dst_cache: destination cache 203 * @sk_dst_lock: destination cache lock 204 * @sk_policy: flow policy 205 * @sk_receive_queue: incoming packets 206 * @sk_wmem_alloc: transmit queue bytes committed 207 * @sk_write_queue: Packet sending queue 208 * @sk_async_wait_queue: DMA copied packets 209 * @sk_omem_alloc: "o" is "option" or "other" 210 * @sk_wmem_queued: persistent queue size 211 * @sk_forward_alloc: space allocated forward 212 * @sk_allocation: allocation mode 213 * @sk_sndbuf: size of send buffer in bytes 214 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 215 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 216 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 217 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 218 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 219 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 220 * @sk_gso_max_size: Maximum GSO segment size to build 221 * @sk_gso_max_segs: Maximum number of GSO segments 222 * @sk_lingertime: %SO_LINGER l_linger setting 223 * @sk_backlog: always used with the per-socket spinlock held 224 * @sk_callback_lock: used with the callbacks in the end of this struct 225 * @sk_error_queue: rarely used 226 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 227 * IPV6_ADDRFORM for instance) 228 * @sk_err: last error 229 * @sk_err_soft: errors that don't cause failure but are the cause of a 230 * persistent failure not just 'timed out' 231 * @sk_drops: raw/udp drops counter 232 * @sk_ack_backlog: current listen backlog 233 * @sk_max_ack_backlog: listen backlog set in listen() 234 * @sk_priority: %SO_PRIORITY setting 235 * @sk_cgrp_prioidx: socket group's priority map index 236 * @sk_type: socket type (%SOCK_STREAM, etc) 237 * @sk_protocol: which protocol this socket belongs in this network family 238 * @sk_peer_pid: &struct pid for this socket's peer 239 * @sk_peer_cred: %SO_PEERCRED setting 240 * @sk_rcvlowat: %SO_RCVLOWAT setting 241 * @sk_rcvtimeo: %SO_RCVTIMEO setting 242 * @sk_sndtimeo: %SO_SNDTIMEO setting 243 * @sk_rxhash: flow hash received from netif layer 244 * @sk_filter: socket filtering instructions 245 * @sk_protinfo: private area, net family specific, when not using slab 246 * @sk_timer: sock cleanup timer 247 * @sk_stamp: time stamp of last packet received 248 * @sk_socket: Identd and reporting IO signals 249 * @sk_user_data: RPC layer private data 250 * @sk_sndmsg_page: cached page for sendmsg 251 * @sk_sndmsg_off: cached offset for sendmsg 252 * @sk_peek_off: current peek_offset value 253 * @sk_send_head: front of stuff to transmit 254 * @sk_security: used by security modules 255 * @sk_mark: generic packet mark 256 * @sk_classid: this socket's cgroup classid 257 * @sk_cgrp: this socket's cgroup-specific proto data 258 * @sk_write_pending: a write to stream socket waits to start 259 * @sk_state_change: callback to indicate change in the state of the sock 260 * @sk_data_ready: callback to indicate there is data to be processed 261 * @sk_write_space: callback to indicate there is bf sending space available 262 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 263 * @sk_backlog_rcv: callback to process the backlog 264 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 265 */ 266struct sock { 267 /* 268 * Now struct inet_timewait_sock also uses sock_common, so please just 269 * don't add nothing before this first member (__sk_common) --acme 270 */ 271 struct sock_common __sk_common; 272#define sk_node __sk_common.skc_node 273#define sk_nulls_node __sk_common.skc_nulls_node 274#define sk_refcnt __sk_common.skc_refcnt 275#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 276 277#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 278#define sk_dontcopy_end __sk_common.skc_dontcopy_end 279#define sk_hash __sk_common.skc_hash 280#define sk_family __sk_common.skc_family 281#define sk_state __sk_common.skc_state 282#define sk_reuse __sk_common.skc_reuse 283#define sk_bound_dev_if __sk_common.skc_bound_dev_if 284#define sk_bind_node __sk_common.skc_bind_node 285#define sk_prot __sk_common.skc_prot 286#define sk_net __sk_common.skc_net 287 socket_lock_t sk_lock; 288 struct sk_buff_head sk_receive_queue; 289 /* 290 * The backlog queue is special, it is always used with 291 * the per-socket spinlock held and requires low latency 292 * access. Therefore we special case it's implementation. 293 * Note : rmem_alloc is in this structure to fill a hole 294 * on 64bit arches, not because its logically part of 295 * backlog. 296 */ 297 struct { 298 atomic_t rmem_alloc; 299 int len; 300 struct sk_buff *head; 301 struct sk_buff *tail; 302 } sk_backlog; 303#define sk_rmem_alloc sk_backlog.rmem_alloc 304 int sk_forward_alloc; 305#ifdef CONFIG_RPS 306 __u32 sk_rxhash; 307#endif 308 atomic_t sk_drops; 309 int sk_rcvbuf; 310 311 struct sk_filter __rcu *sk_filter; 312 struct socket_wq __rcu *sk_wq; 313 314#ifdef CONFIG_NET_DMA 315 struct sk_buff_head sk_async_wait_queue; 316#endif 317 318#ifdef CONFIG_XFRM 319 struct xfrm_policy *sk_policy[2]; 320#endif 321 unsigned long sk_flags; 322 struct dst_entry *sk_rx_dst; 323 struct dst_entry *sk_dst_cache; 324 spinlock_t sk_dst_lock; 325 atomic_t sk_wmem_alloc; 326 atomic_t sk_omem_alloc; 327 int sk_sndbuf; 328 struct sk_buff_head sk_write_queue; 329 kmemcheck_bitfield_begin(flags); 330 unsigned int sk_shutdown : 2, 331 sk_no_check : 2, 332 sk_userlocks : 4, 333 sk_protocol : 8, 334 sk_type : 16; 335 kmemcheck_bitfield_end(flags); 336 int sk_wmem_queued; 337 gfp_t sk_allocation; 338 netdev_features_t sk_route_caps; 339 netdev_features_t sk_route_nocaps; 340 int sk_gso_type; 341 unsigned int sk_gso_max_size; 342 u16 sk_gso_max_segs; 343 int sk_rcvlowat; 344 unsigned long sk_lingertime; 345 struct sk_buff_head sk_error_queue; 346 struct proto *sk_prot_creator; 347 rwlock_t sk_callback_lock; 348 int sk_err, 349 sk_err_soft; 350 unsigned short sk_ack_backlog; 351 unsigned short sk_max_ack_backlog; 352 __u32 sk_priority; 353#ifdef CONFIG_CGROUPS 354 __u32 sk_cgrp_prioidx; 355#endif 356 struct pid *sk_peer_pid; 357 const struct cred *sk_peer_cred; 358 long sk_rcvtimeo; 359 long sk_sndtimeo; 360 void *sk_protinfo; 361 struct timer_list sk_timer; 362 ktime_t sk_stamp; 363 struct socket *sk_socket; 364 void *sk_user_data; 365 struct page *sk_sndmsg_page; 366 struct sk_buff *sk_send_head; 367 __u32 sk_sndmsg_off; 368 __s32 sk_peek_off; 369 int sk_write_pending; 370#ifdef CONFIG_SECURITY 371 void *sk_security; 372#endif 373 __u32 sk_mark; 374 u32 sk_classid; 375 struct cg_proto *sk_cgrp; 376 void (*sk_state_change)(struct sock *sk); 377 void (*sk_data_ready)(struct sock *sk, int bytes); 378 void (*sk_write_space)(struct sock *sk); 379 void (*sk_error_report)(struct sock *sk); 380 int (*sk_backlog_rcv)(struct sock *sk, 381 struct sk_buff *skb); 382 void (*sk_destruct)(struct sock *sk); 383}; 384 385/* 386 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 387 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 388 * on a socket means that the socket will reuse everybody else's port 389 * without looking at the other's sk_reuse value. 