at v3.6 38 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37}; 38 39/* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 57 PERF_COUNT_HW_REF_CPU_CYCLES = 9, 58 59 PERF_COUNT_HW_MAX, /* non-ABI */ 60}; 61 62/* 63 * Generalized hardware cache events: 64 * 65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 66 * { read, write, prefetch } x 67 * { accesses, misses } 68 */ 69enum perf_hw_cache_id { 70 PERF_COUNT_HW_CACHE_L1D = 0, 71 PERF_COUNT_HW_CACHE_L1I = 1, 72 PERF_COUNT_HW_CACHE_LL = 2, 73 PERF_COUNT_HW_CACHE_DTLB = 3, 74 PERF_COUNT_HW_CACHE_ITLB = 4, 75 PERF_COUNT_HW_CACHE_BPU = 5, 76 PERF_COUNT_HW_CACHE_NODE = 6, 77 78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 79}; 80 81enum perf_hw_cache_op_id { 82 PERF_COUNT_HW_CACHE_OP_READ = 0, 83 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 85 86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 87}; 88 89enum perf_hw_cache_op_result_id { 90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 92 93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 94}; 95 96/* 97 * Special "software" events provided by the kernel, even if the hardware 98 * does not support performance events. These events measure various 99 * physical and sw events of the kernel (and allow the profiling of them as 100 * well): 101 */ 102enum perf_sw_ids { 103 PERF_COUNT_SW_CPU_CLOCK = 0, 104 PERF_COUNT_SW_TASK_CLOCK = 1, 105 PERF_COUNT_SW_PAGE_FAULTS = 2, 106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 107 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 111 PERF_COUNT_SW_EMULATION_FAULTS = 8, 112 113 PERF_COUNT_SW_MAX, /* non-ABI */ 114}; 115 116/* 117 * Bits that can be set in attr.sample_type to request information 118 * in the overflow packets. 119 */ 120enum perf_event_sample_format { 121 PERF_SAMPLE_IP = 1U << 0, 122 PERF_SAMPLE_TID = 1U << 1, 123 PERF_SAMPLE_TIME = 1U << 2, 124 PERF_SAMPLE_ADDR = 1U << 3, 125 PERF_SAMPLE_READ = 1U << 4, 126 PERF_SAMPLE_CALLCHAIN = 1U << 5, 127 PERF_SAMPLE_ID = 1U << 6, 128 PERF_SAMPLE_CPU = 1U << 7, 129 PERF_SAMPLE_PERIOD = 1U << 8, 130 PERF_SAMPLE_STREAM_ID = 1U << 9, 131 PERF_SAMPLE_RAW = 1U << 10, 132 PERF_SAMPLE_BRANCH_STACK = 1U << 11, 133 134 PERF_SAMPLE_MAX = 1U << 12, /* non-ABI */ 135}; 136 137/* 138 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set 139 * 140 * If the user does not pass priv level information via branch_sample_type, 141 * the kernel uses the event's priv level. Branch and event priv levels do 142 * not have to match. Branch priv level is checked for permissions. 143 * 144 * The branch types can be combined, however BRANCH_ANY covers all types 145 * of branches and therefore it supersedes all the other types. 146 */ 147enum perf_branch_sample_type { 148 PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */ 149 PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */ 150 PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */ 151 152 PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */ 153 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */ 154 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */ 155 PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */ 156 157 PERF_SAMPLE_BRANCH_MAX = 1U << 7, /* non-ABI */ 158}; 159 160#define PERF_SAMPLE_BRANCH_PLM_ALL \ 161 (PERF_SAMPLE_BRANCH_USER|\ 162 PERF_SAMPLE_BRANCH_KERNEL|\ 163 PERF_SAMPLE_BRANCH_HV) 164 165/* 166 * The format of the data returned by read() on a perf event fd, 167 * as specified by attr.read_format: 168 * 169 * struct read_format { 170 * { u64 value; 171 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 172 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 173 * { u64 id; } && PERF_FORMAT_ID 174 * } && !PERF_FORMAT_GROUP 175 * 176 * { u64 nr; 177 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 178 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 179 * { u64 value; 180 * { u64 id; } && PERF_FORMAT_ID 181 * } cntr[nr]; 182 * } && PERF_FORMAT_GROUP 183 * }; 184 */ 185enum perf_event_read_format { 186 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 187 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 188 PERF_FORMAT_ID = 1U << 2, 189 PERF_FORMAT_GROUP = 1U << 3, 190 191 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 192}; 193 194#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 195#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */ 196#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */ 197 198/* 199 * Hardware event_id to monitor via a performance monitoring event: 200 */ 201struct perf_event_attr { 202 203 /* 204 * Major type: hardware/software/tracepoint/etc. 205 */ 206 __u32 type; 207 208 /* 209 * Size of the attr structure, for fwd/bwd compat. 210 */ 211 __u32 size; 212 213 /* 214 * Type specific configuration information. 