Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/if.h>
29#include <linux/if_ether.h>
30#include <linux/if_packet.h>
31#include <linux/if_link.h>
32
33#ifdef __KERNEL__
34#include <linux/pm_qos.h>
35#include <linux/timer.h>
36#include <linux/bug.h>
37#include <linux/delay.h>
38#include <linux/atomic.h>
39#include <asm/cache.h>
40#include <asm/byteorder.h>
41
42#include <linux/percpu.h>
43#include <linux/rculist.h>
44#include <linux/dmaengine.h>
45#include <linux/workqueue.h>
46#include <linux/dynamic_queue_limits.h>
47
48#include <linux/ethtool.h>
49#include <net/net_namespace.h>
50#include <net/dsa.h>
51#ifdef CONFIG_DCB
52#include <net/dcbnl.h>
53#endif
54#include <net/netprio_cgroup.h>
55
56#include <linux/netdev_features.h>
57#include <linux/neighbour.h>
58
59struct netpoll_info;
60struct device;
61struct phy_device;
62/* 802.11 specific */
63struct wireless_dev;
64 /* source back-compat hooks */
65#define SET_ETHTOOL_OPS(netdev,ops) \
66 ( (netdev)->ethtool_ops = (ops) )
67
68/* hardware address assignment types */
69#define NET_ADDR_PERM 0 /* address is permanent (default) */
70#define NET_ADDR_RANDOM 1 /* address is generated randomly */
71#define NET_ADDR_STOLEN 2 /* address is stolen from other device */
72
73/* Backlog congestion levels */
74#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75#define NET_RX_DROP 1 /* packet dropped */
76
77/*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94/* qdisc ->enqueue() return codes. */
95#define NET_XMIT_SUCCESS 0x00
96#define NET_XMIT_DROP 0x01 /* skb dropped */
97#define NET_XMIT_CN 0x02 /* congestion notification */
98#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107/* Driver transmit return codes */
108#define NETDEV_TX_MASK 0xf0
109
110enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115};
116typedef enum netdev_tx netdev_tx_t;
117
118/*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122static inline bool dev_xmit_complete(int rc)
123{
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134}
135
136#endif
137
138#define MAX_ADDR_LEN 32 /* Largest hardware address length */
139
140/* Initial net device group. All devices belong to group 0 by default. */
141#define INIT_NETDEV_GROUP 0
142
143#ifdef __KERNEL__
144/*
145 * Compute the worst case header length according to the protocols
146 * used.
147 */
148
149#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150# if defined(CONFIG_MAC80211_MESH)
151# define LL_MAX_HEADER 128
152# else
153# define LL_MAX_HEADER 96
154# endif
155#elif IS_ENABLED(CONFIG_TR)
156# define LL_MAX_HEADER 48
157#else
158# define LL_MAX_HEADER 32
159#endif
160
161#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
162 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
163#define MAX_HEADER LL_MAX_HEADER
164#else
165#define MAX_HEADER (LL_MAX_HEADER + 48)
166#endif
167
168/*
169 * Old network device statistics. Fields are native words
170 * (unsigned long) so they can be read and written atomically.
171 */
172
173struct net_device_stats {
174 unsigned long rx_packets;
175 unsigned long tx_packets;
176 unsigned long rx_bytes;
177 unsigned long tx_bytes;
178 unsigned long rx_errors;
179 unsigned long tx_errors;
180 unsigned long rx_dropped;
181 unsigned long tx_dropped;
182 unsigned long multicast;
183 unsigned long collisions;
184 unsigned long rx_length_errors;
185 unsigned long rx_over_errors;
186 unsigned long rx_crc_errors;
187 unsigned long rx_frame_errors;
188 unsigned long rx_fifo_errors;
189 unsigned long rx_missed_errors;
190 unsigned long tx_aborted_errors;
191 unsigned long tx_carrier_errors;
192 unsigned long tx_fifo_errors;
193 unsigned long tx_heartbeat_errors;
194 unsigned long tx_window_errors;
195 unsigned long rx_compressed;
196 unsigned long tx_compressed;
197};
198
199#endif /* __KERNEL__ */
200
201
202/* Media selection options. */
203enum {
204 IF_PORT_UNKNOWN = 0,
205 IF_PORT_10BASE2,
206 IF_PORT_10BASET,
207 IF_PORT_AUI,
208 IF_PORT_100BASET,
209 IF_PORT_100BASETX,
210 IF_PORT_100BASEFX
211};
212
213#ifdef __KERNEL__
214
215#include <linux/cache.h>
216#include <linux/skbuff.h>
217
218#ifdef CONFIG_RPS
219#include <linux/static_key.h>
220extern struct static_key rps_needed;
221#endif
222
223struct neighbour;
224struct neigh_parms;
225struct sk_buff;
226
227struct netdev_hw_addr {
228 struct list_head list;
229 unsigned char addr[MAX_ADDR_LEN];
230 unsigned char type;
231#define NETDEV_HW_ADDR_T_LAN 1
232#define NETDEV_HW_ADDR_T_SAN 2
233#define NETDEV_HW_ADDR_T_SLAVE 3
234#define NETDEV_HW_ADDR_T_UNICAST 4
235#define NETDEV_HW_ADDR_T_MULTICAST 5
236 bool synced;
237 bool global_use;
238 int refcount;
239 struct rcu_head rcu_head;
240};
241
242struct netdev_hw_addr_list {
243 struct list_head list;
244 int count;
245};
246
247#define netdev_hw_addr_list_count(l) ((l)->count)
248#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249#define netdev_hw_addr_list_for_each(ha, l) \
250 list_for_each_entry(ha, &(l)->list, list)
251
252#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254#define netdev_for_each_uc_addr(ha, dev) \
255 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256
257#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259#define netdev_for_each_mc_addr(ha, dev) \
260 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261
262struct hh_cache {
263 u16 hh_len;
264 u16 __pad;
265 seqlock_t hh_lock;
266
267 /* cached hardware header; allow for machine alignment needs. */
268#define HH_DATA_MOD 16
269#define HH_DATA_OFF(__len) \
270 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
271#define HH_DATA_ALIGN(__len) \
272 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
273 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
274};
275
276/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
277 * Alternative is:
278 * dev->hard_header_len ? (dev->hard_header_len +
279 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
280 *
281 * We could use other alignment values, but we must maintain the
282 * relationship HH alignment <= LL alignment.
283 */
284#define LL_RESERVED_SPACE(dev) \
285 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
287 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
288
289struct header_ops {
290 int (*create) (struct sk_buff *skb, struct net_device *dev,
291 unsigned short type, const void *daddr,
292 const void *saddr, unsigned int len);
293 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
294 int (*rebuild)(struct sk_buff *skb);
295 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
296 void (*cache_update)(struct hh_cache *hh,
297 const struct net_device *dev,
298 const unsigned char *haddr);
299};
300
301/* These flag bits are private to the generic network queueing
302 * layer, they may not be explicitly referenced by any other
303 * code.
304 */
305
306enum netdev_state_t {
307 __LINK_STATE_START,
308 __LINK_STATE_PRESENT,
309 __LINK_STATE_NOCARRIER,
310 __LINK_STATE_LINKWATCH_PENDING,
311 __LINK_STATE_DORMANT,
312};
313
314
315/*
316 * This structure holds at boot time configured netdevice settings. They
317 * are then used in the device probing.
318 */
319struct netdev_boot_setup {
320 char name[IFNAMSIZ];
321 struct ifmap map;
322};
323#define NETDEV_BOOT_SETUP_MAX 8
324
325extern int __init netdev_boot_setup(char *str);
326
327/*
328 * Structure for NAPI scheduling similar to tasklet but with weighting
329 */
330struct napi_struct {
331 /* The poll_list must only be managed by the entity which
332 * changes the state of the NAPI_STATE_SCHED bit. This means
333 * whoever atomically sets that bit can add this napi_struct
334 * to the per-cpu poll_list, and whoever clears that bit
335 * can remove from the list right before clearing the bit.
336 */
337 struct list_head poll_list;
338
339 unsigned long state;
340 int weight;
341 int (*poll)(struct napi_struct *, int);
342#ifdef CONFIG_NETPOLL
343 spinlock_t poll_lock;
344 int poll_owner;
345#endif
346
347 unsigned int gro_count;
348
349 struct net_device *dev;
350 struct list_head dev_list;
351 struct sk_buff *gro_list;
352 struct sk_buff *skb;
353};
354
355enum {
356 NAPI_STATE_SCHED, /* Poll is scheduled */
357 NAPI_STATE_DISABLE, /* Disable pending */
358 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
359};
360
361enum gro_result {
362 GRO_MERGED,
363 GRO_MERGED_FREE,
364 GRO_HELD,
365 GRO_NORMAL,
366 GRO_DROP,
367};
368typedef enum gro_result gro_result_t;
369
370/*
371 * enum rx_handler_result - Possible return values for rx_handlers.
372 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
373 * further.
374 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
375 * case skb->dev was changed by rx_handler.
376 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
377 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
378 *
379 * rx_handlers are functions called from inside __netif_receive_skb(), to do
380 * special processing of the skb, prior to delivery to protocol handlers.
381 *
382 * Currently, a net_device can only have a single rx_handler registered. Trying
383 * to register a second rx_handler will return -EBUSY.
384 *
385 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
386 * To unregister a rx_handler on a net_device, use
387 * netdev_rx_handler_unregister().
388 *
389 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
390 * do with the skb.
391 *
392 * If the rx_handler consumed to skb in some way, it should return
393 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
394 * the skb to be delivered in some other ways.
395 *
396 * If the rx_handler changed skb->dev, to divert the skb to another
397 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
398 * new device will be called if it exists.
399 *
400 * If the rx_handler consider the skb should be ignored, it should return
401 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
402 * are registred on exact device (ptype->dev == skb->dev).
403 *
404 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
405 * delivered, it should return RX_HANDLER_PASS.
406 *
407 * A device without a registered rx_handler will behave as if rx_handler
408 * returned RX_HANDLER_PASS.
409 */
410
411enum rx_handler_result {
412 RX_HANDLER_CONSUMED,
413 RX_HANDLER_ANOTHER,
414 RX_HANDLER_EXACT,
415 RX_HANDLER_PASS,
416};
417typedef enum rx_handler_result rx_handler_result_t;
418typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
419
420extern void __napi_schedule(struct napi_struct *n);
421
422static inline bool napi_disable_pending(struct napi_struct *n)
423{
424 return test_bit(NAPI_STATE_DISABLE, &n->state);
425}
426
427/**
428 * napi_schedule_prep - check if napi can be scheduled
429 * @n: napi context
430 *
431 * Test if NAPI routine is already running, and if not mark
432 * it as running. This is used as a condition variable
433 * insure only one NAPI poll instance runs. We also make
434 * sure there is no pending NAPI disable.
