at v3.6 39 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <generated/bounds.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_RECLAIMABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_RESERVE = MIGRATE_PCPTYPES, 44#ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59#endif 60 MIGRATE_ISOLATE, /* can't allocate from here */ 61 MIGRATE_TYPES 62}; 63 64#ifdef CONFIG_CMA 65# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 66# define cma_wmark_pages(zone) zone->min_cma_pages 67#else 68# define is_migrate_cma(migratetype) false 69# define cma_wmark_pages(zone) 0 70#endif 71 72#define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76extern int page_group_by_mobility_disabled; 77 78static inline int get_pageblock_migratetype(struct page *page) 79{ 80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 81} 82 83struct free_area { 84 struct list_head free_list[MIGRATE_TYPES]; 85 unsigned long nr_free; 86}; 87 88struct pglist_data; 89 90/* 91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 92 * So add a wild amount of padding here to ensure that they fall into separate 93 * cachelines. There are very few zone structures in the machine, so space 94 * consumption is not a concern here. 95 */ 96#if defined(CONFIG_SMP) 97struct zone_padding { 98 char x[0]; 99} ____cacheline_internodealigned_in_smp; 100#define ZONE_PADDING(name) struct zone_padding name; 101#else 102#define ZONE_PADDING(name) 103#endif 104 105enum zone_stat_item { 106 /* First 128 byte cacheline (assuming 64 bit words) */ 107 NR_FREE_PAGES, 108 NR_LRU_BASE, 109 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 110 NR_ACTIVE_ANON, /* " " " " " */ 111 NR_INACTIVE_FILE, /* " " " " " */ 112 NR_ACTIVE_FILE, /* " " " " " */ 113 NR_UNEVICTABLE, /* " " " " " */ 114 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 115 NR_ANON_PAGES, /* Mapped anonymous pages */ 116 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 117 only modified from process context */ 118 NR_FILE_PAGES, 119 NR_FILE_DIRTY, 120 NR_WRITEBACK, 121 NR_SLAB_RECLAIMABLE, 122 NR_SLAB_UNRECLAIMABLE, 123 NR_PAGETABLE, /* used for pagetables */ 124 NR_KERNEL_STACK, 125 /* Second 128 byte cacheline */ 126 NR_UNSTABLE_NFS, /* NFS unstable pages */ 127 NR_BOUNCE, 128 NR_VMSCAN_WRITE, 129 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 130 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 131 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 132 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 133 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 134 NR_DIRTIED, /* page dirtyings since bootup */ 135 NR_WRITTEN, /* page writings since bootup */ 136#ifdef CONFIG_NUMA 137 NUMA_HIT, /* allocated in intended node */ 138 NUMA_MISS, /* allocated in non intended node */ 139 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 141 NUMA_LOCAL, /* allocation from local node */ 142 NUMA_OTHER, /* allocation from other node */ 143#endif 144 NR_ANON_TRANSPARENT_HUGEPAGES, 145 NR_VM_ZONE_STAT_ITEMS }; 146 147/* 148 * We do arithmetic on the LRU lists in various places in the code, 149 * so it is important to keep the active lists LRU_ACTIVE higher in 150 * the array than the corresponding inactive lists, and to keep 151 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 152 * 153 * This has to be kept in sync with the statistics in zone_stat_item 154 * above and the descriptions in vmstat_text in mm/vmstat.c 155 */ 156#define LRU_BASE 0 157#define LRU_ACTIVE 1 158#define LRU_FILE 2 159 160enum lru_list { 161 LRU_INACTIVE_ANON = LRU_BASE, 162 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 163 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 164 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 165 LRU_UNEVICTABLE, 166 NR_LRU_LISTS 167}; 168 169#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 170 171#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 172 173static inline int is_file_lru(enum lru_list lru) 174{ 175 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 176} 177 178static inline int is_active_lru(enum lru_list lru) 179{ 180 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 181} 182 183static inline int is_unevictable_lru(enum lru_list lru) 184{ 185 return (lru == LRU_UNEVICTABLE); 186} 187 188struct zone_reclaim_stat { 189 /* 190 * The pageout code in vmscan.c keeps track of how many of the 191 * mem/swap backed and file backed pages are referenced. 