at v3.6 44 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/module.h> 18#include <linux/blkpg.h> 19#include <linux/magic.h> 20#include <linux/buffer_head.h> 21#include <linux/swap.h> 22#include <linux/pagevec.h> 23#include <linux/writeback.h> 24#include <linux/mpage.h> 25#include <linux/mount.h> 26#include <linux/uio.h> 27#include <linux/namei.h> 28#include <linux/log2.h> 29#include <linux/cleancache.h> 30#include <asm/uaccess.h> 31#include "internal.h" 32 33struct bdev_inode { 34 struct block_device bdev; 35 struct inode vfs_inode; 36}; 37 38static const struct address_space_operations def_blk_aops; 39 40static inline struct bdev_inode *BDEV_I(struct inode *inode) 41{ 42 return container_of(inode, struct bdev_inode, vfs_inode); 43} 44 45inline struct block_device *I_BDEV(struct inode *inode) 46{ 47 return &BDEV_I(inode)->bdev; 48} 49EXPORT_SYMBOL(I_BDEV); 50 51/* 52 * Move the inode from its current bdi to a new bdi. If the inode is dirty we 53 * need to move it onto the dirty list of @dst so that the inode is always on 54 * the right list. 55 */ 56static void bdev_inode_switch_bdi(struct inode *inode, 57 struct backing_dev_info *dst) 58{ 59 struct backing_dev_info *old = inode->i_data.backing_dev_info; 60 61 if (unlikely(dst == old)) /* deadlock avoidance */ 62 return; 63 bdi_lock_two(&old->wb, &dst->wb); 64 spin_lock(&inode->i_lock); 65 inode->i_data.backing_dev_info = dst; 66 if (inode->i_state & I_DIRTY) 67 list_move(&inode->i_wb_list, &dst->wb.b_dirty); 68 spin_unlock(&inode->i_lock); 69 spin_unlock(&old->wb.list_lock); 70 spin_unlock(&dst->wb.list_lock); 71} 72 73sector_t blkdev_max_block(struct block_device *bdev) 74{ 75 sector_t retval = ~((sector_t)0); 76 loff_t sz = i_size_read(bdev->bd_inode); 77 78 if (sz) { 79 unsigned int size = block_size(bdev); 80 unsigned int sizebits = blksize_bits(size); 81 retval = (sz >> sizebits); 82 } 83 return retval; 84} 85 86/* Kill _all_ buffers and pagecache , dirty or not.. */ 87void kill_bdev(struct block_device *bdev) 88{ 89 struct address_space *mapping = bdev->bd_inode->i_mapping; 90 91 if (mapping->nrpages == 0) 92 return; 93 94 invalidate_bh_lrus(); 95 truncate_inode_pages(mapping, 0); 96} 97EXPORT_SYMBOL(kill_bdev); 98 99/* Invalidate clean unused buffers and pagecache. */ 100void invalidate_bdev(struct block_device *bdev) 101{ 102 struct address_space *mapping = bdev->bd_inode->i_mapping; 103 104 if (mapping->nrpages == 0) 105 return; 106 107 invalidate_bh_lrus(); 108 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 109 invalidate_mapping_pages(mapping, 0, -1); 110 /* 99% of the time, we don't need to flush the cleancache on the bdev. 111 * But, for the strange corners, lets be cautious 112 */ 113 cleancache_invalidate_inode(mapping); 114} 115EXPORT_SYMBOL(invalidate_bdev); 116 117int set_blocksize(struct block_device *bdev, int size) 118{ 119 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 120 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 121 return -EINVAL; 122 123 /* Size cannot be smaller than the size supported by the device */ 124 if (size < bdev_logical_block_size(bdev)) 125 return -EINVAL; 126 127 /* Don't change the size if it is same as current */ 128 if (bdev->bd_block_size != size) { 129 sync_blockdev(bdev); 130 bdev->bd_block_size = size; 131 bdev->bd_inode->i_blkbits = blksize_bits(size); 132 kill_bdev(bdev); 133 } 134 return 0; 135} 136 137EXPORT_SYMBOL(set_blocksize); 138 139int sb_set_blocksize(struct super_block *sb, int size) 140{ 141 if (set_blocksize(sb->s_bdev, size)) 142 return 0; 143 /* If we get here, we know size is power of two 144 * and it's value is between 512 and PAGE_SIZE */ 145 sb->s_blocksize = size; 146 sb->s_blocksize_bits = blksize_bits(size); 147 return sb->s_blocksize; 148} 149 150EXPORT_SYMBOL(sb_set_blocksize); 151 152int sb_min_blocksize(struct super_block *sb, int size) 153{ 154 int minsize = bdev_logical_block_size(sb->s_bdev); 155 if (size < minsize) 156 size = minsize; 157 return sb_set_blocksize(sb, size); 158} 159 160EXPORT_SYMBOL(sb_min_blocksize); 161 162static int 163blkdev_get_block(struct inode *inode, sector_t iblock, 164 struct buffer_head *bh, int create) 165{ 166 if (iblock >= blkdev_max_block(I_BDEV(inode))) { 167 if (create) 168 return -EIO; 169 170 /* 171 * for reads, we're just trying to fill a partial page. 172 * return a hole, they will have to call get_block again 173 * before they can fill it, and they will get -EIO at that 174 * time 175 */ 176 return 0; 177 } 178 bh->b_bdev = I_BDEV(inode); 179 bh->b_blocknr = iblock; 180 set_buffer_mapped(bh); 181 return 0; 182} 183 184static int 185blkdev_get_blocks(struct inode *inode, sector_t iblock, 186 struct buffer_head *bh, int create) 187{ 188 sector_t end_block = blkdev_max_block(I_BDEV(inode)); 189 unsigned long max_blocks = bh->b_size >> inode->i_blkbits; 190 191 if ((iblock + max_blocks) > end_block) { 192 max_blocks = end_block - iblock; 193 if ((long)max_blocks <= 0) { 194 if (create) 195 return -EIO; /* write fully beyond EOF */ 196 /* 197 * It is a read which is fully beyond EOF. We return 198 * a !buffer_mapped buffer 199 */ 200 max_blocks = 0; 201 } 202 } 203 204 bh->b_bdev = I_BDEV(inode); 205 bh->b_blocknr = iblock; 206 bh->b_size = max_blocks << inode->i_blkbits; 207 if (max_blocks) 208 set_buffer_mapped(bh); 209 return 0; 210} 211 212static ssize_t 213blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 214 loff_t offset, unsigned long nr_segs) 215{ 216 struct file *file = iocb->ki_filp; 217 struct inode *inode = file->f_mapping->host; 218 219 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset, 220 nr_segs, blkdev_get_blocks, NULL, NULL, 