435 */
436static inline bool napi_schedule_prep(struct napi_struct *n)
437{
438 return !napi_disable_pending(n) &&
439 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
440}
441
442/**
443 * napi_schedule - schedule NAPI poll
444 * @n: napi context
445 *
446 * Schedule NAPI poll routine to be called if it is not already
447 * running.
448 */
449static inline void napi_schedule(struct napi_struct *n)
450{
451 if (napi_schedule_prep(n))
452 __napi_schedule(n);
453}
454
455/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
456static inline bool napi_reschedule(struct napi_struct *napi)
457{
458 if (napi_schedule_prep(napi)) {
459 __napi_schedule(napi);
460 return true;
461 }
462 return false;
463}
464
465/**
466 * napi_complete - NAPI processing complete
467 * @n: napi context
468 *
469 * Mark NAPI processing as complete.
470 */
471extern void __napi_complete(struct napi_struct *n);
472extern void napi_complete(struct napi_struct *n);
473
474/**
475 * napi_disable - prevent NAPI from scheduling
476 * @n: napi context
477 *
478 * Stop NAPI from being scheduled on this context.
479 * Waits till any outstanding processing completes.
480 */
481static inline void napi_disable(struct napi_struct *n)
482{
483 set_bit(NAPI_STATE_DISABLE, &n->state);
484 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
485 msleep(1);
486 clear_bit(NAPI_STATE_DISABLE, &n->state);
487}
488
489/**
490 * napi_enable - enable NAPI scheduling
491 * @n: napi context
492 *
493 * Resume NAPI from being scheduled on this context.
494 * Must be paired with napi_disable.
495 */
496static inline void napi_enable(struct napi_struct *n)
497{
498 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
499 smp_mb__before_clear_bit();
500 clear_bit(NAPI_STATE_SCHED, &n->state);
501}
502
503#ifdef CONFIG_SMP
504/**
505 * napi_synchronize - wait until NAPI is not running
506 * @n: napi context
507 *
508 * Wait until NAPI is done being scheduled on this context.
509 * Waits till any outstanding processing completes but
510 * does not disable future activations.
511 */
512static inline void napi_synchronize(const struct napi_struct *n)
513{
514 while (test_bit(NAPI_STATE_SCHED, &n->state))
515 msleep(1);
516}
517#else
518# define napi_synchronize(n) barrier()
519#endif
520
521enum netdev_queue_state_t {
522 __QUEUE_STATE_DRV_XOFF,
523 __QUEUE_STATE_STACK_XOFF,
524 __QUEUE_STATE_FROZEN,
525#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
526 (1 << __QUEUE_STATE_STACK_XOFF))
527#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
528 (1 << __QUEUE_STATE_FROZEN))
529};
530/*
531 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
532 * netif_tx_* functions below are used to manipulate this flag. The
533 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
534 * queue independently. The netif_xmit_*stopped functions below are called
535 * to check if the queue has been stopped by the driver or stack (either
536 * of the XOFF bits are set in the state). Drivers should not need to call
537 * netif_xmit*stopped functions, they should only be using netif_tx_*.
538 */
539
540struct netdev_queue {
541/*
542 * read mostly part
543 */
544 struct net_device *dev;
545 struct Qdisc *qdisc;
546 struct Qdisc *qdisc_sleeping;
547#ifdef CONFIG_SYSFS
548 struct kobject kobj;
549#endif
550#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
551 int numa_node;
552#endif
553/*
554 * write mostly part
555 */
556 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
557 int xmit_lock_owner;
558 /*
559 * please use this field instead of dev->trans_start
560 */
561 unsigned long trans_start;
562
563 /*
564 * Number of TX timeouts for this queue
565 * (/sys/class/net/DEV/Q/trans_timeout)
566 */
567 unsigned long trans_timeout;
568
569 unsigned long state;
570
571#ifdef CONFIG_BQL
572 struct dql dql;
573#endif
574} ____cacheline_aligned_in_smp;
575
576static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
577{
578#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
579 return q->numa_node;
580#else
581 return NUMA_NO_NODE;
582#endif
583}
584
585static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
586{
587#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 q->numa_node = node;
589#endif
590}
591
592#ifdef CONFIG_RPS
593/*
594 * This structure holds an RPS map which can be of variable length. The
595 * map is an array of CPUs.
596 */
597struct rps_map {
598 unsigned int len;
599 struct rcu_head rcu;
600 u16 cpus[0];
601};
602#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
603
604/*
605 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
606 * tail pointer for that CPU's input queue at the time of last enqueue, and
607 * a hardware filter index.
608 */
609struct rps_dev_flow {
610 u16 cpu;
611 u16 filter;
612 unsigned int last_qtail;
613};
614#define RPS_NO_FILTER 0xffff
615
616/*
617 * The rps_dev_flow_table structure contains a table of flow mappings.
618 */
619struct rps_dev_flow_table {
620 unsigned int mask;
621 struct rcu_head rcu;
622 struct work_struct free_work;
623 struct rps_dev_flow flows[0];
624};
625#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626 ((_num) * sizeof(struct rps_dev_flow)))
627
628/*
629 * The rps_sock_flow_table contains mappings of flows to the last CPU
630 * on which they were processed by the application (set in recvmsg).
631 */
632struct rps_sock_flow_table {
633 unsigned int mask;
634 u16 ents[0];
635};
636#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637 ((_num) * sizeof(u16)))
638
639#define RPS_NO_CPU 0xffff
640
641static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642 u32 hash)
643{
644 if (table && hash) {
645 unsigned int cpu, index = hash & table->mask;
646
647 /* We only give a hint, preemption can change cpu under us */
648 cpu = raw_smp_processor_id();
649
650 if (table->ents[index] != cpu)
651 table->ents[index] = cpu;
652 }
653}
654
655static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656 u32 hash)
657{
658 if (table && hash)
659 table->ents[hash & table->mask] = RPS_NO_CPU;
660}
661
662extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663
664#ifdef CONFIG_RFS_ACCEL
665extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
666 u32 flow_id, u16 filter_id);
667#endif
668
669/* This structure contains an instance of an RX queue. */
670struct netdev_rx_queue {
671 struct rps_map __rcu *rps_map;
672 struct rps_dev_flow_table __rcu *rps_flow_table;
673 struct kobject kobj;
674 struct net_device *dev;
675} ____cacheline_aligned_in_smp;
676#endif /* CONFIG_RPS */
677
678#ifdef CONFIG_XPS
679/*
680 * This structure holds an XPS map which can be of variable length. The
681 * map is an array of queues.
682 */
683struct xps_map {
684 unsigned int len;
685 unsigned int alloc_len;
686 struct rcu_head rcu;
687 u16 queues[0];
688};
689#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
690#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
691 / sizeof(u16))
692
693/*
694 * This structure holds all XPS maps for device. Maps are indexed by CPU.
695 */
696struct xps_dev_maps {
697 struct rcu_head rcu;
698 struct xps_map __rcu *cpu_map[0];
699};
700#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
701 (nr_cpu_ids * sizeof(struct xps_map *)))
702#endif /* CONFIG_XPS */
703
704#define TC_MAX_QUEUE 16
705#define TC_BITMASK 15
706/* HW offloaded queuing disciplines txq count and offset maps */
707struct netdev_tc_txq {
708 u16 count;
709 u16 offset;
710};
711
712#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
713/*
714 * This structure is to hold information about the device
715 * configured to run FCoE protocol stack.
716 */
717struct netdev_fcoe_hbainfo {
718 char manufacturer[64];
719 char serial_number[64];
720 char hardware_version[64];
721 char driver_version[64];
722 char optionrom_version[64];
723 char firmware_version[64];
724 char model[256];
725 char model_description[256];
726};
727#endif
728
729/*
730 * This structure defines the management hooks for network devices.
731 * The following hooks can be defined; unless noted otherwise, they are
732 * optional and can be filled with a null pointer.
733 *
734 * int (*ndo_init)(struct net_device *dev);
735 * This function is called once when network device is registered.
736 * The network device can use this to any late stage initializaton
737 * or semantic validattion. It can fail with an error code which will
738 * be propogated back to register_netdev
739 *
740 * void (*ndo_uninit)(struct net_device *dev);
741 * This function is called when device is unregistered or when registration
742 * fails. It is not called if init fails.
743 *
744 * int (*ndo_open)(struct net_device *dev);
745 * This function is called when network device transistions to the up
746 * state.
747 *
748 * int (*ndo_stop)(struct net_device *dev);
749 * This function is called when network device transistions to the down
750 * state.
751 *
752 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
753 * struct net_device *dev);
754 * Called when a packet needs to be transmitted.
755 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
756 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
757 * Required can not be NULL.
758 *
759 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
760 * Called to decide which queue to when device supports multiple
761 * transmit queues.
762 *
763 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
764 * This function is called to allow device receiver to make
765 * changes to configuration when multicast or promiscious is enabled.
766 *
767 * void (*ndo_set_rx_mode)(struct net_device *dev);
768 * This function is called device changes address list filtering.
769 * If driver handles unicast address filtering, it should set
770 * IFF_UNICAST_FLT to its priv_flags.
771 *
772 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
773 * This function is called when the Media Access Control address
774 * needs to be changed. If this interface is not defined, the
775 * mac address can not be changed.
776 *
777 * int (*ndo_validate_addr)(struct net_device *dev);
778 * Test if Media Access Control address is valid for the device.
779 *
780 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
781 * Called when a user request an ioctl which can't be handled by
782 * the generic interface code. If not defined ioctl's return
783 * not supported error code.
784 *
785 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
786 * Used to set network devices bus interface parameters. This interface
787 * is retained for legacy reason, new devices should use the bus
788 * interface (PCI) for low level management.
789 *
790 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
791 * Called when a user wants to change the Maximum Transfer Unit
792 * of a device. If not defined, any request to change MTU will
793 * will return an error.
794 *
795 * void (*ndo_tx_timeout)(struct net_device *dev);
796 * Callback uses when the transmitter has not made any progress
797 * for dev->watchdog ticks.
798 *
799 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
800 * struct rtnl_link_stats64 *storage);
801 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
802 * Called when a user wants to get the network device usage
803 * statistics. Drivers must do one of the following:
804 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
805 * rtnl_link_stats64 structure passed by the caller.