215 */ 216 __u64 config; 217 218 union { 219 __u64 sample_period; 220 __u64 sample_freq; 221 }; 222 223 __u64 sample_type; 224 __u64 read_format; 225 226 __u64 disabled : 1, /* off by default */ 227 inherit : 1, /* children inherit it */ 228 pinned : 1, /* must always be on PMU */ 229 exclusive : 1, /* only group on PMU */ 230 exclude_user : 1, /* don't count user */ 231 exclude_kernel : 1, /* ditto kernel */ 232 exclude_hv : 1, /* ditto hypervisor */ 233 exclude_idle : 1, /* don't count when idle */ 234 mmap : 1, /* include mmap data */ 235 comm : 1, /* include comm data */ 236 freq : 1, /* use freq, not period */ 237 inherit_stat : 1, /* per task counts */ 238 enable_on_exec : 1, /* next exec enables */ 239 task : 1, /* trace fork/exit */ 240 watermark : 1, /* wakeup_watermark */ 241 /* 242 * precise_ip: 243 * 244 * 0 - SAMPLE_IP can have arbitrary skid 245 * 1 - SAMPLE_IP must have constant skid 246 * 2 - SAMPLE_IP requested to have 0 skid 247 * 3 - SAMPLE_IP must have 0 skid 248 * 249 * See also PERF_RECORD_MISC_EXACT_IP 250 */ 251 precise_ip : 2, /* skid constraint */ 252 mmap_data : 1, /* non-exec mmap data */ 253 sample_id_all : 1, /* sample_type all events */ 254 255 exclude_host : 1, /* don't count in host */ 256 exclude_guest : 1, /* don't count in guest */ 257 258 __reserved_1 : 43; 259 260 union { 261 __u32 wakeup_events; /* wakeup every n events */ 262 __u32 wakeup_watermark; /* bytes before wakeup */ 263 }; 264 265 __u32 bp_type; 266 union { 267 __u64 bp_addr; 268 __u64 config1; /* extension of config */ 269 }; 270 union { 271 __u64 bp_len; 272 __u64 config2; /* extension of config1 */ 273 }; 274 __u64 branch_sample_type; /* enum branch_sample_type */ 275}; 276 277#define perf_flags(attr) (*(&(attr)->read_format + 1)) 278 279/* 280 * Ioctls that can be done on a perf event fd: 281 */ 282#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 283#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 284#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 285#define PERF_EVENT_IOC_RESET _IO ('$', 3) 286#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 287#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 288#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 289 290enum perf_event_ioc_flags { 291 PERF_IOC_FLAG_GROUP = 1U << 0, 292}; 293 294/* 295 * Structure of the page that can be mapped via mmap 296 */ 297struct perf_event_mmap_page { 298 __u32 version; /* version number of this structure */ 299 __u32 compat_version; /* lowest version this is compat with */ 300 301 /* 302 * Bits needed to read the hw events in user-space. 303 * 304 * u32 seq, time_mult, time_shift, idx, width; 305 * u64 count, enabled, running; 306 * u64 cyc, time_offset; 307 * s64 pmc = 0; 308 * 309 * do { 310 * seq = pc->lock; 311 * barrier() 312 * 313 * enabled = pc->time_enabled; 314 * running = pc->time_running; 315 * 316 * if (pc->cap_usr_time && enabled != running) { 317 * cyc = rdtsc(); 318 * time_offset = pc->time_offset; 319 * time_mult = pc->time_mult; 320 * time_shift = pc->time_shift; 321 * } 322 * 323 * idx = pc->index; 324 * count = pc->offset; 325 * if (pc->cap_usr_rdpmc && idx) { 326 * width = pc->pmc_width; 327 * pmc = rdpmc(idx - 1); 328 * } 329 * 330 * barrier(); 331 * } while (pc->lock != seq); 332 * 333 * NOTE: for obvious reason this only works on self-monitoring 334 * processes. 335 */ 336 __u32 lock; /* seqlock for synchronization */ 337 __u32 index; /* hardware event identifier */ 338 __s64 offset; /* add to hardware event value */ 339 __u64 time_enabled; /* time event active */ 340 __u64 time_running; /* time event on cpu */ 341 union { 342 __u64 capabilities; 343 __u64 cap_usr_time : 1, 344 cap_usr_rdpmc : 1, 345 cap_____res : 62; 346 }; 347 348 /* 349 * If cap_usr_rdpmc this field provides the bit-width of the value 350 * read using the rdpmc() or equivalent instruction. This can be used 351 * to sign extend the result like: 352 * 353 * pmc <<= 64 - width; 354 * pmc >>= 64 - width; // signed shift right 355 * count += pmc; 356 */ 357 __u16 pmc_width; 358 359 /* 360 * If cap_usr_time the below fields can be used to compute the time 361 * delta since time_enabled (in ns) using rdtsc or similar. 362 * 363 * u64 quot, rem; 364 * u64 delta; 365 * 366 * quot = (cyc >> time_shift); 367 * rem = cyc & ((1 << time_shift) - 1); 368 * delta = time_offset + quot * time_mult + 369 * ((rem * time_mult) >> time_shift); 370 * 371 * Where time_offset,time_mult,time_shift and cyc are read in the 372 * seqcount loop described above. This delta can then be added to 373 * enabled and possible running (if idx), improving the scaling: 374 * 375 * enabled += delta; 376 * if (idx) 377 * running += delta; 378 * 379 * quot = count / running; 380 * rem = count % running; 381 * count = quot * enabled + (rem * enabled) / running; 382 */ 383 __u16 time_shift; 384 __u32 time_mult; 385 __u64 time_offset; 386 387 /* 388 * Hole for extension of the self monitor capabilities 389 */ 390 391 __u64 __reserved[120]; /* align to 1k */ 392 393 /* 394 * Control data for the mmap() data buffer. 