390 */ 391 392#define SK_NO_REUSE 0 393#define SK_CAN_REUSE 1 394#define SK_FORCE_REUSE 2 395 396static inline int sk_peek_offset(struct sock *sk, int flags) 397{ 398 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 399 return sk->sk_peek_off; 400 else 401 return 0; 402} 403 404static inline void sk_peek_offset_bwd(struct sock *sk, int val) 405{ 406 if (sk->sk_peek_off >= 0) { 407 if (sk->sk_peek_off >= val) 408 sk->sk_peek_off -= val; 409 else 410 sk->sk_peek_off = 0; 411 } 412} 413 414static inline void sk_peek_offset_fwd(struct sock *sk, int val) 415{ 416 if (sk->sk_peek_off >= 0) 417 sk->sk_peek_off += val; 418} 419 420/* 421 * Hashed lists helper routines 422 */ 423static inline struct sock *sk_entry(const struct hlist_node *node) 424{ 425 return hlist_entry(node, struct sock, sk_node); 426} 427 428static inline struct sock *__sk_head(const struct hlist_head *head) 429{ 430 return hlist_entry(head->first, struct sock, sk_node); 431} 432 433static inline struct sock *sk_head(const struct hlist_head *head) 434{ 435 return hlist_empty(head) ? NULL : __sk_head(head); 436} 437 438static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 439{ 440 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 441} 442 443static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 444{ 445 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 446} 447 448static inline struct sock *sk_next(const struct sock *sk) 449{ 450 return sk->sk_node.next ? 451 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 452} 453 454static inline struct sock *sk_nulls_next(const struct sock *sk) 455{ 456 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 457 hlist_nulls_entry(sk->sk_nulls_node.next, 458 struct sock, sk_nulls_node) : 459 NULL; 460} 461 462static inline bool sk_unhashed(const struct sock *sk) 463{ 464 return hlist_unhashed(&sk->sk_node); 465} 466 467static inline bool sk_hashed(const struct sock *sk) 468{ 469 return !sk_unhashed(sk); 470} 471 472static inline void sk_node_init(struct hlist_node *node) 473{ 474 node->pprev = NULL; 475} 476 477static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 478{ 479 node->pprev = NULL; 480} 481 482static inline void __sk_del_node(struct sock *sk) 483{ 484 __hlist_del(&sk->sk_node); 485} 486 487/* NB: equivalent to hlist_del_init_rcu */ 488static inline bool __sk_del_node_init(struct sock *sk) 489{ 490 if (sk_hashed(sk)) { 491 __sk_del_node(sk); 492 sk_node_init(&sk->sk_node); 493 return true; 494 } 495 return false; 496} 497 498/* Grab socket reference count. This operation is valid only 499 when sk is ALREADY grabbed f.e. it is found in hash table 500 or a list and the lookup is made under lock preventing hash table 501 modifications. 502 */ 503 504static inline void sock_hold(struct sock *sk) 505{ 506 atomic_inc(&sk->sk_refcnt); 507} 508 509/* Ungrab socket in the context, which assumes that socket refcnt 510 cannot hit zero, f.e. it is true in context of any socketcall. 511 */ 512static inline void __sock_put(struct sock *sk) 513{ 514 atomic_dec(&sk->sk_refcnt); 515} 516 517static inline bool sk_del_node_init(struct sock *sk) 518{ 519 bool rc = __sk_del_node_init(sk); 520 521 if (rc) { 522 /* paranoid for a while -acme */ 523 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 524 __sock_put(sk); 525 } 526 return rc; 527} 528#define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 529 530static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 531{ 532 if (sk_hashed(sk)) { 533 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 534 return true; 535 } 536 return false; 537} 538 539static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 540{ 541 bool rc = __sk_nulls_del_node_init_rcu(sk); 542 543 if (rc) { 544 /* paranoid for a while -acme */ 545 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 546 __sock_put(sk); 547 } 548 return rc; 549} 550 551static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 552{ 553 hlist_add_head(&sk->sk_node, list); 554} 555 556static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 557{ 558 sock_hold(sk); 559 __sk_add_node(sk, list); 560} 561 562static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 563{ 564 sock_hold(sk); 565 hlist_add_head_rcu(&sk->sk_node, list); 566} 567 568static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 569{ 570 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 571} 572 573static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 574{ 575 sock_hold(sk); 576 __sk_nulls_add_node_rcu(sk, list); 577} 578 579static inline void __sk_del_bind_node(struct sock *sk) 580{ 581 __hlist_del(&sk->sk_bind_node); 582} 583 584static inline void sk_add_bind_node(struct sock *sk, 585 struct hlist_head *list) 586{ 587 hlist_add_head(&sk->sk_bind_node, list); 588} 589 590#define sk_for_each(__sk, node, list) \ 591 hlist_for_each_entry(__sk, node, list, sk_node) 592#define sk_for_each_rcu(__sk, node, list) \ 593 hlist_for_each_entry_rcu(__sk, node, list, sk_node) 594#define sk_nulls_for_each(__sk, node, list) \ 595 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 596#define sk_nulls_for_each_rcu(__sk, node, list) \ 597 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 598#define sk_for_each_from(__sk, node) \ 599 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 600 hlist_for_each_entry_from(__sk, node, sk_node) 601#define sk_nulls_for_each_from(__sk, node) \ 602 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 603 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 604#define sk_for_each_safe(__sk, node, tmp, list) \ 605 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 606#define sk_for_each_bound(__sk, node, list) \ 607 hlist_for_each_entry(__sk, node, list, sk_bind_node) 608 609/* Sock flags */ 610enum sock_flags { 611 SOCK_DEAD, 612 SOCK_DONE, 613 SOCK_URGINLINE, 614 SOCK_KEEPOPEN, 615 SOCK_LINGER, 616 SOCK_DESTROY, 617 SOCK_BROADCAST, 618 SOCK_TIMESTAMP, 619 SOCK_ZAPPED, 620 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 621 SOCK_DBG, /* %SO_DEBUG setting */ 622 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 623 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 624 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 625 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 626 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 627 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */ 628 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */ 629 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */ 630 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 631 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */ 632 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */ 633 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */ 634 SOCK_FASYNC, /* fasync() active */ 635 SOCK_RXQ_OVFL, 636 SOCK_ZEROCOPY, /* buffers from userspace */ 637 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 638 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 639 * Will use last 4 bytes of packet sent from 640 * user-space instead. 641 */ 642}; 643 644static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 645{ 646 nsk->sk_flags = osk->sk_flags; 647} 648 649static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 650{ 651 __set_bit(flag, &sk->sk_flags); 652} 653 654static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 655{ 656 __clear_bit(flag, &sk->sk_flags); 657} 658 659static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 660{ 661 return test_bit(flag, &sk->sk_flags); 662} 663 664#ifdef CONFIG_NET 665extern struct static_key memalloc_socks; 666static inline int sk_memalloc_socks(void) 667{ 668 return static_key_false(&memalloc_socks); 669} 670#else 671 672static inline int sk_memalloc_socks(void) 673{ 674 return 0; 675} 676 677#endif 678 679static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 680{ 681 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 682} 683 684static inline void sk_acceptq_removed(struct sock *sk) 685{ 686 sk->sk_ack_backlog--; 687} 688 689static inline void sk_acceptq_added(struct sock *sk) 690{ 691 sk->sk_ack_backlog++; 692} 693 694static inline bool sk_acceptq_is_full(const struct sock *sk) 695{ 696 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 697} 698 699/* 700 * Compute minimal free write space needed to queue new packets. 