806 * 2. Define @ndo_get_stats to update a net_device_stats structure
807 * (which should normally be dev->stats) and return a pointer to
808 * it. The structure may be changed asynchronously only if each
809 * field is written atomically.
810 * 3. Update dev->stats asynchronously and atomically, and define
811 * neither operation.
812 *
813 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
814 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
815 * this function is called when a VLAN id is registered.
816 *
817 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
818 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
819 * this function is called when a VLAN id is unregistered.
820 *
821 * void (*ndo_poll_controller)(struct net_device *dev);
822 *
823 * SR-IOV management functions.
824 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
825 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
826 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
827 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
828 * int (*ndo_get_vf_config)(struct net_device *dev,
829 * int vf, struct ifla_vf_info *ivf);
830 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
831 * struct nlattr *port[]);
832 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
833 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
834 * Called to setup 'tc' number of traffic classes in the net device. This
835 * is always called from the stack with the rtnl lock held and netif tx
836 * queues stopped. This allows the netdevice to perform queue management
837 * safely.
838 *
839 * Fiber Channel over Ethernet (FCoE) offload functions.
840 * int (*ndo_fcoe_enable)(struct net_device *dev);
841 * Called when the FCoE protocol stack wants to start using LLD for FCoE
842 * so the underlying device can perform whatever needed configuration or
843 * initialization to support acceleration of FCoE traffic.
844 *
845 * int (*ndo_fcoe_disable)(struct net_device *dev);
846 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
847 * so the underlying device can perform whatever needed clean-ups to
848 * stop supporting acceleration of FCoE traffic.
849 *
850 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
851 * struct scatterlist *sgl, unsigned int sgc);
852 * Called when the FCoE Initiator wants to initialize an I/O that
853 * is a possible candidate for Direct Data Placement (DDP). The LLD can
854 * perform necessary setup and returns 1 to indicate the device is set up
855 * successfully to perform DDP on this I/O, otherwise this returns 0.
856 *
857 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
858 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
859 * indicated by the FC exchange id 'xid', so the underlying device can
860 * clean up and reuse resources for later DDP requests.
861 *
862 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
863 * struct scatterlist *sgl, unsigned int sgc);
864 * Called when the FCoE Target wants to initialize an I/O that
865 * is a possible candidate for Direct Data Placement (DDP). The LLD can
866 * perform necessary setup and returns 1 to indicate the device is set up
867 * successfully to perform DDP on this I/O, otherwise this returns 0.
868 *
869 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
870 * struct netdev_fcoe_hbainfo *hbainfo);
871 * Called when the FCoE Protocol stack wants information on the underlying
872 * device. This information is utilized by the FCoE protocol stack to
873 * register attributes with Fiber Channel management service as per the
874 * FC-GS Fabric Device Management Information(FDMI) specification.
875 *
876 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
877 * Called when the underlying device wants to override default World Wide
878 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
879 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
880 * protocol stack to use.
881 *
882 * RFS acceleration.
883 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
884 * u16 rxq_index, u32 flow_id);
885 * Set hardware filter for RFS. rxq_index is the target queue index;
886 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
887 * Return the filter ID on success, or a negative error code.
888 *
889 * Slave management functions (for bridge, bonding, etc). User should
890 * call netdev_set_master() to set dev->master properly.
891 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
892 * Called to make another netdev an underling.
893 *
894 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
895 * Called to release previously enslaved netdev.
896 *
897 * Feature/offload setting functions.
898 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
899 * netdev_features_t features);
900 * Adjusts the requested feature flags according to device-specific
901 * constraints, and returns the resulting flags. Must not modify
902 * the device state.
903 *
904 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
905 * Called to update device configuration to new features. Passed
906 * feature set might be less than what was returned by ndo_fix_features()).
907 * Must return >0 or -errno if it changed dev->features itself.
908 *
909 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct net_device *dev,
910 * unsigned char *addr, u16 flags)
911 * Adds an FDB entry to dev for addr.
912 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
913 * unsigned char *addr)
914 * Deletes the FDB entry from dev coresponding to addr.
915 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
916 * struct net_device *dev, int idx)
917 * Used to add FDB entries to dump requests. Implementers should add
918 * entries to skb and update idx with the number of entries.
919 */
920struct net_device_ops {
921 int (*ndo_init)(struct net_device *dev);
922 void (*ndo_uninit)(struct net_device *dev);
923 int (*ndo_open)(struct net_device *dev);
924 int (*ndo_stop)(struct net_device *dev);
925 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
926 struct net_device *dev);
927 u16 (*ndo_select_queue)(struct net_device *dev,
928 struct sk_buff *skb);
929 void (*ndo_change_rx_flags)(struct net_device *dev,
930 int flags);
931 void (*ndo_set_rx_mode)(struct net_device *dev);
932 int (*ndo_set_mac_address)(struct net_device *dev,
933 void *addr);
934 int (*ndo_validate_addr)(struct net_device *dev);
935 int (*ndo_do_ioctl)(struct net_device *dev,
936 struct ifreq *ifr, int cmd);
937 int (*ndo_set_config)(struct net_device *dev,
938 struct ifmap *map);
939 int (*ndo_change_mtu)(struct net_device *dev,
940 int new_mtu);
941 int (*ndo_neigh_setup)(struct net_device *dev,
942 struct neigh_parms *);
943 void (*ndo_tx_timeout) (struct net_device *dev);
944
945 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
946 struct rtnl_link_stats64 *storage);
947 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
948
949 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
950 unsigned short vid);
951 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
952 unsigned short vid);
953#ifdef CONFIG_NET_POLL_CONTROLLER
954 void (*ndo_poll_controller)(struct net_device *dev);
955 int (*ndo_netpoll_setup)(struct net_device *dev,
956 struct netpoll_info *info,
957 gfp_t gfp);
958 void (*ndo_netpoll_cleanup)(struct net_device *dev);
959#endif
960 int (*ndo_set_vf_mac)(struct net_device *dev,
961 int queue, u8 *mac);
962 int (*ndo_set_vf_vlan)(struct net_device *dev,
963 int queue, u16 vlan, u8 qos);
964 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
965 int vf, int rate);
966 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
967 int vf, bool setting);
968 int (*ndo_get_vf_config)(struct net_device *dev,
969 int vf,
970 struct ifla_vf_info *ivf);
971 int (*ndo_set_vf_port)(struct net_device *dev,
972 int vf,
973 struct nlattr *port[]);
974 int (*ndo_get_vf_port)(struct net_device *dev,
975 int vf, struct sk_buff *skb);
976 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
977#if IS_ENABLED(CONFIG_FCOE)
978 int (*ndo_fcoe_enable)(struct net_device *dev);
979 int (*ndo_fcoe_disable)(struct net_device *dev);
980 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
981 u16 xid,
982 struct scatterlist *sgl,
983 unsigned int sgc);
984 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
985 u16 xid);
986 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
987 u16 xid,
988 struct scatterlist *sgl,
989 unsigned int sgc);
990 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
991 struct netdev_fcoe_hbainfo *hbainfo);
992#endif
993
994#if IS_ENABLED(CONFIG_LIBFCOE)
995#define NETDEV_FCOE_WWNN 0
996#define NETDEV_FCOE_WWPN 1
997 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
998 u64 *wwn, int type);
999#endif
1000
1001#ifdef CONFIG_RFS_ACCEL
1002 int (*ndo_rx_flow_steer)(struct net_device *dev,
1003 const struct sk_buff *skb,
1004 u16 rxq_index,
1005 u32 flow_id);
1006#endif
1007 int (*ndo_add_slave)(struct net_device *dev,
1008 struct net_device *slave_dev);
1009 int (*ndo_del_slave)(struct net_device *dev,
1010 struct net_device *slave_dev);
1011 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1012 netdev_features_t features);
1013 int (*ndo_set_features)(struct net_device *dev,
1014 netdev_features_t features);
1015 int (*ndo_neigh_construct)(struct neighbour *n);
1016 void (*ndo_neigh_destroy)(struct neighbour *n);
1017
1018 int (*ndo_fdb_add)(struct ndmsg *ndm,
1019 struct net_device *dev,
1020 unsigned char *addr,
1021 u16 flags);
1022 int (*ndo_fdb_del)(struct ndmsg *ndm,
1023 struct net_device *dev,
1024 unsigned char *addr);
1025 int (*ndo_fdb_dump)(struct sk_buff *skb,
1026 struct netlink_callback *cb,
1027 struct net_device *dev,
1028 int idx);
1029};
1030
1031/*
1032 * The DEVICE structure.
1033 * Actually, this whole structure is a big mistake. It mixes I/O
1034 * data with strictly "high-level" data, and it has to know about
1035 * almost every data structure used in the INET module.
1036 *
1037 * FIXME: cleanup struct net_device such that network protocol info
1038 * moves out.
1039 */
1040
1041struct net_device {
1042
1043 /*
1044 * This is the first field of the "visible" part of this structure
1045 * (i.e. as seen by users in the "Space.c" file). It is the name
1046 * of the interface.
1047 */
1048 char name[IFNAMSIZ];
1049
1050 /* device name hash chain, please keep it close to name[] */
1051 struct hlist_node name_hlist;
1052
1053 /* snmp alias */
1054 char *ifalias;
1055
1056 /*
1057 * I/O specific fields
1058 * FIXME: Merge these and struct ifmap into one
1059 */
1060 unsigned long mem_end; /* shared mem end */
1061 unsigned long mem_start; /* shared mem start */
1062 unsigned long base_addr; /* device I/O address */
1063 unsigned int irq; /* device IRQ number */
1064
1065 /*
1066 * Some hardware also needs these fields, but they are not
1067 * part of the usual set specified in Space.c.
1068 */
1069
1070 unsigned long state;
1071
1072 struct list_head dev_list;
1073 struct list_head napi_list;
1074 struct list_head unreg_list;
1075
1076 /* currently active device features */
1077 netdev_features_t features;
1078 /* user-changeable features */
1079 netdev_features_t hw_features;
1080 /* user-requested features */
1081 netdev_features_t wanted_features;
1082 /* mask of features inheritable by VLAN devices */
1083 netdev_features_t vlan_features;
1084
1085 /* Interface index. Unique device identifier */
1086 int ifindex;
1087 int iflink;
1088
1089 struct net_device_stats stats;
1090 atomic_long_t rx_dropped; /* dropped packets by core network
1091 * Do not use this in drivers.