0); 221} 222 223int __sync_blockdev(struct block_device *bdev, int wait) 224{ 225 if (!bdev) 226 return 0; 227 if (!wait) 228 return filemap_flush(bdev->bd_inode->i_mapping); 229 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 230} 231 232/* 233 * Write out and wait upon all the dirty data associated with a block 234 * device via its mapping. Does not take the superblock lock. 235 */ 236int sync_blockdev(struct block_device *bdev) 237{ 238 return __sync_blockdev(bdev, 1); 239} 240EXPORT_SYMBOL(sync_blockdev); 241 242/* 243 * Write out and wait upon all dirty data associated with this 244 * device. Filesystem data as well as the underlying block 245 * device. Takes the superblock lock. 246 */ 247int fsync_bdev(struct block_device *bdev) 248{ 249 struct super_block *sb = get_super(bdev); 250 if (sb) { 251 int res = sync_filesystem(sb); 252 drop_super(sb); 253 return res; 254 } 255 return sync_blockdev(bdev); 256} 257EXPORT_SYMBOL(fsync_bdev); 258 259/** 260 * freeze_bdev -- lock a filesystem and force it into a consistent state 261 * @bdev: blockdevice to lock 262 * 263 * If a superblock is found on this device, we take the s_umount semaphore 264 * on it to make sure nobody unmounts until the snapshot creation is done. 265 * The reference counter (bd_fsfreeze_count) guarantees that only the last 266 * unfreeze process can unfreeze the frozen filesystem actually when multiple 267 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 268 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 269 * actually. 270 */ 271struct super_block *freeze_bdev(struct block_device *bdev) 272{ 273 struct super_block *sb; 274 int error = 0; 275 276 mutex_lock(&bdev->bd_fsfreeze_mutex); 277 if (++bdev->bd_fsfreeze_count > 1) { 278 /* 279 * We don't even need to grab a reference - the first call 280 * to freeze_bdev grab an active reference and only the last 281 * thaw_bdev drops it. 282 */ 283 sb = get_super(bdev); 284 drop_super(sb); 285 mutex_unlock(&bdev->bd_fsfreeze_mutex); 286 return sb; 287 } 288 289 sb = get_active_super(bdev); 290 if (!sb) 291 goto out; 292 error = freeze_super(sb); 293 if (error) { 294 deactivate_super(sb); 295 bdev->bd_fsfreeze_count--; 296 mutex_unlock(&bdev->bd_fsfreeze_mutex); 297 return ERR_PTR(error); 298 } 299 deactivate_super(sb); 300 out: 301 sync_blockdev(bdev); 302 mutex_unlock(&bdev->bd_fsfreeze_mutex); 303 return sb; /* thaw_bdev releases s->s_umount */ 304} 305EXPORT_SYMBOL(freeze_bdev); 306 307/** 308 * thaw_bdev -- unlock filesystem 309 * @bdev: blockdevice to unlock 310 * @sb: associated superblock 311 * 312 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 313 */ 314int thaw_bdev(struct block_device *bdev, struct super_block *sb) 315{ 316 int error = -EINVAL; 317 318 mutex_lock(&bdev->bd_fsfreeze_mutex); 319 if (!bdev->bd_fsfreeze_count) 320 goto out; 321 322 error = 0; 323 if (--bdev->bd_fsfreeze_count > 0) 324 goto out; 325 326 if (!sb) 327 goto out; 328 329 error = thaw_super(sb); 330 if (error) { 331 bdev->bd_fsfreeze_count++; 332 mutex_unlock(&bdev->bd_fsfreeze_mutex); 333 return error; 334 } 335out: 336 mutex_unlock(&bdev->bd_fsfreeze_mutex); 337 return 0; 338} 339EXPORT_SYMBOL(thaw_bdev); 340 341static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 342{ 343 return block_write_full_page(page, blkdev_get_block, wbc); 344} 345 346static int blkdev_readpage(struct file * file, struct page * page) 347{ 348 return block_read_full_page(page, blkdev_get_block); 349} 350 351static int blkdev_write_begin(struct file *file, struct address_space *mapping, 352 loff_t pos, unsigned len, unsigned flags, 353 struct page **pagep, void **fsdata) 354{ 355 return block_write_begin(mapping, pos, len, flags, pagep, 356 blkdev_get_block); 357} 358 359static int blkdev_write_end(struct file *file, struct address_space *mapping, 360 loff_t pos, unsigned len, unsigned copied, 361 struct page *page, void *fsdata) 362{ 363 int ret; 364 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 365 366 unlock_page(page); 367 page_cache_release(page); 368 369 return ret; 370} 371 372/* 373 * private llseek: 374 * for a block special file file->f_path.dentry->d_inode->i_size is zero 375 * so we compute the size by hand (just as in block_read/write above) 376 */ 377static loff_t block_llseek(struct file *file, loff_t offset, int origin) 378{ 379 struct inode *bd_inode = file->f_mapping->host; 380 loff_t size; 381 loff_t retval; 382 383 mutex_lock(&bd_inode->i_mutex); 384 size = i_size_read(bd_inode); 385 386 retval = -EINVAL; 387 switch (origin) { 388 case SEEK_END: 389 offset += size; 390 break; 391 case SEEK_CUR: 392 offset += file->f_pos; 393 case SEEK_SET: 394 break; 395 default: 396 goto out; 397 } 398 if (offset >= 0 && offset <= size) { 399 if (offset != file->f_pos) { 400 file->f_pos = offset; 401 } 402 retval = offset; 403 } 404out: 405 mutex_unlock(&bd_inode->i_mutex); 406 return retval; 407} 408 409int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 410{ 411 struct inode *bd_inode = filp->f_mapping->host; 412 struct block_device *bdev = I_BDEV(bd_inode); 413 int error; 414 415 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 416 if (error) 417 return error; 418 419 /* 420 * There is no need to serialise calls to blkdev_issue_flush with 421 * i_mutex and doing so causes performance issues with concurrent 422 * O_SYNC writers to a block device. 