at v3.6 69 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23#include <linux/pm_runtime.h> /* for runtime PM */ 24 25struct usb_device; 26struct usb_driver; 27struct wusb_dev; 28 29/*-------------------------------------------------------------------------*/ 30 31/* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47struct ep_device; 48 49/** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @urb_list: urbs queued to this endpoint; maintained by usbcore 54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 55 * with one or more transfer descriptors (TDs) per urb 56 * @ep_dev: ep_device for sysfs info 57 * @extra: descriptors following this endpoint in the configuration 58 * @extralen: how many bytes of "extra" are valid 59 * @enabled: URBs may be submitted to this endpoint 60 * 61 * USB requests are always queued to a given endpoint, identified by a 62 * descriptor within an active interface in a given USB configuration. 63 */ 64struct usb_host_endpoint { 65 struct usb_endpoint_descriptor desc; 66 struct usb_ss_ep_comp_descriptor ss_ep_comp; 67 struct list_head urb_list; 68 void *hcpriv; 69 struct ep_device *ep_dev; /* For sysfs info */ 70 71 unsigned char *extra; /* Extra descriptors */ 72 int extralen; 73 int enabled; 74}; 75 76/* host-side wrapper for one interface setting's parsed descriptors */ 77struct usb_host_interface { 78 struct usb_interface_descriptor desc; 79 80 int extralen; 81 unsigned char *extra; /* Extra descriptors */ 82 83 /* array of desc.bNumEndpoint endpoints associated with this 84 * interface setting. these will be in no particular order. 85 */ 86 struct usb_host_endpoint *endpoint; 87 88 char *string; /* iInterface string, if present */ 89}; 90 91enum usb_interface_condition { 92 USB_INTERFACE_UNBOUND = 0, 93 USB_INTERFACE_BINDING, 94 USB_INTERFACE_BOUND, 95 USB_INTERFACE_UNBINDING, 96}; 97 98/** 99 * struct usb_interface - what usb device drivers talk to 100 * @altsetting: array of interface structures, one for each alternate 101 * setting that may be selected. Each one includes a set of 102 * endpoint configurations. They will be in no particular order. 103 * @cur_altsetting: the current altsetting. 104 * @num_altsetting: number of altsettings defined. 105 * @intf_assoc: interface association descriptor 106 * @minor: the minor number assigned to this interface, if this 107 * interface is bound to a driver that uses the USB major number. 108 * If this interface does not use the USB major, this field should 109 * be unused. The driver should set this value in the probe() 110 * function of the driver, after it has been assigned a minor 111 * number from the USB core by calling usb_register_dev(). 112 * @condition: binding state of the interface: not bound, binding 113 * (in probe()), bound to a driver, or unbinding (in disconnect()) 114 * @sysfs_files_created: sysfs attributes exist 115 * @ep_devs_created: endpoint child pseudo-devices exist 116 * @unregistering: flag set when the interface is being unregistered 117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 118 * capability during autosuspend. 119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 120 * has been deferred. 121 * @needs_binding: flag set when the driver should be re-probed or unbound 122 * following a reset or suspend operation it doesn't support. 123 * @dev: driver model's view of this device 124 * @usb_dev: if an interface is bound to the USB major, this will point 125 * to the sysfs representation for that device. 126 * @pm_usage_cnt: PM usage counter for this interface 127 * @reset_ws: Used for scheduling resets from atomic context. 128 * @reset_running: set to 1 if the interface is currently running a 129 * queued reset so that usb_cancel_queued_reset() doesn't try to 130 * remove from the workqueue when running inside the worker 131 * thread. See __usb_queue_reset_device(). 132 * @resetting_device: USB core reset the device, so use alt setting 0 as 133 * current; needs bandwidth alloc after reset. 134 * 135 * USB device drivers attach to interfaces on a physical device. Each 136 * interface encapsulates a single high level function, such as feeding 137 * an audio stream to a speaker or reporting a change in a volume control. 138 * Many USB devices only have one interface. The protocol used to talk to 139 * an interface's endpoints can be defined in a usb "class" specification, 140 * or by a product's vendor. The (default) control endpoint is part of 141 * every interface, but is never listed among the interface's descriptors. 142 * 143 * The driver that is bound to the interface can use standard driver model 144 * calls such as dev_get_drvdata() on the dev member of this structure. 145 * 146 * Each interface may have alternate settings. The initial configuration 147 * of a device sets altsetting 0, but the device driver can change 148 * that setting using usb_set_interface(). Alternate settings are often 149 * used to control the use of periodic endpoints, such as by having 150 * different endpoints use different amounts of reserved USB bandwidth. 151 * All standards-conformant USB devices that use isochronous endpoints 152 * will use them in non-default settings. 153 * 154 * The USB specification says that alternate setting numbers must run from 155 * 0 to one less than the total number of alternate settings. But some 156 * devices manage to mess this up, and the structures aren't necessarily 157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 158 * look up an alternate setting in the altsetting array based on its number. 159 */ 160struct usb_interface { 161 /* array of alternate settings for this interface, 162 * stored in no particular order */ 163 struct usb_host_interface *altsetting; 164 165 struct usb_host_interface *cur_altsetting; /* the currently 166 * active alternate setting */ 167 unsigned num_altsetting; /* number of alternate settings */ 168 169 /* If there is an interface association descriptor then it will list 170 * the associated interfaces */ 171 struct usb_interface_assoc_descriptor *intf_assoc; 172 173 int minor; /* minor number this interface is 174 * bound to */ 175 enum usb_interface_condition condition; /* state of binding */ 176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 177 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 178 unsigned unregistering:1; /* unregistration is in progress */ 179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 181 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 182 unsigned reset_running:1; 183 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 184 185 struct device dev; /* interface specific device info */ 186 struct device *usb_dev; 187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 188 struct work_struct reset_ws; /* for resets in atomic context */ 189}; 190#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 191 192static inline void *usb_get_intfdata(struct usb_interface *intf) 193{ 194 return dev_get_drvdata(&intf->dev); 195} 196 197static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 198{ 199 dev_set_drvdata(&intf->dev, data); 200} 201 202struct usb_interface *usb_get_intf(struct usb_interface *intf); 203void usb_put_intf(struct usb_interface *intf); 204 205/* this maximum is arbitrary */ 206#define USB_MAXINTERFACES 32 207#define USB_MAXIADS (USB_MAXINTERFACES/2) 208 209/** 210 * struct usb_interface_cache - long-term representation of a device interface 211 * @num_altsetting: number of altsettings defined. 212 * @ref: reference counter. 213 * @altsetting: variable-length array of interface structures, one for 214 * each alternate setting that may be selected. Each one includes a 215 * set of endpoint configurations. They will be in no particular order. 216 * 217 * These structures persist for the lifetime of a usb_device, unlike 218 * struct usb_interface (which persists only as long as its configuration 219 * is installed). The altsetting arrays can be accessed through these 220 * structures at any time, permitting comparison of configurations and 221 * providing support for the /proc/bus/usb/devices pseudo-file. 222 */ 223struct usb_interface_cache { 224 unsigned num_altsetting; /* number of alternate settings */ 225 struct kref ref; /* reference counter */ 226 227 /* variable-length array of alternate settings for this interface, 228 * stored in no particular order */ 229 struct usb_host_interface altsetting[0]; 230}; 231#define ref_to_usb_interface_cache(r) \ 232 container_of(r, struct usb_interface_cache, ref) 233#define altsetting_to_usb_interface_cache(a) \ 234 container_of(a, struct usb_interface_cache, altsetting[0]) 235 236/** 237 * struct usb_host_config - representation of a device's configuration 238 * @desc: the device's configuration descriptor. 239 * @string: pointer to the cached version of the iConfiguration string, if 240 * present for this configuration. 