1092 */
1093
1094#ifdef CONFIG_WIRELESS_EXT
1095 /* List of functions to handle Wireless Extensions (instead of ioctl).
1096 * See <net/iw_handler.h> for details. Jean II */
1097 const struct iw_handler_def * wireless_handlers;
1098 /* Instance data managed by the core of Wireless Extensions. */
1099 struct iw_public_data * wireless_data;
1100#endif
1101 /* Management operations */
1102 const struct net_device_ops *netdev_ops;
1103 const struct ethtool_ops *ethtool_ops;
1104
1105 /* Hardware header description */
1106 const struct header_ops *header_ops;
1107
1108 unsigned int flags; /* interface flags (a la BSD) */
1109 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1110 * See if.h for definitions. */
1111 unsigned short gflags;
1112 unsigned short padded; /* How much padding added by alloc_netdev() */
1113
1114 unsigned char operstate; /* RFC2863 operstate */
1115 unsigned char link_mode; /* mapping policy to operstate */
1116
1117 unsigned char if_port; /* Selectable AUI, TP,..*/
1118 unsigned char dma; /* DMA channel */
1119
1120 unsigned int mtu; /* interface MTU value */
1121 unsigned short type; /* interface hardware type */
1122 unsigned short hard_header_len; /* hardware hdr length */
1123
1124 /* extra head- and tailroom the hardware may need, but not in all cases
1125 * can this be guaranteed, especially tailroom. Some cases also use
1126 * LL_MAX_HEADER instead to allocate the skb.
1127 */
1128 unsigned short needed_headroom;
1129 unsigned short needed_tailroom;
1130
1131 /* Interface address info. */
1132 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1133 unsigned char addr_assign_type; /* hw address assignment type */
1134 unsigned char addr_len; /* hardware address length */
1135 unsigned char neigh_priv_len;
1136 unsigned short dev_id; /* for shared network cards */
1137
1138 spinlock_t addr_list_lock;
1139 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1140 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1141 bool uc_promisc;
1142 unsigned int promiscuity;
1143 unsigned int allmulti;
1144
1145
1146 /* Protocol specific pointers */
1147
1148#if IS_ENABLED(CONFIG_VLAN_8021Q)
1149 struct vlan_info __rcu *vlan_info; /* VLAN info */
1150#endif
1151#if IS_ENABLED(CONFIG_NET_DSA)
1152 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1153#endif
1154 void *atalk_ptr; /* AppleTalk link */
1155 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1156 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1157 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1158 void *ax25_ptr; /* AX.25 specific data */
1159 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1160 assign before registering */
1161
1162/*
1163 * Cache lines mostly used on receive path (including eth_type_trans())
1164 */
1165 unsigned long last_rx; /* Time of last Rx
1166 * This should not be set in
1167 * drivers, unless really needed,
1168 * because network stack (bonding)
1169 * use it if/when necessary, to
1170 * avoid dirtying this cache line.
1171 */
1172
1173 struct net_device *master; /* Pointer to master device of a group,
1174 * which this device is member of.
1175 */
1176
1177 /* Interface address info used in eth_type_trans() */
1178 unsigned char *dev_addr; /* hw address, (before bcast
1179 because most packets are
1180 unicast) */
1181
1182 struct netdev_hw_addr_list dev_addrs; /* list of device
1183 hw addresses */
1184
1185 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1186
1187#ifdef CONFIG_SYSFS
1188 struct kset *queues_kset;
1189#endif
1190
1191#ifdef CONFIG_RPS
1192 struct netdev_rx_queue *_rx;
1193
1194 /* Number of RX queues allocated at register_netdev() time */
1195 unsigned int num_rx_queues;
1196
1197 /* Number of RX queues currently active in device */
1198 unsigned int real_num_rx_queues;
1199
1200#ifdef CONFIG_RFS_ACCEL
1201 /* CPU reverse-mapping for RX completion interrupts, indexed
1202 * by RX queue number. Assigned by driver. This must only be
1203 * set if the ndo_rx_flow_steer operation is defined. */
1204 struct cpu_rmap *rx_cpu_rmap;
1205#endif
1206#endif
1207
1208 rx_handler_func_t __rcu *rx_handler;
1209 void __rcu *rx_handler_data;
1210
1211 struct netdev_queue __rcu *ingress_queue;
1212
1213/*
1214 * Cache lines mostly used on transmit path
1215 */
1216 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1217
1218 /* Number of TX queues allocated at alloc_netdev_mq() time */
1219 unsigned int num_tx_queues;
1220
1221 /* Number of TX queues currently active in device */
1222 unsigned int real_num_tx_queues;
1223
1224 /* root qdisc from userspace point of view */
1225 struct Qdisc *qdisc;
1226
1227 unsigned long tx_queue_len; /* Max frames per queue allowed */
1228 spinlock_t tx_global_lock;
1229
1230#ifdef CONFIG_XPS
1231 struct xps_dev_maps __rcu *xps_maps;
1232#endif
1233
1234 /* These may be needed for future network-power-down code. */
1235
1236 /*
1237 * trans_start here is expensive for high speed devices on SMP,
1238 * please use netdev_queue->trans_start instead.
1239 */
1240 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1241
1242 int watchdog_timeo; /* used by dev_watchdog() */
1243 struct timer_list watchdog_timer;
1244
1245 /* Number of references to this device */
1246 int __percpu *pcpu_refcnt;
1247
1248 /* delayed register/unregister */
1249 struct list_head todo_list;
1250 /* device index hash chain */
1251 struct hlist_node index_hlist;
1252
1253 struct list_head link_watch_list;
1254
1255 /* register/unregister state machine */
1256 enum { NETREG_UNINITIALIZED=0,
1257 NETREG_REGISTERED, /* completed register_netdevice */
1258 NETREG_UNREGISTERING, /* called unregister_netdevice */
1259 NETREG_UNREGISTERED, /* completed unregister todo */
1260 NETREG_RELEASED, /* called free_netdev */
1261 NETREG_DUMMY, /* dummy device for NAPI poll */
1262 } reg_state:8;
1263
1264 bool dismantle; /* device is going do be freed */
1265
1266 enum {
1267 RTNL_LINK_INITIALIZED,
1268 RTNL_LINK_INITIALIZING,
1269 } rtnl_link_state:16;
1270
1271 /* Called from unregister, can be used to call free_netdev */
1272 void (*destructor)(struct net_device *dev);
1273
1274#ifdef CONFIG_NETPOLL
1275 struct netpoll_info *npinfo;
1276#endif
1277
1278#ifdef CONFIG_NET_NS
1279 /* Network namespace this network device is inside */
1280 struct net *nd_net;
1281#endif
1282
1283 /* mid-layer private */
1284 union {
1285 void *ml_priv;
1286 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1287 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1288 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1289 };
1290 /* GARP */
1291 struct garp_port __rcu *garp_port;
1292
1293 /* class/net/name entry */
1294 struct device dev;
1295 /* space for optional device, statistics, and wireless sysfs groups */
1296 const struct attribute_group *sysfs_groups[4];
1297
1298 /* rtnetlink link ops */
1299 const struct rtnl_link_ops *rtnl_link_ops;
1300
1301 /* for setting kernel sock attribute on TCP connection setup */
1302#define GSO_MAX_SIZE 65536
1303 unsigned int gso_max_size;
1304#define GSO_MAX_SEGS 65535
1305 u16 gso_max_segs;
1306
1307#ifdef CONFIG_DCB
1308 /* Data Center Bridging netlink ops */
1309 const struct dcbnl_rtnl_ops *dcbnl_ops;
1310#endif
1311 u8 num_tc;
1312 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1313 u8 prio_tc_map[TC_BITMASK + 1];
1314
1315#if IS_ENABLED(CONFIG_FCOE)
1316 /* max exchange id for FCoE LRO by ddp */
1317 unsigned int fcoe_ddp_xid;
1318#endif
1319#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1320 struct netprio_map __rcu *priomap;
1321#endif
1322 /* phy device may attach itself for hardware timestamping */
1323 struct phy_device *phydev;
1324
1325 /* group the device belongs to */
1326 int group;
1327
1328 struct pm_qos_request pm_qos_req;
1329};
1330#define to_net_dev(d) container_of(d, struct net_device, dev)
1331
1332#define NETDEV_ALIGN 32
1333
1334static inline
1335int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1336{
1337 return dev->prio_tc_map[prio & TC_BITMASK];
1338}
1339
1340static inline
1341int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1342{
1343 if (tc >= dev->num_tc)
1344 return -EINVAL;
1345
1346 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1347 return 0;
1348}
1349
1350static inline
1351void netdev_reset_tc(struct net_device *dev)
1352{
1353 dev->num_tc = 0;
1354 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1355 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1356}
1357
1358static inline
1359int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1360{
1361 if (tc >= dev->num_tc)
1362 return -EINVAL;
1363
1364 dev->tc_to_txq[tc].count = count;
1365 dev->tc_to_txq[tc].offset = offset;
1366 return 0;
1367}
1368
1369static inline
1370int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1371{
1372 if (num_tc > TC_MAX_QUEUE)
1373 return -EINVAL;
1374
1375 dev->num_tc = num_tc;
1376 return 0;
1377}
1378
1379static inline
1380int netdev_get_num_tc(struct net_device *dev)
1381{
1382 return dev->num_tc;
1383}
1384
1385static inline
1386struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1387 unsigned int index)
1388{
1389 return &dev->_tx[index];
1390}
1391
1392static inline void netdev_for_each_tx_queue(struct net_device *dev,
1393 void (*f)(struct net_device *,
1394 struct netdev_queue *,
1395 void *),
1396 void *arg)
1397{
1398 unsigned int i;
1399
1400 for (i = 0; i < dev->num_tx_queues; i++)
1401 f(dev, &dev->_tx[i], arg);
1402}
1403
1404/*
1405 * Net namespace inlines
1406 */
1407static inline
1408struct net *dev_net(const struct net_device *dev)
1409{
1410 return read_pnet(&dev->nd_net);
1411}
1412
1413static inline
1414void dev_net_set(struct net_device *dev, struct net *net)
1415{
1416#ifdef CONFIG_NET_NS
1417 release_net(dev->nd_net);
1418 dev->nd_net = hold_net(net);
1419#endif
1420}
1421
1422static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1423{
1424#ifdef CONFIG_NET_DSA_TAG_DSA
1425 if (dev->dsa_ptr != NULL)
1426 return dsa_uses_dsa_tags(dev->dsa_ptr);
1427#endif
1428
1429 return 0;
1430}
1431
1432static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1433{
1434#ifdef CONFIG_NET_DSA_TAG_TRAILER
1435 if (dev->dsa_ptr != NULL)
1436 return dsa_uses_trailer_tags(dev->dsa_ptr);
1437#endif
1438
1439 return 0;
1440}
1441
1442/**
1443 * netdev_priv - access network device private data
1444 * @dev: network device
1445 *
1446 * Get network device private data
1447 */
1448static inline void *netdev_priv(const struct net_device *dev)
1449{
1450 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1451}
1452
1453/* Set the sysfs physical device reference for the network logical device
1454 * if set prior to registration will cause a symlink during initialization.