423 */ 424 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 425 if (error == -EOPNOTSUPP) 426 error = 0; 427 428 return error; 429} 430EXPORT_SYMBOL(blkdev_fsync); 431 432/* 433 * pseudo-fs 434 */ 435 436static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 437static struct kmem_cache * bdev_cachep __read_mostly; 438 439static struct inode *bdev_alloc_inode(struct super_block *sb) 440{ 441 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 442 if (!ei) 443 return NULL; 444 return &ei->vfs_inode; 445} 446 447static void bdev_i_callback(struct rcu_head *head) 448{ 449 struct inode *inode = container_of(head, struct inode, i_rcu); 450 struct bdev_inode *bdi = BDEV_I(inode); 451 452 kmem_cache_free(bdev_cachep, bdi); 453} 454 455static void bdev_destroy_inode(struct inode *inode) 456{ 457 call_rcu(&inode->i_rcu, bdev_i_callback); 458} 459 460static void init_once(void *foo) 461{ 462 struct bdev_inode *ei = (struct bdev_inode *) foo; 463 struct block_device *bdev = &ei->bdev; 464 465 memset(bdev, 0, sizeof(*bdev)); 466 mutex_init(&bdev->bd_mutex); 467 INIT_LIST_HEAD(&bdev->bd_inodes); 468 INIT_LIST_HEAD(&bdev->bd_list); 469#ifdef CONFIG_SYSFS 470 INIT_LIST_HEAD(&bdev->bd_holder_disks); 471#endif 472 inode_init_once(&ei->vfs_inode); 473 /* Initialize mutex for freeze. */ 474 mutex_init(&bdev->bd_fsfreeze_mutex); 475} 476 477static inline void __bd_forget(struct inode *inode) 478{ 479 list_del_init(&inode->i_devices); 480 inode->i_bdev = NULL; 481 inode->i_mapping = &inode->i_data; 482} 483 484static void bdev_evict_inode(struct inode *inode) 485{ 486 struct block_device *bdev = &BDEV_I(inode)->bdev; 487 struct list_head *p; 488 truncate_inode_pages(&inode->i_data, 0); 489 invalidate_inode_buffers(inode); /* is it needed here? */ 490 clear_inode(inode); 491 spin_lock(&bdev_lock); 492 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 493 __bd_forget(list_entry(p, struct inode, i_devices)); 494 } 495 list_del_init(&bdev->bd_list); 496 spin_unlock(&bdev_lock); 497} 498 499static const struct super_operations bdev_sops = { 500 .statfs = simple_statfs, 501 .alloc_inode = bdev_alloc_inode, 502 .destroy_inode = bdev_destroy_inode, 503 .drop_inode = generic_delete_inode, 504 .evict_inode = bdev_evict_inode, 505}; 506 507static struct dentry *bd_mount(struct file_system_type *fs_type, 508 int flags, const char *dev_name, void *data) 509{ 510 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 511} 512 513static struct file_system_type bd_type = { 514 .name = "bdev", 515 .mount = bd_mount, 516 .kill_sb = kill_anon_super, 517}; 518 519static struct super_block *blockdev_superblock __read_mostly; 520 521void __init bdev_cache_init(void) 522{ 523 int err; 524 static struct vfsmount *bd_mnt; 525 526 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 527 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 528 SLAB_MEM_SPREAD|SLAB_PANIC), 529 init_once); 530 err = register_filesystem(&bd_type); 531 if (err) 532 panic("Cannot register bdev pseudo-fs"); 533 bd_mnt = kern_mount(&bd_type); 534 if (IS_ERR(bd_mnt)) 535 panic("Cannot create bdev pseudo-fs"); 536 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 537} 538 539/* 540 * Most likely _very_ bad one - but then it's hardly critical for small 541 * /dev and can be fixed when somebody will need really large one. 542 * Keep in mind that it will be fed through icache hash function too. 543 */ 544static inline unsigned long hash(dev_t dev) 545{ 546 return MAJOR(dev)+MINOR(dev); 547} 548 549static int bdev_test(struct inode *inode, void *data) 550{ 551 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 552} 553 554static int bdev_set(struct inode *inode, void *data) 555{ 556 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 557 return 0; 558} 559 560static LIST_HEAD(all_bdevs); 561 562struct block_device *bdget(dev_t dev) 563{ 564 struct block_device *bdev; 565 struct inode *inode; 566 567 inode = iget5_locked(blockdev_superblock, hash(dev), 568 bdev_test, bdev_set, &dev); 569 570 if (!inode) 571 return NULL; 572 573 bdev = &BDEV_I(inode)->bdev; 574 575 if (inode->i_state & I_NEW) { 576 bdev->bd_contains = NULL; 577 bdev->bd_super = NULL; 578 bdev->bd_inode = inode; 579 bdev->bd_block_size = (1 << inode->i_blkbits); 580 bdev->bd_part_count = 0; 581 bdev->bd_invalidated = 0; 582 inode->i_mode = S_IFBLK; 583 inode->i_rdev = dev; 584 inode->i_bdev = bdev; 585 inode->i_data.a_ops = &def_blk_aops; 586 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 587 inode->i_data.backing_dev_info = &default_backing_dev_info; 588 spin_lock(&bdev_lock); 589 list_add(&bdev->bd_list, &all_bdevs); 590 spin_unlock(&bdev_lock); 591 unlock_new_inode(inode); 592 } 593 return bdev; 594} 595 596EXPORT_SYMBOL(bdget); 597 598/** 599 * bdgrab -- Grab a reference to an already referenced block device 600 * @bdev: Block device to grab a reference to. 601 */ 602struct block_device *bdgrab(struct block_device *bdev) 603{ 604 ihold(bdev->bd_inode); 605 return bdev; 606} 607 608long nr_blockdev_pages(void) 609{ 610 struct block_device *bdev; 611 long ret = 0; 612 spin_lock(&bdev_lock); 613 list_for_each_entry(bdev, &all_bdevs, bd_list) { 614 ret += bdev->bd_inode->i_mapping->nrpages; 615 } 616 spin_unlock(&bdev_lock); 617 return ret; 618} 619 620void bdput(struct block_device *bdev) 621{ 622 iput(bdev->bd_inode); 623} 624 625EXPORT_SYMBOL(bdput); 626 627static struct block_device *bd_acquire(struct inode *inode) 628{ 629 struct block_device *bdev; 630 631 spin_lock(&bdev_lock); 632 bdev = inode->i_bdev; 633 if (bdev) { 634 ihold(bdev->bd_inode); 635 spin_unlock(&bdev_lock); 636 return bdev; 637 } 638 spin_unlock(&bdev_lock); 639 640 bdev = bdget(inode->i_rdev); 641 if (bdev) { 642 spin_lock(&bdev_lock); 643 if (!inode->i_bdev) { 644 /* 645 * We take an additional reference to bd_inode, 646 * and it's released in clear_inode() of inode. 