192 * The higher the rotated/scanned ratio, the more valuable 193 * that cache is. 194 * 195 * The anon LRU stats live in [0], file LRU stats in [1] 196 */ 197 unsigned long recent_rotated[2]; 198 unsigned long recent_scanned[2]; 199}; 200 201struct lruvec { 202 struct list_head lists[NR_LRU_LISTS]; 203 struct zone_reclaim_stat reclaim_stat; 204#ifdef CONFIG_MEMCG 205 struct zone *zone; 206#endif 207}; 208 209/* Mask used at gathering information at once (see memcontrol.c) */ 210#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 211#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 212#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 213 214/* Isolate clean file */ 215#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 216/* Isolate unmapped file */ 217#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 218/* Isolate for asynchronous migration */ 219#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 220 221/* LRU Isolation modes. */ 222typedef unsigned __bitwise__ isolate_mode_t; 223 224enum zone_watermarks { 225 WMARK_MIN, 226 WMARK_LOW, 227 WMARK_HIGH, 228 NR_WMARK 229}; 230 231#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 232#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 233#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 234 235struct per_cpu_pages { 236 int count; /* number of pages in the list */ 237 int high; /* high watermark, emptying needed */ 238 int batch; /* chunk size for buddy add/remove */ 239 240 /* Lists of pages, one per migrate type stored on the pcp-lists */ 241 struct list_head lists[MIGRATE_PCPTYPES]; 242}; 243 244struct per_cpu_pageset { 245 struct per_cpu_pages pcp; 246#ifdef CONFIG_NUMA 247 s8 expire; 248#endif 249#ifdef CONFIG_SMP 250 s8 stat_threshold; 251 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 252#endif 253}; 254 255#endif /* !__GENERATING_BOUNDS.H */ 256 257enum zone_type { 258#ifdef CONFIG_ZONE_DMA 259 /* 260 * ZONE_DMA is used when there are devices that are not able 261 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 262 * carve out the portion of memory that is needed for these devices. 263 * The range is arch specific. 264 * 265 * Some examples 266 * 267 * Architecture Limit 268 * --------------------------- 269 * parisc, ia64, sparc <4G 270 * s390 <2G 271 * arm Various 272 * alpha Unlimited or 0-16MB. 273 * 274 * i386, x86_64 and multiple other arches 275 * <16M. 276 */ 277 ZONE_DMA, 278#endif 279#ifdef CONFIG_ZONE_DMA32 280 /* 281 * x86_64 needs two ZONE_DMAs because it supports devices that are 282 * only able to do DMA to the lower 16M but also 32 bit devices that 283 * can only do DMA areas below 4G. 284 */ 285 ZONE_DMA32, 286#endif 287 /* 288 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 289 * performed on pages in ZONE_NORMAL if the DMA devices support 290 * transfers to all addressable memory. 291 */ 292 ZONE_NORMAL, 293#ifdef CONFIG_HIGHMEM 294 /* 295 * A memory area that is only addressable by the kernel through 296 * mapping portions into its own address space. This is for example 297 * used by i386 to allow the kernel to address the memory beyond 298 * 900MB. The kernel will set up special mappings (page 299 * table entries on i386) for each page that the kernel needs to 300 * access. 301 */ 302 ZONE_HIGHMEM, 303#endif 304 ZONE_MOVABLE, 305 __MAX_NR_ZONES 306}; 307 308#ifndef __GENERATING_BOUNDS_H 309 310/* 311 * When a memory allocation must conform to specific limitations (such 312 * as being suitable for DMA) the caller will pass in hints to the 313 * allocator in the gfp_mask, in the zone modifier bits. These bits 314 * are used to select a priority ordered list of memory zones which 315 * match the requested limits. See gfp_zone() in include/linux/gfp.h 316 */ 317 318#if MAX_NR_ZONES < 2 319#define ZONES_SHIFT 0 320#elif MAX_NR_ZONES <= 2 321#define ZONES_SHIFT 1 322#elif MAX_NR_ZONES <= 4 323#define ZONES_SHIFT 2 324#else 325#error ZONES_SHIFT -- too many zones configured adjust calculation 326#endif 327 328struct zone { 329 /* Fields commonly accessed by the page allocator */ 330 331 /* zone watermarks, access with *_wmark_pages(zone) macros */ 332 unsigned long watermark[NR_WMARK]; 333 334 /* 335 * When free pages are below this point, additional steps are taken 336 * when reading the number of free pages to avoid per-cpu counter 337 * drift allowing watermarks to be breached 338 */ 339 unsigned long percpu_drift_mark; 340 341 /* 342 * We don't know if the memory that we're going to allocate will be freeable 343 * or/and it will be released eventually, so to avoid totally wasting several 344 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 345 * to run OOM on the lower zones despite there's tons of freeable ram 346 * on the higher zones). This array is recalculated at runtime if the 347 * sysctl_lowmem_reserve_ratio sysctl changes. 348 */ 349 unsigned long lowmem_reserve[MAX_NR_ZONES]; 350 351 /* 352 * This is a per-zone reserve of pages that should not be 353 * considered dirtyable memory. 354 */ 355 unsigned long dirty_balance_reserve; 356 357#ifdef CONFIG_NUMA 358 int node; 359 /* 360 * zone reclaim becomes active if more unmapped pages exist. 