1455 */
1456#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1457
1458/* Set the sysfs device type for the network logical device to allow
1459 * fin grained indentification of different network device types. For
1460 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1461 */
1462#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1463
1464/**
1465 * netif_napi_add - initialize a napi context
1466 * @dev: network device
1467 * @napi: napi context
1468 * @poll: polling function
1469 * @weight: default weight
1470 *
1471 * netif_napi_add() must be used to initialize a napi context prior to calling
1472 * *any* of the other napi related functions.
1473 */
1474void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1475 int (*poll)(struct napi_struct *, int), int weight);
1476
1477/**
1478 * netif_napi_del - remove a napi context
1479 * @napi: napi context
1480 *
1481 * netif_napi_del() removes a napi context from the network device napi list
1482 */
1483void netif_napi_del(struct napi_struct *napi);
1484
1485struct napi_gro_cb {
1486 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1487 void *frag0;
1488
1489 /* Length of frag0. */
1490 unsigned int frag0_len;
1491
1492 /* This indicates where we are processing relative to skb->data. */
1493 int data_offset;
1494
1495 /* This is non-zero if the packet may be of the same flow. */
1496 int same_flow;
1497
1498 /* This is non-zero if the packet cannot be merged with the new skb. */
1499 int flush;
1500
1501 /* Number of segments aggregated. */
1502 int count;
1503
1504 /* Free the skb? */
1505 int free;
1506#define NAPI_GRO_FREE 1
1507#define NAPI_GRO_FREE_STOLEN_HEAD 2
1508};
1509
1510#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1511
1512struct packet_type {
1513 __be16 type; /* This is really htons(ether_type). */
1514 struct net_device *dev; /* NULL is wildcarded here */
1515 int (*func) (struct sk_buff *,
1516 struct net_device *,
1517 struct packet_type *,
1518 struct net_device *);
1519 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1520 netdev_features_t features);
1521 int (*gso_send_check)(struct sk_buff *skb);
1522 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1523 struct sk_buff *skb);
1524 int (*gro_complete)(struct sk_buff *skb);
1525 bool (*id_match)(struct packet_type *ptype,
1526 struct sock *sk);
1527 void *af_packet_priv;
1528 struct list_head list;
1529};
1530
1531#include <linux/notifier.h>
1532
1533/* netdevice notifier chain. Please remember to update the rtnetlink
1534 * notification exclusion list in rtnetlink_event() when adding new
1535 * types.
1536 */
1537#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1538#define NETDEV_DOWN 0x0002
1539#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1540 detected a hardware crash and restarted
1541 - we can use this eg to kick tcp sessions
1542 once done */
1543#define NETDEV_CHANGE 0x0004 /* Notify device state change */
1544#define NETDEV_REGISTER 0x0005
1545#define NETDEV_UNREGISTER 0x0006
1546#define NETDEV_CHANGEMTU 0x0007
1547#define NETDEV_CHANGEADDR 0x0008
1548#define NETDEV_GOING_DOWN 0x0009
1549#define NETDEV_CHANGENAME 0x000A
1550#define NETDEV_FEAT_CHANGE 0x000B
1551#define NETDEV_BONDING_FAILOVER 0x000C
1552#define NETDEV_PRE_UP 0x000D
1553#define NETDEV_PRE_TYPE_CHANGE 0x000E
1554#define NETDEV_POST_TYPE_CHANGE 0x000F
1555#define NETDEV_POST_INIT 0x0010
1556#define NETDEV_UNREGISTER_BATCH 0x0011
1557#define NETDEV_RELEASE 0x0012
1558#define NETDEV_NOTIFY_PEERS 0x0013
1559#define NETDEV_JOIN 0x0014
1560
1561extern int register_netdevice_notifier(struct notifier_block *nb);
1562extern int unregister_netdevice_notifier(struct notifier_block *nb);
1563extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1564
1565
1566extern rwlock_t dev_base_lock; /* Device list lock */
1567
1568
1569#define for_each_netdev(net, d) \
1570 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1571#define for_each_netdev_reverse(net, d) \
1572 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1573#define for_each_netdev_rcu(net, d) \
1574 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1575#define for_each_netdev_safe(net, d, n) \
1576 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1577#define for_each_netdev_continue(net, d) \
1578 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1579#define for_each_netdev_continue_rcu(net, d) \
1580 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1581#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1582
1583static inline struct net_device *next_net_device(struct net_device *dev)
1584{
1585 struct list_head *lh;
1586 struct net *net;
1587
1588 net = dev_net(dev);
1589 lh = dev->dev_list.next;
1590 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1591}
1592
1593static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1594{
1595 struct list_head *lh;
1596 struct net *net;
1597
1598 net = dev_net(dev);
1599 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1600 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1601}
1602
1603static inline struct net_device *first_net_device(struct net *net)
1604{
1605 return list_empty(&net->dev_base_head) ? NULL :
1606 net_device_entry(net->dev_base_head.next);
1607}
1608
1609static inline struct net_device *first_net_device_rcu(struct net *net)
1610{
1611 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1612
1613 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1614}
1615
1616extern int netdev_boot_setup_check(struct net_device *dev);
1617extern unsigned long netdev_boot_base(const char *prefix, int unit);
1618extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1619 const char *hwaddr);
1620extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1621extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1622extern void dev_add_pack(struct packet_type *pt);
1623extern void dev_remove_pack(struct packet_type *pt);
1624extern void __dev_remove_pack(struct packet_type *pt);
1625
1626extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1627 unsigned short mask);
1628extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1629extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1630extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1631extern int dev_alloc_name(struct net_device *dev, const char *name);
1632extern int dev_open(struct net_device *dev);
1633extern int dev_close(struct net_device *dev);
1634extern void dev_disable_lro(struct net_device *dev);
1635extern int dev_loopback_xmit(struct sk_buff *newskb);
1636extern int dev_queue_xmit(struct sk_buff *skb);
1637extern int register_netdevice(struct net_device *dev);
1638extern void unregister_netdevice_queue(struct net_device *dev,
1639 struct list_head *head);
1640extern void unregister_netdevice_many(struct list_head *head);
1641static inline void unregister_netdevice(struct net_device *dev)
1642{
1643 unregister_netdevice_queue(dev, NULL);
1644}
1645
1646extern int netdev_refcnt_read(const struct net_device *dev);
1647extern void free_netdev(struct net_device *dev);
1648extern void synchronize_net(void);
1649extern int init_dummy_netdev(struct net_device *dev);
1650extern void netdev_resync_ops(struct net_device *dev);
1651
1652extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1653extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1654extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1655extern int dev_restart(struct net_device *dev);
1656#ifdef CONFIG_NETPOLL_TRAP
1657extern int netpoll_trap(void);
1658#endif
1659extern int skb_gro_receive(struct sk_buff **head,
1660 struct sk_buff *skb);
1661extern void skb_gro_reset_offset(struct sk_buff *skb);
1662
1663static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1664{
1665 return NAPI_GRO_CB(skb)->data_offset;
1666}
1667
1668static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1669{
1670 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1671}
1672
1673static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1674{
1675 NAPI_GRO_CB(skb)->data_offset += len;
1676}
1677
1678static inline void *skb_gro_header_fast(struct sk_buff *skb,
1679 unsigned int offset)
1680{
1681 return NAPI_GRO_CB(skb)->frag0 + offset;
1682}
1683
1684static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1685{
1686 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1687}
1688
1689static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1690 unsigned int offset)
1691{
1692 if (!pskb_may_pull(skb, hlen))
1693 return NULL;
1694
1695 NAPI_GRO_CB(skb)->frag0 = NULL;
1696 NAPI_GRO_CB(skb)->frag0_len = 0;
1697 return skb->data + offset;
1698}
1699
1700static inline void *skb_gro_mac_header(struct sk_buff *skb)
1701{
1702 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1703}
1704
1705static inline void *skb_gro_network_header(struct sk_buff *skb)
1706{
1707 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1708 skb_network_offset(skb);
1709}
1710
1711static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1712 unsigned short type,
1713 const void *daddr, const void *saddr,
1714 unsigned int len)
1715{
1716 if (!dev->header_ops || !dev->header_ops->create)
1717 return 0;
1718
1719 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1720}
1721
1722static inline int dev_parse_header(const struct sk_buff *skb,
1723 unsigned char *haddr)
1724{
1725 const struct net_device *dev = skb->dev;
1726
1727 if (!dev->header_ops || !dev->header_ops->parse)
1728 return 0;
1729 return dev->header_ops->parse(skb, haddr);
1730}
1731
1732typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1733extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1734static inline int unregister_gifconf(unsigned int family)
1735{
1736 return register_gifconf(family, NULL);
1737}
1738
1739/*
1740 * Incoming packets are placed on per-cpu queues
1741 */
1742struct softnet_data {
1743 struct Qdisc *output_queue;
1744 struct Qdisc **output_queue_tailp;
1745 struct list_head poll_list;
1746 struct sk_buff *completion_queue;
1747 struct sk_buff_head process_queue;
1748
1749 /* stats */
1750 unsigned int processed;
1751 unsigned int time_squeeze;
1752 unsigned int cpu_collision;
1753 unsigned int received_rps;
1754
1755#ifdef CONFIG_RPS
1756 struct softnet_data *rps_ipi_list;
1757
1758 /* Elements below can be accessed between CPUs for RPS */
1759 struct call_single_data csd ____cacheline_aligned_in_smp;
1760 struct softnet_data *rps_ipi_next;
1761 unsigned int cpu;
1762 unsigned int input_queue_head;
1763 unsigned int input_queue_tail;
1764#endif
1765 unsigned int dropped;
1766 struct sk_buff_head input_pkt_queue;
1767 struct napi_struct backlog;
1768};
1769
1770static inline void input_queue_head_incr(struct softnet_data *sd)
1771{
1772#ifdef CONFIG_RPS
1773 sd->input_queue_head++;
1774#endif
1775}
1776
1777static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1778 unsigned int *qtail)
1779{
1780#ifdef CONFIG_RPS
1781 *qtail = ++sd->input_queue_tail;
1782#endif
1783}
1784
1785DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1786
1787extern void __netif_schedule(struct Qdisc *q);
1788
1789static inline void netif_schedule_queue(struct netdev_queue *txq)
1790{
1791 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1792 __netif_schedule(txq->qdisc);
1793}
1794
1795static inline void netif_tx_schedule_all(struct net_device *dev)
1796{
1797 unsigned int i;
1798
1799 for (i = 0; i < dev->num_tx_queues; i++)
1800 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1801}
1802
1803static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1804{
1805 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1806}
1807
1808/**
1809 * netif_start_queue - allow transmit
1810 * @dev: network device
1811 *
1812 * Allow upper layers to call the device hard_start_xmit routine.
