Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <linux/types.h>
18#include <linux/ioctl.h>
19#include <asm/byteorder.h>
20
21/*
22 * User-space ABI bits:
23 */
24
25/*
26 * attr.type
27 */
28enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37};
38
39/*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
57 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
58
59 PERF_COUNT_HW_MAX, /* non-ABI */
60};
61
62/*
63 * Generalized hardware cache events:
64 *
65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66 * { read, write, prefetch } x
67 * { accesses, misses }
68 */
69enum perf_hw_cache_id {
70 PERF_COUNT_HW_CACHE_L1D = 0,
71 PERF_COUNT_HW_CACHE_L1I = 1,
72 PERF_COUNT_HW_CACHE_LL = 2,
73 PERF_COUNT_HW_CACHE_DTLB = 3,
74 PERF_COUNT_HW_CACHE_ITLB = 4,
75 PERF_COUNT_HW_CACHE_BPU = 5,
76 PERF_COUNT_HW_CACHE_NODE = 6,
77
78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
79};
80
81enum perf_hw_cache_op_id {
82 PERF_COUNT_HW_CACHE_OP_READ = 0,
83 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
85
86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
87};
88
89enum perf_hw_cache_op_result_id {
90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
92
93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
94};
95
96/*
97 * Special "software" events provided by the kernel, even if the hardware
98 * does not support performance events. These events measure various
99 * physical and sw events of the kernel (and allow the profiling of them as
100 * well):
101 */
102enum perf_sw_ids {
103 PERF_COUNT_SW_CPU_CLOCK = 0,
104 PERF_COUNT_SW_TASK_CLOCK = 1,
105 PERF_COUNT_SW_PAGE_FAULTS = 2,
106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
107 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
111 PERF_COUNT_SW_EMULATION_FAULTS = 8,
112
113 PERF_COUNT_SW_MAX, /* non-ABI */
114};
115
116/*
117 * Bits that can be set in attr.sample_type to request information
118 * in the overflow packets.
119 */
120enum perf_event_sample_format {
121 PERF_SAMPLE_IP = 1U << 0,
122 PERF_SAMPLE_TID = 1U << 1,
123 PERF_SAMPLE_TIME = 1U << 2,
124 PERF_SAMPLE_ADDR = 1U << 3,
125 PERF_SAMPLE_READ = 1U << 4,
126 PERF_SAMPLE_CALLCHAIN = 1U << 5,
127 PERF_SAMPLE_ID = 1U << 6,
128 PERF_SAMPLE_CPU = 1U << 7,
129 PERF_SAMPLE_PERIOD = 1U << 8,
130 PERF_SAMPLE_STREAM_ID = 1U << 9,
131 PERF_SAMPLE_RAW = 1U << 10,
132 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
133
134 PERF_SAMPLE_MAX = 1U << 12, /* non-ABI */
135};
136
137/*
138 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
139 *
140 * If the user does not pass priv level information via branch_sample_type,
141 * the kernel uses the event's priv level. Branch and event priv levels do
142 * not have to match. Branch priv level is checked for permissions.
143 *
144 * The branch types can be combined, however BRANCH_ANY covers all types
145 * of branches and therefore it supersedes all the other types.
146 */
147enum perf_branch_sample_type {
148 PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */
149 PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */
150 PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */
151
152 PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */
153 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */
154 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */
155 PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */
156
157 PERF_SAMPLE_BRANCH_MAX = 1U << 7, /* non-ABI */
158};
159
160#define PERF_SAMPLE_BRANCH_PLM_ALL \
161 (PERF_SAMPLE_BRANCH_USER|\
162 PERF_SAMPLE_BRANCH_KERNEL|\
163 PERF_SAMPLE_BRANCH_HV)
164
165/*
166 * The format of the data returned by read() on a perf event fd,
167 * as specified by attr.read_format:
168 *
169 * struct read_format {
170 * { u64 value;
171 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
172 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
173 * { u64 id; } && PERF_FORMAT_ID
174 * } && !PERF_FORMAT_GROUP
175 *
176 * { u64 nr;
177 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
178 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
179 * { u64 value;
180 * { u64 id; } && PERF_FORMAT_ID
181 * } cntr[nr];
182 * } && PERF_FORMAT_GROUP
183 * };
184 */
185enum perf_event_read_format {
186 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
187 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
188 PERF_FORMAT_ID = 1U << 2,
189 PERF_FORMAT_GROUP = 1U << 3,
190
191 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
192};
193
194#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
195#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
196#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
197
198/*
199 * Hardware event_id to monitor via a performance monitoring event:
200 */
201struct perf_event_attr {
202
203 /*
204 * Major type: hardware/software/tracepoint/etc.
205 */
206 __u32 type;
207
208 /*
209 * Size of the attr structure, for fwd/bwd compat.
210 */
211 __u32 size;
212
213 /*
214 * Type specific configuration information.