701 */ 702static inline int sk_stream_min_wspace(const struct sock *sk) 703{ 704 return sk->sk_wmem_queued >> 1; 705} 706 707static inline int sk_stream_wspace(const struct sock *sk) 708{ 709 return sk->sk_sndbuf - sk->sk_wmem_queued; 710} 711 712extern void sk_stream_write_space(struct sock *sk); 713 714static inline bool sk_stream_memory_free(const struct sock *sk) 715{ 716 return sk->sk_wmem_queued < sk->sk_sndbuf; 717} 718 719/* OOB backlog add */ 720static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 721{ 722 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 723 skb_dst_force(skb); 724 725 if (!sk->sk_backlog.tail) 726 sk->sk_backlog.head = skb; 727 else 728 sk->sk_backlog.tail->next = skb; 729 730 sk->sk_backlog.tail = skb; 731 skb->next = NULL; 732} 733 734/* 735 * Take into account size of receive queue and backlog queue 736 * Do not take into account this skb truesize, 737 * to allow even a single big packet to come. 738 */ 739static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb, 740 unsigned int limit) 741{ 742 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 743 744 return qsize > limit; 745} 746 747/* The per-socket spinlock must be held here. */ 748static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 749 unsigned int limit) 750{ 751 if (sk_rcvqueues_full(sk, skb, limit)) 752 return -ENOBUFS; 753 754 __sk_add_backlog(sk, skb); 755 sk->sk_backlog.len += skb->truesize; 756 return 0; 757} 758 759extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 760 761static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 762{ 763 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 764 return __sk_backlog_rcv(sk, skb); 765 766 return sk->sk_backlog_rcv(sk, skb); 767} 768 769static inline void sock_rps_record_flow(const struct sock *sk) 770{ 771#ifdef CONFIG_RPS 772 struct rps_sock_flow_table *sock_flow_table; 773 774 rcu_read_lock(); 775 sock_flow_table = rcu_dereference(rps_sock_flow_table); 776 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash); 777 rcu_read_unlock(); 778#endif 779} 780 781static inline void sock_rps_reset_flow(const struct sock *sk) 782{ 783#ifdef CONFIG_RPS 784 struct rps_sock_flow_table *sock_flow_table; 785 786 rcu_read_lock(); 787 sock_flow_table = rcu_dereference(rps_sock_flow_table); 788 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash); 789 rcu_read_unlock(); 790#endif 791} 792 793static inline void sock_rps_save_rxhash(struct sock *sk, 794 const struct sk_buff *skb) 795{ 796#ifdef CONFIG_RPS 797 if (unlikely(sk->sk_rxhash != skb->rxhash)) { 798 sock_rps_reset_flow(sk); 799 sk->sk_rxhash = skb->rxhash; 800 } 801#endif 802} 803 804static inline void sock_rps_reset_rxhash(struct sock *sk) 805{ 806#ifdef CONFIG_RPS 807 sock_rps_reset_flow(sk); 808 sk->sk_rxhash = 0; 809#endif 810} 811 812#define sk_wait_event(__sk, __timeo, __condition) \ 813 ({ int __rc; \ 814 release_sock(__sk); \ 815 __rc = __condition; \ 816 if (!__rc) { \ 817 *(__timeo) = schedule_timeout(*(__timeo)); \ 818 } \ 819 lock_sock(__sk); \ 820 __rc = __condition; \ 821 __rc; \ 822 }) 823 824extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 825extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 826extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 827extern int sk_stream_error(struct sock *sk, int flags, int err); 828extern void sk_stream_kill_queues(struct sock *sk); 829extern void sk_set_memalloc(struct sock *sk); 830extern void sk_clear_memalloc(struct sock *sk); 831 832extern int sk_wait_data(struct sock *sk, long *timeo); 833 834struct request_sock_ops; 835struct timewait_sock_ops; 836struct inet_hashinfo; 837struct raw_hashinfo; 838struct module; 839 840/* Networking protocol blocks we attach to sockets. 841 * socket layer -> transport layer interface 842 * transport -> network interface is defined by struct inet_proto 843 */ 844struct proto { 845 void (*close)(struct sock *sk, 846 long timeout); 847 int (*connect)(struct sock *sk, 848 struct sockaddr *uaddr, 849 int addr_len); 850 int (*disconnect)(struct sock *sk, int flags); 851 852 struct sock * (*accept)(struct sock *sk, int flags, int *err); 853 854 int (*ioctl)(struct sock *sk, int cmd, 855 unsigned long arg); 856 int (*init)(struct sock *sk); 857 void (*destroy)(struct sock *sk); 858 void (*shutdown)(struct sock *sk, int how); 859 int (*setsockopt)(struct sock *sk, int level, 860 int optname, char __user *optval, 861 unsigned int optlen); 862 int (*getsockopt)(struct sock *sk, int level, 863 int optname, char __user *optval, 864 int __user *option); 865#ifdef CONFIG_COMPAT 866 int (*compat_setsockopt)(struct sock *sk, 867 int level, 868 int optname, char __user *optval, 869 unsigned int optlen); 870 int (*compat_getsockopt)(struct sock *sk, 871 int level, 872 int optname, char __user *optval, 873 int __user *option); 874 int (*compat_ioctl)(struct sock *sk, 875 unsigned int cmd, unsigned long arg); 876#endif 877 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 878 struct msghdr *msg, size_t len); 879 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 880 struct msghdr *msg, 881 size_t len, int noblock, int flags, 882 int *addr_len); 883 int (*sendpage)(struct sock *sk, struct page *page, 884 int offset, size_t size, int flags); 885 int (*bind)(struct sock *sk, 886 struct sockaddr *uaddr, int addr_len); 887 888 int (*backlog_rcv) (struct sock *sk, 889 struct sk_buff *skb); 890 891 void (*release_cb)(struct sock *sk); 892 void (*mtu_reduced)(struct sock *sk); 893 894 /* Keeping track of sk's, looking them up, and port selection methods. */ 895 void (*hash)(struct sock *sk); 896 void (*unhash)(struct sock *sk); 897 void (*rehash)(struct sock *sk); 898 int (*get_port)(struct sock *sk, unsigned short snum); 899 void (*clear_sk)(struct sock *sk, int size); 900 901 /* Keeping track of sockets in use */ 902#ifdef CONFIG_PROC_FS 903 unsigned int inuse_idx; 904#endif 905 906 /* Memory pressure */ 907 void (*enter_memory_pressure)(struct sock *sk); 908 atomic_long_t *memory_allocated; /* Current allocated memory. */ 909 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 910 /* 911 * Pressure flag: try to collapse. 912 * Technical note: it is used by multiple contexts non atomically. 913 * All the __sk_mem_schedule() is of this nature: accounting 914 * is strict, actions are advisory and have some latency. 915 */ 916 int *memory_pressure; 917 long *sysctl_mem; 918 int *sysctl_wmem; 919 int *sysctl_rmem; 920 int max_header; 921 bool no_autobind; 922 923 struct kmem_cache *slab; 924 unsigned int obj_size; 925 int slab_flags; 926 927 struct percpu_counter *orphan_count; 928 929 struct request_sock_ops *rsk_prot; 930 struct timewait_sock_ops *twsk_prot; 931 932 union { 933 struct inet_hashinfo *hashinfo; 934 struct udp_table *udp_table; 935 struct raw_hashinfo *raw_hash; 936 } h; 937 938 struct module *owner; 939 940 char name[32]; 941 942 struct list_head node; 943#ifdef SOCK_REFCNT_DEBUG 944 atomic_t socks; 945#endif 946#ifdef CONFIG_MEMCG_KMEM 947 /* 948 * cgroup specific init/deinit functions. Called once for all 949 * protocols that implement it, from cgroups populate function. 950 * This function has to setup any files the protocol want to 951 * appear in the kmem cgroup filesystem. 