395 * 396 * User-space reading the @data_head value should issue an rmb(), on 397 * SMP capable platforms, after reading this value -- see 398 * perf_event_wakeup(). 399 * 400 * When the mapping is PROT_WRITE the @data_tail value should be 401 * written by userspace to reflect the last read data. In this case 402 * the kernel will not over-write unread data. 403 */ 404 __u64 data_head; /* head in the data section */ 405 __u64 data_tail; /* user-space written tail */ 406}; 407 408#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 409#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 410#define PERF_RECORD_MISC_KERNEL (1 << 0) 411#define PERF_RECORD_MISC_USER (2 << 0) 412#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 413#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 414#define PERF_RECORD_MISC_GUEST_USER (5 << 0) 415 416/* 417 * Indicates that the content of PERF_SAMPLE_IP points to 418 * the actual instruction that triggered the event. See also 419 * perf_event_attr::precise_ip. 420 */ 421#define PERF_RECORD_MISC_EXACT_IP (1 << 14) 422/* 423 * Reserve the last bit to indicate some extended misc field 424 */ 425#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 426 427struct perf_event_header { 428 __u32 type; 429 __u16 misc; 430 __u16 size; 431}; 432 433enum perf_event_type { 434 435 /* 436 * If perf_event_attr.sample_id_all is set then all event types will 437 * have the sample_type selected fields related to where/when 438 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID) 439 * described in PERF_RECORD_SAMPLE below, it will be stashed just after 440 * the perf_event_header and the fields already present for the existing 441 * fields, i.e. at the end of the payload. That way a newer perf.data 442 * file will be supported by older perf tools, with these new optional 443 * fields being ignored. 444 * 445 * The MMAP events record the PROT_EXEC mappings so that we can 446 * correlate userspace IPs to code. They have the following structure: 447 * 448 * struct { 449 * struct perf_event_header header; 450 * 451 * u32 pid, tid; 452 * u64 addr; 453 * u64 len; 454 * u64 pgoff; 455 * char filename[]; 456 * }; 457 */ 458 PERF_RECORD_MMAP = 1, 459 460 /* 461 * struct { 462 * struct perf_event_header header; 463 * u64 id; 464 * u64 lost; 465 * }; 466 */ 467 PERF_RECORD_LOST = 2, 468 469 /* 470 * struct { 471 * struct perf_event_header header; 472 * 473 * u32 pid, tid; 474 * char comm[]; 475 * }; 476 */ 477 PERF_RECORD_COMM = 3, 478 479 /* 480 * struct { 481 * struct perf_event_header header; 482 * u32 pid, ppid; 483 * u32 tid, ptid; 484 * u64 time; 485 * }; 486 */ 487 PERF_RECORD_EXIT = 4, 488 489 /* 490 * struct { 491 * struct perf_event_header header; 492 * u64 time; 493 * u64 id; 494 * u64 stream_id; 495 * }; 496 */ 497 PERF_RECORD_THROTTLE = 5, 498 PERF_RECORD_UNTHROTTLE = 6, 499 500 /* 501 * struct { 502 * struct perf_event_header header; 503 * u32 pid, ppid; 504 * u32 tid, ptid; 505 * u64 time; 506 * }; 507 */ 508 PERF_RECORD_FORK = 7, 509 510 /* 511 * struct { 512 * struct perf_event_header header; 513 * u32 pid, tid; 514 * 515 * struct read_format values; 516 * }; 517 */ 518 PERF_RECORD_READ = 8, 519 520 /* 521 * struct { 522 * struct perf_event_header header; 523 * 524 * { u64 ip; } && PERF_SAMPLE_IP 525 * { u32 pid, tid; } && PERF_SAMPLE_TID 526 * { u64 time; } && PERF_SAMPLE_TIME 527 * { u64 addr; } && PERF_SAMPLE_ADDR 528 * { u64 id; } && PERF_SAMPLE_ID 529 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 530 * { u32 cpu, res; } && PERF_SAMPLE_CPU 531 * { u64 period; } && PERF_SAMPLE_PERIOD 532 * 533 * { struct read_format values; } && PERF_SAMPLE_READ 534 * 535 * { u64 nr, 536 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 537 * 538 * # 539 * # The RAW record below is opaque data wrt the ABI 540 * # 541 * # That is, the ABI doesn't make any promises wrt to 542 * # the stability of its content, it may vary depending 543 * # on event, hardware, kernel version and phase of 544 * # the moon. 545 * # 546 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 547 * # 548 * 549 * { u32 size; 550 * char data[size];}&& PERF_SAMPLE_RAW 551 * 552 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK 553 * }; 554 */ 555 PERF_RECORD_SAMPLE = 9, 556 557 PERF_RECORD_MAX, /* non-ABI */ 558}; 559 560#define PERF_MAX_STACK_DEPTH 127 561 562enum perf_callchain_context { 563 PERF_CONTEXT_HV = (__u64)-32, 564 PERF_CONTEXT_KERNEL = (__u64)-128, 565 PERF_CONTEXT_USER = (__u64)-512, 566 567 PERF_CONTEXT_GUEST = (__u64)-2048, 568 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 569 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 