215 */
216 __u64 config;
217
218 union {
219 __u64 sample_period;
220 __u64 sample_freq;
221 };
222
223 __u64 sample_type;
224 __u64 read_format;
225
226 __u64 disabled : 1, /* off by default */
227 inherit : 1, /* children inherit it */
228 pinned : 1, /* must always be on PMU */
229 exclusive : 1, /* only group on PMU */
230 exclude_user : 1, /* don't count user */
231 exclude_kernel : 1, /* ditto kernel */
232 exclude_hv : 1, /* ditto hypervisor */
233 exclude_idle : 1, /* don't count when idle */
234 mmap : 1, /* include mmap data */
235 comm : 1, /* include comm data */
236 freq : 1, /* use freq, not period */
237 inherit_stat : 1, /* per task counts */
238 enable_on_exec : 1, /* next exec enables */
239 task : 1, /* trace fork/exit */
240 watermark : 1, /* wakeup_watermark */
241 /*
242 * precise_ip:
243 *
244 * 0 - SAMPLE_IP can have arbitrary skid
245 * 1 - SAMPLE_IP must have constant skid
246 * 2 - SAMPLE_IP requested to have 0 skid
247 * 3 - SAMPLE_IP must have 0 skid
248 *
249 * See also PERF_RECORD_MISC_EXACT_IP
250 */
251 precise_ip : 2, /* skid constraint */
252 mmap_data : 1, /* non-exec mmap data */
253 sample_id_all : 1, /* sample_type all events */
254
255 exclude_host : 1, /* don't count in host */
256 exclude_guest : 1, /* don't count in guest */
257
258 __reserved_1 : 43;
259
260 union {
261 __u32 wakeup_events; /* wakeup every n events */
262 __u32 wakeup_watermark; /* bytes before wakeup */
263 };
264
265 __u32 bp_type;
266 union {
267 __u64 bp_addr;
268 __u64 config1; /* extension of config */
269 };
270 union {
271 __u64 bp_len;
272 __u64 config2; /* extension of config1 */
273 };
274 __u64 branch_sample_type; /* enum branch_sample_type */
275};
276
277#define perf_flags(attr) (*(&(attr)->read_format + 1))
278
279/*
280 * Ioctls that can be done on a perf event fd:
281 */
282#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
283#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
284#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
285#define PERF_EVENT_IOC_RESET _IO ('$', 3)
286#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
287#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
288#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
289
290enum perf_event_ioc_flags {
291 PERF_IOC_FLAG_GROUP = 1U << 0,
292};
293
294/*
295 * Structure of the page that can be mapped via mmap
296 */
297struct perf_event_mmap_page {
298 __u32 version; /* version number of this structure */
299 __u32 compat_version; /* lowest version this is compat with */
300
301 /*
302 * Bits needed to read the hw events in user-space.
303 *
304 * u32 seq, time_mult, time_shift, idx, width;
305 * u64 count, enabled, running;
306 * u64 cyc, time_offset;
307 * s64 pmc = 0;
308 *
309 * do {
310 * seq = pc->lock;
311 * barrier()
312 *
313 * enabled = pc->time_enabled;
314 * running = pc->time_running;
315 *
316 * if (pc->cap_usr_time && enabled != running) {
317 * cyc = rdtsc();
318 * time_offset = pc->time_offset;
319 * time_mult = pc->time_mult;
320 * time_shift = pc->time_shift;
321 * }
322 *
323 * idx = pc->index;
324 * count = pc->offset;
325 * if (pc->cap_usr_rdpmc && idx) {
326 * width = pc->pmc_width;
327 * pmc = rdpmc(idx - 1);
328 * }
329 *
330 * barrier();
331 * } while (pc->lock != seq);
332 *
333 * NOTE: for obvious reason this only works on self-monitoring
334 * processes.
335 */
336 __u32 lock; /* seqlock for synchronization */
337 __u32 index; /* hardware event identifier */
338 __s64 offset; /* add to hardware event value */
339 __u64 time_enabled; /* time event active */
340 __u64 time_running; /* time event on cpu */
341 union {
342 __u64 capabilities;
343 __u64 cap_usr_time : 1,
344 cap_usr_rdpmc : 1,
345 cap_____res : 62;
346 };
347
348 /*
349 * If cap_usr_rdpmc this field provides the bit-width of the value
350 * read using the rdpmc() or equivalent instruction. This can be used
351 * to sign extend the result like:
352 *
353 * pmc <<= 64 - width;
354 * pmc >>= 64 - width; // signed shift right
355 * count += pmc;
356 */
357 __u16 pmc_width;
358
359 /*
360 * If cap_usr_time the below fields can be used to compute the time
361 * delta since time_enabled (in ns) using rdtsc or similar.
362 *
363 * u64 quot, rem;
364 * u64 delta;
365 *
366 * quot = (cyc >> time_shift);
367 * rem = cyc & ((1 << time_shift) - 1);
368 * delta = time_offset + quot * time_mult +
369 * ((rem * time_mult) >> time_shift);
370 *
371 * Where time_offset,time_mult,time_shift and cyc are read in the
372 * seqcount loop described above. This delta can then be added to
373 * enabled and possible running (if idx), improving the scaling:
374 *
375 * enabled += delta;
376 * if (idx)
377 * running += delta;
378 *
379 * quot = count / running;
380 * rem = count % running;
381 * count = quot * enabled + (rem * enabled) / running;
382 */
383 __u16 time_shift;
384 __u32 time_mult;
385 __u64 time_offset;
386
387 /*
388 * Hole for extension of the self monitor capabilities
389 */
390
391 __u64 __reserved[120]; /* align to 1k */
392
393 /*
394 * Control data for the mmap() data buffer.