361 */ 362 unsigned long min_unmapped_pages; 363 unsigned long min_slab_pages; 364#endif 365 struct per_cpu_pageset __percpu *pageset; 366 /* 367 * free areas of different sizes 368 */ 369 spinlock_t lock; 370 int all_unreclaimable; /* All pages pinned */ 371#if defined CONFIG_COMPACTION || defined CONFIG_CMA 372 /* pfn where the last incremental compaction isolated free pages */ 373 unsigned long compact_cached_free_pfn; 374#endif 375#ifdef CONFIG_MEMORY_HOTPLUG 376 /* see spanned/present_pages for more description */ 377 seqlock_t span_seqlock; 378#endif 379#ifdef CONFIG_CMA 380 /* 381 * CMA needs to increase watermark levels during the allocation 382 * process to make sure that the system is not starved. 383 */ 384 unsigned long min_cma_pages; 385#endif 386 struct free_area free_area[MAX_ORDER]; 387 388#ifndef CONFIG_SPARSEMEM 389 /* 390 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 391 * In SPARSEMEM, this map is stored in struct mem_section 392 */ 393 unsigned long *pageblock_flags; 394#endif /* CONFIG_SPARSEMEM */ 395 396#ifdef CONFIG_COMPACTION 397 /* 398 * On compaction failure, 1<<compact_defer_shift compactions 399 * are skipped before trying again. The number attempted since 400 * last failure is tracked with compact_considered. 401 */ 402 unsigned int compact_considered; 403 unsigned int compact_defer_shift; 404 int compact_order_failed; 405#endif 406 407 ZONE_PADDING(_pad1_) 408 409 /* Fields commonly accessed by the page reclaim scanner */ 410 spinlock_t lru_lock; 411 struct lruvec lruvec; 412 413 unsigned long pages_scanned; /* since last reclaim */ 414 unsigned long flags; /* zone flags, see below */ 415 416 /* Zone statistics */ 417 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 418 419 /* 420 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 421 * this zone's LRU. Maintained by the pageout code. 422 */ 423 unsigned int inactive_ratio; 424 425 426 ZONE_PADDING(_pad2_) 427 /* Rarely used or read-mostly fields */ 428 429 /* 430 * wait_table -- the array holding the hash table 431 * wait_table_hash_nr_entries -- the size of the hash table array 432 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 433 * 434 * The purpose of all these is to keep track of the people 435 * waiting for a page to become available and make them 436 * runnable again when possible. The trouble is that this 437 * consumes a lot of space, especially when so few things 438 * wait on pages at a given time. So instead of using 439 * per-page waitqueues, we use a waitqueue hash table. 440 * 441 * The bucket discipline is to sleep on the same queue when 442 * colliding and wake all in that wait queue when removing. 443 * When something wakes, it must check to be sure its page is 444 * truly available, a la thundering herd. The cost of a 445 * collision is great, but given the expected load of the 446 * table, they should be so rare as to be outweighed by the 447 * benefits from the saved space. 448 * 449 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 450 * primary users of these fields, and in mm/page_alloc.c 451 * free_area_init_core() performs the initialization of them. 452 */ 453 wait_queue_head_t * wait_table; 454 unsigned long wait_table_hash_nr_entries; 455 unsigned long wait_table_bits; 456 457 /* 458 * Discontig memory support fields. 459 */ 460 struct pglist_data *zone_pgdat; 461 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 462 unsigned long zone_start_pfn; 463 464 /* 465 * zone_start_pfn, spanned_pages and present_pages are all 466 * protected by span_seqlock. It is a seqlock because it has 467 * to be read outside of zone->lock, and it is done in the main 468 * allocator path. But, it is written quite infrequently. 469 * 470 * The lock is declared along with zone->lock because it is 471 * frequently read in proximity to zone->lock. It's good to 472 * give them a chance of being in the same cacheline. 473 */ 474 unsigned long spanned_pages; /* total size, including holes */ 475 unsigned long present_pages; /* amount of memory (excluding holes) */ 476 477 /* 478 * rarely used fields: 479 */ 480 const char *name; 481#ifdef CONFIG_MEMORY_ISOLATION 482 /* 483 * the number of MIGRATE_ISOLATE *pageblock*. 484 * We need this for free page counting. Look at zone_watermark_ok_safe. 485 * It's protected by zone->lock 486 */ 487 int nr_pageblock_isolate; 488#endif 489} ____cacheline_internodealigned_in_smp; 490 491typedef enum { 492 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 493 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 494 ZONE_CONGESTED, /* zone has many dirty pages backed by 495 * a congested BDI 496 */ 497} zone_flags_t; 498 499static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 500{ 501 set_bit(flag, &zone->flags); 502} 503 504static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 505{ 506 return test_and_set_bit(flag, &zone->flags); 507} 508 509static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 510{ 511 clear_bit(flag, &zone->flags); 512} 513 514static inline int zone_is_reclaim_congested(const struct zone *zone) 515{ 516 return test_bit(ZONE_CONGESTED, &zone->flags); 517} 518 519static inline int zone_is_reclaim_locked(const struct zone *zone) 520{ 521 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 522} 523 524static inline int zone_is_oom_locked(const struct zone *zone) 525{ 526 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 527} 528 529/* 530 * The "priority" of VM scanning is how much of the queues we will scan in one 531 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 532 * queues ("queue_length >> 12") during an aging round. 