952 */ 953 int (*init_cgroup)(struct mem_cgroup *memcg, 954 struct cgroup_subsys *ss); 955 void (*destroy_cgroup)(struct mem_cgroup *memcg); 956 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 957#endif 958}; 959 960/* 961 * Bits in struct cg_proto.flags 962 */ 963enum cg_proto_flags { 964 /* Currently active and new sockets should be assigned to cgroups */ 965 MEMCG_SOCK_ACTIVE, 966 /* It was ever activated; we must disarm static keys on destruction */ 967 MEMCG_SOCK_ACTIVATED, 968}; 969 970struct cg_proto { 971 void (*enter_memory_pressure)(struct sock *sk); 972 struct res_counter *memory_allocated; /* Current allocated memory. */ 973 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 974 int *memory_pressure; 975 long *sysctl_mem; 976 unsigned long flags; 977 /* 978 * memcg field is used to find which memcg we belong directly 979 * Each memcg struct can hold more than one cg_proto, so container_of 980 * won't really cut. 981 * 982 * The elegant solution would be having an inverse function to 983 * proto_cgroup in struct proto, but that means polluting the structure 984 * for everybody, instead of just for memcg users. 985 */ 986 struct mem_cgroup *memcg; 987}; 988 989extern int proto_register(struct proto *prot, int alloc_slab); 990extern void proto_unregister(struct proto *prot); 991 992static inline bool memcg_proto_active(struct cg_proto *cg_proto) 993{ 994 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 995} 996 997static inline bool memcg_proto_activated(struct cg_proto *cg_proto) 998{ 999 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags); 1000} 1001 1002#ifdef SOCK_REFCNT_DEBUG 1003static inline void sk_refcnt_debug_inc(struct sock *sk) 1004{ 1005 atomic_inc(&sk->sk_prot->socks); 1006} 1007 1008static inline void sk_refcnt_debug_dec(struct sock *sk) 1009{ 1010 atomic_dec(&sk->sk_prot->socks); 1011 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1012 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1013} 1014 1015inline void sk_refcnt_debug_release(const struct sock *sk) 1016{ 1017 if (atomic_read(&sk->sk_refcnt) != 1) 1018 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1019 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1020} 1021#else /* SOCK_REFCNT_DEBUG */ 1022#define sk_refcnt_debug_inc(sk) do { } while (0) 1023#define sk_refcnt_debug_dec(sk) do { } while (0) 1024#define sk_refcnt_debug_release(sk) do { } while (0) 1025#endif /* SOCK_REFCNT_DEBUG */ 1026 1027#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1028extern struct static_key memcg_socket_limit_enabled; 1029static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1030 struct cg_proto *cg_proto) 1031{ 1032 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1033} 1034#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1035#else 1036#define mem_cgroup_sockets_enabled 0 1037static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1038 struct cg_proto *cg_proto) 1039{ 1040 return NULL; 1041} 1042#endif 1043 1044 1045static inline bool sk_has_memory_pressure(const struct sock *sk) 1046{ 1047 return sk->sk_prot->memory_pressure != NULL; 1048} 1049 1050static inline bool sk_under_memory_pressure(const struct sock *sk) 1051{ 1052 if (!sk->sk_prot->memory_pressure) 1053 return false; 1054 1055 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1056 return !!*sk->sk_cgrp->memory_pressure; 1057 1058 return !!*sk->sk_prot->memory_pressure; 1059} 1060 1061static inline void sk_leave_memory_pressure(struct sock *sk) 1062{ 1063 int *memory_pressure = sk->sk_prot->memory_pressure; 1064 1065 if (!memory_pressure) 1066 return; 1067 1068 if (*memory_pressure) 1069 *memory_pressure = 0; 1070 1071 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1072 struct cg_proto *cg_proto = sk->sk_cgrp; 1073 struct proto *prot = sk->sk_prot; 1074 1075 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1076 if (*cg_proto->memory_pressure) 1077 *cg_proto->memory_pressure = 0; 1078 } 1079 1080} 1081 1082static inline void sk_enter_memory_pressure(struct sock *sk) 1083{ 1084 if (!sk->sk_prot->enter_memory_pressure) 1085 return; 1086 1087 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1088 struct cg_proto *cg_proto = sk->sk_cgrp; 1089 struct proto *prot = sk->sk_prot; 1090 1091 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1092 cg_proto->enter_memory_pressure(sk); 1093 } 1094 1095 sk->sk_prot->enter_memory_pressure(sk); 1096} 1097 1098static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1099{ 1100 long *prot = sk->sk_prot->sysctl_mem; 1101 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1102 prot = sk->sk_cgrp->sysctl_mem; 1103 return prot[index]; 1104} 1105 1106static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1107 unsigned long amt, 1108 int *parent_status) 1109{ 1110 struct res_counter *fail; 1111 int ret; 1112 1113 ret = res_counter_charge_nofail(prot->memory_allocated, 1114 amt << PAGE_SHIFT, &fail); 1115 if (ret < 0) 1116 *parent_status = OVER_LIMIT; 1117} 1118 1119static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1120 unsigned long amt) 1121{ 1122 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT); 1123} 1124 1125static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) 1126{ 1127 u64 ret; 1128 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE); 1129 return ret >> PAGE_SHIFT; 1130} 1131 1132static inline long 1133sk_memory_allocated(const struct sock *sk) 1134{ 1135 struct proto *prot = sk->sk_prot; 1136 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1137 return memcg_memory_allocated_read(sk->sk_cgrp); 1138 1139 return atomic_long_read(prot->memory_allocated); 1140} 1141 1142static inline long 1143sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1144{ 1145 struct proto *prot = sk->sk_prot; 1146 1147 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1148 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1149 /* update the root cgroup regardless */ 1150 atomic_long_add_return(amt, prot->memory_allocated); 1151 return memcg_memory_allocated_read(sk->sk_cgrp); 1152 } 1153 1154 return atomic_long_add_return(amt, prot->memory_allocated); 1155} 1156 1157static inline void 1158sk_memory_allocated_sub(struct sock *sk, int amt) 1159{ 1160 struct proto *prot = sk->sk_prot; 1161 1162 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1163 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1164 1165 atomic_long_sub(amt, prot->memory_allocated); 1166} 1167 1168static inline void sk_sockets_allocated_dec(struct sock *sk) 1169{ 1170 struct proto *prot = sk->sk_prot; 1171 1172 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1173 struct cg_proto *cg_proto = sk->sk_cgrp; 1174 1175 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1176 percpu_counter_dec(cg_proto->sockets_allocated); 1177 } 1178 1179 percpu_counter_dec(prot->sockets_allocated); 1180} 1181 1182static inline void sk_sockets_allocated_inc(struct sock *sk) 1183{ 1184 struct proto *prot = sk->sk_prot; 1185 1186 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1187 struct cg_proto *cg_proto = sk->sk_cgrp; 1188 1189 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1190 percpu_counter_inc(cg_proto->sockets_allocated); 1191 } 1192 1193 percpu_counter_inc(prot->sockets_allocated); 1194} 1195 1196static inline int 1197sk_sockets_allocated_read_positive(struct sock *sk) 1198{ 1199 struct proto *prot = sk->sk_prot; 1200 1201 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1202 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated); 1203 1204 return percpu_counter_read_positive(prot->sockets_allocated); 1205} 1206 1207static inline int 1208proto_sockets_allocated_sum_positive(struct proto *prot) 1209{ 1210 return percpu_counter_sum_positive(prot->sockets_allocated); 1211} 1212 1213static inline long 1214proto_memory_allocated(struct proto *prot) 1215{ 1216 return atomic_long_read(prot->memory_allocated); 1217} 1218 1219static inline bool 1220proto_memory_pressure(struct proto *prot) 1221{ 1222 if (!prot->memory_pressure) 1223 return false; 1224 return !!