241 * @intf_assoc: list of any interface association descriptors in this config 242 * @interface: array of pointers to usb_interface structures, one for each 243 * interface in the configuration. The number of interfaces is stored 244 * in desc.bNumInterfaces. These pointers are valid only while the 245 * the configuration is active. 246 * @intf_cache: array of pointers to usb_interface_cache structures, one 247 * for each interface in the configuration. These structures exist 248 * for the entire life of the device. 249 * @extra: pointer to buffer containing all extra descriptors associated 250 * with this configuration (those preceding the first interface 251 * descriptor). 252 * @extralen: length of the extra descriptors buffer. 253 * 254 * USB devices may have multiple configurations, but only one can be active 255 * at any time. Each encapsulates a different operational environment; 256 * for example, a dual-speed device would have separate configurations for 257 * full-speed and high-speed operation. The number of configurations 258 * available is stored in the device descriptor as bNumConfigurations. 259 * 260 * A configuration can contain multiple interfaces. Each corresponds to 261 * a different function of the USB device, and all are available whenever 262 * the configuration is active. The USB standard says that interfaces 263 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 264 * of devices get this wrong. In addition, the interface array is not 265 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 266 * look up an interface entry based on its number. 267 * 268 * Device drivers should not attempt to activate configurations. The choice 269 * of which configuration to install is a policy decision based on such 270 * considerations as available power, functionality provided, and the user's 271 * desires (expressed through userspace tools). However, drivers can call 272 * usb_reset_configuration() to reinitialize the current configuration and 273 * all its interfaces. 274 */ 275struct usb_host_config { 276 struct usb_config_descriptor desc; 277 278 char *string; /* iConfiguration string, if present */ 279 280 /* List of any Interface Association Descriptors in this 281 * configuration. */ 282 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 283 284 /* the interfaces associated with this configuration, 285 * stored in no particular order */ 286 struct usb_interface *interface[USB_MAXINTERFACES]; 287 288 /* Interface information available even when this is not the 289 * active configuration */ 290 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 291 292 unsigned char *extra; /* Extra descriptors */ 293 int extralen; 294}; 295 296/* USB2.0 and USB3.0 device BOS descriptor set */ 297struct usb_host_bos { 298 struct usb_bos_descriptor *desc; 299 300 /* wireless cap descriptor is handled by wusb */ 301 struct usb_ext_cap_descriptor *ext_cap; 302 struct usb_ss_cap_descriptor *ss_cap; 303 struct usb_ss_container_id_descriptor *ss_id; 304}; 305 306int __usb_get_extra_descriptor(char *buffer, unsigned size, 307 unsigned char type, void **ptr); 308#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 309 __usb_get_extra_descriptor((ifpoint)->extra, \ 310 (ifpoint)->extralen, \ 311 type, (void **)ptr) 312 313/* ----------------------------------------------------------------------- */ 314 315/* USB device number allocation bitmap */ 316struct usb_devmap { 317 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 318}; 319 320/* 321 * Allocated per bus (tree of devices) we have: 322 */ 323struct usb_bus { 324 struct device *controller; /* host/master side hardware */ 325 int busnum; /* Bus number (in order of reg) */ 326 const char *bus_name; /* stable id (PCI slot_name etc) */ 327 u8 uses_dma; /* Does the host controller use DMA? */ 328 u8 uses_pio_for_control; /* 329 * Does the host controller use PIO 330 * for control transfers? 331 */ 332 u8 otg_port; /* 0, or number of OTG/HNP port */ 333 unsigned is_b_host:1; /* true during some HNP roleswitches */ 334 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 335 unsigned no_stop_on_short:1; /* 336 * Quirk: some controllers don't stop 337 * the ep queue on a short transfer 338 * with the URB_SHORT_NOT_OK flag set. 339 */ 340 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 341 342 int devnum_next; /* Next open device number in 343 * round-robin allocation */ 344 345 struct usb_devmap devmap; /* device address allocation map */ 346 struct usb_device *root_hub; /* Root hub */ 347 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 348 struct list_head bus_list; /* list of busses */ 349 350 int bandwidth_allocated; /* on this bus: how much of the time 351 * reserved for periodic (intr/iso) 352 * requests is used, on average? 353 * Units: microseconds/frame. 354 * Limits: Full/low speed reserve 90%, 355 * while high speed reserves 80%. 356 */ 357 int bandwidth_int_reqs; /* number of Interrupt requests */ 358 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 359 360#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 361 struct mon_bus *mon_bus; /* non-null when associated */ 362 int monitored; /* non-zero when monitored */ 363#endif 364}; 365 366/* ----------------------------------------------------------------------- */ 367 368/* This is arbitrary. 369 * From USB 2.0 spec Table 11-13, offset 7, a hub can 370 * have up to 255 ports. The most yet reported is 10. 371 * 372 * Current Wireless USB host hardware (Intel i1480 for example) allows 373 * up to 22 devices to connect. Upcoming hardware might raise that 374 * limit. Because the arrays need to add a bit for hub status data, we 375 * do 31, so plus one evens out to four bytes. 376 */ 377#define USB_MAXCHILDREN (31) 378 379struct usb_tt; 380 381enum usb_device_removable { 382 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 383 USB_DEVICE_REMOVABLE, 384 USB_DEVICE_FIXED, 385}; 386 387/* 388 * USB 3.0 Link Power Management (LPM) parameters. 389 * 390 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 391 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 392 * All three are stored in nanoseconds. 393 */ 394struct usb3_lpm_parameters { 395 /* 396 * Maximum exit latency (MEL) for the host to send a packet to the 397 * device (either a Ping for isoc endpoints, or a data packet for 398 * interrupt endpoints), the hubs to decode the packet, and for all hubs 399 * in the path to transition the links to U0. 400 */ 401 unsigned int mel; 402 /* 403 * Maximum exit latency for a device-initiated LPM transition to bring 404 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 405 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 406 */ 407 unsigned int pel; 408 409 /* 410 * The System Exit Latency (SEL) includes PEL, and three other 411 * latencies. After a device initiates a U0 transition, it will take 412 * some time from when the device sends the ERDY to when it will finally 413 * receive the data packet. Basically, SEL should be the worse-case 414 * latency from when a device starts initiating a U0 transition to when 415 * it will get data. 416 */ 417 unsigned int sel; 418 /* 419 * The idle timeout value that is currently programmed into the parent 420 * hub for this device. When the timer counts to zero, the parent hub 421 * will initiate an LPM transition to either U1 or U2. 422 */ 423 int timeout; 424}; 425 426/** 427 * struct usb_device - kernel's representation of a USB device 428 * @devnum: device number; address on a USB bus 429 * @devpath: device ID string for use in messages (e.g., /port/...) 430 * @route: tree topology hex string for use with xHCI 431 * @state: device state: configured, not attached, etc. 432 * @speed: device speed: high/full/low (or error) 433 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 434 * @ttport: device port on that tt hub 435 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 436 * @parent: our hub, unless we're the root 437 * @bus: bus we're part of 438 * @ep0: endpoint 0 data (default control pipe) 439 * @dev: generic device interface 440 * @descriptor: USB device descriptor 441 * @bos: USB device BOS descriptor set 442 * @config: all of the device's configs 443 * @actconfig: the active configuration 444 * @ep_in: array of IN endpoints 445 * @ep_out: array of OUT endpoints 446 * @rawdescriptors: raw descriptors for each config 447 * @bus_mA: Current available from the bus 448 * @portnum: parent port number (origin 1) 449 * @level: number of USB hub ancestors 450 * @can_submit: URBs may be submitted 451 * @persist_enabled: USB_PERSIST enabled for this device 452 * @have_langid: whether string_langid is valid 453 * @authorized: policy has said we can use it; 454 * (user space) policy determines if we authorize this device to be 455 * used or not. By default, wired USB devices are authorized. 