533 */ 534#define DEF_PRIORITY 12 535 536/* Maximum number of zones on a zonelist */ 537#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 538 539#ifdef CONFIG_NUMA 540 541/* 542 * The NUMA zonelists are doubled because we need zonelists that restrict the 543 * allocations to a single node for GFP_THISNODE. 544 * 545 * [0] : Zonelist with fallback 546 * [1] : No fallback (GFP_THISNODE) 547 */ 548#define MAX_ZONELISTS 2 549 550 551/* 552 * We cache key information from each zonelist for smaller cache 553 * footprint when scanning for free pages in get_page_from_freelist(). 554 * 555 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 556 * up short of free memory since the last time (last_fullzone_zap) 557 * we zero'd fullzones. 558 * 2) The array z_to_n[] maps each zone in the zonelist to its node 559 * id, so that we can efficiently evaluate whether that node is 560 * set in the current tasks mems_allowed. 561 * 562 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 563 * indexed by a zones offset in the zonelist zones[] array. 564 * 565 * The get_page_from_freelist() routine does two scans. During the 566 * first scan, we skip zones whose corresponding bit in 'fullzones' 567 * is set or whose corresponding node in current->mems_allowed (which 568 * comes from cpusets) is not set. During the second scan, we bypass 569 * this zonelist_cache, to ensure we look methodically at each zone. 570 * 571 * Once per second, we zero out (zap) fullzones, forcing us to 572 * reconsider nodes that might have regained more free memory. 573 * The field last_full_zap is the time we last zapped fullzones. 574 * 575 * This mechanism reduces the amount of time we waste repeatedly 576 * reexaming zones for free memory when they just came up low on 577 * memory momentarilly ago. 578 * 579 * The zonelist_cache struct members logically belong in struct 580 * zonelist. However, the mempolicy zonelists constructed for 581 * MPOL_BIND are intentionally variable length (and usually much 582 * shorter). A general purpose mechanism for handling structs with 583 * multiple variable length members is more mechanism than we want 584 * here. We resort to some special case hackery instead. 585 * 586 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 587 * part because they are shorter), so we put the fixed length stuff 588 * at the front of the zonelist struct, ending in a variable length 589 * zones[], as is needed by MPOL_BIND. 590 * 591 * Then we put the optional zonelist cache on the end of the zonelist 592 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 593 * the fixed length portion at the front of the struct. This pointer 594 * both enables us to find the zonelist cache, and in the case of 595 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 596 * to know that the zonelist cache is not there. 597 * 598 * The end result is that struct zonelists come in two flavors: 599 * 1) The full, fixed length version, shown below, and 600 * 2) The custom zonelists for MPOL_BIND. 601 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 602 * 603 * Even though there may be multiple CPU cores on a node modifying 604 * fullzones or last_full_zap in the same zonelist_cache at the same 605 * time, we don't lock it. This is just hint data - if it is wrong now 606 * and then, the allocator will still function, perhaps a bit slower. 607 */ 608 609 610struct zonelist_cache { 611 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 612 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 613 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 614}; 615#else 616#define MAX_ZONELISTS 1 617struct zonelist_cache; 618#endif 619 620/* 621 * This struct contains information about a zone in a zonelist. It is stored 622 * here to avoid dereferences into large structures and lookups of tables 623 */ 624struct zoneref { 625 struct zone *zone; /* Pointer to actual zone */ 626 int zone_idx; /* zone_idx(zoneref->zone) */ 627}; 628 629/* 630 * One allocation request operates on a zonelist. A zonelist 631 * is a list of zones, the first one is the 'goal' of the 632 * allocation, the other zones are fallback zones, in decreasing 633 * priority. 