395 *
396 * User-space reading the @data_head value should issue an rmb(), on
397 * SMP capable platforms, after reading this value -- see
398 * perf_event_wakeup().
399 *
400 * When the mapping is PROT_WRITE the @data_tail value should be
401 * written by userspace to reflect the last read data. In this case
402 * the kernel will not over-write unread data.
403 */
404 __u64 data_head; /* head in the data section */
405 __u64 data_tail; /* user-space written tail */
406};
407
408#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
409#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
410#define PERF_RECORD_MISC_KERNEL (1 << 0)
411#define PERF_RECORD_MISC_USER (2 << 0)
412#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
413#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
414#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
415
416/*
417 * Indicates that the content of PERF_SAMPLE_IP points to
418 * the actual instruction that triggered the event. See also
419 * perf_event_attr::precise_ip.
420 */
421#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
422/*
423 * Reserve the last bit to indicate some extended misc field
424 */
425#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
426
427struct perf_event_header {
428 __u32 type;
429 __u16 misc;
430 __u16 size;
431};
432
433enum perf_event_type {
434
435 /*
436 * If perf_event_attr.sample_id_all is set then all event types will
437 * have the sample_type selected fields related to where/when
438 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
439 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
440 * the perf_event_header and the fields already present for the existing
441 * fields, i.e. at the end of the payload. That way a newer perf.data
442 * file will be supported by older perf tools, with these new optional
443 * fields being ignored.
444 *
445 * The MMAP events record the PROT_EXEC mappings so that we can
446 * correlate userspace IPs to code. They have the following structure:
447 *
448 * struct {
449 * struct perf_event_header header;
450 *
451 * u32 pid, tid;
452 * u64 addr;
453 * u64 len;
454 * u64 pgoff;
455 * char filename[];
456 * };
457 */
458 PERF_RECORD_MMAP = 1,
459
460 /*
461 * struct {
462 * struct perf_event_header header;
463 * u64 id;
464 * u64 lost;
465 * };
466 */
467 PERF_RECORD_LOST = 2,
468
469 /*
470 * struct {
471 * struct perf_event_header header;
472 *
473 * u32 pid, tid;
474 * char comm[];
475 * };
476 */
477 PERF_RECORD_COMM = 3,
478
479 /*
480 * struct {
481 * struct perf_event_header header;
482 * u32 pid, ppid;
483 * u32 tid, ptid;
484 * u64 time;
485 * };
486 */
487 PERF_RECORD_EXIT = 4,
488
489 /*
490 * struct {
491 * struct perf_event_header header;
492 * u64 time;
493 * u64 id;
494 * u64 stream_id;
495 * };
496 */
497 PERF_RECORD_THROTTLE = 5,
498 PERF_RECORD_UNTHROTTLE = 6,
499
500 /*
501 * struct {
502 * struct perf_event_header header;
503 * u32 pid, ppid;
504 * u32 tid, ptid;
505 * u64 time;
506 * };
507 */
508 PERF_RECORD_FORK = 7,
509
510 /*
511 * struct {
512 * struct perf_event_header header;
513 * u32 pid, tid;
514 *
515 * struct read_format values;
516 * };
517 */
518 PERF_RECORD_READ = 8,
519
520 /*
521 * struct {
522 * struct perf_event_header header;
523 *
524 * { u64 ip; } && PERF_SAMPLE_IP
525 * { u32 pid, tid; } && PERF_SAMPLE_TID
526 * { u64 time; } && PERF_SAMPLE_TIME
527 * { u64 addr; } && PERF_SAMPLE_ADDR
528 * { u64 id; } && PERF_SAMPLE_ID
529 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
530 * { u32 cpu, res; } && PERF_SAMPLE_CPU
531 * { u64 period; } && PERF_SAMPLE_PERIOD
532 *
533 * { struct read_format values; } && PERF_SAMPLE_READ
534 *
535 * { u64 nr,
536 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
537 *
538 * #
539 * # The RAW record below is opaque data wrt the ABI
540 * #
541 * # That is, the ABI doesn't make any promises wrt to
542 * # the stability of its content, it may vary depending
543 * # on event, hardware, kernel version and phase of
544 * # the moon.