570 571 PERF_CONTEXT_MAX = (__u64)-4095, 572}; 573 574#define PERF_FLAG_FD_NO_GROUP (1U << 0) 575#define PERF_FLAG_FD_OUTPUT (1U << 1) 576#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */ 577 578#ifdef __KERNEL__ 579/* 580 * Kernel-internal data types and definitions: 581 */ 582 583#ifdef CONFIG_PERF_EVENTS 584# include <linux/cgroup.h> 585# include <asm/perf_event.h> 586# include <asm/local64.h> 587#endif 588 589struct perf_guest_info_callbacks { 590 int (*is_in_guest)(void); 591 int (*is_user_mode)(void); 592 unsigned long (*get_guest_ip)(void); 593}; 594 595#ifdef CONFIG_HAVE_HW_BREAKPOINT 596#include <asm/hw_breakpoint.h> 597#endif 598 599#include <linux/list.h> 600#include <linux/mutex.h> 601#include <linux/rculist.h> 602#include <linux/rcupdate.h> 603#include <linux/spinlock.h> 604#include <linux/hrtimer.h> 605#include <linux/fs.h> 606#include <linux/pid_namespace.h> 607#include <linux/workqueue.h> 608#include <linux/ftrace.h> 609#include <linux/cpu.h> 610#include <linux/irq_work.h> 611#include <linux/static_key.h> 612#include <linux/atomic.h> 613#include <linux/sysfs.h> 614#include <asm/local.h> 615 616struct perf_callchain_entry { 617 __u64 nr; 618 __u64 ip[PERF_MAX_STACK_DEPTH]; 619}; 620 621struct perf_raw_record { 622 u32 size; 623 void *data; 624}; 625 626/* 627 * single taken branch record layout: 628 * 629 * from: source instruction (may not always be a branch insn) 630 * to: branch target 631 * mispred: branch target was mispredicted 632 * predicted: branch target was predicted 633 * 634 * support for mispred, predicted is optional. In case it 635 * is not supported mispred = predicted = 0. 636 */ 637struct perf_branch_entry { 638 __u64 from; 639 __u64 to; 640 __u64 mispred:1, /* target mispredicted */ 641 predicted:1,/* target predicted */ 642 reserved:62; 643}; 644 645/* 646 * branch stack layout: 647 * nr: number of taken branches stored in entries[] 648 * 649 * Note that nr can vary from sample to sample 650 * branches (to, from) are stored from most recent 651 * to least recent, i.e., entries[0] contains the most 652 * recent branch. 653 */ 654struct perf_branch_stack { 655 __u64 nr; 656 struct perf_branch_entry entries[0]; 657}; 658 659struct task_struct; 660 661/* 662 * extra PMU register associated with an event 663 */ 664struct hw_perf_event_extra { 665 u64 config; /* register value */ 666 unsigned int reg; /* register address or index */ 667 int alloc; /* extra register already allocated */ 668 int idx; /* index in shared_regs->regs[] */ 669}; 670 671/** 672 * struct hw_perf_event - performance event hardware details: 673 */ 674struct hw_perf_event { 675#ifdef CONFIG_PERF_EVENTS 676 union { 677 struct { /* hardware */ 678 u64 config; 679 u64 last_tag; 680 unsigned long config_base; 681 unsigned long event_base; 682 int event_base_rdpmc; 683 int idx; 684 int last_cpu; 685 686 struct hw_perf_event_extra extra_reg; 687 struct hw_perf_event_extra branch_reg; 688 }; 689 struct { /* software */ 690 struct hrtimer hrtimer; 691 }; 692#ifdef CONFIG_HAVE_HW_BREAKPOINT 693 struct { /* breakpoint */ 694 struct arch_hw_breakpoint info; 695 struct list_head bp_list; 696 /* 697 * Crufty hack to avoid the chicken and egg 698 * problem hw_breakpoint has with context 699 * creation and event initalization. 700 */ 701 struct task_struct *bp_target; 702 }; 703#endif 704 }; 705 int state; 706 local64_t prev_count; 707 u64 sample_period; 708 u64 last_period; 709 local64_t period_left; 710 u64 interrupts_seq; 711 u64 interrupts; 712 713 u64 freq_time_stamp; 714 u64 freq_count_stamp; 715#endif 716}; 717 718/* 719 * hw_perf_event::state flags 720 */ 721#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 722#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 723#define PERF_HES_ARCH 0x04 724 725struct perf_event; 726 727/* 728 * Common implementation detail of pmu::{start,commit,cancel}_txn 729 */ 730#define PERF_EVENT_TXN 0x1 731 732/** 733 * struct pmu - generic performance monitoring unit 734 */ 735struct pmu { 736 struct list_head entry; 737 738 struct device *dev; 739 const struct attribute_group **attr_groups; 740 char *name; 741 int type; 742 743 int * __percpu pmu_disable_count; 744 struct perf_cpu_context * __percpu pmu_cpu_context; 745 int task_ctx_nr; 746 747 /* 748 * Fully disable/enable this PMU, can be used to protect from the PMI 749 * as well as for lazy/batch writing of the MSRs. 750 */ 751 void (*pmu_enable) (struct pmu *pmu); /* optional */ 752 void (*pmu_disable) (struct pmu *pmu); /* optional */ 753 754 /* 755 * Try and initialize the event for this PMU. 756 * Should return -ENOENT when the @event doesn't match this PMU. 757 */ 758 int (*event_init) (struct perf_event *event); 759 760#define PERF_EF_START 0x01 /* start the counter when adding */ 761#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 762#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 763 764 /* 765 * Adds/Removes a counter to/from the PMU, can be done inside 766 * a transaction, see the ->*_txn() methods. 