634 * 635 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 636 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 637 * * 638 * To speed the reading of the zonelist, the zonerefs contain the zone index 639 * of the entry being read. Helper functions to access information given 640 * a struct zoneref are 641 * 642 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 643 * zonelist_zone_idx() - Return the index of the zone for an entry 644 * zonelist_node_idx() - Return the index of the node for an entry 645 */ 646struct zonelist { 647 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 648 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 649#ifdef CONFIG_NUMA 650 struct zonelist_cache zlcache; // optional ... 651#endif 652}; 653 654#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 655struct node_active_region { 656 unsigned long start_pfn; 657 unsigned long end_pfn; 658 int nid; 659}; 660#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 661 662#ifndef CONFIG_DISCONTIGMEM 663/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 664extern struct page *mem_map; 665#endif 666 667/* 668 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 669 * (mostly NUMA machines?) to denote a higher-level memory zone than the 670 * zone denotes. 671 * 672 * On NUMA machines, each NUMA node would have a pg_data_t to describe 673 * it's memory layout. 674 * 675 * Memory statistics and page replacement data structures are maintained on a 676 * per-zone basis. 677 */ 678struct bootmem_data; 679typedef struct pglist_data { 680 struct zone node_zones[MAX_NR_ZONES]; 681 struct zonelist node_zonelists[MAX_ZONELISTS]; 682 int nr_zones; 683#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 684 struct page *node_mem_map; 685#ifdef CONFIG_MEMCG 686 struct page_cgroup *node_page_cgroup; 687#endif 688#endif 689#ifndef CONFIG_NO_BOOTMEM 690 struct bootmem_data *bdata; 691#endif 692#ifdef CONFIG_MEMORY_HOTPLUG 693 /* 694 * Must be held any time you expect node_start_pfn, node_present_pages 695 * or node_spanned_pages stay constant. Holding this will also 696 * guarantee that any pfn_valid() stays that way. 697 * 698 * Nests above zone->lock and zone->size_seqlock. 699 */ 700 spinlock_t node_size_lock; 701#endif 702 unsigned long node_start_pfn; 703 unsigned long node_present_pages; /* total number of physical pages */ 704 unsigned long node_spanned_pages; /* total size of physical page 705 range, including holes */ 706 int node_id; 707 wait_queue_head_t kswapd_wait; 708 wait_queue_head_t pfmemalloc_wait; 709 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */ 710 int kswapd_max_order; 711 enum zone_type classzone_idx; 712} pg_data_t; 713 714#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 715#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 716#ifdef CONFIG_FLAT_NODE_MEM_MAP 717#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 718#else 719#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 720#endif 721#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 722 723#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 724 725#define node_end_pfn(nid) ({\ 726 pg_data_t *__pgdat = NODE_DATA(nid);\ 727 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\ 728}) 729 730#include <linux/memory_hotplug.h> 731 732extern struct mutex zonelists_mutex; 733void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 734void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 735bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 736 int classzone_idx, int alloc_flags); 737bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 738 int classzone_idx, int alloc_flags); 739enum memmap_context { 740 MEMMAP_EARLY, 741 MEMMAP_HOTPLUG, 742}; 743extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 744 unsigned long size, 745 enum memmap_context context); 746 747extern void lruvec_init(struct lruvec *lruvec, struct zone *zone); 748 749static inline struct zone *lruvec_zone(struct lruvec *lruvec) 750{ 751#ifdef CONFIG_MEMCG 752 return lruvec->zone; 753#else 754 return container_of(lruvec, struct zone, lruvec); 755#endif 756} 757 758#ifdef CONFIG_HAVE_MEMORY_PRESENT 759void memory_present(int nid, unsigned long start, unsigned long end); 760#else 761static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 762#endif 763 764#ifdef CONFIG_HAVE_MEMORYLESS_NODES 765int local_memory_node(int node_id); 766#else 767static inline int local_memory_node(int node_id) { return node_id; }; 768#endif 769 770#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 771unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 772#endif 773 774/* 775 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 776 */ 777#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 778 779static inline int populated_zone(struct zone *zone) 780{ 781 return (!!zone->present_pages); 782} 783 784extern int movable_zone; 785 786static inline int zone_movable_is_highmem(void) 787{ 