647 * So, we can access it via ->i_mapping always 648 * without igrab(). 649 */ 650 ihold(bdev->bd_inode); 651 inode->i_bdev = bdev; 652 inode->i_mapping = bdev->bd_inode->i_mapping; 653 list_add(&inode->i_devices, &bdev->bd_inodes); 654 } 655 spin_unlock(&bdev_lock); 656 } 657 return bdev; 658} 659 660static inline int sb_is_blkdev_sb(struct super_block *sb) 661{ 662 return sb == blockdev_superblock; 663} 664 665/* Call when you free inode */ 666 667void bd_forget(struct inode *inode) 668{ 669 struct block_device *bdev = NULL; 670 671 spin_lock(&bdev_lock); 672 if (inode->i_bdev) { 673 if (!sb_is_blkdev_sb(inode->i_sb)) 674 bdev = inode->i_bdev; 675 __bd_forget(inode); 676 } 677 spin_unlock(&bdev_lock); 678 679 if (bdev) 680 iput(bdev->bd_inode); 681} 682 683/** 684 * bd_may_claim - test whether a block device can be claimed 685 * @bdev: block device of interest 686 * @whole: whole block device containing @bdev, may equal @bdev 687 * @holder: holder trying to claim @bdev 688 * 689 * Test whether @bdev can be claimed by @holder. 690 * 691 * CONTEXT: 692 * spin_lock(&bdev_lock). 693 * 694 * RETURNS: 695 * %true if @bdev can be claimed, %false otherwise. 696 */ 697static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 698 void *holder) 699{ 700 if (bdev->bd_holder == holder) 701 return true; /* already a holder */ 702 else if (bdev->bd_holder != NULL) 703 return false; /* held by someone else */ 704 else if (bdev->bd_contains == bdev) 705 return true; /* is a whole device which isn't held */ 706 707 else if (whole->bd_holder == bd_may_claim) 708 return true; /* is a partition of a device that is being partitioned */ 709 else if (whole->bd_holder != NULL) 710 return false; /* is a partition of a held device */ 711 else 712 return true; /* is a partition of an un-held device */ 713} 714 715/** 716 * bd_prepare_to_claim - prepare to claim a block device 717 * @bdev: block device of interest 718 * @whole: the whole device containing @bdev, may equal @bdev 719 * @holder: holder trying to claim @bdev 720 * 721 * Prepare to claim @bdev. This function fails if @bdev is already 722 * claimed by another holder and waits if another claiming is in 723 * progress. This function doesn't actually claim. On successful 724 * return, the caller has ownership of bd_claiming and bd_holder[s]. 725 * 726 * CONTEXT: 727 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 728 * it multiple times. 729 * 730 * RETURNS: 731 * 0 if @bdev can be claimed, -EBUSY otherwise. 732 */ 733static int bd_prepare_to_claim(struct block_device *bdev, 734 struct block_device *whole, void *holder) 735{ 736retry: 737 /* if someone else claimed, fail */ 738 if (!bd_may_claim(bdev, whole, holder)) 739 return -EBUSY; 740 741 /* if claiming is already in progress, wait for it to finish */ 742 if (whole->bd_claiming) { 743 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 744 DEFINE_WAIT(wait); 745 746 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 747 spin_unlock(&bdev_lock); 748 schedule(); 749 finish_wait(wq, &wait); 750 spin_lock(&bdev_lock); 751 goto retry; 752 } 753 754 /* yay, all mine */ 755 return 0; 756} 757 758/** 759 * bd_start_claiming - start claiming a block device 760 * @bdev: block device of interest 761 * @holder: holder trying to claim @bdev 762 * 763 * @bdev is about to be opened exclusively. Check @bdev can be opened 764 * exclusively and mark that an exclusive open is in progress. Each 765 * successful call to this function must be matched with a call to 766 * either bd_finish_claiming() or bd_abort_claiming() (which do not 767 * fail). 768 * 769 * This function is used to gain exclusive access to the block device 770 * without actually causing other exclusive open attempts to fail. It 771 * should be used when the open sequence itself requires exclusive 772 * access but may subsequently fail. 773 * 774 * CONTEXT: 775 * Might sleep. 776 * 777 * RETURNS: 778 * Pointer to the block device containing @bdev on success, ERR_PTR() 779 * value on failure. 780 */ 781static struct block_device *bd_start_claiming(struct block_device *bdev, 782 void *holder) 783{ 784 struct gendisk *disk; 785 struct block_device *whole; 786 int partno, err; 787 788 might_sleep(); 789 790 /* 791 * @bdev might not have been initialized properly yet, look up 792 * and grab the outer block device the hard way. 793 */ 794 disk = get_gendisk(bdev->bd_dev, &partno); 795 if (!disk) 796 return ERR_PTR(-ENXIO); 797 798 /* 799 * Normally, @bdev should equal what's returned from bdget_disk() 800 * if partno is 0; however, some drivers (floppy) use multiple 801 * bdev's for the same physical device and @bdev may be one of the 802 * aliases. Keep @bdev if partno is 0. This means claimer 803 * tracking is broken for those devices but it has always been that 804 * way. 805 */ 806 if (partno) 807 whole = bdget_disk(disk, 0); 808 else 809 whole = bdgrab(bdev); 810 811 module_put(disk->fops->owner); 812 put_disk(disk); 813 if (!whole) 814 return ERR_PTR(-ENOMEM); 815 816 /* prepare to claim, if successful, mark claiming in progress */ 817 spin_lock(&bdev_lock); 818 819 err = bd_prepare_to_claim(bdev, whole, holder); 820 if (err == 0) { 821 whole->bd_claiming = holder; 822 spin_unlock(&bdev_lock); 823 return whole; 824 } else { 825 spin_unlock(&bdev_lock); 826 bdput(whole); 827 return ERR_PTR(err); 828 } 829} 830 831#ifdef CONFIG_SYSFS 832struct bd_holder_disk { 833 struct list_head list; 834 struct gendisk *disk; 835 int refcnt; 836}; 837 838static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 839 struct gendisk *disk) 840{ 841 struct bd_holder_disk *holder; 842 843 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 844 if (holder->disk == disk) 845 return holder; 846 return NULL; 847} 848 849static int add_symlink(struct kobject *from, struct kobject *to) 850{ 851 return sysfs_create_link(from, to, kobject_name(to)); 852} 853 854static void del_symlink(struct kobject *from, struct kobject *to) 855{ 856 sysfs_remove_link(from, kobject_name(to)); 857} 858 859/** 860 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 861 * @bdev: the claimed slave bdev 862 * @disk: the holding disk 863 * 864 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 865 * 866 * This functions creates the following sysfs symlinks. 