456 * WUSB devices are not, until we authorize them from user space. 457 * FIXME -- complete doc 458 * @authenticated: Crypto authentication passed 459 * @wusb: device is Wireless USB 460 * @lpm_capable: device supports LPM 461 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 462 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled 463 * @string_langid: language ID for strings 464 * @product: iProduct string, if present (static) 465 * @manufacturer: iManufacturer string, if present (static) 466 * @serial: iSerialNumber string, if present (static) 467 * @filelist: usbfs files that are open to this device 468 * @usb_classdev: USB class device that was created for usbfs device 469 * access from userspace 470 * @usbfs_dentry: usbfs dentry entry for the device 471 * @maxchild: number of ports if hub 472 * @children: child devices - USB devices that are attached to this hub 473 * @quirks: quirks of the whole device 474 * @urbnum: number of URBs submitted for the whole device 475 * @active_duration: total time device is not suspended 476 * @connect_time: time device was first connected 477 * @do_remote_wakeup: remote wakeup should be enabled 478 * @reset_resume: needs reset instead of resume 479 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 480 * specific data for the device. 481 * @slot_id: Slot ID assigned by xHCI 482 * @removable: Device can be physically removed from this port 483 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 484 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 485 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 486 * to keep track of the number of functions that require USB 3.0 Link Power 487 * Management to be disabled for this usb_device. This count should only 488 * be manipulated by those functions, with the bandwidth_mutex is held. 489 * 490 * Notes: 491 * Usbcore drivers should not set usbdev->state directly. Instead use 492 * usb_set_device_state(). 493 */ 494struct usb_device { 495 int devnum; 496 char devpath[16]; 497 u32 route; 498 enum usb_device_state state; 499 enum usb_device_speed speed; 500 501 struct usb_tt *tt; 502 int ttport; 503 504 unsigned int toggle[2]; 505 506 struct usb_device *parent; 507 struct usb_bus *bus; 508 struct usb_host_endpoint ep0; 509 510 struct device dev; 511 512 struct usb_device_descriptor descriptor; 513 struct usb_host_bos *bos; 514 struct usb_host_config *config; 515 516 struct usb_host_config *actconfig; 517 struct usb_host_endpoint *ep_in[16]; 518 struct usb_host_endpoint *ep_out[16]; 519 520 char **rawdescriptors; 521 522 unsigned short bus_mA; 523 u8 portnum; 524 u8 level; 525 526 unsigned can_submit:1; 527 unsigned persist_enabled:1; 528 unsigned have_langid:1; 529 unsigned authorized:1; 530 unsigned authenticated:1; 531 unsigned wusb:1; 532 unsigned lpm_capable:1; 533 unsigned usb2_hw_lpm_capable:1; 534 unsigned usb2_hw_lpm_enabled:1; 535 unsigned usb3_lpm_enabled:1; 536 int string_langid; 537 538 /* static strings from the device */ 539 char *product; 540 char *manufacturer; 541 char *serial; 542 543 struct list_head filelist; 544 545 int maxchild; 546 struct usb_device **children; 547 548 u32 quirks; 549 atomic_t urbnum; 550 551 unsigned long active_duration; 552 553#ifdef CONFIG_PM 554 unsigned long connect_time; 555 556 unsigned do_remote_wakeup:1; 557 unsigned reset_resume:1; 558#endif 559 struct wusb_dev *wusb_dev; 560 int slot_id; 561 enum usb_device_removable removable; 562 struct usb3_lpm_parameters u1_params; 563 struct usb3_lpm_parameters u2_params; 564 unsigned lpm_disable_count; 565}; 566#define to_usb_device(d) container_of(d, struct usb_device, dev) 567 568static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 569{ 570 return to_usb_device(intf->dev.parent); 571} 572 573extern struct usb_device *usb_get_dev(struct usb_device *dev); 574extern void usb_put_dev(struct usb_device *dev); 575 576/* USB device locking */ 577#define usb_lock_device(udev) device_lock(&(udev)->dev) 578#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 579#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 580extern int usb_lock_device_for_reset(struct usb_device *udev, 581 const struct usb_interface *iface); 582 583/* USB port reset for device reinitialization */ 584extern int usb_reset_device(struct usb_device *dev); 585extern void usb_queue_reset_device(struct usb_interface *dev); 586 587 588/* USB autosuspend and autoresume */ 589#ifdef CONFIG_USB_SUSPEND 590extern void usb_enable_autosuspend(struct usb_device *udev); 591extern void usb_disable_autosuspend(struct usb_device *udev); 592 593extern int usb_autopm_get_interface(struct usb_interface *intf); 594extern void usb_autopm_put_interface(struct usb_interface *intf); 595extern int usb_autopm_get_interface_async(struct usb_interface *intf); 596extern void usb_autopm_put_interface_async(struct usb_interface *intf); 597extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 598extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 599 600static inline void usb_mark_last_busy(struct usb_device *udev) 601{ 602 pm_runtime_mark_last_busy(&udev->dev); 603} 604 605#else 606 607static inline int usb_enable_autosuspend(struct usb_device *udev) 608{ return 0; } 609static inline int usb_disable_autosuspend(struct usb_device *udev) 610{ return 0; } 611 612static inline int usb_autopm_get_interface(struct usb_interface *intf) 613{ return 0; } 614static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 615{ return 0; } 616 617static inline void usb_autopm_put_interface(struct usb_interface *intf) 618{ } 619static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 620{ } 621static inline void usb_autopm_get_interface_no_resume( 622 struct usb_interface *intf) 623{ } 624static inline void usb_autopm_put_interface_no_suspend( 625 struct usb_interface *intf) 626{ } 627static inline void usb_mark_last_busy(struct usb_device *udev) 628{ } 629#endif 630 631extern int usb_disable_lpm(struct usb_device *udev); 632extern void usb_enable_lpm(struct usb_device *udev); 633/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 634extern int usb_unlocked_disable_lpm(struct usb_device *udev); 635extern void usb_unlocked_enable_lpm(struct usb_device *udev); 636 637extern int usb_disable_ltm(struct usb_device *udev); 638extern void usb_enable_ltm(struct usb_device *udev); 639 640static inline bool usb_device_supports_ltm(struct usb_device *udev) 641{ 642 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 643 return false; 644 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 645} 646 647 648/*-------------------------------------------------------------------------*/ 649 650/* for drivers using iso endpoints */ 651extern int usb_get_current_frame_number(struct usb_device *usb_dev); 652 653/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 654extern int usb_alloc_streams(struct usb_interface *interface, 655 struct usb_host_endpoint **eps, unsigned int num_eps, 656 unsigned int num_streams, gfp_t mem_flags); 657 658/* Reverts a group of bulk endpoints back to not using stream IDs. */ 659extern void usb_free_streams(struct usb_interface *interface, 660 struct usb_host_endpoint **eps, unsigned int num_eps, 661 gfp_t mem_flags); 662 663/* used these for multi-interface device registration */ 664extern int usb_driver_claim_interface(struct usb_driver *driver, 665 struct usb_interface *iface, void *priv); 666 667/** 668 * usb_interface_claimed - returns true iff an interface is claimed 669 * @iface: the interface being checked 670 * 671 * Returns true (nonzero) iff the interface is claimed, else false (zero). 672 * Callers must own the driver model's usb bus readlock. So driver 673 * probe() entries don't need extra locking, but other call contexts 674 * may need to explicitly claim that lock. 675 * 676 */ 677static inline int usb_interface_claimed(struct usb_interface *iface) 678{ 679 return (iface->dev.driver != NULL); 680} 681 682extern void usb_driver_release_interface(struct usb_driver *driver, 683 struct usb_interface *iface); 684const struct usb_device_id *usb_match_id(struct usb_interface *interface, 685 const struct usb_device_id *id); 686extern int usb_match_one_id(struct usb_interface *interface, 687 const struct usb_device_id *id); 688 689extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 690 int minor); 691extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 692 unsigned ifnum); 693extern struct usb_host_interface *usb_altnum_to_altsetting( 694 const struct usb_interface *intf, unsigned int altnum); 695extern struct usb_host_interface *usb_find_alt_setting( 696 struct usb_host_config *config, 697 unsigned int iface_num, 698 unsigned int alt_num); 699 700 701/** 702 * usb_make_path - returns stable device path in the usb tree 703 * @dev: the device whose path is being constructed 704 * @buf: where to put the string 705 * @size: how big is "buf"? 