788#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 789 return movable_zone == ZONE_HIGHMEM; 790#else 791 return 0; 792#endif 793} 794 795static inline int is_highmem_idx(enum zone_type idx) 796{ 797#ifdef CONFIG_HIGHMEM 798 return (idx == ZONE_HIGHMEM || 799 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 800#else 801 return 0; 802#endif 803} 804 805static inline int is_normal_idx(enum zone_type idx) 806{ 807 return (idx == ZONE_NORMAL); 808} 809 810/** 811 * is_highmem - helper function to quickly check if a struct zone is a 812 * highmem zone or not. This is an attempt to keep references 813 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 814 * @zone - pointer to struct zone variable 815 */ 816static inline int is_highmem(struct zone *zone) 817{ 818#ifdef CONFIG_HIGHMEM 819 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 820 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 821 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 822 zone_movable_is_highmem()); 823#else 824 return 0; 825#endif 826} 827 828static inline int is_normal(struct zone *zone) 829{ 830 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 831} 832 833static inline int is_dma32(struct zone *zone) 834{ 835#ifdef CONFIG_ZONE_DMA32 836 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 837#else 838 return 0; 839#endif 840} 841 842static inline int is_dma(struct zone *zone) 843{ 844#ifdef CONFIG_ZONE_DMA 845 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 846#else 847 return 0; 848#endif 849} 850 851/* These two functions are used to setup the per zone pages min values */ 852struct ctl_table; 853int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 854 void __user *, size_t *, loff_t *); 855extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 856int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 857 void __user *, size_t *, loff_t *); 858int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 859 void __user *, size_t *, loff_t *); 860int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 861 void __user *, size_t *, loff_t *); 862int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 863 void __user *, size_t *, loff_t *); 864 865extern int numa_zonelist_order_handler(struct ctl_table *, int, 866 void __user *, size_t *, loff_t *); 867extern char numa_zonelist_order[]; 868#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 869 870#ifndef CONFIG_NEED_MULTIPLE_NODES 871 872extern struct pglist_data contig_page_data; 873#define NODE_DATA(nid) (&contig_page_data) 874#define NODE_MEM_MAP(nid) mem_map 875 876#else /* CONFIG_NEED_MULTIPLE_NODES */ 877 878#include <asm/mmzone.h> 879 880#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 881 882extern struct pglist_data *first_online_pgdat(void); 883extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 884extern struct zone *next_zone(struct zone *zone); 885 886/** 887 * for_each_online_pgdat - helper macro to iterate over all online nodes 888 * @pgdat - pointer to a pg_data_t variable 889 */ 890#define for_each_online_pgdat(pgdat) \ 891 for (pgdat = first_online_pgdat(); \ 892 pgdat; \ 893 pgdat = next_online_pgdat(pgdat)) 894/** 895 * for_each_zone - helper macro to iterate over all memory zones 896 * @zone - pointer to struct zone variable 897 * 898 * The user only needs to declare the zone variable, for_each_zone 899 * fills it in. 900 */ 901#define for_each_zone(zone) \ 902 for (zone = (first_online_pgdat())->node_zones; \ 903 zone; \ 904 zone = next_zone(zone)) 905 906#define for_each_populated_zone(zone) \ 907 for (zone = (first_online_pgdat())->node_zones; \ 908 zone; \ 909 zone = next_zone(zone)) \ 910 if (!populated_zone(zone)) \ 911 ; /* do nothing */ \ 912 else 913 914static inline struct zone *zonelist_zone(struct zoneref *zoneref) 915{ 916 return zoneref->zone; 917} 918 919static inline int zonelist_zone_idx(struct zoneref *zoneref) 920{ 921 return zoneref->zone_idx; 922} 923 924static inline int zonelist_node_idx(struct zoneref *zoneref) 925{ 926#ifdef CONFIG_NUMA 927 /* zone_to_nid not available in this context */ 928 return zoneref->zone->node; 929#else 930 return 0; 931#endif /* CONFIG_NUMA */ 932} 933 934/** 935 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 936 * @z - The cursor used as a starting point for the search 937 * @highest_zoneidx - The zone index of the highest zone to return 938 * @nodes - An optional nodemask to filter the zonelist with 939 * @zone - The first suitable zone found is returned via this parameter 940 * 941 * This function returns the next zone at or below a given zone index that is 942 * within the allowed nodemask using a cursor as the starting point for the 943 * search. The zoneref returned is a cursor that represents the current zone 944 * being examined. It should be advanced by one before calling 945 * next_zones_zonelist again. 