867 * 868 * - from "slaves" directory of the holder @disk to the claimed @bdev 869 * - from "holders" directory of the @bdev to the holder @disk 870 * 871 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 872 * passed to bd_link_disk_holder(), then: 873 * 874 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 875 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 876 * 877 * The caller must have claimed @bdev before calling this function and 878 * ensure that both @bdev and @disk are valid during the creation and 879 * lifetime of these symlinks. 880 * 881 * CONTEXT: 882 * Might sleep. 883 * 884 * RETURNS: 885 * 0 on success, -errno on failure. 886 */ 887int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 888{ 889 struct bd_holder_disk *holder; 890 int ret = 0; 891 892 mutex_lock(&bdev->bd_mutex); 893 894 WARN_ON_ONCE(!bdev->bd_holder); 895 896 /* FIXME: remove the following once add_disk() handles errors */ 897 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 898 goto out_unlock; 899 900 holder = bd_find_holder_disk(bdev, disk); 901 if (holder) { 902 holder->refcnt++; 903 goto out_unlock; 904 } 905 906 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 907 if (!holder) { 908 ret = -ENOMEM; 909 goto out_unlock; 910 } 911 912 INIT_LIST_HEAD(&holder->list); 913 holder->disk = disk; 914 holder->refcnt = 1; 915 916 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 917 if (ret) 918 goto out_free; 919 920 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 921 if (ret) 922 goto out_del; 923 /* 924 * bdev could be deleted beneath us which would implicitly destroy 925 * the holder directory. Hold on to it. 926 */ 927 kobject_get(bdev->bd_part->holder_dir); 928 929 list_add(&holder->list, &bdev->bd_holder_disks); 930 goto out_unlock; 931 932out_del: 933 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 934out_free: 935 kfree(holder); 936out_unlock: 937 mutex_unlock(&bdev->bd_mutex); 938 return ret; 939} 940EXPORT_SYMBOL_GPL(bd_link_disk_holder); 941 942/** 943 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 944 * @bdev: the calimed slave bdev 945 * @disk: the holding disk 946 * 947 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 948 * 949 * CONTEXT: 950 * Might sleep. 951 */ 952void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 953{ 954 struct bd_holder_disk *holder; 955 956 mutex_lock(&bdev->bd_mutex); 957 958 holder = bd_find_holder_disk(bdev, disk); 959 960 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 961 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 962 del_symlink(bdev->bd_part->holder_dir, 963 &disk_to_dev(disk)->kobj); 964 kobject_put(bdev->bd_part->holder_dir); 965 list_del_init(&holder->list); 966 kfree(holder); 967 } 968 969 mutex_unlock(&bdev->bd_mutex); 970} 971EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 972#endif 973 974/** 975 * flush_disk - invalidates all buffer-cache entries on a disk 976 * 977 * @bdev: struct block device to be flushed 978 * @kill_dirty: flag to guide handling of dirty inodes 979 * 980 * Invalidates all buffer-cache entries on a disk. It should be called 981 * when a disk has been changed -- either by a media change or online 982 * resize. 983 */ 984static void flush_disk(struct block_device *bdev, bool kill_dirty) 985{ 986 if (__invalidate_device(bdev, kill_dirty)) { 987 char name[BDEVNAME_SIZE] = ""; 988 989 if (bdev->bd_disk) 990 disk_name(bdev->bd_disk, 0, name); 991 printk(KERN_WARNING "VFS: busy inodes on changed media or " 992 "resized disk %s\n", name); 993 } 994 995 if (!bdev->bd_disk) 996 return; 997 if (disk_part_scan_enabled(bdev->bd_disk)) 998 bdev->bd_invalidated = 1; 999} 1000 1001/** 1002 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1003 * @disk: struct gendisk to check 1004 * @bdev: struct bdev to adjust. 1005 * 1006 * This routine checks to see if the bdev size does not match the disk size 1007 * and adjusts it if it differs. 1008 */ 1009void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1010{ 1011 loff_t disk_size, bdev_size; 1012 1013 disk_size = (loff_t)get_capacity(disk) << 9; 1014 bdev_size = i_size_read(bdev->bd_inode); 1015 if (disk_size != bdev_size) { 1016 char name[BDEVNAME_SIZE]; 1017 1018 disk_name(disk, 0, name); 1019 printk(KERN_INFO 1020 "%s: detected capacity change from %lld to %lld\n", 1021 name, bdev_size, disk_size); 1022 i_size_write(bdev->bd_inode, disk_size); 1023 flush_disk(bdev, false); 1024 } 1025} 1026EXPORT_SYMBOL(check_disk_size_change); 1027 1028/** 1029 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1030 * @disk: struct gendisk to be revalidated 1031 * 1032 * This routine is a wrapper for lower-level driver's revalidate_disk 1033 * call-backs. It is used to do common pre and post operations needed 1034 * for all revalidate_disk operations. 