*prot->memory_pressure; 1225} 1226 1227 1228#ifdef CONFIG_PROC_FS 1229/* Called with local bh disabled */ 1230extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1231extern int sock_prot_inuse_get(struct net *net, struct proto *proto); 1232#else 1233static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1234 int inc) 1235{ 1236} 1237#endif 1238 1239 1240/* With per-bucket locks this operation is not-atomic, so that 1241 * this version is not worse. 1242 */ 1243static inline void __sk_prot_rehash(struct sock *sk) 1244{ 1245 sk->sk_prot->unhash(sk); 1246 sk->sk_prot->hash(sk); 1247} 1248 1249void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1250 1251/* About 10 seconds */ 1252#define SOCK_DESTROY_TIME (10*HZ) 1253 1254/* Sockets 0-1023 can't be bound to unless you are superuser */ 1255#define PROT_SOCK 1024 1256 1257#define SHUTDOWN_MASK 3 1258#define RCV_SHUTDOWN 1 1259#define SEND_SHUTDOWN 2 1260 1261#define SOCK_SNDBUF_LOCK 1 1262#define SOCK_RCVBUF_LOCK 2 1263#define SOCK_BINDADDR_LOCK 4 1264#define SOCK_BINDPORT_LOCK 8 1265 1266/* sock_iocb: used to kick off async processing of socket ios */ 1267struct sock_iocb { 1268 struct list_head list; 1269 1270 int flags; 1271 int size; 1272 struct socket *sock; 1273 struct sock *sk; 1274 struct scm_cookie *scm; 1275 struct msghdr *msg, async_msg; 1276 struct kiocb *kiocb; 1277}; 1278 1279static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1280{ 1281 return (struct sock_iocb *)iocb->private; 1282} 1283 1284static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1285{ 1286 return si->kiocb; 1287} 1288 1289struct socket_alloc { 1290 struct socket socket; 1291 struct inode vfs_inode; 1292}; 1293 1294static inline struct socket *SOCKET_I(struct inode *inode) 1295{ 1296 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1297} 1298 1299static inline struct inode *SOCK_INODE(struct socket *socket) 1300{ 1301 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1302} 1303 1304/* 1305 * Functions for memory accounting 1306 */ 1307extern int __sk_mem_schedule(struct sock *sk, int size, int kind); 1308extern void __sk_mem_reclaim(struct sock *sk); 1309 1310#define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1311#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1312#define SK_MEM_SEND 0 1313#define SK_MEM_RECV 1 1314 1315static inline int sk_mem_pages(int amt) 1316{ 1317 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1318} 1319 1320static inline bool sk_has_account(struct sock *sk) 1321{ 1322 /* return true if protocol supports memory accounting */ 1323 return !!sk->sk_prot->memory_allocated; 1324} 1325 1326static inline bool sk_wmem_schedule(struct sock *sk, int size) 1327{ 1328 if (!sk_has_account(sk)) 1329 return true; 1330 return size <= sk->sk_forward_alloc || 1331 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1332} 1333 1334static inline bool 1335sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1336{ 1337 if (!sk_has_account(sk)) 1338 return true; 1339 return size<= sk->sk_forward_alloc || 1340 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1341 skb_pfmemalloc(skb); 1342} 1343 1344static inline void sk_mem_reclaim(struct sock *sk) 1345{ 1346 if (!sk_has_account(sk)) 1347 return; 1348 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1349 __sk_mem_reclaim(sk); 1350} 1351 1352static inline void sk_mem_reclaim_partial(struct sock *sk) 1353{ 1354 if (!sk_has_account(sk)) 1355 return; 1356 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1357 __sk_mem_reclaim(sk); 1358} 1359 1360static inline void sk_mem_charge(struct sock *sk, int size) 1361{ 1362 if (!sk_has_account(sk)) 1363 return; 1364 sk->sk_forward_alloc -= size; 1365} 1366 1367static inline void sk_mem_uncharge(struct sock *sk, int size) 1368{ 1369 if (!sk_has_account(sk)) 1370 return; 1371 sk->sk_forward_alloc += size; 1372} 1373 1374static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1375{ 1376 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1377 sk->sk_wmem_queued -= skb->truesize; 1378 sk_mem_uncharge(sk, skb->truesize); 1379 __kfree_skb(skb); 1380} 1381 1382/* Used by processes to "lock" a socket state, so that 1383 * interrupts and bottom half handlers won't change it 1384 * from under us. It essentially blocks any incoming 1385 * packets, so that we won't get any new data or any 1386 * packets that change the state of the socket. 1387 * 1388 * While locked, BH processing will add new packets to 1389 * the backlog queue. This queue is processed by the 1390 * owner of the socket lock right before it is released. 1391 * 1392 * Since ~2.3.5 it is also exclusive sleep lock serializing 1393 * accesses from user process context. 1394 */ 1395#define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1396 1397/* 1398 * Macro so as to not evaluate some arguments when 1399 * lockdep is not enabled. 1400 * 1401 * Mark both the sk_lock and the sk_lock.slock as a 1402 * per-address-family lock class. 1403 */ 1404#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1405do { \ 1406 sk->sk_lock.owned = 0; \ 1407 init_waitqueue_head(&sk->sk_lock.wq); \ 1408 spin_lock_init(&(sk)->sk_lock.slock); \ 1409 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1410 sizeof((sk)->sk_lock)); \ 1411 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1412 (skey), (sname)); \ 1413 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1414} while (0) 1415 1416extern void lock_sock_nested(struct sock *sk, int subclass); 1417 1418static inline void lock_sock(struct sock *sk) 1419{ 1420 lock_sock_nested(sk, 0); 1421} 1422 1423extern void release_sock(struct sock *sk); 1424 1425/* BH context may only use the following locking interface. */ 1426#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1427#define bh_lock_sock_nested(__sk) \ 1428 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1429 SINGLE_DEPTH_NESTING) 1430#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1431 1432extern bool lock_sock_fast(struct sock *sk); 1433/** 1434 * unlock_sock_fast - complement of lock_sock_fast 1435 * @sk: socket 1436 * @slow: slow mode 1437 * 1438 * fast unlock socket for user context. 1439 * If slow mode is on, we call regular release_sock() 1440 */ 1441static inline void unlock_sock_fast(struct sock *sk, bool slow) 1442{ 1443 if (slow) 1444 release_sock(sk); 1445 else 1446 spin_unlock_bh(&sk->sk_lock.slock); 1447} 1448 1449 1450extern struct sock *sk_alloc(struct net *net, int family, 1451 gfp_t priority, 1452 struct proto *prot); 1453extern void sk_free(struct sock *sk); 1454extern void sk_release_kernel(struct sock *sk); 1455extern struct sock *sk_clone_lock(const struct sock *sk, 1456 const gfp_t priority); 1457 1458extern struct sk_buff *sock_wmalloc(struct sock *sk, 1459 unsigned long size, int force, 1460 gfp_t priority); 1461extern struct sk_buff *sock_rmalloc(struct sock *sk, 1462 unsigned long size, int force, 1463 gfp_t priority); 1464extern void sock_wfree(struct sk_buff *skb); 1465extern void sock_rfree(struct sk_buff *skb); 1466extern void sock_edemux(struct sk_buff *skb); 1467 1468extern int sock_setsockopt(struct socket *sock, int level, 1469 int op, char __user *optval, 1470 unsigned int optlen); 1471 1472extern int sock_getsockopt(struct socket *sock, int level, 1473 int op, char __user *optval, 1474 int __user *optlen); 1475extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1476 unsigned long size, 1477 int noblock, 1478 int *errcode); 1479extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk, 1480 unsigned long header_len, 1481 unsigned long data_len, 1482 int noblock, 1483 int *errcode); 1484extern void *sock_kmalloc(struct sock *sk, int size, 1485 gfp_t priority); 1486extern void sock_kfree_s(struct sock *sk, void *mem, int size); 1487extern void sk_send_sigurg(struct sock *sk); 1488 1489#ifdef CONFIG_CGROUPS 1490extern void sock_update_classid(struct sock *sk); 1491#else 1492static inline void sock_update_classid(struct sock *sk) 1493{ 1494} 1495#endif 1496 1497/* 1498 * Functions to fill in entries in struct proto_ops when a protocol 1499 * does not implement a particular function. 