946 */ 947struct zoneref *next_zones_zonelist(struct zoneref *z, 948 enum zone_type highest_zoneidx, 949 nodemask_t *nodes, 950 struct zone **zone); 951 952/** 953 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 954 * @zonelist - The zonelist to search for a suitable zone 955 * @highest_zoneidx - The zone index of the highest zone to return 956 * @nodes - An optional nodemask to filter the zonelist with 957 * @zone - The first suitable zone found is returned via this parameter 958 * 959 * This function returns the first zone at or below a given zone index that is 960 * within the allowed nodemask. The zoneref returned is a cursor that can be 961 * used to iterate the zonelist with next_zones_zonelist by advancing it by 962 * one before calling. 963 */ 964static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 965 enum zone_type highest_zoneidx, 966 nodemask_t *nodes, 967 struct zone **zone) 968{ 969 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 970 zone); 971} 972 973/** 974 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 975 * @zone - The current zone in the iterator 976 * @z - The current pointer within zonelist->zones being iterated 977 * @zlist - The zonelist being iterated 978 * @highidx - The zone index of the highest zone to return 979 * @nodemask - Nodemask allowed by the allocator 980 * 981 * This iterator iterates though all zones at or below a given zone index and 982 * within a given nodemask 983 */ 984#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 985 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 986 zone; \ 987 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 988 989/** 990 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 991 * @zone - The current zone in the iterator 992 * @z - The current pointer within zonelist->zones being iterated 993 * @zlist - The zonelist being iterated 994 * @highidx - The zone index of the highest zone to return 995 * 996 * This iterator iterates though all zones at or below a given zone index. 997 */ 998#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 999 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1000 1001#ifdef CONFIG_SPARSEMEM 1002#include <asm/sparsemem.h> 1003#endif 1004 1005#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1006 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1007static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1008{ 1009 return 0; 1010} 1011#endif 1012 1013#ifdef CONFIG_FLATMEM 1014#define pfn_to_nid(pfn) (0) 1015#endif 1016 1017#ifdef CONFIG_SPARSEMEM 1018 1019/* 1020 * SECTION_SHIFT #bits space required to store a section # 1021 * 1022 * PA_SECTION_SHIFT physical address to/from section number 1023 * PFN_SECTION_SHIFT pfn to/from section number 1024 */ 1025#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 1026 1027#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1028#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1029 1030#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1031 1032#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1033#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1034 1035#define SECTION_BLOCKFLAGS_BITS \ 1036 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1037 1038#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1039#error Allocator MAX_ORDER exceeds SECTION_SIZE 1040#endif 1041 1042#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1043#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1044 1045#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1046#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1047 1048struct page; 1049struct page_cgroup; 1050struct mem_section { 1051 /* 1052 * This is, logically, a pointer to an array of struct 1053 * pages. However, it is stored with some other magic. 1054 * (see sparse.c::sparse_init_one_section()) 1055 * 1056 * Additionally during early boot we encode node id of 1057 * the location of the section here to guide allocation. 1058 * (see sparse.c::memory_present()) 1059 * 1060 * Making it a UL at least makes someone do a cast 1061 * before using it wrong. 1062 */ 1063 unsigned long section_mem_map; 1064 1065 /* See declaration of similar field in struct zone */ 1066 unsigned long *pageblock_flags; 1067#ifdef CONFIG_MEMCG 1068 /* 1069 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1070 * section. (see memcontrol.h/page_cgroup.h about this.) 1071 */ 1072 struct page_cgroup *page_cgroup; 1073 unsigned long pad; 1074#endif 1075}; 1076 1077#ifdef CONFIG_SPARSEMEM_EXTREME 1078#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1079#else 1080#define SECTIONS_PER_ROOT 1 1081#endif 1082 1083#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1084#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1085#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1086 1087#ifdef CONFIG_SPARSEMEM_EXTREME 1088extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1089#else 1090extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1091#endif 1092 1093static inline struct mem_section *__nr_to_section(unsigned long nr) 1094{ 1095 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1096 return NULL; 1097 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1098} 1099extern int __section_nr(struct mem_section* ms); 1100extern unsigned long usemap_size(void); 1101 1102/* 1103 * We use the lower bits of the mem_map pointer to store 1104 * a little bit of information. There should be at least 1105 * 3 bits here due to 32-bit alignment. 