1035 */ 1036int revalidate_disk(struct gendisk *disk) 1037{ 1038 struct block_device *bdev; 1039 int ret = 0; 1040 1041 if (disk->fops->revalidate_disk) 1042 ret = disk->fops->revalidate_disk(disk); 1043 1044 bdev = bdget_disk(disk, 0); 1045 if (!bdev) 1046 return ret; 1047 1048 mutex_lock(&bdev->bd_mutex); 1049 check_disk_size_change(disk, bdev); 1050 mutex_unlock(&bdev->bd_mutex); 1051 bdput(bdev); 1052 return ret; 1053} 1054EXPORT_SYMBOL(revalidate_disk); 1055 1056/* 1057 * This routine checks whether a removable media has been changed, 1058 * and invalidates all buffer-cache-entries in that case. This 1059 * is a relatively slow routine, so we have to try to minimize using 1060 * it. Thus it is called only upon a 'mount' or 'open'. This 1061 * is the best way of combining speed and utility, I think. 1062 * People changing diskettes in the middle of an operation deserve 1063 * to lose :-) 1064 */ 1065int check_disk_change(struct block_device *bdev) 1066{ 1067 struct gendisk *disk = bdev->bd_disk; 1068 const struct block_device_operations *bdops = disk->fops; 1069 unsigned int events; 1070 1071 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1072 DISK_EVENT_EJECT_REQUEST); 1073 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1074 return 0; 1075 1076 flush_disk(bdev, true); 1077 if (bdops->revalidate_disk) 1078 bdops->revalidate_disk(bdev->bd_disk); 1079 return 1; 1080} 1081 1082EXPORT_SYMBOL(check_disk_change); 1083 1084void bd_set_size(struct block_device *bdev, loff_t size) 1085{ 1086 unsigned bsize = bdev_logical_block_size(bdev); 1087 1088 bdev->bd_inode->i_size = size; 1089 while (bsize < PAGE_CACHE_SIZE) { 1090 if (size & bsize) 1091 break; 1092 bsize <<= 1; 1093 } 1094 bdev->bd_block_size = bsize; 1095 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1096} 1097EXPORT_SYMBOL(bd_set_size); 1098 1099static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1100 1101/* 1102 * bd_mutex locking: 1103 * 1104 * mutex_lock(part->bd_mutex) 1105 * mutex_lock_nested(whole->bd_mutex, 1) 1106 */ 1107 1108static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1109{ 1110 struct gendisk *disk; 1111 struct module *owner; 1112 int ret; 1113 int partno; 1114 int perm = 0; 1115 1116 if (mode & FMODE_READ) 1117 perm |= MAY_READ; 1118 if (mode & FMODE_WRITE) 1119 perm |= MAY_WRITE; 1120 /* 1121 * hooks: /n/, see "layering violations". 1122 */ 1123 if (!for_part) { 1124 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1125 if (ret != 0) { 1126 bdput(bdev); 1127 return ret; 1128 } 1129 } 1130 1131 restart: 1132 1133 ret = -ENXIO; 1134 disk = get_gendisk(bdev->bd_dev, &partno); 1135 if (!disk) 1136 goto out; 1137 owner = disk->fops->owner; 1138 1139 disk_block_events(disk); 1140 mutex_lock_nested(&bdev->bd_mutex, for_part); 1141 if (!bdev->bd_openers) { 1142 bdev->bd_disk = disk; 1143 bdev->bd_queue = disk->queue; 1144 bdev->bd_contains = bdev; 1145 if (!partno) { 1146 struct backing_dev_info *bdi; 1147 1148 ret = -ENXIO; 1149 bdev->bd_part = disk_get_part(disk, partno); 1150 if (!bdev->bd_part) 1151 goto out_clear; 1152 1153 ret = 0; 1154 if (disk->fops->open) { 1155 ret = disk->fops->open(bdev, mode); 1156 if (ret == -ERESTARTSYS) { 1157 /* Lost a race with 'disk' being 1158 * deleted, try again. 1159 * See md.c 1160 */ 1161 disk_put_part(bdev->bd_part); 1162 bdev->bd_part = NULL; 1163 bdev->bd_disk = NULL; 1164 bdev->bd_queue = NULL; 1165 mutex_unlock(&bdev->bd_mutex); 1166 disk_unblock_events(disk); 1167 put_disk(disk); 1168 module_put(owner); 1169 goto restart; 1170 } 1171 } 1172 1173 if (!ret && !bdev->bd_openers) { 1174 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1175 bdi = blk_get_backing_dev_info(bdev); 1176 if (bdi == NULL) 1177 bdi = &default_backing_dev_info; 1178 bdev_inode_switch_bdi(bdev->bd_inode, bdi); 1179 } 1180 1181 /* 1182 * If the device is invalidated, rescan partition 1183 * if open succeeded or failed with -ENOMEDIUM. 1184 * The latter is necessary to prevent ghost 1185 * partitions on a removed medium. 1186 */ 1187 if (bdev->bd_invalidated) { 1188 if (!ret) 1189 rescan_partitions(disk, bdev); 1190 else if (ret == -ENOMEDIUM) 1191 invalidate_partitions(disk, bdev); 1192 } 1193 if (ret) 1194 goto out_clear; 1195 } else { 1196 struct block_device *whole; 1197 whole = bdget_disk(disk, 0); 1198 ret = -ENOMEM; 1199 if (!whole) 1200 goto out_clear; 1201 BUG_ON(for_part); 1202 ret = __blkdev_get(whole, mode, 1); 1203 if (ret) 1204 goto out_clear; 1205 bdev->bd_contains = whole; 1206 bdev_inode_switch_bdi(bdev->bd_inode, 1207 whole->bd_inode->i_data.backing_dev_info); 1208 bdev->bd_part = disk_get_part(disk, partno); 1209 if (!(disk->flags & GENHD_FL_UP) || 1210 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1211 ret = -ENXIO; 1212 goto out_clear; 1213 } 1214 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1215 } 1216 } else { 1217 if (bdev->bd_contains == bdev) { 1218 ret = 0; 1219 if (bdev->bd_disk->fops->open) 1220 ret = bdev->bd_disk->fops->open(bdev, mode); 1221 /* the same as first opener case, read comment there */ 1222 if (bdev->bd_invalidated) { 1223 if (!ret) 1224 rescan_partitions(bdev->bd_disk, bdev); 1225 else if (ret == -ENOMEDIUM) 1226 invalidate_partitions(bdev->bd_disk, bdev); 1227 } 1228 if (ret) 1229 goto out_unlock_bdev; 1230 } 1231 /* only one opener holds refs to the module and disk */ 1232 put_disk(disk); 1233 module_put(owner); 1234 } 1235 bdev->bd_openers++; 1236 if (for_part) 1237 bdev->bd_part_count++; 1238 mutex_unlock(&bdev->bd_mutex); 1239 disk_unblock_events(disk); 1240 return 0; 1241 1242 out_clear: 1243 disk_put_part(bdev->bd_part); 1244 bdev->bd_disk = NULL; 1245 bdev->bd_part = NULL; 1246 bdev->bd_queue = NULL; 1247 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info); 1248 if (bdev != bdev->bd_contains) 1249 __blkdev_put(bdev->bd_contains, mode, 1); 1250 bdev->bd_contains = NULL; 1251 out_unlock_bdev: 1252 mutex_unlock(&bdev->bd_mutex); 1253 disk_unblock_events(disk); 1254 put_disk(disk); 1255 module_put(owner); 1256 out: 1257 bdput(bdev); 1258 1259 return ret; 1260} 1261 1262/** 1263 * blkdev_get - open a block device 1264 * @bdev: block_device to open 1265 * @mode: FMODE_* mask 1266 * @holder: exclusive holder identifier 1267 * 1268 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1269 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1270 * @holder is invalid. Exclusive opens may nest for the same @holder. 