706 * 707 * Returns length of the string (> 0) or negative if size was too small. 708 * 709 * This identifier is intended to be "stable", reflecting physical paths in 710 * hardware such as physical bus addresses for host controllers or ports on 711 * USB hubs. That makes it stay the same until systems are physically 712 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 713 * controllers. Adding and removing devices, including virtual root hubs 714 * in host controller driver modules, does not change these path identifiers; 715 * neither does rebooting or re-enumerating. These are more useful identifiers 716 * than changeable ("unstable") ones like bus numbers or device addresses. 717 * 718 * With a partial exception for devices connected to USB 2.0 root hubs, these 719 * identifiers are also predictable. So long as the device tree isn't changed, 720 * plugging any USB device into a given hub port always gives it the same path. 721 * Because of the use of "companion" controllers, devices connected to ports on 722 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 723 * high speed, and a different one if they are full or low speed. 724 */ 725static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 726{ 727 int actual; 728 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 729 dev->devpath); 730 return (actual >= (int)size) ? -1 : actual; 731} 732 733/*-------------------------------------------------------------------------*/ 734 735#define USB_DEVICE_ID_MATCH_DEVICE \ 736 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 737#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 738 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 739#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 740 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 741#define USB_DEVICE_ID_MATCH_DEV_INFO \ 742 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 743 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 744 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 745#define USB_DEVICE_ID_MATCH_INT_INFO \ 746 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 747 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 748 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 749 750/** 751 * USB_DEVICE - macro used to describe a specific usb device 752 * @vend: the 16 bit USB Vendor ID 753 * @prod: the 16 bit USB Product ID 754 * 755 * This macro is used to create a struct usb_device_id that matches a 756 * specific device. 757 */ 758#define USB_DEVICE(vend, prod) \ 759 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 760 .idVendor = (vend), \ 761 .idProduct = (prod) 762/** 763 * USB_DEVICE_VER - describe a specific usb device with a version range 764 * @vend: the 16 bit USB Vendor ID 765 * @prod: the 16 bit USB Product ID 766 * @lo: the bcdDevice_lo value 767 * @hi: the bcdDevice_hi value 768 * 769 * This macro is used to create a struct usb_device_id that matches a 770 * specific device, with a version range. 771 */ 772#define USB_DEVICE_VER(vend, prod, lo, hi) \ 773 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 774 .idVendor = (vend), \ 775 .idProduct = (prod), \ 776 .bcdDevice_lo = (lo), \ 777 .bcdDevice_hi = (hi) 778 779/** 780 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 781 * @vend: the 16 bit USB Vendor ID 782 * @prod: the 16 bit USB Product ID 783 * @pr: bInterfaceProtocol value 784 * 785 * This macro is used to create a struct usb_device_id that matches a 786 * specific interface protocol of devices. 787 */ 788#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 789 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 790 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 791 .idVendor = (vend), \ 792 .idProduct = (prod), \ 793 .bInterfaceProtocol = (pr) 794 795/** 796 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 797 * @vend: the 16 bit USB Vendor ID 798 * @prod: the 16 bit USB Product ID 799 * @num: bInterfaceNumber value 800 * 801 * This macro is used to create a struct usb_device_id that matches a 802 * specific interface number of devices. 803 */ 804#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 805 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 806 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 807 .idVendor = (vend), \ 808 .idProduct = (prod), \ 809 .bInterfaceNumber = (num) 810 811/** 812 * USB_DEVICE_INFO - macro used to describe a class of usb devices 813 * @cl: bDeviceClass value 814 * @sc: bDeviceSubClass value 815 * @pr: bDeviceProtocol value 816 * 817 * This macro is used to create a struct usb_device_id that matches a 818 * specific class of devices. 819 */ 820#define USB_DEVICE_INFO(cl, sc, pr) \ 821 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 822 .bDeviceClass = (cl), \ 823 .bDeviceSubClass = (sc), \ 824 .bDeviceProtocol = (pr) 825 826/** 827 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 828 * @cl: bInterfaceClass value 829 * @sc: bInterfaceSubClass value 830 * @pr: bInterfaceProtocol value 831 * 832 * This macro is used to create a struct usb_device_id that matches a 833 * specific class of interfaces. 834 */ 835#define USB_INTERFACE_INFO(cl, sc, pr) \ 836 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 837 .bInterfaceClass = (cl), \ 838 .bInterfaceSubClass = (sc), \ 839 .bInterfaceProtocol = (pr) 840 841/** 842 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 843 * @vend: the 16 bit USB Vendor ID 844 * @prod: the 16 bit USB Product ID 845 * @cl: bInterfaceClass value 846 * @sc: bInterfaceSubClass value 847 * @pr: bInterfaceProtocol value 848 * 849 * This macro is used to create a struct usb_device_id that matches a 850 * specific device with a specific class of interfaces. 851 * 852 * This is especially useful when explicitly matching devices that have 853 * vendor specific bDeviceClass values, but standards-compliant interfaces. 854 */ 855#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 856 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 857 | USB_DEVICE_ID_MATCH_DEVICE, \ 858 .idVendor = (vend), \ 859 .idProduct = (prod), \ 860 .bInterfaceClass = (cl), \ 861 .bInterfaceSubClass = (sc), \ 862 .bInterfaceProtocol = (pr) 863 864/** 865 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 866 * @vend: the 16 bit USB Vendor ID 867 * @cl: bInterfaceClass value 868 * @sc: bInterfaceSubClass value 869 * @pr: bInterfaceProtocol value 870 * 871 * This macro is used to create a struct usb_device_id that matches a 872 * specific vendor with a specific class of interfaces. 873 * 874 * This is especially useful when explicitly matching devices that have 875 * vendor specific bDeviceClass values, but standards-compliant interfaces. 876 */ 877#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 878 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 879 | USB_DEVICE_ID_MATCH_VENDOR, \ 880 .idVendor = (vend), \ 881 .bInterfaceClass = (cl), \ 882 .bInterfaceSubClass = (sc), \ 883 .bInterfaceProtocol = (pr) 884 885/* ----------------------------------------------------------------------- */ 886 887/* Stuff for dynamic usb ids */ 888struct usb_dynids { 889 spinlock_t lock; 890 struct list_head list; 891}; 892 893struct usb_dynid { 894 struct list_head node; 895 struct usb_device_id id; 896}; 897 898extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 899 struct device_driver *driver, 900 const char *buf, size_t count); 901 902extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 903 904/** 905 * struct usbdrv_wrap - wrapper for driver-model structure 906 * @driver: The driver-model core driver structure. 907 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 908 */ 909struct usbdrv_wrap { 910 struct device_driver driver; 911 int for_devices; 912}; 913 914/** 915 * struct usb_driver - identifies USB interface driver to usbcore 916 * @name: The driver name should be unique among USB drivers, 917 * and should normally be the same as the module name. 918 * @probe: Called to see if the driver is willing to manage a particular 919 * interface on a device. If it is, probe returns zero and uses 920 * usb_set_intfdata() to associate driver-specific data with the 921 * interface. It may also use usb_set_interface() to specify the 922 * appropriate altsetting. If unwilling to manage the interface, 923 * return -ENODEV, if genuine IO errors occurred, an appropriate 924 * negative errno value. 925 * @disconnect: Called when the interface is no longer accessible, usually 926 * because its device has been (or is being) disconnected or the 927 * driver module is being unloaded. 928 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 929 * the "usbfs" filesystem. This lets devices provide ways to 930 * expose information to user space regardless of where they 931 * do (or don't) show up otherwise in the filesystem. 