767 */ 768 int (*add) (struct perf_event *event, int flags); 769 void (*del) (struct perf_event *event, int flags); 770 771 /* 772 * Starts/Stops a counter present on the PMU. The PMI handler 773 * should stop the counter when perf_event_overflow() returns 774 * !0. ->start() will be used to continue. 775 */ 776 void (*start) (struct perf_event *event, int flags); 777 void (*stop) (struct perf_event *event, int flags); 778 779 /* 780 * Updates the counter value of the event. 781 */ 782 void (*read) (struct perf_event *event); 783 784 /* 785 * Group events scheduling is treated as a transaction, add 786 * group events as a whole and perform one schedulability test. 787 * If the test fails, roll back the whole group 788 * 789 * Start the transaction, after this ->add() doesn't need to 790 * do schedulability tests. 791 */ 792 void (*start_txn) (struct pmu *pmu); /* optional */ 793 /* 794 * If ->start_txn() disabled the ->add() schedulability test 795 * then ->commit_txn() is required to perform one. On success 796 * the transaction is closed. On error the transaction is kept 797 * open until ->cancel_txn() is called. 798 */ 799 int (*commit_txn) (struct pmu *pmu); /* optional */ 800 /* 801 * Will cancel the transaction, assumes ->del() is called 802 * for each successful ->add() during the transaction. 803 */ 804 void (*cancel_txn) (struct pmu *pmu); /* optional */ 805 806 /* 807 * Will return the value for perf_event_mmap_page::index for this event, 808 * if no implementation is provided it will default to: event->hw.idx + 1. 809 */ 810 int (*event_idx) (struct perf_event *event); /*optional */ 811 812 /* 813 * flush branch stack on context-switches (needed in cpu-wide mode) 814 */ 815 void (*flush_branch_stack) (void); 816}; 817 818/** 819 * enum perf_event_active_state - the states of a event 820 */ 821enum perf_event_active_state { 822 PERF_EVENT_STATE_ERROR = -2, 823 PERF_EVENT_STATE_OFF = -1, 824 PERF_EVENT_STATE_INACTIVE = 0, 825 PERF_EVENT_STATE_ACTIVE = 1, 826}; 827 828struct file; 829struct perf_sample_data; 830 831typedef void (*perf_overflow_handler_t)(struct perf_event *, 832 struct perf_sample_data *, 833 struct pt_regs *regs); 834 835enum perf_group_flag { 836 PERF_GROUP_SOFTWARE = 0x1, 837}; 838 839#define SWEVENT_HLIST_BITS 8 840#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 841 842struct swevent_hlist { 843 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 844 struct rcu_head rcu_head; 845}; 846 847#define PERF_ATTACH_CONTEXT 0x01 848#define PERF_ATTACH_GROUP 0x02 849#define PERF_ATTACH_TASK 0x04 850 851#ifdef CONFIG_CGROUP_PERF 852/* 853 * perf_cgroup_info keeps track of time_enabled for a cgroup. 854 * This is a per-cpu dynamically allocated data structure. 855 */ 856struct perf_cgroup_info { 857 u64 time; 858 u64 timestamp; 859}; 860 861struct perf_cgroup { 862 struct cgroup_subsys_state css; 863 struct perf_cgroup_info *info; /* timing info, one per cpu */ 864}; 865#endif 866 867struct ring_buffer; 868 869/** 870 * struct perf_event - performance event kernel representation: 871 */ 872struct perf_event { 873#ifdef CONFIG_PERF_EVENTS 874 struct list_head group_entry; 875 struct list_head event_entry; 876 struct list_head sibling_list; 877 struct hlist_node hlist_entry; 878 int nr_siblings; 879 int group_flags; 880 struct perf_event *group_leader; 881 struct pmu *pmu; 882 883 enum perf_event_active_state state; 884 unsigned int attach_state; 885 local64_t count; 886 atomic64_t child_count; 887 888 /* 889 * These are the total time in nanoseconds that the event 890 * has been enabled (i.e. eligible to run, and the task has 891 * been scheduled in, if this is a per-task event) 892 * and running (scheduled onto the CPU), respectively. 893 * 894 * They are computed from tstamp_enabled, tstamp_running and 895 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 896 */ 897 u64 total_time_enabled; 898 u64 total_time_running; 899 900 /* 901 * These are timestamps used for computing total_time_enabled 902 * and total_time_running when the event is in INACTIVE or 903 * ACTIVE state, measured in nanoseconds from an arbitrary point 904 * in time. 905 * tstamp_enabled: the notional time when the event was enabled 906 * tstamp_running: the notional time when the event was scheduled on 907 * tstamp_stopped: in INACTIVE state, the notional time when the 908 * event was scheduled off. 909 */ 910 u64 tstamp_enabled; 911 u64 tstamp_running; 912 u64 tstamp_stopped; 913 914 /* 915 * timestamp shadows the actual context timing but it can 916 * be safely used in NMI interrupt context. It reflects the 917 * context time as it was when the event was last scheduled in. 918 * 919 * ctx_time already accounts for ctx->timestamp. Therefore to 920 * compute ctx_time for a sample, simply add perf_clock(). 