1271 * 1272 * On success, the reference count of @bdev is unchanged. On failure, 1273 * @bdev is put. 1274 * 1275 * CONTEXT: 1276 * Might sleep. 1277 * 1278 * RETURNS: 1279 * 0 on success, -errno on failure. 1280 */ 1281int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1282{ 1283 struct block_device *whole = NULL; 1284 int res; 1285 1286 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1287 1288 if ((mode & FMODE_EXCL) && holder) { 1289 whole = bd_start_claiming(bdev, holder); 1290 if (IS_ERR(whole)) { 1291 bdput(bdev); 1292 return PTR_ERR(whole); 1293 } 1294 } 1295 1296 res = __blkdev_get(bdev, mode, 0); 1297 1298 if (whole) { 1299 struct gendisk *disk = whole->bd_disk; 1300 1301 /* finish claiming */ 1302 mutex_lock(&bdev->bd_mutex); 1303 spin_lock(&bdev_lock); 1304 1305 if (!res) { 1306 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1307 /* 1308 * Note that for a whole device bd_holders 1309 * will be incremented twice, and bd_holder 1310 * will be set to bd_may_claim before being 1311 * set to holder 1312 */ 1313 whole->bd_holders++; 1314 whole->bd_holder = bd_may_claim; 1315 bdev->bd_holders++; 1316 bdev->bd_holder = holder; 1317 } 1318 1319 /* tell others that we're done */ 1320 BUG_ON(whole->bd_claiming != holder); 1321 whole->bd_claiming = NULL; 1322 wake_up_bit(&whole->bd_claiming, 0); 1323 1324 spin_unlock(&bdev_lock); 1325 1326 /* 1327 * Block event polling for write claims if requested. Any 1328 * write holder makes the write_holder state stick until 1329 * all are released. This is good enough and tracking 1330 * individual writeable reference is too fragile given the 1331 * way @mode is used in blkdev_get/put(). 1332 */ 1333 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1334 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1335 bdev->bd_write_holder = true; 1336 disk_block_events(disk); 1337 } 1338 1339 mutex_unlock(&bdev->bd_mutex); 1340 bdput(whole); 1341 } 1342 1343 return res; 1344} 1345EXPORT_SYMBOL(blkdev_get); 1346 1347/** 1348 * blkdev_get_by_path - open a block device by name 1349 * @path: path to the block device to open 1350 * @mode: FMODE_* mask 1351 * @holder: exclusive holder identifier 1352 * 1353 * Open the blockdevice described by the device file at @path. @mode 1354 * and @holder are identical to blkdev_get(). 1355 * 1356 * On success, the returned block_device has reference count of one. 1357 * 1358 * CONTEXT: 1359 * Might sleep. 1360 * 1361 * RETURNS: 1362 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1363 */ 1364struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1365 void *holder) 1366{ 1367 struct block_device *bdev; 1368 int err; 1369 1370 bdev = lookup_bdev(path); 1371 if (IS_ERR(bdev)) 1372 return bdev; 1373 1374 err = blkdev_get(bdev, mode, holder); 1375 if (err) 1376 return ERR_PTR(err); 1377 1378 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1379 blkdev_put(bdev, mode); 1380 return ERR_PTR(-EACCES); 1381 } 1382 1383 return bdev; 1384} 1385EXPORT_SYMBOL(blkdev_get_by_path); 1386 1387/** 1388 * blkdev_get_by_dev - open a block device by device number 1389 * @dev: device number of block device to open 1390 * @mode: FMODE_* mask 1391 * @holder: exclusive holder identifier 1392 * 1393 * Open the blockdevice described by device number @dev. @mode and 1394 * @holder are identical to blkdev_get(). 1395 * 1396 * Use it ONLY if you really do not have anything better - i.e. when 1397 * you are behind a truly sucky interface and all you are given is a 1398 * device number. _Never_ to be used for internal purposes. If you 1399 * ever need it - reconsider your API. 1400 * 1401 * On success, the returned block_device has reference count of one. 1402 * 1403 * CONTEXT: 1404 * Might sleep. 1405 * 1406 * RETURNS: 1407 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1408 */ 1409struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1410{ 1411 struct block_device *bdev; 1412 int err; 1413 1414 bdev = bdget(dev); 1415 if (!bdev) 1416 return ERR_PTR(-ENOMEM); 1417 1418 err = blkdev_get(bdev, mode, holder); 1419 if (err) 1420 return ERR_PTR(err); 1421 1422 return bdev; 1423} 1424EXPORT_SYMBOL(blkdev_get_by_dev); 1425 1426static int blkdev_open(struct inode * inode, struct file * filp) 1427{ 1428 struct block_device *bdev; 1429 1430 /* 1431 * Preserve backwards compatibility and allow large file access 1432 * even if userspace doesn't ask for it explicitly. Some mkfs 1433 * binary needs it. We might want to drop this workaround 1434 * during an unstable branch. 1435 */ 1436 filp->f_flags |= O_LARGEFILE; 1437 1438 if (filp->f_flags & O_NDELAY) 1439 filp->f_mode |= FMODE_NDELAY; 1440 if (filp->f_flags & O_EXCL) 1441 filp->f_mode |= FMODE_EXCL; 1442 if ((filp->f_flags & O_ACCMODE) == 3) 1443 filp->f_mode |= FMODE_WRITE_IOCTL; 1444 1445 bdev = bd_acquire(inode); 1446 if (bdev == NULL) 1447 return -ENOMEM; 1448 1449 filp->f_mapping = bdev->bd_inode->i_mapping; 1450 1451 return blkdev_get(bdev, filp->f_mode, filp); 1452} 1453 1454static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1455{ 1456 int ret = 0; 1457 struct gendisk *disk = bdev->bd_disk; 1458 struct block_device *victim = NULL; 1459 1460 mutex_lock_nested(&bdev->bd_mutex, for_part); 1461 if (for_part) 1462 bdev->bd_part_count--; 1463 1464 if (!