1813 */
1814static inline void netif_start_queue(struct net_device *dev)
1815{
1816 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1817}
1818
1819static inline void netif_tx_start_all_queues(struct net_device *dev)
1820{
1821 unsigned int i;
1822
1823 for (i = 0; i < dev->num_tx_queues; i++) {
1824 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1825 netif_tx_start_queue(txq);
1826 }
1827}
1828
1829static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1830{
1831#ifdef CONFIG_NETPOLL_TRAP
1832 if (netpoll_trap()) {
1833 netif_tx_start_queue(dev_queue);
1834 return;
1835 }
1836#endif
1837 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1838 __netif_schedule(dev_queue->qdisc);
1839}
1840
1841/**
1842 * netif_wake_queue - restart transmit
1843 * @dev: network device
1844 *
1845 * Allow upper layers to call the device hard_start_xmit routine.
1846 * Used for flow control when transmit resources are available.
1847 */
1848static inline void netif_wake_queue(struct net_device *dev)
1849{
1850 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1851}
1852
1853static inline void netif_tx_wake_all_queues(struct net_device *dev)
1854{
1855 unsigned int i;
1856
1857 for (i = 0; i < dev->num_tx_queues; i++) {
1858 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1859 netif_tx_wake_queue(txq);
1860 }
1861}
1862
1863static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1864{
1865 if (WARN_ON(!dev_queue)) {
1866 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1867 return;
1868 }
1869 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1870}
1871
1872/**
1873 * netif_stop_queue - stop transmitted packets
1874 * @dev: network device
1875 *
1876 * Stop upper layers calling the device hard_start_xmit routine.
1877 * Used for flow control when transmit resources are unavailable.
1878 */
1879static inline void netif_stop_queue(struct net_device *dev)
1880{
1881 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1882}
1883
1884static inline void netif_tx_stop_all_queues(struct net_device *dev)
1885{
1886 unsigned int i;
1887
1888 for (i = 0; i < dev->num_tx_queues; i++) {
1889 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1890 netif_tx_stop_queue(txq);
1891 }
1892}
1893
1894static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1895{
1896 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1897}
1898
1899/**
1900 * netif_queue_stopped - test if transmit queue is flowblocked
1901 * @dev: network device
1902 *
1903 * Test if transmit queue on device is currently unable to send.
1904 */
1905static inline bool netif_queue_stopped(const struct net_device *dev)
1906{
1907 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1908}
1909
1910static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1911{
1912 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1913}
1914
1915static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1916{
1917 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1918}
1919
1920static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1921 unsigned int bytes)
1922{
1923#ifdef CONFIG_BQL
1924 dql_queued(&dev_queue->dql, bytes);
1925
1926 if (likely(dql_avail(&dev_queue->dql) >= 0))
1927 return;
1928
1929 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1930
1931 /*
1932 * The XOFF flag must be set before checking the dql_avail below,
1933 * because in netdev_tx_completed_queue we update the dql_completed
1934 * before checking the XOFF flag.
1935 */
1936 smp_mb();
1937
1938 /* check again in case another CPU has just made room avail */
1939 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1940 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1941#endif
1942}
1943
1944static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1945{
1946 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1947}
1948
1949static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1950 unsigned int pkts, unsigned int bytes)
1951{
1952#ifdef CONFIG_BQL
1953 if (unlikely(!bytes))
1954 return;
1955
1956 dql_completed(&dev_queue->dql, bytes);
1957
1958 /*
1959 * Without the memory barrier there is a small possiblity that
1960 * netdev_tx_sent_queue will miss the update and cause the queue to
1961 * be stopped forever
1962 */
1963 smp_mb();
1964
1965 if (dql_avail(&dev_queue->dql) < 0)
1966 return;
1967
1968 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1969 netif_schedule_queue(dev_queue);
1970#endif
1971}
1972
1973static inline void netdev_completed_queue(struct net_device *dev,
1974 unsigned int pkts, unsigned int bytes)
1975{
1976 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1977}
1978
1979static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1980{
1981#ifdef CONFIG_BQL
1982 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1983 dql_reset(&q->dql);
1984#endif
1985}
1986
1987static inline void netdev_reset_queue(struct net_device *dev_queue)
1988{
1989 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1990}
1991
1992/**
1993 * netif_running - test if up
1994 * @dev: network device
1995 *
1996 * Test if the device has been brought up.
1997 */
1998static inline bool netif_running(const struct net_device *dev)
1999{
2000 return test_bit(__LINK_STATE_START, &dev->state);
2001}
2002
2003/*
2004 * Routines to manage the subqueues on a device. We only need start
2005 * stop, and a check if it's stopped. All other device management is
2006 * done at the overall netdevice level.
2007 * Also test the device if we're multiqueue.
2008 */
2009
2010/**
2011 * netif_start_subqueue - allow sending packets on subqueue
2012 * @dev: network device
2013 * @queue_index: sub queue index
2014 *
2015 * Start individual transmit queue of a device with multiple transmit queues.
2016 */
2017static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2018{
2019 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2020
2021 netif_tx_start_queue(txq);
2022}
2023
2024/**
2025 * netif_stop_subqueue - stop sending packets on subqueue
2026 * @dev: network device
2027 * @queue_index: sub queue index
2028 *
2029 * Stop individual transmit queue of a device with multiple transmit queues.
2030 */
2031static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2032{
2033 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2034#ifdef CONFIG_NETPOLL_TRAP
2035 if (netpoll_trap())
2036 return;
2037#endif
2038 netif_tx_stop_queue(txq);
2039}
2040
2041/**
2042 * netif_subqueue_stopped - test status of subqueue
2043 * @dev: network device
2044 * @queue_index: sub queue index
2045 *
2046 * Check individual transmit queue of a device with multiple transmit queues.
2047 */
2048static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2049 u16 queue_index)
2050{
2051 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2052
2053 return netif_tx_queue_stopped(txq);
2054}
2055
2056static inline bool netif_subqueue_stopped(const struct net_device *dev,
2057 struct sk_buff *skb)
2058{
2059 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2060}
2061
2062/**
2063 * netif_wake_subqueue - allow sending packets on subqueue
2064 * @dev: network device
2065 * @queue_index: sub queue index
2066 *
2067 * Resume individual transmit queue of a device with multiple transmit queues.
2068 */
2069static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2070{
2071 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2072#ifdef CONFIG_NETPOLL_TRAP
2073 if (netpoll_trap())
2074 return;
2075#endif
2076 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2077 __netif_schedule(txq->qdisc);
2078}
2079
2080/*
2081 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2082 * as a distribution range limit for the returned value.
2083 */
2084static inline u16 skb_tx_hash(const struct net_device *dev,
2085 const struct sk_buff *skb)
2086{
2087 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2088}
2089
2090/**
2091 * netif_is_multiqueue - test if device has multiple transmit queues
2092 * @dev: network device
2093 *
2094 * Check if device has multiple transmit queues
2095 */
2096static inline bool netif_is_multiqueue(const struct net_device *dev)
2097{
2098 return dev->num_tx_queues > 1;
2099}
2100
2101extern int netif_set_real_num_tx_queues(struct net_device *dev,
2102 unsigned int txq);
2103
2104#ifdef CONFIG_RPS
2105extern int netif_set_real_num_rx_queues(struct net_device *dev,
2106 unsigned int rxq);
2107#else
2108static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2109 unsigned int rxq)
2110{
2111 return 0;
2112}
2113#endif
2114
2115static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2116 const struct net_device *from_dev)
2117{
2118 int err;
2119
2120 err = netif_set_real_num_tx_queues(to_dev,
2121 from_dev->real_num_tx_queues);
2122 if (err)
2123 return err;
2124#ifdef CONFIG_RPS
2125 return netif_set_real_num_rx_queues(to_dev,
2126 from_dev->real_num_rx_queues);
2127#else
2128 return 0;
2129#endif
2130}
2131
2132#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2133extern int netif_get_num_default_rss_queues(void);
2134
2135/* Use this variant when it is known for sure that it
2136 * is executing from hardware interrupt context or with hardware interrupts
2137 * disabled.
2138 */
2139extern void dev_kfree_skb_irq(struct sk_buff *skb);
2140
2141/* Use this variant in places where it could be invoked
2142 * from either hardware interrupt or other context, with hardware interrupts
2143 * either disabled or enabled.
2144 */
2145extern void dev_kfree_skb_any(struct sk_buff *skb);
2146
2147extern int netif_rx(struct sk_buff *skb);
2148extern int netif_rx_ni(struct sk_buff *skb);
2149extern int netif_receive_skb(struct sk_buff *skb);
2150extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2151 struct sk_buff *skb);
2152extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2153extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2154 struct sk_buff *skb);
2155extern void napi_gro_flush(struct napi_struct *napi);
2156extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2157extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2158 struct sk_buff *skb,
2159 gro_result_t ret);
2160extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2161
2162static inline void napi_free_frags(struct napi_struct *napi)
2163{
2164 kfree_skb(napi->skb);
2165 napi->skb = NULL;
2166}
2167
2168extern int netdev_rx_handler_register(struct net_device *dev,
2169 rx_handler_func_t *rx_handler,
2170 void *rx_handler_data);
2171extern void netdev_rx_handler_unregister(struct net_device *dev);
2172
2173extern bool dev_valid_name(const char *name);
2174extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2175extern int dev_ethtool(struct net *net, struct ifreq *);
2176extern unsigned int dev_get_flags(const struct net_device *);
2177extern int __dev_change_flags(struct net_device *, unsigned int flags);
2178extern int dev_change_flags(struct net_device *, unsigned int);
2179extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2180extern int dev_change_name(struct net_device *, const char *);
2181extern int dev_set_alias(struct net_device *, const char *, size_t);
2182extern int dev_change_net_namespace(struct net_device *,
2183 struct net *, const char *);
2184extern int dev_set_mtu(struct net_device *, int);
2185extern void dev_set_group(struct net_device *, int);
2186extern int dev_set_mac_address(struct net_device *,
2187 struct sockaddr *);
2188extern int dev_hard_start_xmit(struct sk_buff *skb,
2189 struct net_device *dev,
2190 struct netdev_queue *txq);
2191extern int dev_forward_skb(struct net_device *dev,
2192 struct sk_buff *skb);
2193
2194extern int netdev_budget;
2195
2196/* Called by rtnetlink.c:rtnl_unlock() */
2197extern void netdev_run_todo(void);
2198
2199/**
2200 * dev_put - release reference to device
2201 * @dev: network device
2202 *
2203 * Release reference to device to allow it to be freed.