545 * #
546 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
547 * #
548 *
549 * { u32 size;
550 * char data[size];}&& PERF_SAMPLE_RAW
551 *
552 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
553 * };
554 */
555 PERF_RECORD_SAMPLE = 9,
556
557 PERF_RECORD_MAX, /* non-ABI */
558};
559
560#define PERF_MAX_STACK_DEPTH 127
561
562enum perf_callchain_context {
563 PERF_CONTEXT_HV = (__u64)-32,
564 PERF_CONTEXT_KERNEL = (__u64)-128,
565 PERF_CONTEXT_USER = (__u64)-512,
566
567 PERF_CONTEXT_GUEST = (__u64)-2048,
568 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
569 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
570
571 PERF_CONTEXT_MAX = (__u64)-4095,
572};
573
574#define PERF_FLAG_FD_NO_GROUP (1U << 0)
575#define PERF_FLAG_FD_OUTPUT (1U << 1)
576#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
577
578#ifdef __KERNEL__
579/*
580 * Kernel-internal data types and definitions:
581 */
582
583#ifdef CONFIG_PERF_EVENTS
584# include <linux/cgroup.h>
585# include <asm/perf_event.h>
586# include <asm/local64.h>
587#endif
588
589struct perf_guest_info_callbacks {
590 int (*is_in_guest)(void);
591 int (*is_user_mode)(void);
592 unsigned long (*get_guest_ip)(void);
593};
594
595#ifdef CONFIG_HAVE_HW_BREAKPOINT
596#include <asm/hw_breakpoint.h>
597#endif
598
599#include <linux/list.h>
600#include <linux/mutex.h>
601#include <linux/rculist.h>
602#include <linux/rcupdate.h>
603#include <linux/spinlock.h>
604#include <linux/hrtimer.h>
605#include <linux/fs.h>
606#include <linux/pid_namespace.h>
607#include <linux/workqueue.h>
608#include <linux/ftrace.h>
609#include <linux/cpu.h>
610#include <linux/irq_work.h>
611#include <linux/static_key.h>
612#include <linux/atomic.h>
613#include <linux/sysfs.h>
614#include <asm/local.h>
615
616struct perf_callchain_entry {
617 __u64 nr;
618 __u64 ip[PERF_MAX_STACK_DEPTH];
619};
620
621struct perf_raw_record {
622 u32 size;
623 void *data;
624};
625
626/*
627 * single taken branch record layout:
628 *
629 * from: source instruction (may not always be a branch insn)
630 * to: branch target
631 * mispred: branch target was mispredicted
632 * predicted: branch target was predicted
633 *
634 * support for mispred, predicted is optional. In case it
635 * is not supported mispred = predicted = 0.
636 */
637struct perf_branch_entry {
638 __u64 from;
639 __u64 to;
640 __u64 mispred:1, /* target mispredicted */
641 predicted:1,/* target predicted */
642 reserved:62;
643};
644
645/*
646 * branch stack layout:
647 * nr: number of taken branches stored in entries[]
648 *
649 * Note that nr can vary from sample to sample
650 * branches (to, from) are stored from most recent
651 * to least recent, i.e., entries[0] contains the most
652 * recent branch.
653 */
654struct perf_branch_stack {
655 __u64 nr;
656 struct perf_branch_entry entries[0];
657};
658
659struct task_struct;
660
661/*
662 * extra PMU register associated with an event
663 */
664struct hw_perf_event_extra {
665 u64 config; /* register value */
666 unsigned int reg; /* register address or index */
667 int alloc; /* extra register already allocated */
668 int idx; /* index in shared_regs->regs[] */
669};
670
671/**
672 * struct hw_perf_event - performance event hardware details:
673 */
674struct hw_perf_event {
675#ifdef CONFIG_PERF_EVENTS
676 union {
677 struct { /* hardware */
678 u64 config;
679 u64 last_tag;
680 unsigned long config_base;
681 unsigned long event_base;
682 int event_base_rdpmc;
683 int idx;
684 int last_cpu;
685
686 struct hw_perf_event_extra extra_reg;
687 struct hw_perf_event_extra branch_reg;
688 };
689 struct { /* software */
690 struct hrtimer hrtimer;
691 };
692#ifdef CONFIG_HAVE_HW_BREAKPOINT
693 struct { /* breakpoint */
694 struct arch_hw_breakpoint info;
695 struct list_head bp_list;
696 /*
697 * Crufty hack to avoid the chicken and egg
698 * problem hw_breakpoint has with context
699 * creation and event initalization.
700 */
701 struct task_struct *bp_target;
702 };
703#endif
704 };
705 int state;
706 local64_t prev_count;
707 u64 sample_period;
708 u64 last_period;
709 local64_t period_left;
710 u64 interrupts_seq;
711 u64 interrupts;
712
713 u64 freq_time_stamp;
714 u64 freq_count_stamp;
715#endif
716};
717
718/*
719 * hw_perf_event::state flags
720 */
721#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
722#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
723#define PERF_HES_ARCH 0x04
724
725struct perf_event;
726
727/*
728 * Common implementation detail of pmu::{start,commit,cancel}_txn
729 */
730#define PERF_EVENT_TXN 0x1
731
732/**
733 * struct pmu - generic performance monitoring unit
734 */
735struct pmu {
736 struct list_head entry;
737
738 struct device *dev;
739 const struct attribute_group **attr_groups;
740 char *name;
741 int type;
742
743 int * __percpu pmu_disable_count;
744 struct perf_cpu_context * __percpu pmu_cpu_context;
745 int task_ctx_nr;
746
747 /*
748 * Fully disable/enable this PMU, can be used to protect from the PMI
749 * as well as for lazy/batch writing of the MSRs.