921 */ 922 u64 shadow_ctx_time; 923 924 struct perf_event_attr attr; 925 u16 header_size; 926 u16 id_header_size; 927 u16 read_size; 928 struct hw_perf_event hw; 929 930 struct perf_event_context *ctx; 931 atomic_long_t refcount; 932 933 /* 934 * These accumulate total time (in nanoseconds) that children 935 * events have been enabled and running, respectively. 936 */ 937 atomic64_t child_total_time_enabled; 938 atomic64_t child_total_time_running; 939 940 /* 941 * Protect attach/detach and child_list: 942 */ 943 struct mutex child_mutex; 944 struct list_head child_list; 945 struct perf_event *parent; 946 947 int oncpu; 948 int cpu; 949 950 struct list_head owner_entry; 951 struct task_struct *owner; 952 953 /* mmap bits */ 954 struct mutex mmap_mutex; 955 atomic_t mmap_count; 956 int mmap_locked; 957 struct user_struct *mmap_user; 958 struct ring_buffer *rb; 959 struct list_head rb_entry; 960 961 /* poll related */ 962 wait_queue_head_t waitq; 963 struct fasync_struct *fasync; 964 965 /* delayed work for NMIs and such */ 966 int pending_wakeup; 967 int pending_kill; 968 int pending_disable; 969 struct irq_work pending; 970 971 atomic_t event_limit; 972 973 void (*destroy)(struct perf_event *); 974 struct rcu_head rcu_head; 975 976 struct pid_namespace *ns; 977 u64 id; 978 979 perf_overflow_handler_t overflow_handler; 980 void *overflow_handler_context; 981 982#ifdef CONFIG_EVENT_TRACING 983 struct ftrace_event_call *tp_event; 984 struct event_filter *filter; 985#ifdef CONFIG_FUNCTION_TRACER 986 struct ftrace_ops ftrace_ops; 987#endif 988#endif 989 990#ifdef CONFIG_CGROUP_PERF 991 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 992 int cgrp_defer_enabled; 993#endif 994 995#endif /* CONFIG_PERF_EVENTS */ 996}; 997 998enum perf_event_context_type { 999 task_context, 1000 cpu_context, 1001}; 1002 1003/** 1004 * struct perf_event_context - event context structure 1005 * 1006 * Used as a container for task events and CPU events as well: 1007 */ 1008struct perf_event_context { 1009 struct pmu *pmu; 1010 enum perf_event_context_type type; 1011 /* 1012 * Protect the states of the events in the list, 1013 * nr_active, and the list: 1014 */ 1015 raw_spinlock_t lock; 1016 /* 1017 * Protect the list of events. Locking either mutex or lock 1018 * is sufficient to ensure the list doesn't change; to change 1019 * the list you need to lock both the mutex and the spinlock. 1020 */ 1021 struct mutex mutex; 1022 1023 struct list_head pinned_groups; 1024 struct list_head flexible_groups; 1025 struct list_head event_list; 1026 int nr_events; 1027 int nr_active; 1028 int is_active; 1029 int nr_stat; 1030 int nr_freq; 1031 int rotate_disable; 1032 atomic_t refcount; 1033 struct task_struct *task; 1034 1035 /* 1036 * Context clock, runs when context enabled. 1037 */ 1038 u64 time; 1039 u64 timestamp; 1040 1041 /* 1042 * These fields let us detect when two contexts have both 1043 * been cloned (inherited) from a common ancestor. 1044 */ 1045 struct perf_event_context *parent_ctx; 1046 u64 parent_gen; 1047 u64 generation; 1048 int pin_count; 1049 int nr_cgroups; /* cgroup evts */ 1050 int nr_branch_stack; /* branch_stack evt */ 1051 struct rcu_head rcu_head; 1052}; 1053 1054/* 1055 * Number of contexts where an event can trigger: 1056 * task, softirq, hardirq, nmi. 1057 */ 1058#define PERF_NR_CONTEXTS 4 1059 1060/** 1061 * struct perf_event_cpu_context - per cpu event context structure 1062 */ 1063struct perf_cpu_context { 1064 struct perf_event_context ctx; 1065 struct perf_event_context *task_ctx; 1066 int active_oncpu; 1067 int exclusive; 1068 struct list_head rotation_list; 1069 int jiffies_interval; 1070 struct pmu *active_pmu; 1071 struct perf_cgroup *cgrp; 1072}; 1073 1074struct perf_output_handle { 1075 struct perf_event *event; 1076 struct ring_buffer *rb; 1077 unsigned long wakeup; 1078 unsigned long size; 1079 void *addr; 1080 int page; 1081}; 1082 1083#ifdef CONFIG_PERF_EVENTS 1084 1085extern int perf_pmu_register(struct pmu *pmu, char *name, int type); 1086extern void perf_pmu_unregister(struct pmu *pmu); 1087 1088extern int perf_num_counters(void); 1089extern const char *perf_pmu_name(void); 1090extern void __perf_event_task_sched_in(struct task_struct *prev, 1091 struct task_struct *task); 1092extern void __perf_event_task_sched_out(struct task_struct *prev, 1093 struct task_struct *next); 1094extern int perf_event_init_task(struct task_struct *child); 1095extern void perf_event_exit_task(struct task_struct *child); 1096extern void perf_event_free_task(struct task_struct *task); 1097extern void perf_event_delayed_put(struct task_struct *task); 1098extern void perf_event_print_debug(void); 