1106 */ 1107#define SECTION_MARKED_PRESENT (1UL<<0) 1108#define SECTION_HAS_MEM_MAP (1UL<<1) 1109#define SECTION_MAP_LAST_BIT (1UL<<2) 1110#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1111#define SECTION_NID_SHIFT 2 1112 1113static inline struct page *__section_mem_map_addr(struct mem_section *section) 1114{ 1115 unsigned long map = section->section_mem_map; 1116 map &= SECTION_MAP_MASK; 1117 return (struct page *)map; 1118} 1119 1120static inline int present_section(struct mem_section *section) 1121{ 1122 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1123} 1124 1125static inline int present_section_nr(unsigned long nr) 1126{ 1127 return present_section(__nr_to_section(nr)); 1128} 1129 1130static inline int valid_section(struct mem_section *section) 1131{ 1132 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1133} 1134 1135static inline int valid_section_nr(unsigned long nr) 1136{ 1137 return valid_section(__nr_to_section(nr)); 1138} 1139 1140static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1141{ 1142 return __nr_to_section(pfn_to_section_nr(pfn)); 1143} 1144 1145#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1146static inline int pfn_valid(unsigned long pfn) 1147{ 1148 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1149 return 0; 1150 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1151} 1152#endif 1153 1154static inline int pfn_present(unsigned long pfn) 1155{ 1156 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1157 return 0; 1158 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1159} 1160 1161/* 1162 * These are _only_ used during initialisation, therefore they 1163 * can use __initdata ... They could have names to indicate 1164 * this restriction. 1165 */ 1166#ifdef CONFIG_NUMA 1167#define pfn_to_nid(pfn) \ 1168({ \ 1169 unsigned long __pfn_to_nid_pfn = (pfn); \ 1170 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1171}) 1172#else 1173#define pfn_to_nid(pfn) (0) 1174#endif 1175 1176#define early_pfn_valid(pfn) pfn_valid(pfn) 1177void sparse_init(void); 1178#else 1179#define sparse_init() do {} while (0) 1180#define sparse_index_init(_sec, _nid) do {} while (0) 1181#endif /* CONFIG_SPARSEMEM */ 1182 1183#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1184bool early_pfn_in_nid(unsigned long pfn, int nid); 1185#else 1186#define early_pfn_in_nid(pfn, nid) (1) 1187#endif 1188 1189#ifndef early_pfn_valid 1190#define early_pfn_valid(pfn) (1) 1191#endif 1192 1193void memory_present(int nid, unsigned long start, unsigned long end); 1194unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1195 1196/* 1197 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1198 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1199 * pfn_valid_within() should be used in this case; we optimise this away 1200 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1201 */ 1202#ifdef CONFIG_HOLES_IN_ZONE 1203#define pfn_valid_within(pfn) pfn_valid(pfn) 1204#else 1205#define pfn_valid_within(pfn) (1) 1206#endif 1207 1208#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1209/* 1210 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1211 * associated with it or not. In FLATMEM, it is expected that holes always 1212 * have valid memmap as long as there is valid PFNs either side of the hole. 1213 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1214 * entire section. 1215 * 1216 * However, an ARM, and maybe other embedded architectures in the future 1217 * free memmap backing holes to save memory on the assumption the memmap is 1218 * never used. The page_zone linkages are then broken even though pfn_valid() 1219 * returns true. A walker of the full memmap must then do this additional 1220 * check to ensure the memmap they are looking at is sane by making sure 1221 * the zone and PFN linkages are still valid. This is expensive, but walkers 1222 * of the full memmap are extremely rare. 1223 */ 1224int memmap_valid_within(unsigned long pfn, 1225 struct page *page, struct zone *zone); 1226#else 1227static inline int memmap_valid_within(unsigned long pfn, 1228 struct page *page, struct zone *zone) 1229{ 1230 return 1; 1231} 1232#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1233 1234#endif /* !__GENERATING_BOUNDS.H */ 1235#endif /* !__ASSEMBLY__ */ 1236#endif /* _LINUX_MMZONE_H */