932 * @suspend: Called when the device is going to be suspended by the system. 933 * @resume: Called when the device is being resumed by the system. 934 * @reset_resume: Called when the suspended device has been reset instead 935 * of being resumed. 936 * @pre_reset: Called by usb_reset_device() when the device is about to be 937 * reset. This routine must not return until the driver has no active 938 * URBs for the device, and no more URBs may be submitted until the 939 * post_reset method is called. 940 * @post_reset: Called by usb_reset_device() after the device 941 * has been reset 942 * @id_table: USB drivers use ID table to support hotplugging. 943 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 944 * or your driver's probe function will never get called. 945 * @dynids: used internally to hold the list of dynamically added device 946 * ids for this driver. 947 * @drvwrap: Driver-model core structure wrapper. 948 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 949 * added to this driver by preventing the sysfs file from being created. 950 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 951 * for interfaces bound to this driver. 952 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 953 * endpoints before calling the driver's disconnect method. 954 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs 955 * to initiate lower power link state transitions when an idle timeout 956 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 957 * 958 * USB interface drivers must provide a name, probe() and disconnect() 959 * methods, and an id_table. Other driver fields are optional. 960 * 961 * The id_table is used in hotplugging. It holds a set of descriptors, 962 * and specialized data may be associated with each entry. That table 963 * is used by both user and kernel mode hotplugging support. 964 * 965 * The probe() and disconnect() methods are called in a context where 966 * they can sleep, but they should avoid abusing the privilege. Most 967 * work to connect to a device should be done when the device is opened, 968 * and undone at the last close. The disconnect code needs to address 969 * concurrency issues with respect to open() and close() methods, as 970 * well as forcing all pending I/O requests to complete (by unlinking 971 * them as necessary, and blocking until the unlinks complete). 972 */ 973struct usb_driver { 974 const char *name; 975 976 int (*probe) (struct usb_interface *intf, 977 const struct usb_device_id *id); 978 979 void (*disconnect) (struct usb_interface *intf); 980 981 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 982 void *buf); 983 984 int (*suspend) (struct usb_interface *intf, pm_message_t message); 985 int (*resume) (struct usb_interface *intf); 986 int (*reset_resume)(struct usb_interface *intf); 987 988 int (*pre_reset)(struct usb_interface *intf); 989 int (*post_reset)(struct usb_interface *intf); 990 991 const struct usb_device_id *id_table; 992 993 struct usb_dynids dynids; 994 struct usbdrv_wrap drvwrap; 995 unsigned int no_dynamic_id:1; 996 unsigned int supports_autosuspend:1; 997 unsigned int disable_hub_initiated_lpm:1; 998 unsigned int soft_unbind:1; 999}; 1000#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1001 1002/** 1003 * struct usb_device_driver - identifies USB device driver to usbcore 1004 * @name: The driver name should be unique among USB drivers, 1005 * and should normally be the same as the module name. 1006 * @probe: Called to see if the driver is willing to manage a particular 1007 * device. If it is, probe returns zero and uses dev_set_drvdata() 1008 * to associate driver-specific data with the device. If unwilling 1009 * to manage the device, return a negative errno value. 1010 * @disconnect: Called when the device is no longer accessible, usually 1011 * because it has been (or is being) disconnected or the driver's 1012 * module is being unloaded. 1013 * @suspend: Called when the device is going to be suspended by the system. 1014 * @resume: Called when the device is being resumed by the system. 1015 * @drvwrap: Driver-model core structure wrapper. 1016 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1017 * for devices bound to this driver. 1018 * 1019 * USB drivers must provide all the fields listed above except drvwrap. 1020 */ 1021struct usb_device_driver { 1022 const char *name; 1023 1024 int (*probe) (struct usb_device *udev); 1025 void (*disconnect) (struct usb_device *udev); 1026 1027 int (*suspend) (struct usb_device *udev, pm_message_t message); 1028 int (*resume) (struct usb_device *udev, pm_message_t message); 1029 struct usbdrv_wrap drvwrap; 1030 unsigned int supports_autosuspend:1; 1031}; 1032#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1033 drvwrap.driver) 1034 1035extern struct bus_type usb_bus_type; 1036 1037/** 1038 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1039 * @name: the usb class device name for this driver. Will show up in sysfs. 1040 * @devnode: Callback to provide a naming hint for a possible 1041 * device node to create. 1042 * @fops: pointer to the struct file_operations of this driver. 1043 * @minor_base: the start of the minor range for this driver. 1044 * 1045 * This structure is used for the usb_register_dev() and 1046 * usb_unregister_dev() functions, to consolidate a number of the 1047 * parameters used for them. 1048 */ 1049struct usb_class_driver { 1050 char *name; 1051 char *(*devnode)(struct device *dev, umode_t *mode); 1052 const struct file_operations *fops; 1053 int minor_base; 1054}; 1055 1056/* 1057 * use these in module_init()/module_exit() 1058 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1059 */ 1060extern int usb_register_driver(struct usb_driver *, struct module *, 1061 const char *); 1062 1063/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1064#define usb_register(driver) \ 1065 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1066 1067extern void usb_deregister(struct usb_driver *); 1068 1069/** 1070 * module_usb_driver() - Helper macro for registering a USB driver 1071 * @__usb_driver: usb_driver struct 1072 * 1073 * Helper macro for USB drivers which do not do anything special in module 1074 * init/exit. This eliminates a lot of boilerplate. Each module may only 1075 * use this macro once, and calling it replaces module_init() and module_exit() 1076 */ 1077#define module_usb_driver(__usb_driver) \ 1078 module_driver(__usb_driver, usb_register, \ 1079 usb_deregister) 1080 1081extern int usb_register_device_driver(struct usb_device_driver *, 1082 struct module *); 1083extern void usb_deregister_device_driver(struct usb_device_driver *); 1084 1085extern int usb_register_dev(struct usb_interface *intf, 1086 struct usb_class_driver *class_driver); 1087extern void usb_deregister_dev(struct usb_interface *intf, 1088 struct usb_class_driver *class_driver); 1089 1090extern int usb_disabled(void); 1091 1092/* ----------------------------------------------------------------------- */ 1093 1094/* 1095 * URB support, for asynchronous request completions 1096 */ 1097 1098/* 1099 * urb->transfer_flags: 1100 * 1101 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1102 */ 1103#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1104#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1105 * ignored */ 1106#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1107#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1108#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1109#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1110 * needed */ 1111#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1112 1113/* The following flags are used internally by usbcore and HCDs */ 1114#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1115#define URB_DIR_OUT 0 1116#define URB_DIR_MASK URB_DIR_IN 1117 1118#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1119#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1120#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1121#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1122#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1123#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1124#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1125#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1126 1127struct usb_iso_packet_descriptor { 1128 unsigned int offset; 1129 unsigned int length; /* expected length */ 1130 unsigned int actual_length; 1131 int status; 1132}; 1133 1134struct urb; 1135 1136struct usb_anchor { 1137 struct list_head urb_list; 1138 wait_queue_head_t wait; 1139 spinlock_t lock; 1140 unsigned int poisoned:1; 1141}; 1142 1143static inline void init_usb_anchor(struct usb_anchor *anchor) 1144{ 1145 INIT_LIST_HEAD(&anchor->urb_list); 1146 init_waitqueue_head(&anchor->wait); 1147 spin_lock_init(&anchor->lock); 1148} 1149 1150typedef void (*usb_complete_t)(struct urb *); 1151 1152/** 1153 * struct urb - USB Request Block 1154 * @urb_list: For use by current owner of the URB. 1155 * @anchor_list: membership in the list of an anchor 1156 * @anchor: to anchor URBs to a common mooring 1157 * @ep: Points to the endpoint's data structure. Will eventually 1158 * replace @pipe. 1159 * @pipe: Holds endpoint number, direction, type, and more. 1160 * Create these values with the eight macros available; 1161 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1162 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1163 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1164 * numbers range from zero to fifteen. Note that "in" endpoint two 1165 * is a different endpoint (and pipe) from "out" endpoint two. 1166 * The current configuration controls the existence, type, and 1167 * maximum packet size of any given endpoint. 