2204 */
2205static inline void dev_put(struct net_device *dev)
2206{
2207 this_cpu_dec(*dev->pcpu_refcnt);
2208}
2209
2210/**
2211 * dev_hold - get reference to device
2212 * @dev: network device
2213 *
2214 * Hold reference to device to keep it from being freed.
2215 */
2216static inline void dev_hold(struct net_device *dev)
2217{
2218 this_cpu_inc(*dev->pcpu_refcnt);
2219}
2220
2221/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2222 * and _off may be called from IRQ context, but it is caller
2223 * who is responsible for serialization of these calls.
2224 *
2225 * The name carrier is inappropriate, these functions should really be
2226 * called netif_lowerlayer_*() because they represent the state of any
2227 * kind of lower layer not just hardware media.
2228 */
2229
2230extern void linkwatch_fire_event(struct net_device *dev);
2231extern void linkwatch_forget_dev(struct net_device *dev);
2232
2233/**
2234 * netif_carrier_ok - test if carrier present
2235 * @dev: network device
2236 *
2237 * Check if carrier is present on device
2238 */
2239static inline bool netif_carrier_ok(const struct net_device *dev)
2240{
2241 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2242}
2243
2244extern unsigned long dev_trans_start(struct net_device *dev);
2245
2246extern void __netdev_watchdog_up(struct net_device *dev);
2247
2248extern void netif_carrier_on(struct net_device *dev);
2249
2250extern void netif_carrier_off(struct net_device *dev);
2251
2252extern void netif_notify_peers(struct net_device *dev);
2253
2254/**
2255 * netif_dormant_on - mark device as dormant.
2256 * @dev: network device
2257 *
2258 * Mark device as dormant (as per RFC2863).
2259 *
2260 * The dormant state indicates that the relevant interface is not
2261 * actually in a condition to pass packets (i.e., it is not 'up') but is
2262 * in a "pending" state, waiting for some external event. For "on-
2263 * demand" interfaces, this new state identifies the situation where the
2264 * interface is waiting for events to place it in the up state.
2265 *
2266 */
2267static inline void netif_dormant_on(struct net_device *dev)
2268{
2269 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2270 linkwatch_fire_event(dev);
2271}
2272
2273/**
2274 * netif_dormant_off - set device as not dormant.
2275 * @dev: network device
2276 *
2277 * Device is not in dormant state.
2278 */
2279static inline void netif_dormant_off(struct net_device *dev)
2280{
2281 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2282 linkwatch_fire_event(dev);
2283}
2284
2285/**
2286 * netif_dormant - test if carrier present
2287 * @dev: network device
2288 *
2289 * Check if carrier is present on device
2290 */
2291static inline bool netif_dormant(const struct net_device *dev)
2292{
2293 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2294}
2295
2296
2297/**
2298 * netif_oper_up - test if device is operational
2299 * @dev: network device
2300 *
2301 * Check if carrier is operational
2302 */
2303static inline bool netif_oper_up(const struct net_device *dev)
2304{
2305 return (dev->operstate == IF_OPER_UP ||
2306 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2307}
2308
2309/**
2310 * netif_device_present - is device available or removed
2311 * @dev: network device
2312 *
2313 * Check if device has not been removed from system.
2314 */
2315static inline bool netif_device_present(struct net_device *dev)
2316{
2317 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2318}
2319
2320extern void netif_device_detach(struct net_device *dev);
2321
2322extern void netif_device_attach(struct net_device *dev);
2323
2324/*
2325 * Network interface message level settings
2326 */
2327
2328enum {
2329 NETIF_MSG_DRV = 0x0001,
2330 NETIF_MSG_PROBE = 0x0002,
2331 NETIF_MSG_LINK = 0x0004,
2332 NETIF_MSG_TIMER = 0x0008,
2333 NETIF_MSG_IFDOWN = 0x0010,
2334 NETIF_MSG_IFUP = 0x0020,
2335 NETIF_MSG_RX_ERR = 0x0040,
2336 NETIF_MSG_TX_ERR = 0x0080,
2337 NETIF_MSG_TX_QUEUED = 0x0100,
2338 NETIF_MSG_INTR = 0x0200,
2339 NETIF_MSG_TX_DONE = 0x0400,
2340 NETIF_MSG_RX_STATUS = 0x0800,
2341 NETIF_MSG_PKTDATA = 0x1000,
2342 NETIF_MSG_HW = 0x2000,
2343 NETIF_MSG_WOL = 0x4000,
2344};
2345
2346#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2347#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2348#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2349#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2350#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2351#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2352#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2353#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2354#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2355#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2356#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2357#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2358#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2359#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2360#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2361
2362static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2363{
2364 /* use default */
2365 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2366 return default_msg_enable_bits;
2367 if (debug_value == 0) /* no output */
2368 return 0;
2369 /* set low N bits */
2370 return (1 << debug_value) - 1;
2371}
2372
2373static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2374{
2375 spin_lock(&txq->_xmit_lock);
2376 txq->xmit_lock_owner = cpu;
2377}
2378
2379static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2380{
2381 spin_lock_bh(&txq->_xmit_lock);
2382 txq->xmit_lock_owner = smp_processor_id();
2383}
2384
2385static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2386{
2387 bool ok = spin_trylock(&txq->_xmit_lock);
2388 if (likely(ok))
2389 txq->xmit_lock_owner = smp_processor_id();
2390 return ok;
2391}
2392
2393static inline void __netif_tx_unlock(struct netdev_queue *txq)
2394{
2395 txq->xmit_lock_owner = -1;
2396 spin_unlock(&txq->_xmit_lock);
2397}
2398
2399static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2400{
2401 txq->xmit_lock_owner = -1;
2402 spin_unlock_bh(&txq->_xmit_lock);
2403}
2404
2405static inline void txq_trans_update(struct netdev_queue *txq)
2406{
2407 if (txq->xmit_lock_owner != -1)
2408 txq->trans_start = jiffies;
2409}
2410
2411/**
2412 * netif_tx_lock - grab network device transmit lock
2413 * @dev: network device
2414 *
2415 * Get network device transmit lock
2416 */
2417static inline void netif_tx_lock(struct net_device *dev)
2418{
2419 unsigned int i;
2420 int cpu;
2421
2422 spin_lock(&dev->tx_global_lock);
2423 cpu = smp_processor_id();
2424 for (i = 0; i < dev->num_tx_queues; i++) {
2425 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2426
2427 /* We are the only thread of execution doing a
2428 * freeze, but we have to grab the _xmit_lock in
2429 * order to synchronize with threads which are in
2430 * the ->hard_start_xmit() handler and already
2431 * checked the frozen bit.
2432 */
2433 __netif_tx_lock(txq, cpu);
2434 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2435 __netif_tx_unlock(txq);
2436 }
2437}
2438
2439static inline void netif_tx_lock_bh(struct net_device *dev)
2440{
2441 local_bh_disable();
2442 netif_tx_lock(dev);
2443}
2444
2445static inline void netif_tx_unlock(struct net_device *dev)
2446{
2447 unsigned int i;
2448
2449 for (i = 0; i < dev->num_tx_queues; i++) {
2450 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2451
2452 /* No need to grab the _xmit_lock here. If the
2453 * queue is not stopped for another reason, we
2454 * force a schedule.
2455 */
2456 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2457 netif_schedule_queue(txq);
2458 }
2459 spin_unlock(&dev->tx_global_lock);
2460}
2461
2462static inline void netif_tx_unlock_bh(struct net_device *dev)
2463{
2464 netif_tx_unlock(dev);
2465 local_bh_enable();
2466}
2467
2468#define HARD_TX_LOCK(dev, txq, cpu) { \
2469 if ((dev->features & NETIF_F_LLTX) == 0) { \
2470 __netif_tx_lock(txq, cpu); \
2471 } \
2472}
2473
2474#define HARD_TX_UNLOCK(dev, txq) { \
2475 if ((dev->features & NETIF_F_LLTX) == 0) { \
2476 __netif_tx_unlock(txq); \
2477 } \
2478}
2479
2480static inline void netif_tx_disable(struct net_device *dev)
2481{
2482 unsigned int i;
2483 int cpu;
2484
2485 local_bh_disable();
2486 cpu = smp_processor_id();
2487 for (i = 0; i < dev->num_tx_queues; i++) {
2488 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2489
2490 __netif_tx_lock(txq, cpu);
2491 netif_tx_stop_queue(txq);
2492 __netif_tx_unlock(txq);
2493 }
2494 local_bh_enable();
2495}
2496
2497static inline void netif_addr_lock(struct net_device *dev)
2498{
2499 spin_lock(&dev->addr_list_lock);
2500}
2501
2502static inline void netif_addr_lock_nested(struct net_device *dev)
2503{
2504 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2505}
2506
2507static inline void netif_addr_lock_bh(struct net_device *dev)
2508{
2509 spin_lock_bh(&dev->addr_list_lock);
2510}
2511
2512static inline void netif_addr_unlock(struct net_device *dev)
2513{
2514 spin_unlock(&dev->addr_list_lock);
2515}
2516
2517static inline void netif_addr_unlock_bh(struct net_device *dev)
2518{
2519 spin_unlock_bh(&dev->addr_list_lock);
2520}
2521
2522/*
2523 * dev_addrs walker. Should be used only for read access. Call with
2524 * rcu_read_lock held.