750 */
751 void (*pmu_enable) (struct pmu *pmu); /* optional */
752 void (*pmu_disable) (struct pmu *pmu); /* optional */
753
754 /*
755 * Try and initialize the event for this PMU.
756 * Should return -ENOENT when the @event doesn't match this PMU.
757 */
758 int (*event_init) (struct perf_event *event);
759
760#define PERF_EF_START 0x01 /* start the counter when adding */
761#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
762#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
763
764 /*
765 * Adds/Removes a counter to/from the PMU, can be done inside
766 * a transaction, see the ->*_txn() methods.
767 */
768 int (*add) (struct perf_event *event, int flags);
769 void (*del) (struct perf_event *event, int flags);
770
771 /*
772 * Starts/Stops a counter present on the PMU. The PMI handler
773 * should stop the counter when perf_event_overflow() returns
774 * !0. ->start() will be used to continue.
775 */
776 void (*start) (struct perf_event *event, int flags);
777 void (*stop) (struct perf_event *event, int flags);
778
779 /*
780 * Updates the counter value of the event.
781 */
782 void (*read) (struct perf_event *event);
783
784 /*
785 * Group events scheduling is treated as a transaction, add
786 * group events as a whole and perform one schedulability test.
787 * If the test fails, roll back the whole group
788 *
789 * Start the transaction, after this ->add() doesn't need to
790 * do schedulability tests.
791 */
792 void (*start_txn) (struct pmu *pmu); /* optional */
793 /*
794 * If ->start_txn() disabled the ->add() schedulability test
795 * then ->commit_txn() is required to perform one. On success
796 * the transaction is closed. On error the transaction is kept
797 * open until ->cancel_txn() is called.
798 */
799 int (*commit_txn) (struct pmu *pmu); /* optional */
800 /*
801 * Will cancel the transaction, assumes ->del() is called
802 * for each successful ->add() during the transaction.
803 */
804 void (*cancel_txn) (struct pmu *pmu); /* optional */
805
806 /*
807 * Will return the value for perf_event_mmap_page::index for this event,
808 * if no implementation is provided it will default to: event->hw.idx + 1.
809 */
810 int (*event_idx) (struct perf_event *event); /*optional */
811
812 /*
813 * flush branch stack on context-switches (needed in cpu-wide mode)
814 */
815 void (*flush_branch_stack) (void);
816};
817
818/**
819 * enum perf_event_active_state - the states of a event
820 */
821enum perf_event_active_state {
822 PERF_EVENT_STATE_ERROR = -2,
823 PERF_EVENT_STATE_OFF = -1,
824 PERF_EVENT_STATE_INACTIVE = 0,
825 PERF_EVENT_STATE_ACTIVE = 1,
826};
827
828struct file;
829struct perf_sample_data;
830
831typedef void (*perf_overflow_handler_t)(struct perf_event *,
832 struct perf_sample_data *,
833 struct pt_regs *regs);
834
835enum perf_group_flag {
836 PERF_GROUP_SOFTWARE = 0x1,
837};
838
839#define SWEVENT_HLIST_BITS 8
840#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
841
842struct swevent_hlist {
843 struct hlist_head heads[SWEVENT_HLIST_SIZE];
844 struct rcu_head rcu_head;
845};
846
847#define PERF_ATTACH_CONTEXT 0x01
848#define PERF_ATTACH_GROUP 0x02
849#define PERF_ATTACH_TASK 0x04
850
851#ifdef CONFIG_CGROUP_PERF
852/*
853 * perf_cgroup_info keeps track of time_enabled for a cgroup.
854 * This is a per-cpu dynamically allocated data structure.
855 */
856struct perf_cgroup_info {
857 u64 time;
858 u64 timestamp;
859};
860
861struct perf_cgroup {
862 struct cgroup_subsys_state css;
863 struct perf_cgroup_info *info; /* timing info, one per cpu */
864};
865#endif
866
867struct ring_buffer;
868
869/**
870 * struct perf_event - performance event kernel representation:
871 */
872struct perf_event {
873#ifdef CONFIG_PERF_EVENTS
874 struct list_head group_entry;
875 struct list_head event_entry;
876 struct list_head sibling_list;
877 struct hlist_node hlist_entry;
878 int nr_siblings;
879 int group_flags;
880 struct perf_event *group_leader;
881 struct pmu *pmu;
882
883 enum perf_event_active_state state;
884 unsigned int attach_state;
885 local64_t count;
886 atomic64_t child_count;
887
888 /*
889 * These are the total time in nanoseconds that the event
890 * has been enabled (i.e. eligible to run, and the task has
891 * been scheduled in, if this is a per-task event)
892 * and running (scheduled onto the CPU), respectively.
893 *
894 * They are computed from tstamp_enabled, tstamp_running and
895 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
896 */
897 u64 total_time_enabled;
898 u64 total_time_running;
899
900 /*
901 * These are timestamps used for computing total_time_enabled
902 * and total_time_running when the event is in INACTIVE or
903 * ACTIVE state, measured in nanoseconds from an arbitrary point
904 * in time.
905 * tstamp_enabled: the notional time when the event was enabled
906 * tstamp_running: the notional time when the event was scheduled on
907 * tstamp_stopped: in INACTIVE state, the notional time when the
908 * event was scheduled off.