1099extern void perf_pmu_disable(struct pmu *pmu); 1100extern void perf_pmu_enable(struct pmu *pmu); 1101extern int perf_event_task_disable(void); 1102extern int perf_event_task_enable(void); 1103extern int perf_event_refresh(struct perf_event *event, int refresh); 1104extern void perf_event_update_userpage(struct perf_event *event); 1105extern int perf_event_release_kernel(struct perf_event *event); 1106extern struct perf_event * 1107perf_event_create_kernel_counter(struct perf_event_attr *attr, 1108 int cpu, 1109 struct task_struct *task, 1110 perf_overflow_handler_t callback, 1111 void *context); 1112extern void perf_pmu_migrate_context(struct pmu *pmu, 1113 int src_cpu, int dst_cpu); 1114extern u64 perf_event_read_value(struct perf_event *event, 1115 u64 *enabled, u64 *running); 1116 1117 1118struct perf_sample_data { 1119 u64 type; 1120 1121 u64 ip; 1122 struct { 1123 u32 pid; 1124 u32 tid; 1125 } tid_entry; 1126 u64 time; 1127 u64 addr; 1128 u64 id; 1129 u64 stream_id; 1130 struct { 1131 u32 cpu; 1132 u32 reserved; 1133 } cpu_entry; 1134 u64 period; 1135 struct perf_callchain_entry *callchain; 1136 struct perf_raw_record *raw; 1137 struct perf_branch_stack *br_stack; 1138}; 1139 1140static inline void perf_sample_data_init(struct perf_sample_data *data, 1141 u64 addr, u64 period) 1142{ 1143 /* remaining struct members initialized in perf_prepare_sample() */ 1144 data->addr = addr; 1145 data->raw = NULL; 1146 data->br_stack = NULL; 1147 data->period = period; 1148} 1149 1150extern void perf_output_sample(struct perf_output_handle *handle, 1151 struct perf_event_header *header, 1152 struct perf_sample_data *data, 1153 struct perf_event *event); 1154extern void perf_prepare_sample(struct perf_event_header *header, 1155 struct perf_sample_data *data, 1156 struct perf_event *event, 1157 struct pt_regs *regs); 1158 1159extern int perf_event_overflow(struct perf_event *event, 1160 struct perf_sample_data *data, 1161 struct pt_regs *regs); 1162 1163static inline bool is_sampling_event(struct perf_event *event) 1164{ 1165 return event->attr.sample_period != 0; 1166} 1167 1168/* 1169 * Return 1 for a software event, 0 for a hardware event 1170 */ 1171static inline int is_software_event(struct perf_event *event) 1172{ 1173 return event->pmu->task_ctx_nr == perf_sw_context; 1174} 1175 1176extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1177 1178extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1179 1180#ifndef perf_arch_fetch_caller_regs 1181static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1182#endif 1183 1184/* 1185 * Take a snapshot of the regs. Skip ip and frame pointer to 1186 * the nth caller. We only need a few of the regs: 1187 * - ip for PERF_SAMPLE_IP 1188 * - cs for user_mode() tests 1189 * - bp for callchains 1190 * - eflags, for future purposes, just in case 1191 */ 1192static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1193{ 1194 memset(regs, 0, sizeof(*regs)); 1195 1196 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1197} 1198 1199static __always_inline void 1200perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1201{ 1202 struct pt_regs hot_regs; 1203 1204 if (static_key_false(&perf_swevent_enabled[event_id])) { 1205 if (!regs) { 1206 perf_fetch_caller_regs(&hot_regs); 1207 regs = &hot_regs; 1208 } 1209 __perf_sw_event(event_id, nr, regs, addr); 1210 } 1211} 1212 1213extern struct static_key_deferred perf_sched_events; 1214 1215static inline void perf_event_task_sched_in(struct task_struct *prev, 1216 struct task_struct *task) 1217{ 1218 if (static_key_false(&perf_sched_events.key)) 1219 __perf_event_task_sched_in(prev, task); 1220} 1221 1222static inline void perf_event_task_sched_out(struct task_struct *prev, 1223 struct task_struct *next) 1224{ 1225 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 1226 1227 if (static_key_false(&perf_sched_events.key)) 1228 __perf_event_task_sched_out(prev, next); 1229} 1230 1231extern void perf_event_mmap(struct vm_area_struct *vma); 1232extern struct perf_guest_info_callbacks *perf_guest_cbs; 1233extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1234extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1235 1236extern void perf_event_comm(struct task_struct *tsk); 1237extern void perf_event_fork(struct task_struct *tsk); 1238 1239/* Callchains */ 1240DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1241 1242extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 1243extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 1244 1245static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 1246{ 1247 if (entry->nr < PERF_MAX_STACK_DEPTH) 1248 entry->ip[entry->nr++] = ip; 1249} 1250 1251extern int sysctl_perf_event_paranoid; 1252extern int sysctl_perf_event_mlock; 1253extern int sysctl_perf_event_sample_rate; 1254 