2525 */
2526#define for_each_dev_addr(dev, ha) \
2527 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2528
2529/* These functions live elsewhere (drivers/net/net_init.c, but related) */
2530
2531extern void ether_setup(struct net_device *dev);
2532
2533/* Support for loadable net-drivers */
2534extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2535 void (*setup)(struct net_device *),
2536 unsigned int txqs, unsigned int rxqs);
2537#define alloc_netdev(sizeof_priv, name, setup) \
2538 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2539
2540#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2541 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2542
2543extern int register_netdev(struct net_device *dev);
2544extern void unregister_netdev(struct net_device *dev);
2545
2546/* General hardware address lists handling functions */
2547extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2548 struct netdev_hw_addr_list *from_list,
2549 int addr_len, unsigned char addr_type);
2550extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2551 struct netdev_hw_addr_list *from_list,
2552 int addr_len, unsigned char addr_type);
2553extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2554 struct netdev_hw_addr_list *from_list,
2555 int addr_len);
2556extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2557 struct netdev_hw_addr_list *from_list,
2558 int addr_len);
2559extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2560extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2561
2562/* Functions used for device addresses handling */
2563extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2564 unsigned char addr_type);
2565extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2566 unsigned char addr_type);
2567extern int dev_addr_add_multiple(struct net_device *to_dev,
2568 struct net_device *from_dev,
2569 unsigned char addr_type);
2570extern int dev_addr_del_multiple(struct net_device *to_dev,
2571 struct net_device *from_dev,
2572 unsigned char addr_type);
2573extern void dev_addr_flush(struct net_device *dev);
2574extern int dev_addr_init(struct net_device *dev);
2575
2576/* Functions used for unicast addresses handling */
2577extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2578extern int dev_uc_add_excl(struct net_device *dev, unsigned char *addr);
2579extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2580extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2581extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2582extern void dev_uc_flush(struct net_device *dev);
2583extern void dev_uc_init(struct net_device *dev);
2584
2585/* Functions used for multicast addresses handling */
2586extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2587extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2588extern int dev_mc_add_excl(struct net_device *dev, unsigned char *addr);
2589extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2590extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2591extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2592extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2593extern void dev_mc_flush(struct net_device *dev);
2594extern void dev_mc_init(struct net_device *dev);
2595
2596/* Functions used for secondary unicast and multicast support */
2597extern void dev_set_rx_mode(struct net_device *dev);
2598extern void __dev_set_rx_mode(struct net_device *dev);
2599extern int dev_set_promiscuity(struct net_device *dev, int inc);
2600extern int dev_set_allmulti(struct net_device *dev, int inc);
2601extern void netdev_state_change(struct net_device *dev);
2602extern int netdev_bonding_change(struct net_device *dev,
2603 unsigned long event);
2604extern void netdev_features_change(struct net_device *dev);
2605/* Load a device via the kmod */
2606extern void dev_load(struct net *net, const char *name);
2607extern void dev_mcast_init(void);
2608extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2609 struct rtnl_link_stats64 *storage);
2610extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2611 const struct net_device_stats *netdev_stats);
2612
2613extern int netdev_max_backlog;
2614extern int netdev_tstamp_prequeue;
2615extern int weight_p;
2616extern int bpf_jit_enable;
2617extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2618extern int netdev_set_bond_master(struct net_device *dev,
2619 struct net_device *master);
2620extern int skb_checksum_help(struct sk_buff *skb);
2621extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2622 netdev_features_t features);
2623#ifdef CONFIG_BUG
2624extern void netdev_rx_csum_fault(struct net_device *dev);
2625#else
2626static inline void netdev_rx_csum_fault(struct net_device *dev)
2627{
2628}
2629#endif
2630/* rx skb timestamps */
2631extern void net_enable_timestamp(void);
2632extern void net_disable_timestamp(void);
2633
2634#ifdef CONFIG_PROC_FS
2635extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2636extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2637extern void dev_seq_stop(struct seq_file *seq, void *v);
2638#endif
2639
2640extern int netdev_class_create_file(struct class_attribute *class_attr);
2641extern void netdev_class_remove_file(struct class_attribute *class_attr);
2642
2643extern struct kobj_ns_type_operations net_ns_type_operations;
2644
2645extern const char *netdev_drivername(const struct net_device *dev);
2646
2647extern void linkwatch_run_queue(void);
2648
2649static inline netdev_features_t netdev_get_wanted_features(
2650 struct net_device *dev)
2651{
2652 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2653}
2654netdev_features_t netdev_increment_features(netdev_features_t all,
2655 netdev_features_t one, netdev_features_t mask);
2656int __netdev_update_features(struct net_device *dev);
2657void netdev_update_features(struct net_device *dev);
2658void netdev_change_features(struct net_device *dev);
2659
2660void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2661 struct net_device *dev);
2662
2663netdev_features_t netif_skb_features(struct sk_buff *skb);
2664
2665static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2666{
2667 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2668
2669 /* check flags correspondence */
2670 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2671 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2672 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2673 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2674 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2675 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2676
2677 return (features & feature) == feature;
2678}
2679
2680static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2681{
2682 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2683 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2684}
2685
2686static inline bool netif_needs_gso(struct sk_buff *skb,
2687 netdev_features_t features)
2688{
2689 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2690 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2691 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2692}
2693
2694static inline void netif_set_gso_max_size(struct net_device *dev,
2695 unsigned int size)
2696{
2697 dev->gso_max_size = size;
2698}
2699
2700static inline bool netif_is_bond_slave(struct net_device *dev)
2701{
2702 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2703}
2704
2705static inline bool netif_supports_nofcs(struct net_device *dev)
2706{
2707 return dev->priv_flags & IFF_SUPP_NOFCS;
2708}
2709
2710extern struct pernet_operations __net_initdata loopback_net_ops;
2711
2712/* Logging, debugging and troubleshooting/diagnostic helpers. */
2713
2714/* netdev_printk helpers, similar to dev_printk */
2715
2716static inline const char *netdev_name(const struct net_device *dev)
2717{
2718 if (dev->reg_state != NETREG_REGISTERED)
2719 return "(unregistered net_device)";
2720 return dev->name;
2721}
2722
2723extern int __netdev_printk(const char *level, const struct net_device *dev,
2724 struct va_format *vaf);
2725
2726extern __printf(3, 4)
2727int netdev_printk(const char *level, const struct net_device *dev,
2728 const char *format, ...);
2729extern __printf(2, 3)
2730int netdev_emerg(const struct net_device *dev, const char *format, ...);
2731extern __printf(2, 3)
2732int netdev_alert(const struct net_device *dev, const char *format, ...);
2733extern __printf(2, 3)
2734int netdev_crit(const struct net_device *dev, const char *format, ...);
2735extern __printf(2, 3)
2736int netdev_err(const struct net_device *dev, const char *format, ...);
2737extern __printf(2, 3)
2738int netdev_warn(const struct net_device *dev, const char *format, ...);
2739extern __printf(2, 3)
2740int netdev_notice(const struct net_device *dev, const char *format, ...);
2741extern __printf(2, 3)
2742int netdev_info(const struct net_device *dev, const char *format, ...);
2743
2744#define MODULE_ALIAS_NETDEV(device) \
2745 MODULE_ALIAS("netdev-" device)
2746
2747#if defined(CONFIG_DYNAMIC_DEBUG)
2748#define netdev_dbg(__dev, format, args...) \
2749do { \
2750 dynamic_netdev_dbg(__dev, format, ##args); \
2751} while (0)
2752#elif defined(DEBUG)
2753#define netdev_dbg(__dev, format, args...) \
2754 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2755#else
2756#define netdev_dbg(__dev, format, args...) \
2757({ \
2758 if (0) \
2759 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2760 0; \
2761})
2762#endif
2763
2764#if defined(VERBOSE_DEBUG)
2765#define netdev_vdbg netdev_dbg
2766#else
2767
2768#define netdev_vdbg(dev, format, args...) \
2769({ \
2770 if (0) \
2771 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2772 0; \
2773})
2774#endif
2775
2776/*
2777 * netdev_WARN() acts like dev_printk(), but with the key difference
2778 * of using a WARN/WARN_ON to get the message out, including the
2779 * file/line information and a backtrace.
2780 */
2781#define netdev_WARN(dev, format, args...) \
2782 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2783
2784/* netif printk helpers, similar to netdev_printk */
2785
2786#define netif_printk(priv, type, level, dev, fmt, args...) \
2787do { \
2788 if (netif_msg_##type(priv)) \
2789 netdev_printk(level, (dev), fmt, ##args); \
2790} while (0)
2791
2792#define netif_level(level, priv, type, dev, fmt, args...) \
2793do { \
2794 if (netif_msg_##type(priv)) \
2795 netdev_##level(dev, fmt, ##args); \
2796} while (0)
2797
2798#define netif_emerg(priv, type, dev, fmt, args...) \
2799 netif_level(emerg, priv, type, dev, fmt, ##args)
2800#define netif_alert(priv, type, dev, fmt, args...) \
2801 netif_level(alert, priv, type, dev, fmt, ##args)
2802#define netif_crit(priv, type, dev, fmt, args...) \
2803 netif_level(crit, priv, type, dev, fmt, ##args)
2804#define netif_err(priv, type, dev, fmt, args...) \
2805 netif_level(err, priv, type, dev, fmt, ##args)
2806#define netif_warn(priv, type, dev, fmt, args...) \
2807 netif_level(warn, priv, type, dev, fmt, ##args)
2808#define netif_notice(priv, type, dev, fmt, args...) \
2809 netif_level(notice, priv, type, dev, fmt, ##args)
2810#define netif_info(priv, type, dev, fmt, args...) \
2811 netif_level(info, priv, type, dev, fmt, ##args)
2812
2813#if defined(CONFIG_DYNAMIC_DEBUG)
2814#define netif_dbg(priv, type, netdev, format, args...) \
2815do { \
2816 if (netif_msg_##type(priv)) \
2817 dynamic_netdev_dbg(netdev, format, ##args); \
2818} while (0)
2819#elif defined(DEBUG)
2820#define netif_dbg(priv, type, dev, format, args...) \
2821 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2822#else
2823#define netif_dbg(priv, type, dev, format, args...) \
2824({ \
2825 if (0) \
2826 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2827 0; \
2828})
2829#endif
2830
2831#if defined(VERBOSE_DEBUG)
2832#define netif_vdbg netif_dbg
2833#else
2834#define netif_vdbg(priv, type, dev, format, args...) \
2835({ \
2836 if (0) \
2837 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2838 0; \
2839})
2840#endif
2841
2842#endif /* __KERNEL__ */
2843
2844#endif /* _LINUX_NETDEVICE_H */