909 */
910 u64 tstamp_enabled;
911 u64 tstamp_running;
912 u64 tstamp_stopped;
913
914 /*
915 * timestamp shadows the actual context timing but it can
916 * be safely used in NMI interrupt context. It reflects the
917 * context time as it was when the event was last scheduled in.
918 *
919 * ctx_time already accounts for ctx->timestamp. Therefore to
920 * compute ctx_time for a sample, simply add perf_clock().
921 */
922 u64 shadow_ctx_time;
923
924 struct perf_event_attr attr;
925 u16 header_size;
926 u16 id_header_size;
927 u16 read_size;
928 struct hw_perf_event hw;
929
930 struct perf_event_context *ctx;
931 atomic_long_t refcount;
932
933 /*
934 * These accumulate total time (in nanoseconds) that children
935 * events have been enabled and running, respectively.
936 */
937 atomic64_t child_total_time_enabled;
938 atomic64_t child_total_time_running;
939
940 /*
941 * Protect attach/detach and child_list:
942 */
943 struct mutex child_mutex;
944 struct list_head child_list;
945 struct perf_event *parent;
946
947 int oncpu;
948 int cpu;
949
950 struct list_head owner_entry;
951 struct task_struct *owner;
952
953 /* mmap bits */
954 struct mutex mmap_mutex;
955 atomic_t mmap_count;
956 int mmap_locked;
957 struct user_struct *mmap_user;
958 struct ring_buffer *rb;
959 struct list_head rb_entry;
960
961 /* poll related */
962 wait_queue_head_t waitq;
963 struct fasync_struct *fasync;
964
965 /* delayed work for NMIs and such */
966 int pending_wakeup;
967 int pending_kill;
968 int pending_disable;
969 struct irq_work pending;
970
971 atomic_t event_limit;
972
973 void (*destroy)(struct perf_event *);
974 struct rcu_head rcu_head;
975
976 struct pid_namespace *ns;
977 u64 id;
978
979 perf_overflow_handler_t overflow_handler;
980 void *overflow_handler_context;
981
982#ifdef CONFIG_EVENT_TRACING
983 struct ftrace_event_call *tp_event;
984 struct event_filter *filter;
985#ifdef CONFIG_FUNCTION_TRACER
986 struct ftrace_ops ftrace_ops;
987#endif
988#endif
989
990#ifdef CONFIG_CGROUP_PERF
991 struct perf_cgroup *cgrp; /* cgroup event is attach to */
992 int cgrp_defer_enabled;
993#endif
994
995#endif /* CONFIG_PERF_EVENTS */
996};
997
998enum perf_event_context_type {
999 task_context,
1000 cpu_context,
1001};
1002
1003/**
1004 * struct perf_event_context - event context structure
1005 *
1006 * Used as a container for task events and CPU events as well:
1007 */
1008struct perf_event_context {
1009 struct pmu *pmu;
1010 enum perf_event_context_type type;
1011 /*
1012 * Protect the states of the events in the list,
1013 * nr_active, and the list:
1014 */
1015 raw_spinlock_t lock;
1016 /*
1017 * Protect the list of events. Locking either mutex or lock
1018 * is sufficient to ensure the list doesn't change; to change
1019 * the list you need to lock both the mutex and the spinlock.
1020 */
1021 struct mutex mutex;
1022
1023 struct list_head pinned_groups;
1024 struct list_head flexible_groups;
1025 struct list_head event_list;
1026 int nr_events;
1027 int nr_active;
1028 int is_active;
1029 int nr_stat;
1030 int nr_freq;
1031 int rotate_disable;
1032 atomic_t refcount;
1033 struct task_struct *task;
1034
1035 /*
1036 * Context clock, runs when context enabled.
1037 */
1038 u64 time;
1039 u64 timestamp;
1040
1041 /*
1042 * These fields let us detect when two contexts have both
1043 * been cloned (inherited) from a common ancestor.
1044 */
1045 struct perf_event_context *parent_ctx;
1046 u64 parent_gen;
1047 u64 generation;
1048 int pin_count;
1049 int nr_cgroups; /* cgroup evts */
1050 int nr_branch_stack; /* branch_stack evt */
1051 struct rcu_head rcu_head;
1052};
1053
1054/*
1055 * Number of contexts where an event can trigger:
1056 * task, softirq, hardirq, nmi.