1500 */ 1501extern int sock_no_bind(struct socket *, 1502 struct sockaddr *, int); 1503extern int sock_no_connect(struct socket *, 1504 struct sockaddr *, int, int); 1505extern int sock_no_socketpair(struct socket *, 1506 struct socket *); 1507extern int sock_no_accept(struct socket *, 1508 struct socket *, int); 1509extern int sock_no_getname(struct socket *, 1510 struct sockaddr *, int *, int); 1511extern unsigned int sock_no_poll(struct file *, struct socket *, 1512 struct poll_table_struct *); 1513extern int sock_no_ioctl(struct socket *, unsigned int, 1514 unsigned long); 1515extern int sock_no_listen(struct socket *, int); 1516extern int sock_no_shutdown(struct socket *, int); 1517extern int sock_no_getsockopt(struct socket *, int , int, 1518 char __user *, int __user *); 1519extern int sock_no_setsockopt(struct socket *, int, int, 1520 char __user *, unsigned int); 1521extern int sock_no_sendmsg(struct kiocb *, struct socket *, 1522 struct msghdr *, size_t); 1523extern int sock_no_recvmsg(struct kiocb *, struct socket *, 1524 struct msghdr *, size_t, int); 1525extern int sock_no_mmap(struct file *file, 1526 struct socket *sock, 1527 struct vm_area_struct *vma); 1528extern ssize_t sock_no_sendpage(struct socket *sock, 1529 struct page *page, 1530 int offset, size_t size, 1531 int flags); 1532 1533/* 1534 * Functions to fill in entries in struct proto_ops when a protocol 1535 * uses the inet style. 1536 */ 1537extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 1538 char __user *optval, int __user *optlen); 1539extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1540 struct msghdr *msg, size_t size, int flags); 1541extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 1542 char __user *optval, unsigned int optlen); 1543extern int compat_sock_common_getsockopt(struct socket *sock, int level, 1544 int optname, char __user *optval, int __user *optlen); 1545extern int compat_sock_common_setsockopt(struct socket *sock, int level, 1546 int optname, char __user *optval, unsigned int optlen); 1547 1548extern void sk_common_release(struct sock *sk); 1549 1550/* 1551 * Default socket callbacks and setup code 1552 */ 1553 1554/* Initialise core socket variables */ 1555extern void sock_init_data(struct socket *sock, struct sock *sk); 1556 1557extern void sk_filter_release_rcu(struct rcu_head *rcu); 1558 1559/** 1560 * sk_filter_release - release a socket filter 1561 * @fp: filter to remove 1562 * 1563 * Remove a filter from a socket and release its resources. 1564 */ 1565 1566static inline void sk_filter_release(struct sk_filter *fp) 1567{ 1568 if (atomic_dec_and_test(&fp->refcnt)) 1569 call_rcu(&fp->rcu, sk_filter_release_rcu); 1570} 1571 1572static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1573{ 1574 unsigned int size = sk_filter_len(fp); 1575 1576 atomic_sub(size, &sk->sk_omem_alloc); 1577 sk_filter_release(fp); 1578} 1579 1580static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1581{ 1582 atomic_inc(&fp->refcnt); 1583 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 1584} 1585 1586/* 1587 * Socket reference counting postulates. 1588 * 1589 * * Each user of socket SHOULD hold a reference count. 1590 * * Each access point to socket (an hash table bucket, reference from a list, 1591 * running timer, skb in flight MUST hold a reference count. 1592 * * When reference count hits 0, it means it will never increase back. 1593 * * When reference count hits 0, it means that no references from 1594 * outside exist to this socket and current process on current CPU 1595 * is last user and may/should destroy this socket. 1596 * * sk_free is called from any context: process, BH, IRQ. When 1597 * it is called, socket has no references from outside -> sk_free 1598 * may release descendant resources allocated by the socket, but 1599 * to the time when it is called, socket is NOT referenced by any 1600 * hash tables, lists etc. 1601 * * Packets, delivered from outside (from network or from another process) 1602 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1603 * when they sit in queue. Otherwise, packets will leak to hole, when 1604 * socket is looked up by one cpu and unhasing is made by another CPU. 1605 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1606 * (leak to backlog). Packet socket does all the processing inside 1607 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1608 * use separate SMP lock, so that they are prone too. 1609 */ 1610 1611/* Ungrab socket and destroy it, if it was the last reference. */ 1612static inline void sock_put(struct sock *sk) 1613{ 1614 if (atomic_dec_and_test(&sk->sk_refcnt)) 1615 sk_free(sk); 1616} 1617 1618extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1619 const int nested); 1620 1621static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1622{ 1623 sk->sk_tx_queue_mapping = tx_queue; 1624} 1625 1626static inline void sk_tx_queue_clear(struct sock *sk) 1627{ 1628 sk->sk_tx_queue_mapping = -1; 1629} 1630 1631static inline int sk_tx_queue_get(const struct sock *sk) 1632{ 1633 return sk ? sk->sk_tx_queue_mapping : -1; 1634} 1635 1636static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1637{ 1638 sk_tx_queue_clear(sk); 1639 sk->sk_socket = sock; 1640} 1641 1642static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1643{ 1644 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1645 return &rcu_dereference_raw(sk->sk_wq)->wait; 1646} 1647/* Detach socket from process context. 1648 * Announce socket dead, detach it from wait queue and inode. 1649 * Note that parent inode held reference count on this struct sock, 1650 * we do not release it in this function, because protocol 1651 * probably wants some additional cleanups or even continuing 1652 * to work with this socket (TCP). 