1168 * @stream_id: the endpoint's stream ID for bulk streams 1169 * @dev: Identifies the USB device to perform the request. 1170 * @status: This is read in non-iso completion functions to get the 1171 * status of the particular request. ISO requests only use it 1172 * to tell whether the URB was unlinked; detailed status for 1173 * each frame is in the fields of the iso_frame-desc. 1174 * @transfer_flags: A variety of flags may be used to affect how URB 1175 * submission, unlinking, or operation are handled. Different 1176 * kinds of URB can use different flags. 1177 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1178 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1179 * (however, do not leave garbage in transfer_buffer even then). 1180 * This buffer must be suitable for DMA; allocate it with 1181 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1182 * of this buffer will be modified. This buffer is used for the data 1183 * stage of control transfers. 1184 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1185 * the device driver is saying that it provided this DMA address, 1186 * which the host controller driver should use in preference to the 1187 * transfer_buffer. 1188 * @sg: scatter gather buffer list 1189 * @num_mapped_sgs: (internal) number of mapped sg entries 1190 * @num_sgs: number of entries in the sg list 1191 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1192 * be broken up into chunks according to the current maximum packet 1193 * size for the endpoint, which is a function of the configuration 1194 * and is encoded in the pipe. When the length is zero, neither 1195 * transfer_buffer nor transfer_dma is used. 1196 * @actual_length: This is read in non-iso completion functions, and 1197 * it tells how many bytes (out of transfer_buffer_length) were 1198 * transferred. It will normally be the same as requested, unless 1199 * either an error was reported or a short read was performed. 1200 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1201 * short reads be reported as errors. 1202 * @setup_packet: Only used for control transfers, this points to eight bytes 1203 * of setup data. Control transfers always start by sending this data 1204 * to the device. Then transfer_buffer is read or written, if needed. 1205 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1206 * this field; setup_packet must point to a valid buffer. 1207 * @start_frame: Returns the initial frame for isochronous transfers. 1208 * @number_of_packets: Lists the number of ISO transfer buffers. 1209 * @interval: Specifies the polling interval for interrupt or isochronous 1210 * transfers. The units are frames (milliseconds) for full and low 1211 * speed devices, and microframes (1/8 millisecond) for highspeed 1212 * and SuperSpeed devices. 1213 * @error_count: Returns the number of ISO transfers that reported errors. 1214 * @context: For use in completion functions. This normally points to 1215 * request-specific driver context. 1216 * @complete: Completion handler. This URB is passed as the parameter to the 1217 * completion function. The completion function may then do what 1218 * it likes with the URB, including resubmitting or freeing it. 1219 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1220 * collect the transfer status for each buffer. 1221 * 1222 * This structure identifies USB transfer requests. URBs must be allocated by 1223 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1224 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1225 * are submitted using usb_submit_urb(), and pending requests may be canceled 1226 * using usb_unlink_urb() or usb_kill_urb(). 1227 * 1228 * Data Transfer Buffers: 1229 * 1230 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1231 * taken from the general page pool. That is provided by transfer_buffer 1232 * (control requests also use setup_packet), and host controller drivers 1233 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1234 * mapping operations can be expensive on some platforms (perhaps using a dma 1235 * bounce buffer or talking to an IOMMU), 1236 * although they're cheap on commodity x86 and ppc hardware. 1237 * 1238 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1239 * which tells the host controller driver that no such mapping is needed for 1240 * the transfer_buffer since 1241 * the device driver is DMA-aware. For example, a device driver might 1242 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1243 * When this transfer flag is provided, host controller drivers will 1244 * attempt to use the dma address found in the transfer_dma 1245 * field rather than determining a dma address themselves. 1246 * 1247 * Note that transfer_buffer must still be set if the controller 1248 * does not support DMA (as indicated by bus.uses_dma) and when talking 1249 * to root hub. If you have to trasfer between highmem zone and the device 1250 * on such controller, create a bounce buffer or bail out with an error. 1251 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1252 * capable, assign NULL to it, so that usbmon knows not to use the value. 1253 * The setup_packet must always be set, so it cannot be located in highmem. 1254 * 1255 * Initialization: 1256 * 1257 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1258 * zero), and complete fields. All URBs must also initialize 1259 * transfer_buffer and transfer_buffer_length. They may provide the 1260 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1261 * to be treated as errors; that flag is invalid for write requests. 1262 * 1263 * Bulk URBs may 1264 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1265 * should always terminate with a short packet, even if it means adding an 1266 * extra zero length packet. 1267 * 1268 * Control URBs must provide a valid pointer in the setup_packet field. 1269 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1270 * beforehand. 1271 * 1272 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1273 * or, for highspeed devices, 125 microsecond units) 1274 * to poll for transfers. After the URB has been submitted, the interval 1275 * field reflects how the transfer was actually scheduled. 1276 * The polling interval may be more frequent than requested. 1277 * For example, some controllers have a maximum interval of 32 milliseconds, 1278 * while others support intervals of up to 1024 milliseconds. 1279 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1280 * endpoints, as well as high speed interrupt endpoints, the encoding of 1281 * the transfer interval in the endpoint descriptor is logarithmic. 1282 * Device drivers must convert that value to linear units themselves.) 1283 * 1284 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1285 * the host controller to schedule the transfer as soon as bandwidth 1286 * utilization allows, and then set start_frame to reflect the actual frame 1287 * selected during submission. Otherwise drivers must specify the start_frame 1288 * and handle the case where the transfer can't begin then. However, drivers 1289 * won't know how bandwidth is currently allocated, and while they can 1290 * find the current frame using usb_get_current_frame_number () they can't 1291 * know the range for that frame number. (Ranges for frame counter values 1292 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1293 * 1294 * Isochronous URBs have a different data transfer model, in part because 1295 * the quality of service is only "best effort". Callers provide specially 1296 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1297 * at the end. Each such packet is an individual ISO transfer. Isochronous 1298 * URBs are normally queued, submitted by drivers to arrange that 1299 * transfers are at least double buffered, and then explicitly resubmitted 1300 * in completion handlers, so 1301 * that data (such as audio or video) streams at as constant a rate as the 1302 * host controller scheduler can support. 