1057 */
1058#define PERF_NR_CONTEXTS 4
1059
1060/**
1061 * struct perf_event_cpu_context - per cpu event context structure
1062 */
1063struct perf_cpu_context {
1064 struct perf_event_context ctx;
1065 struct perf_event_context *task_ctx;
1066 int active_oncpu;
1067 int exclusive;
1068 struct list_head rotation_list;
1069 int jiffies_interval;
1070 struct pmu *active_pmu;
1071 struct perf_cgroup *cgrp;
1072};
1073
1074struct perf_output_handle {
1075 struct perf_event *event;
1076 struct ring_buffer *rb;
1077 unsigned long wakeup;
1078 unsigned long size;
1079 void *addr;
1080 int page;
1081};
1082
1083#ifdef CONFIG_PERF_EVENTS
1084
1085extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
1086extern void perf_pmu_unregister(struct pmu *pmu);
1087
1088extern int perf_num_counters(void);
1089extern const char *perf_pmu_name(void);
1090extern void __perf_event_task_sched_in(struct task_struct *prev,
1091 struct task_struct *task);
1092extern void __perf_event_task_sched_out(struct task_struct *prev,
1093 struct task_struct *next);
1094extern int perf_event_init_task(struct task_struct *child);
1095extern void perf_event_exit_task(struct task_struct *child);
1096extern void perf_event_free_task(struct task_struct *task);
1097extern void perf_event_delayed_put(struct task_struct *task);
1098extern void perf_event_print_debug(void);
1099extern void perf_pmu_disable(struct pmu *pmu);
1100extern void perf_pmu_enable(struct pmu *pmu);
1101extern int perf_event_task_disable(void);
1102extern int perf_event_task_enable(void);
1103extern int perf_event_refresh(struct perf_event *event, int refresh);
1104extern void perf_event_update_userpage(struct perf_event *event);
1105extern int perf_event_release_kernel(struct perf_event *event);
1106extern struct perf_event *
1107perf_event_create_kernel_counter(struct perf_event_attr *attr,
1108 int cpu,
1109 struct task_struct *task,
1110 perf_overflow_handler_t callback,
1111 void *context);
1112extern void perf_pmu_migrate_context(struct pmu *pmu,
1113 int src_cpu, int dst_cpu);
1114extern u64 perf_event_read_value(struct perf_event *event,
1115 u64 *enabled, u64 *running);
1116
1117
1118struct perf_sample_data {
1119 u64 type;
1120
1121 u64 ip;
1122 struct {
1123 u32 pid;
1124 u32 tid;
1125 } tid_entry;
1126 u64 time;
1127 u64 addr;
1128 u64 id;
1129 u64 stream_id;
1130 struct {
1131 u32 cpu;
1132 u32 reserved;
1133 } cpu_entry;
1134 u64 period;
1135 struct perf_callchain_entry *callchain;
1136 struct perf_raw_record *raw;
1137 struct perf_branch_stack *br_stack;
1138};
1139
1140static inline void perf_sample_data_init(struct perf_sample_data *data,
1141 u64 addr, u64 period)
1142{
1143 /* remaining struct members initialized in perf_prepare_sample() */
1144 data->addr = addr;
1145 data->raw = NULL;
1146 data->br_stack = NULL;
1147 data->period = period;
1148}
1149
1150extern void perf_output_sample(struct perf_output_handle *handle,
1151 struct perf_event_header *header,
1152 struct perf_sample_data *data,
1153 struct perf_event *event);
1154extern void perf_prepare_sample(struct perf_event_header *header,
1155 struct perf_sample_data *data,
1156 struct perf_event *event,
1157 struct pt_regs *regs);
1158
1159extern int perf_event_overflow(struct perf_event *event,
1160 struct perf_sample_data *data,
1161 struct pt_regs *regs);
1162
1163static inline bool is_sampling_event(struct perf_event *event)
1164{
1165 return event->attr.sample_period != 0;
1166}
1167
1168/*
1169 * Return 1 for a software event, 0 for a hardware event
1170 */
1171static inline int is_software_event(struct perf_event *event)
1172{
1173 return event->pmu->task_ctx_nr == perf_sw_context;
1174}
1175
1176extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1177
1178extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1179
1180#ifndef perf_arch_fetch_caller_regs
1181static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1182#endif
1183
1184/*
1185 * Take a snapshot of the regs. Skip ip and frame pointer to
1186 * the nth caller. We only need a few of the regs:
1187 * - ip for PERF_SAMPLE_IP
1188 * - cs for user_mode() tests
1189 * - bp for callchains
1190 * - eflags, for future purposes, just in case
1191 */
1192static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1193{
1194 memset(regs, 0, sizeof(*regs));
1195
1196 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1197}
1198
1199static __always_inline void
1200perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1201{
1202 struct pt_regs hot_regs;
1203
1204 if (static_key_false(&perf_swevent_enabled[event_id])) {
1205 if (!regs) {
1206 perf_fetch_caller_regs(&hot_regs);
1207 regs = &hot_regs;
1208 }
1209 __perf_sw_event(event_id, nr, regs, addr);
1210 }
1211}
1212
1213extern struct static_key_deferred perf_sched_events;
1214
1215static inline void perf_event_task_sched_in(struct task_struct *prev,
1216 struct task_struct *task)
1217{
1218 if (static_key_false(&perf_sched_events.key))
1219 __perf_event_task_sched_in(prev, task);
1220}
1221
1222static inline void perf_event_task_sched_out(struct task_struct *prev,
1223 struct task_struct *next)
1224{
1225 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1226
1227 if (static_key_false(&perf_sched_events.key))
1228 __perf_event_task_sched_out(prev, next);
1229}
1230
1231extern void perf_event_mmap(struct vm_area_struct *vma);
1232extern struct perf_guest_info_callbacks *perf_guest_cbs;
1233extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1234extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1235