1653 */ 1654static inline void sock_orphan(struct sock *sk) 1655{ 1656 write_lock_bh(&sk->sk_callback_lock); 1657 sock_set_flag(sk, SOCK_DEAD); 1658 sk_set_socket(sk, NULL); 1659 sk->sk_wq = NULL; 1660 write_unlock_bh(&sk->sk_callback_lock); 1661} 1662 1663static inline void sock_graft(struct sock *sk, struct socket *parent) 1664{ 1665 write_lock_bh(&sk->sk_callback_lock); 1666 sk->sk_wq = parent->wq; 1667 parent->sk = sk; 1668 sk_set_socket(sk, parent); 1669 security_sock_graft(sk, parent); 1670 write_unlock_bh(&sk->sk_callback_lock); 1671} 1672 1673extern int sock_i_uid(struct sock *sk); 1674extern unsigned long sock_i_ino(struct sock *sk); 1675 1676static inline struct dst_entry * 1677__sk_dst_get(struct sock *sk) 1678{ 1679 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1680 lockdep_is_held(&sk->sk_lock.slock)); 1681} 1682 1683static inline struct dst_entry * 1684sk_dst_get(struct sock *sk) 1685{ 1686 struct dst_entry *dst; 1687 1688 rcu_read_lock(); 1689 dst = rcu_dereference(sk->sk_dst_cache); 1690 if (dst) 1691 dst_hold(dst); 1692 rcu_read_unlock(); 1693 return dst; 1694} 1695 1696extern void sk_reset_txq(struct sock *sk); 1697 1698static inline void dst_negative_advice(struct sock *sk) 1699{ 1700 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1701 1702 if (dst && dst->ops->negative_advice) { 1703 ndst = dst->ops->negative_advice(dst); 1704 1705 if (ndst != dst) { 1706 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1707 sk_reset_txq(sk); 1708 } 1709 } 1710} 1711 1712static inline void 1713__sk_dst_set(struct sock *sk, struct dst_entry *dst) 1714{ 1715 struct dst_entry *old_dst; 1716 1717 sk_tx_queue_clear(sk); 1718 /* 1719 * This can be called while sk is owned by the caller only, 1720 * with no state that can be checked in a rcu_dereference_check() cond 1721 */ 1722 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1723 rcu_assign_pointer(sk->sk_dst_cache, dst); 1724 dst_release(old_dst); 1725} 1726 1727static inline void 1728sk_dst_set(struct sock *sk, struct dst_entry *dst) 1729{ 1730 spin_lock(&sk->sk_dst_lock); 1731 __sk_dst_set(sk, dst); 1732 spin_unlock(&sk->sk_dst_lock); 1733} 1734 1735static inline void 1736__sk_dst_reset(struct sock *sk) 1737{ 1738 __sk_dst_set(sk, NULL); 1739} 1740 1741static inline void 1742sk_dst_reset(struct sock *sk) 1743{ 1744 spin_lock(&sk->sk_dst_lock); 1745 __sk_dst_reset(sk); 1746 spin_unlock(&sk->sk_dst_lock); 1747} 1748 1749extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1750 1751extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1752 1753static inline bool sk_can_gso(const struct sock *sk) 1754{ 1755 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1756} 1757 1758extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1759 1760static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1761{ 1762 sk->sk_route_nocaps |= flags; 1763 sk->sk_route_caps &= ~flags; 1764} 1765 1766static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1767 char __user *from, char *to, 1768 int copy, int offset) 1769{ 1770 if (skb->ip_summed == CHECKSUM_NONE) { 1771 int err = 0; 1772 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1773 if (err) 1774 return err; 1775 skb->csum = csum_block_add(skb->csum, csum, offset); 1776 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1777 if (!access_ok(VERIFY_READ, from, copy) || 1778 __copy_from_user_nocache(to, from, copy)) 1779 return -EFAULT; 1780 } else if (copy_from_user(to, from, copy)) 1781 return -EFAULT; 1782 1783 return 0; 1784} 1785 1786static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1787 char __user *from, int copy) 1788{ 1789 int err, offset = skb->len; 1790 1791 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1792 copy, offset); 1793 if (err) 1794 __skb_trim(skb, offset); 1795 1796 return err; 1797} 1798 1799static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1800 struct sk_buff *skb, 1801 struct page *page, 1802 int off, int copy) 1803{ 1804 int err; 1805 1806 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1807 copy, skb->len); 1808 if (err) 1809 return err; 1810 1811 skb->len += copy; 1812 skb->data_len += copy; 1813 skb->truesize += copy; 1814 sk->sk_wmem_queued += copy; 1815 sk_mem_charge(sk, copy); 1816 return 0; 1817} 1818 1819static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1820 struct sk_buff *skb, struct page *page, 1821 int off, int copy) 1822{ 1823 if (skb->ip_summed == CHECKSUM_NONE) { 1824 int err = 0; 1825 __wsum csum = csum_and_copy_from_user(from, 1826 page_address(page) + off, 1827 copy, 0, &err); 1828 if (err) 1829 return err; 1830 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1831 } else if (copy_from_user(page_address(page) + off, from, copy)) 1832 return -EFAULT; 1833 1834 skb->len += copy; 1835 skb->data_len += copy; 1836 skb->truesize += copy; 1837 sk->sk_wmem_queued += copy; 1838 sk_mem_charge(sk, copy); 1839 return 0; 1840} 1841 1842/** 1843 * sk_wmem_alloc_get - returns write allocations 1844 * @sk: socket 1845 * 1846 * Returns sk_wmem_alloc minus initial offset of one 1847 */ 1848static inline int sk_wmem_alloc_get(const struct sock *sk) 1849{ 1850 return atomic_read(&sk->sk_wmem_alloc) - 1; 1851} 1852 1853/** 1854 * sk_rmem_alloc_get - returns read allocations 1855 * @sk: socket 1856 * 1857 * Returns sk_rmem_alloc 1858 */ 1859static inline int sk_rmem_alloc_get(const struct sock *sk) 1860{ 1861 return atomic_read(&sk->sk_rmem_alloc); 1862} 1863 1864/** 1865 * sk_has_allocations - check if allocations are outstanding 1866 * @sk: socket 1867 * 1868 * Returns true if socket has write or read allocations 1869 */ 1870static inline bool sk_has_allocations(const struct sock *sk) 1871{ 1872 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1873} 1874 1875/** 1876 * wq_has_sleeper - check if there are any waiting processes 1877 * @wq: struct socket_wq 1878 * 1879 * Returns true if socket_wq has waiting processes 1880 * 1881 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1882 * barrier call. They were added due to the race found within the tcp code. 1883 * 1884 * Consider following tcp code paths: 1885 * 1886 * CPU1 CPU2 1887 * 1888 * sys_select receive packet 1889 * ... ... 1890 * __add_wait_queue update tp->rcv_nxt 1891 * ... ... 1892 * tp->rcv_nxt check sock_def_readable 1893 * ... { 1894 * schedule rcu_read_lock(); 1895 * wq = rcu_dereference(sk->sk_wq); 1896 * if (wq && waitqueue_active(&wq->wait)) 1897 * wake_up_interruptible(&wq->wait) 1898 * ... 1899 * } 1900 * 1901 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1902 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1903 * could then endup calling schedule and sleep forever if there are no more 1904 * data on the socket. 1905 * 1906 */ 1907static inline bool wq_has_sleeper(struct socket_wq *wq) 1908{ 1909 /* We need to be sure we are in sync with the 1910 * add_wait_queue modifications to the wait queue. 1911 * 1912 * This memory barrier is paired in the sock_poll_wait. 1913 */ 1914 smp_mb(); 1915 return wq && waitqueue_active(&wq->wait); 1916} 1917 1918/** 1919 * sock_poll_wait - place memory barrier behind the poll_wait call. 1920 * @filp: file 1921 * @wait_address: socket wait queue 1922 * @p: poll_table 1923 * 1924 * See the comments in the wq_has_sleeper function. 1925 */ 1926static inline void sock_poll_wait(struct file *filp, 1927 wait_queue_head_t *wait_address, poll_table *p) 1928{ 1929 if (!poll_does_not_wait(p) && wait_address) { 1930 poll_wait(filp, wait_address, p); 1931 /* We need to be sure we are in sync with the 1932 * socket flags modification. 1933 * 1934 * This memory barrier is paired in the wq_has_sleeper. 1935 */ 1936 smp_mb(); 1937 } 1938} 1939 1940/* 1941 * Queue a received datagram if it will fit. Stream and sequenced 1942 * protocols can't normally use this as they need to fit buffers in 1943 * and play with them. 1944 * 1945 * Inlined as it's very short and called for pretty much every 1946 * packet ever received. 