1255extern int perf_proc_update_handler(struct ctl_table *table, int write, 1256 void __user *buffer, size_t *lenp, 1257 loff_t *ppos); 1258 1259static inline bool perf_paranoid_tracepoint_raw(void) 1260{ 1261 return sysctl_perf_event_paranoid > -1; 1262} 1263 1264static inline bool perf_paranoid_cpu(void) 1265{ 1266 return sysctl_perf_event_paranoid > 0; 1267} 1268 1269static inline bool perf_paranoid_kernel(void) 1270{ 1271 return sysctl_perf_event_paranoid > 1; 1272} 1273 1274extern void perf_event_init(void); 1275extern void perf_tp_event(u64 addr, u64 count, void *record, 1276 int entry_size, struct pt_regs *regs, 1277 struct hlist_head *head, int rctx, 1278 struct task_struct *task); 1279extern void perf_bp_event(struct perf_event *event, void *data); 1280 1281#ifndef perf_misc_flags 1282# define perf_misc_flags(regs) \ 1283 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1284# define perf_instruction_pointer(regs) instruction_pointer(regs) 1285#endif 1286 1287static inline bool has_branch_stack(struct perf_event *event) 1288{ 1289 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1290} 1291 1292extern int perf_output_begin(struct perf_output_handle *handle, 1293 struct perf_event *event, unsigned int size); 1294extern void perf_output_end(struct perf_output_handle *handle); 1295extern void perf_output_copy(struct perf_output_handle *handle, 1296 const void *buf, unsigned int len); 1297extern int perf_swevent_get_recursion_context(void); 1298extern void perf_swevent_put_recursion_context(int rctx); 1299extern void perf_event_enable(struct perf_event *event); 1300extern void perf_event_disable(struct perf_event *event); 1301extern int __perf_event_disable(void *info); 1302extern void perf_event_task_tick(void); 1303#else 1304static inline void 1305perf_event_task_sched_in(struct task_struct *prev, 1306 struct task_struct *task) { } 1307static inline void 1308perf_event_task_sched_out(struct task_struct *prev, 1309 struct task_struct *next) { } 1310static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1311static inline void perf_event_exit_task(struct task_struct *child) { } 1312static inline void perf_event_free_task(struct task_struct *task) { } 1313static inline void perf_event_delayed_put(struct task_struct *task) { } 1314static inline void perf_event_print_debug(void) { } 1315static inline int perf_event_task_disable(void) { return -EINVAL; } 1316static inline int perf_event_task_enable(void) { return -EINVAL; } 1317static inline int perf_event_refresh(struct perf_event *event, int refresh) 1318{ 1319 return -EINVAL; 1320} 1321 1322static inline void 1323perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1324static inline void 1325perf_bp_event(struct perf_event *event, void *data) { } 1326 1327static inline int perf_register_guest_info_callbacks 1328(struct perf_guest_info_callbacks *callbacks) { return 0; } 1329static inline int perf_unregister_guest_info_callbacks 1330(struct perf_guest_info_callbacks *callbacks) { return 0; } 1331 1332static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1333static inline void perf_event_comm(struct task_struct *tsk) { } 1334static inline void perf_event_fork(struct task_struct *tsk) { } 1335static inline void perf_event_init(void) { } 1336static inline int perf_swevent_get_recursion_context(void) { return -1; } 1337static inline void perf_swevent_put_recursion_context(int rctx) { } 1338static inline void perf_event_enable(struct perf_event *event) { } 1339static inline void perf_event_disable(struct perf_event *event) { } 1340static inline int __perf_event_disable(void *info) { return -1; } 1341static inline void perf_event_task_tick(void) { } 1342#endif 1343 1344#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1345 1346/* 1347 * This has to have a higher priority than migration_notifier in sched.c. 1348 */ 1349#define perf_cpu_notifier(fn) \ 1350do { \ 1351 static struct notifier_block fn##_nb __cpuinitdata = \ 1352 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1353 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1354 (void *)(unsigned long)smp_processor_id()); \ 1355 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1356 (void *)(unsigned long)smp_processor_id()); \ 1357 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1358 (void *)(unsigned long)smp_processor_id()); \ 1359 register_cpu_notifier(&fn##_nb); \ 1360} while (0) 1361 1362 1363#define PMU_FORMAT_ATTR(_name, _format) \ 1364static ssize_t \ 1365_name##_show(struct device *dev, \ 1366 struct device_attribute *attr, \ 1367 char *page) \ 1368{ \ 1369 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1370 return sprintf(page, _format "\n"); \ 1371} \ 1372 \ 1373static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1374 1375#endif /* __KERNEL__ */ 1376#endif /* _LINUX_PERF_EVENT_H */