1236extern void perf_event_comm(struct task_struct *tsk);
1237extern void perf_event_fork(struct task_struct *tsk);
1238
1239/* Callchains */
1240DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1241
1242extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1243extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1244
1245static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1246{
1247 if (entry->nr < PERF_MAX_STACK_DEPTH)
1248 entry->ip[entry->nr++] = ip;
1249}
1250
1251extern int sysctl_perf_event_paranoid;
1252extern int sysctl_perf_event_mlock;
1253extern int sysctl_perf_event_sample_rate;
1254
1255extern int perf_proc_update_handler(struct ctl_table *table, int write,
1256 void __user *buffer, size_t *lenp,
1257 loff_t *ppos);
1258
1259static inline bool perf_paranoid_tracepoint_raw(void)
1260{
1261 return sysctl_perf_event_paranoid > -1;
1262}
1263
1264static inline bool perf_paranoid_cpu(void)
1265{
1266 return sysctl_perf_event_paranoid > 0;
1267}
1268
1269static inline bool perf_paranoid_kernel(void)
1270{
1271 return sysctl_perf_event_paranoid > 1;
1272}
1273
1274extern void perf_event_init(void);
1275extern void perf_tp_event(u64 addr, u64 count, void *record,
1276 int entry_size, struct pt_regs *regs,
1277 struct hlist_head *head, int rctx,
1278 struct task_struct *task);
1279extern void perf_bp_event(struct perf_event *event, void *data);
1280
1281#ifndef perf_misc_flags
1282# define perf_misc_flags(regs) \
1283 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1284# define perf_instruction_pointer(regs) instruction_pointer(regs)
1285#endif
1286
1287static inline bool has_branch_stack(struct perf_event *event)
1288{
1289 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1290}
1291
1292extern int perf_output_begin(struct perf_output_handle *handle,
1293 struct perf_event *event, unsigned int size);
1294extern void perf_output_end(struct perf_output_handle *handle);
1295extern void perf_output_copy(struct perf_output_handle *handle,
1296 const void *buf, unsigned int len);
1297extern int perf_swevent_get_recursion_context(void);
1298extern void perf_swevent_put_recursion_context(int rctx);
1299extern void perf_event_enable(struct perf_event *event);
1300extern void perf_event_disable(struct perf_event *event);
1301extern int __perf_event_disable(void *info);
1302extern void perf_event_task_tick(void);
1303#else
1304static inline void
1305perf_event_task_sched_in(struct task_struct *prev,
1306 struct task_struct *task) { }
1307static inline void
1308perf_event_task_sched_out(struct task_struct *prev,
1309 struct task_struct *next) { }
1310static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1311static inline void perf_event_exit_task(struct task_struct *child) { }
1312static inline void perf_event_free_task(struct task_struct *task) { }
1313static inline void perf_event_delayed_put(struct task_struct *task) { }
1314static inline void perf_event_print_debug(void) { }
1315static inline int perf_event_task_disable(void) { return -EINVAL; }
1316static inline int perf_event_task_enable(void) { return -EINVAL; }
1317static inline int perf_event_refresh(struct perf_event *event, int refresh)
1318{
1319 return -EINVAL;
1320}
1321
1322static inline void
1323perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1324static inline void
1325perf_bp_event(struct perf_event *event, void *data) { }
1326
1327static inline int perf_register_guest_info_callbacks
1328(struct perf_guest_info_callbacks *callbacks) { return 0; }
1329static inline int perf_unregister_guest_info_callbacks
1330(struct perf_guest_info_callbacks *callbacks) { return 0; }
1331
1332static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1333static inline void perf_event_comm(struct task_struct *tsk) { }
1334static inline void perf_event_fork(struct task_struct *tsk) { }
1335static inline void perf_event_init(void) { }
1336static inline int perf_swevent_get_recursion_context(void) { return -1; }
1337static inline void perf_swevent_put_recursion_context(int rctx) { }
1338static inline void perf_event_enable(struct perf_event *event) { }
1339static inline void perf_event_disable(struct perf_event *event) { }
1340static inline int __perf_event_disable(void *info) { return -1; }
1341static inline void perf_event_task_tick(void) { }
1342#endif
1343
1344#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1345
1346/*
1347 * This has to have a higher priority than migration_notifier in sched.c.
1348 */
1349#define perf_cpu_notifier(fn) \
1350do { \
1351 static struct notifier_block fn##_nb __cpuinitdata = \
1352 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1353 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1354 (void *)(unsigned long)smp_processor_id()); \
1355 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1356 (void *)(unsigned long)smp_processor_id()); \
1357 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1358 (void *)(unsigned long)smp_processor_id()); \
1359 register_cpu_notifier(&fn##_nb); \
1360} while (0)
1361
1362
1363#define PMU_FORMAT_ATTR(_name, _format) \
1364static ssize_t \
1365_name##_show(struct device *dev, \
1366 struct device_attribute *attr, \
1367 char *page) \
1368{ \
1369 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1370 return sprintf(page, _format "\n"); \
1371} \
1372 \
1373static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1374
1375#endif /* __KERNEL__ */
1376#endif /* _LINUX_PERF_EVENT_H */