1947 */ 1948 1949static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1950{ 1951 skb_orphan(skb); 1952 skb->sk = sk; 1953 skb->destructor = sock_wfree; 1954 /* 1955 * We used to take a refcount on sk, but following operation 1956 * is enough to guarantee sk_free() wont free this sock until 1957 * all in-flight packets are completed 1958 */ 1959 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1960} 1961 1962static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1963{ 1964 skb_orphan(skb); 1965 skb->sk = sk; 1966 skb->destructor = sock_rfree; 1967 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1968 sk_mem_charge(sk, skb->truesize); 1969} 1970 1971extern void sk_reset_timer(struct sock *sk, struct timer_list *timer, 1972 unsigned long expires); 1973 1974extern void sk_stop_timer(struct sock *sk, struct timer_list *timer); 1975 1976extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1977 1978extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1979 1980/* 1981 * Recover an error report and clear atomically 1982 */ 1983 1984static inline int sock_error(struct sock *sk) 1985{ 1986 int err; 1987 if (likely(!sk->sk_err)) 1988 return 0; 1989 err = xchg(&sk->sk_err, 0); 1990 return -err; 1991} 1992 1993static inline unsigned long sock_wspace(struct sock *sk) 1994{ 1995 int amt = 0; 1996 1997 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1998 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1999 if (amt < 0) 2000 amt = 0; 2001 } 2002 return amt; 2003} 2004 2005static inline void sk_wake_async(struct sock *sk, int how, int band) 2006{ 2007 if (sock_flag(sk, SOCK_FASYNC)) 2008 sock_wake_async(sk->sk_socket, how, band); 2009} 2010 2011#define SOCK_MIN_SNDBUF 2048 2012/* 2013 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need 2014 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak 2015 */ 2016#define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff)) 2017 2018static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2019{ 2020 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2021 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2022 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2023 } 2024} 2025 2026struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 2027 2028static inline struct page *sk_stream_alloc_page(struct sock *sk) 2029{ 2030 struct page *page = NULL; 2031 2032 page = alloc_pages(sk->sk_allocation, 0); 2033 if (!page) { 2034 sk_enter_memory_pressure(sk); 2035 sk_stream_moderate_sndbuf(sk); 2036 } 2037 return page; 2038} 2039 2040/* 2041 * Default write policy as shown to user space via poll/select/SIGIO 2042 */ 2043static inline bool sock_writeable(const struct sock *sk) 2044{ 2045 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2046} 2047 2048static inline gfp_t gfp_any(void) 2049{ 2050 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2051} 2052 2053static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2054{ 2055 return noblock ? 0 : sk->sk_rcvtimeo; 2056} 2057 2058static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2059{ 2060 return noblock ? 0 : sk->sk_sndtimeo; 2061} 2062 2063static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2064{ 2065 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2066} 2067 2068/* Alas, with timeout socket operations are not restartable. 2069 * Compare this to poll(). 2070 */ 2071static inline int sock_intr_errno(long timeo) 2072{ 2073 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2074} 2075 2076extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2077 struct sk_buff *skb); 2078extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2079 struct sk_buff *skb); 2080 2081static inline void 2082sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2083{ 2084 ktime_t kt = skb->tstamp; 2085 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2086 2087 /* 2088 * generate control messages if 2089 * - receive time stamping in software requested (SOCK_RCVTSTAMP 2090 * or SOCK_TIMESTAMPING_RX_SOFTWARE) 2091 * - software time stamp available and wanted 2092 * (SOCK_TIMESTAMPING_SOFTWARE) 2093 * - hardware time stamps available and wanted 2094 * (SOCK_TIMESTAMPING_SYS_HARDWARE or 2095 * SOCK_TIMESTAMPING_RAW_HARDWARE) 2096 */ 2097 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2098 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) || 2099 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) || 2100 (hwtstamps->hwtstamp.tv64 && 2101 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) || 2102 (hwtstamps->syststamp.tv64 && 2103 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))) 2104 __sock_recv_timestamp(msg, sk, skb); 2105 else 2106 sk->sk_stamp = kt; 2107 2108 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2109 __sock_recv_wifi_status(msg, sk, skb); 2110} 2111 2112extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2113 struct sk_buff *skb); 2114 2115static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2116 struct sk_buff *skb) 2117{ 2118#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2119 (1UL << SOCK_RCVTSTAMP) | \ 2120 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \ 2121 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \ 2122 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \ 2123 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE)) 2124 2125 if (sk->sk_flags & FLAGS_TS_OR_DROPS) 2126 __sock_recv_ts_and_drops(msg, sk, skb); 2127 else 2128 sk->sk_stamp = skb->tstamp; 2129} 2130 2131/** 2132 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2133 * @sk: socket sending this packet 2134 * @tx_flags: filled with instructions for time stamping 2135 * 2136 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if 2137 * parameters are invalid. 2138 */ 2139extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags); 2140 2141/** 2142 * sk_eat_skb - Release a skb if it is no longer needed 2143 * @sk: socket to eat this skb from 2144 * @skb: socket buffer to eat 2145 * @copied_early: flag indicating whether DMA operations copied this data early 2146 * 2147 * This routine must be called with interrupts disabled or with the socket 2148 * locked so that the sk_buff queue operation is ok. 2149*/ 2150#ifdef CONFIG_NET_DMA 2151static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2152{ 2153 __skb_unlink(skb, &sk->sk_receive_queue); 2154 if (!copied_early) 2155 __kfree_skb(skb); 2156 else 2157 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 2158} 2159#else 2160static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2161{ 2162 __skb_unlink(skb, &sk->sk_receive_queue); 2163 __kfree_skb(skb); 2164} 2165#endif 2166 2167static inline 2168struct net *sock_net(const struct sock *sk) 2169{ 2170 return read_pnet(&sk->sk_net); 2171} 2172 2173static inline 2174void sock_net_set(struct sock *sk, struct net *net) 2175{ 2176 write_pnet(&sk->sk_net, net); 2177} 2178 2179/* 2180 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2181 * They should not hold a reference to a namespace in order to allow 2182 * to stop it. 2183 * Sockets after sk_change_net should be released using sk_release_kernel 2184 */ 2185static inline void sk_change_net(struct sock *sk, struct net *net) 2186{ 2187 put_net(sock_net(sk)); 2188 sock_net_set(sk, hold_net(net)); 2189} 2190 2191static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2192{ 2193 if (skb->sk) { 2194 struct sock *sk = skb->sk; 2195 2196 skb->destructor = NULL; 2197 skb->sk = NULL; 2198 return sk; 2199 } 2200 return NULL; 2201} 2202 2203extern void sock_enable_timestamp(struct sock *sk, int flag); 2204extern int sock_get_timestamp(struct sock *, struct timeval __user *); 2205extern int sock_get_timestampns(struct sock *, struct timespec __user *); 2206 2207/* 2208 * Enable debug/info messages 2209 */ 2210extern int net_msg_warn; 2211#define NETDEBUG(fmt, args...) \ 2212 do { if (net_msg_warn) printk(fmt,##args); } while (0) 2213 2214#define LIMIT_NETDEBUG(fmt, args...) \ 2215 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 2216 2217extern __u32 sysctl_wmem_max; 2218extern __u32 sysctl_rmem_max; 2219 2220extern void sk_init(void); 2221 2222extern int sysctl_optmem_max; 2223 2224extern __u32 sysctl_wmem_default; 2225extern __u32 sysctl_rmem_default; 2226 2227#endif /* _SOCK_H */