1303 * 1304 * Completion Callbacks: 1305 * 1306 * The completion callback is made in_interrupt(), and one of the first 1307 * things that a completion handler should do is check the status field. 1308 * The status field is provided for all URBs. It is used to report 1309 * unlinked URBs, and status for all non-ISO transfers. It should not 1310 * be examined before the URB is returned to the completion handler. 1311 * 1312 * The context field is normally used to link URBs back to the relevant 1313 * driver or request state. 1314 * 1315 * When the completion callback is invoked for non-isochronous URBs, the 1316 * actual_length field tells how many bytes were transferred. This field 1317 * is updated even when the URB terminated with an error or was unlinked. 1318 * 1319 * ISO transfer status is reported in the status and actual_length fields 1320 * of the iso_frame_desc array, and the number of errors is reported in 1321 * error_count. Completion callbacks for ISO transfers will normally 1322 * (re)submit URBs to ensure a constant transfer rate. 1323 * 1324 * Note that even fields marked "public" should not be touched by the driver 1325 * when the urb is owned by the hcd, that is, since the call to 1326 * usb_submit_urb() till the entry into the completion routine. 1327 */ 1328struct urb { 1329 /* private: usb core and host controller only fields in the urb */ 1330 struct kref kref; /* reference count of the URB */ 1331 void *hcpriv; /* private data for host controller */ 1332 atomic_t use_count; /* concurrent submissions counter */ 1333 atomic_t reject; /* submissions will fail */ 1334 int unlinked; /* unlink error code */ 1335 1336 /* public: documented fields in the urb that can be used by drivers */ 1337 struct list_head urb_list; /* list head for use by the urb's 1338 * current owner */ 1339 struct list_head anchor_list; /* the URB may be anchored */ 1340 struct usb_anchor *anchor; 1341 struct usb_device *dev; /* (in) pointer to associated device */ 1342 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1343 unsigned int pipe; /* (in) pipe information */ 1344 unsigned int stream_id; /* (in) stream ID */ 1345 int status; /* (return) non-ISO status */ 1346 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1347 void *transfer_buffer; /* (in) associated data buffer */ 1348 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1349 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1350 int num_mapped_sgs; /* (internal) mapped sg entries */ 1351 int num_sgs; /* (in) number of entries in the sg list */ 1352 u32 transfer_buffer_length; /* (in) data buffer length */ 1353 u32 actual_length; /* (return) actual transfer length */ 1354 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1355 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1356 int start_frame; /* (modify) start frame (ISO) */ 1357 int number_of_packets; /* (in) number of ISO packets */ 1358 int interval; /* (modify) transfer interval 1359 * (INT/ISO) */ 1360 int error_count; /* (return) number of ISO errors */ 1361 void *context; /* (in) context for completion */ 1362 usb_complete_t complete; /* (in) completion routine */ 1363 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1364 /* (in) ISO ONLY */ 1365}; 1366 1367/* ----------------------------------------------------------------------- */ 1368 1369/** 1370 * usb_fill_control_urb - initializes a control urb 1371 * @urb: pointer to the urb to initialize. 1372 * @dev: pointer to the struct usb_device for this urb. 1373 * @pipe: the endpoint pipe 1374 * @setup_packet: pointer to the setup_packet buffer 1375 * @transfer_buffer: pointer to the transfer buffer 1376 * @buffer_length: length of the transfer buffer 1377 * @complete_fn: pointer to the usb_complete_t function 1378 * @context: what to set the urb context to. 1379 * 1380 * Initializes a control urb with the proper information needed to submit 1381 * it to a device. 1382 */ 1383static inline void usb_fill_control_urb(struct urb *urb, 1384 struct usb_device *dev, 1385 unsigned int pipe, 1386 unsigned char *setup_packet, 1387 void *transfer_buffer, 1388 int buffer_length, 1389 usb_complete_t complete_fn, 1390 void *context) 1391{ 1392 urb->dev = dev; 1393 urb->pipe = pipe; 1394 urb->setup_packet = setup_packet; 1395 urb->transfer_buffer = transfer_buffer; 1396 urb->transfer_buffer_length = buffer_length; 1397 urb->complete = complete_fn; 1398 urb->context = context; 1399} 1400 1401/** 1402 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1403 * @urb: pointer to the urb to initialize. 1404 * @dev: pointer to the struct usb_device for this urb. 1405 * @pipe: the endpoint pipe 1406 * @transfer_buffer: pointer to the transfer buffer 1407 * @buffer_length: length of the transfer buffer 1408 * @complete_fn: pointer to the usb_complete_t function 1409 * @context: what to set the urb context to. 1410 * 1411 * Initializes a bulk urb with the proper information needed to submit it 1412 * to a device. 1413 */ 1414static inline void usb_fill_bulk_urb(struct urb *urb, 1415 struct usb_device *dev, 1416 unsigned int pipe, 1417 void *transfer_buffer, 1418 int buffer_length, 1419 usb_complete_t complete_fn, 1420 void *context) 1421{ 1422 urb->dev = dev; 1423 urb->pipe = pipe; 1424 urb->transfer_buffer = transfer_buffer; 1425 urb->transfer_buffer_length = buffer_length; 1426 urb->complete = complete_fn; 1427 urb->context = context; 1428} 1429 1430/** 1431 * usb_fill_int_urb - macro to help initialize a interrupt urb 1432 * @urb: pointer to the urb to initialize. 1433 * @dev: pointer to the struct usb_device for this urb. 1434 * @pipe: the endpoint pipe 1435 * @transfer_buffer: pointer to the transfer buffer 1436 * @buffer_length: length of the transfer buffer 1437 * @complete_fn: pointer to the usb_complete_t function 1438 * @context: what to set the urb context to. 1439 * @interval: what to set the urb interval to, encoded like 1440 * the endpoint descriptor's bInterval value. 1441 * 1442 * Initializes a interrupt urb with the proper information needed to submit 1443 * it to a device. 1444 * 1445 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1446 * encoding of the endpoint interval, and express polling intervals in 1447 * microframes (eight per millisecond) rather than in frames (one per 1448 * millisecond). 1449 * 1450 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1451 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1452 * through to the host controller, rather than being translated into microframe 1453 * units. 1454 */ 1455static inline void usb_fill_int_urb(struct urb *urb, 1456 struct usb_device *dev, 1457 unsigned int pipe, 1458 void *transfer_buffer, 1459 int buffer_length, 1460 usb_complete_t complete_fn, 1461 void *context, 1462 int interval) 1463{ 1464 urb->dev = dev; 1465 urb->pipe = pipe; 1466 urb->transfer_buffer = transfer_buffer; 1467 urb->transfer_buffer_length = buffer_length; 1468 urb->complete = complete_fn; 1469 urb->context = context; 1470 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) 1471 urb->interval = 1 << (interval - 1); 1472 else 1473 urb->interval = interval; 1474 urb->start_frame = -1; 1475} 1476 1477extern void usb_init_urb(struct urb *urb); 1478extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1479extern void usb_free_urb(struct urb *urb); 1480#define usb_put_urb usb_free_urb 1481extern struct urb *usb_get_urb(struct urb *urb); 1482extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1483extern int usb_unlink_urb(struct urb *urb); 1484extern void usb_kill_urb(struct urb *urb); 1485extern void usb_poison_urb(struct urb *urb); 1486extern void usb_unpoison_urb(struct urb *urb); 1487extern void usb_block_urb(struct urb *urb); 1488extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1489extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1490extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1491extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1492extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1493extern void usb_unanchor_urb(struct urb *urb); 1494extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1495 unsigned int timeout); 1496extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1497extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1498extern int usb_anchor_empty(struct usb_anchor *anchor); 1499 1500#define usb_unblock_urb usb_unpoison_urb 1501 1502/** 1503 * usb_urb_dir_in - check if an URB describes an IN transfer 1504 * @urb: URB to be checked 1505 * 1506 * Returns 1 if @urb describes an IN transfer (device-to-host), 1507 * otherwise 0. 1508 */ 1509static inline int usb_urb_dir_in(struct urb *urb) 1510{ 1511 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1512} 1513 1514/** 1515 * usb_urb_dir_out - check if an URB describes an OUT transfer 1516 * @urb: URB to be checked 1517 * 1518 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1519 * otherwise 0. 1520 */ 1521static inline int usb_urb_dir_out(struct urb *urb) 1522{ 1523 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1524} 1525 1526void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1527 gfp_t mem_flags, dma_addr_t *dma); 1528void usb_free_coherent(struct usb_device *dev, size_t size, 1529 void *addr, dma_addr_t dma); 1530 1531#if 0 1532struct urb *usb_buffer_map(struct urb *urb); 1533void usb_buffer_dmasync(struct urb *urb); 1534void usb_buffer_unmap(struct urb *urb); 1535#endif 1536 1537struct scatterlist; 1538int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1539 struct scatterlist *sg, int nents); 1540#if 0 1541void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1542 struct scatterlist *sg, int n_hw_ents); 1543#endif 1544void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1545 struct scatterlist *sg, int n_hw_ents); 1546 1547/*-------------------------------------------------------------------* 1548 * SYNCHRONOUS CALL SUPPORT * 1549 *-------------------------------------------------------------------*/ 1550 1551extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1552 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1553 void *data, __u16 size, int timeout); 1554extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1555 void *data, int len, int *actual_length, int timeout); 1556extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1557 void *data, int len, int *actual_length, 1558 int timeout); 1559 1560/* wrappers around usb_control_msg() for the most common standard requests */ 1561extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1562 unsigned char descindex, void *buf, int size); 1563extern int usb_get_status(struct usb_device *dev, 1564 int type, int target, void *data); 1565extern int usb_string(struct usb_device *dev, int index, 1566 char *buf, size_t size); 1567 1568/* wrappers that also update important state inside usbcore */ 1569extern int usb_clear_halt(struct usb_device *dev, int pipe); 1570extern int usb_reset_configuration(struct usb_device *dev); 1571extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1572extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1573 1574/* this request isn't really synchronous, but it belongs with the others */ 1575extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1576 1577/* 1578 * timeouts, in milliseconds, used for sending/receiving control messages 1579 * they typically complete within a few frames (msec) after they're issued 1580 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1581 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1582 */ 1583#define USB_CTRL_GET_TIMEOUT 5000 1584#define USB_CTRL_SET_TIMEOUT 5000 1585 1586 1587/** 1588 * struct usb_sg_request - support for scatter/gather I/O 1589 * @status: zero indicates success, else negative errno 1590 * @bytes: counts bytes transferred. 1591 * 1592 * These requests are initialized using usb_sg_init(), and then are used 1593 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1594 * members of the request object aren't for driver access. 1595 * 1596 * The status and bytecount values are valid only after usb_sg_wait() 1597 * returns. If the status is zero, then the bytecount matches the total 1598 * from the request. 1599 * 1600 * After an error completion, drivers may need to clear a halt condition 1601 * on the endpoint. 1602 */ 1603struct usb_sg_request { 1604 int status; 1605 size_t bytes; 1606 1607 /* private: 1608 * members below are private to usbcore, 1609 * and are not provided for driver access! 1610 */ 1611 spinlock_t lock; 1612 1613 struct usb_device *dev; 1614 int pipe; 1615 1616 int entries; 1617 struct urb **urbs; 1618 1619 int count; 1620 struct completion complete; 1621}; 1622 1623int usb_sg_init( 1624 struct usb_sg_request *io, 1625 struct usb_device *dev, 1626 unsigned pipe, 1627 unsigned period, 1628 struct scatterlist *sg, 1629 int nents, 1630 size_t length, 1631 gfp_t mem_flags 1632); 1633void usb_sg_cancel(struct usb_sg_request *io); 1634void usb_sg_wait(struct usb_sg_request *io); 1635 1636 1637/* ----------------------------------------------------------------------- */ 1638 1639/* 1640 * For various legacy reasons, Linux has a small cookie that's paired with 1641 * a struct usb_device to identify an endpoint queue. Queue characteristics 1642 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1643 * an unsigned int encoded as: 1644 * 1645 * - direction: bit 7 (0 = Host-to-Device [Out], 1646 * 1 = Device-to-Host [In] ... 1647 * like endpoint bEndpointAddress) 1648 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1649 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1650 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1651 * 10 = control, 11 = bulk) 1652 * 1653 * Given the device address and endpoint descriptor, pipes are redundant. 1654 */ 1655 1656/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1657/* (yet ... they're the values used by usbfs) */ 1658#define PIPE_ISOCHRONOUS 0 1659#define PIPE_INTERRUPT 1 1660#define PIPE_CONTROL 2 1661#define PIPE_BULK 3 1662 1663#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1664#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1665 1666#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1667#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1668 1669#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1670#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1671#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1672#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1673#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1674 1675static inline unsigned int __create_pipe(struct usb_device *dev, 1676 unsigned int endpoint) 1677{ 1678 return (dev->devnum << 8) | (endpoint << 15); 1679} 1680 1681/* Create various pipes... */ 1682#define usb_sndctrlpipe(dev, endpoint) \ 1683 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1684#define usb_rcvctrlpipe(dev, endpoint) \ 1685 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1686#define usb_sndisocpipe(dev, endpoint) \ 1687 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1688#define usb_rcvisocpipe(dev, endpoint) \ 1689 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1690#define usb_sndbulkpipe(dev, endpoint) \ 1691 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1692#define usb_rcvbulkpipe(dev, endpoint) \ 1693 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1694#define usb_sndintpipe(dev, endpoint) \ 1695 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1696#define usb_rcvintpipe(dev, endpoint) \ 1697 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1698 1699static inline struct usb_host_endpoint * 1700usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1701{ 1702 struct usb_host_endpoint **eps; 1703 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1704 return eps[usb_pipeendpoint(pipe)]; 1705} 1706 1707/*-------------------------------------------------------------------------*/ 1708 1709static inline __u16 1710usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1711{ 1712 struct usb_host_endpoint *ep; 1713 unsigned epnum = usb_pipeendpoint(pipe); 1714 1715 if (is_out) { 1716 WARN_ON(usb_pipein(pipe)); 1717 ep = udev->ep_out[epnum]; 1718 } else { 1719 WARN_ON(usb_pipeout(pipe)); 1720 ep = udev->ep_in[epnum]; 1721 } 1722 if (!ep) 1723 return 0; 1724 1725 /* NOTE: only 0x07ff bits are for packet size... */ 1726 return usb_endpoint_maxp(&ep->desc); 1727} 1728 1729/* ----------------------------------------------------------------------- */ 1730 1731/* translate USB error codes to codes user space understands */ 1732static inline int usb_translate_errors(int error_code) 1733{ 1734 switch (error_code) { 1735 case 0: 1736 case -ENOMEM: 1737 case -ENODEV: 1738 case -EOPNOTSUPP: 1739 return error_code; 1740 default: 1741 return -EIO; 1742 } 1743} 1744 1745/* Events from the usb core */ 1746#define USB_DEVICE_ADD 0x0001 1747#define USB_DEVICE_REMOVE 0x0002 1748#define USB_BUS_ADD 0x0003 1749#define USB_BUS_REMOVE 0x0004 1750extern void usb_register_notify(struct notifier_block *nb); 1751extern void usb_unregister_notify(struct notifier_block *nb); 1752 1753#ifdef DEBUG 1754#define dbg(format, arg...) \ 1755 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg) 1756#else 1757#define dbg(format, arg...) \ 1758do { \ 1759 if (0) \ 1760 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \ 1761} while (0) 1762#endif 1763 1764/* debugfs stuff */ 1765extern struct dentry *usb_debug_root; 1766 1767#endif /* __KERNEL__ */ 1768 1769#endif