--bdev->bd_openers) { 1465 WARN_ON_ONCE(bdev->bd_holders); 1466 sync_blockdev(bdev); 1467 kill_bdev(bdev); 1468 /* ->release can cause the old bdi to disappear, 1469 * so must switch it out first 1470 */ 1471 bdev_inode_switch_bdi(bdev->bd_inode, 1472 &default_backing_dev_info); 1473 } 1474 if (bdev->bd_contains == bdev) { 1475 if (disk->fops->release) 1476 ret = disk->fops->release(disk, mode); 1477 } 1478 if (!bdev->bd_openers) { 1479 struct module *owner = disk->fops->owner; 1480 1481 disk_put_part(bdev->bd_part); 1482 bdev->bd_part = NULL; 1483 bdev->bd_disk = NULL; 1484 if (bdev != bdev->bd_contains) 1485 victim = bdev->bd_contains; 1486 bdev->bd_contains = NULL; 1487 1488 put_disk(disk); 1489 module_put(owner); 1490 } 1491 mutex_unlock(&bdev->bd_mutex); 1492 bdput(bdev); 1493 if (victim) 1494 __blkdev_put(victim, mode, 1); 1495 return ret; 1496} 1497 1498int blkdev_put(struct block_device *bdev, fmode_t mode) 1499{ 1500 mutex_lock(&bdev->bd_mutex); 1501 1502 if (mode & FMODE_EXCL) { 1503 bool bdev_free; 1504 1505 /* 1506 * Release a claim on the device. The holder fields 1507 * are protected with bdev_lock. bd_mutex is to 1508 * synchronize disk_holder unlinking. 1509 */ 1510 spin_lock(&bdev_lock); 1511 1512 WARN_ON_ONCE(--bdev->bd_holders < 0); 1513 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1514 1515 /* bd_contains might point to self, check in a separate step */ 1516 if ((bdev_free = !bdev->bd_holders)) 1517 bdev->bd_holder = NULL; 1518 if (!bdev->bd_contains->bd_holders) 1519 bdev->bd_contains->bd_holder = NULL; 1520 1521 spin_unlock(&bdev_lock); 1522 1523 /* 1524 * If this was the last claim, remove holder link and 1525 * unblock evpoll if it was a write holder. 1526 */ 1527 if (bdev_free && bdev->bd_write_holder) { 1528 disk_unblock_events(bdev->bd_disk); 1529 bdev->bd_write_holder = false; 1530 } 1531 } 1532 1533 /* 1534 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1535 * event. This is to ensure detection of media removal commanded 1536 * from userland - e.g. eject(1). 1537 */ 1538 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1539 1540 mutex_unlock(&bdev->bd_mutex); 1541 1542 return __blkdev_put(bdev, mode, 0); 1543} 1544EXPORT_SYMBOL(blkdev_put); 1545 1546static int blkdev_close(struct inode * inode, struct file * filp) 1547{ 1548 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1549 1550 return blkdev_put(bdev, filp->f_mode); 1551} 1552 1553static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1554{ 1555 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1556 fmode_t mode = file->f_mode; 1557 1558 /* 1559 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1560 * to updated it before every ioctl. 1561 */ 1562 if (file->f_flags & O_NDELAY) 1563 mode |= FMODE_NDELAY; 1564 else 1565 mode &= ~FMODE_NDELAY; 1566 1567 return blkdev_ioctl(bdev, mode, cmd, arg); 1568} 1569 1570/* 1571 * Write data to the block device. Only intended for the block device itself 1572 * and the raw driver which basically is a fake block device. 1573 * 1574 * Does not take i_mutex for the write and thus is not for general purpose 1575 * use. 1576 */ 1577ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov, 1578 unsigned long nr_segs, loff_t pos) 1579{ 1580 struct file *file = iocb->ki_filp; 1581 struct blk_plug plug; 1582 ssize_t ret; 1583 1584 BUG_ON(iocb->ki_pos != pos); 1585 1586 blk_start_plug(&plug); 1587 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 1588 if (ret > 0 || ret == -EIOCBQUEUED) { 1589 ssize_t err; 1590 1591 err = generic_write_sync(file, pos, ret); 1592 if (err < 0 && ret > 0) 1593 ret = err; 1594 } 1595 blk_finish_plug(&plug); 1596 return ret; 1597} 1598EXPORT_SYMBOL_GPL(blkdev_aio_write); 1599 1600/* 1601 * Try to release a page associated with block device when the system 1602 * is under memory pressure. 1603 */ 1604static int blkdev_releasepage(struct page *page, gfp_t wait) 1605{ 1606 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1607 1608 if (super && super->s_op->bdev_try_to_free_page) 1609 return super->s_op->bdev_try_to_free_page(super, page, wait); 1610 1611 return try_to_free_buffers(page); 1612} 1613 1614static const struct address_space_operations def_blk_aops = { 1615 .readpage = blkdev_readpage, 1616 .writepage = blkdev_writepage, 1617 .write_begin = blkdev_write_begin, 1618 .write_end = blkdev_write_end, 1619 .writepages = generic_writepages, 1620 .releasepage = blkdev_releasepage, 1621 .direct_IO = blkdev_direct_IO, 1622}; 1623 1624const struct file_operations def_blk_fops = { 1625 .open = blkdev_open, 1626 .release = blkdev_close, 1627 .llseek = block_llseek, 1628 .read = do_sync_read, 1629 .write = do_sync_write, 1630 .aio_read = generic_file_aio_read, 1631 .aio_write = blkdev_aio_write, 1632 .mmap = generic_file_mmap, 1633 .fsync = blkdev_fsync, 1634 .unlocked_ioctl = block_ioctl, 1635#ifdef CONFIG_COMPAT 1636 .compat_ioctl = compat_blkdev_ioctl, 1637#endif 1638 .splice_read = generic_file_splice_read, 1639 .splice_write = generic_file_splice_write, 1640}; 1641 1642int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1643{ 1644 int res; 1645 mm_segment_t old_fs = get_fs(); 1646 set_fs(KERNEL_DS); 1647 res = blkdev_ioctl(bdev, 0, cmd, arg); 1648 set_fs(old_fs); 1649 return res; 1650} 1651 1652EXPORT_SYMBOL(ioctl_by_bdev); 1653 1654/** 1655 * lookup_bdev - lookup a struct block_device by name 1656 * @pathname: special file representing the block device 1657 * 1658 * Get a reference to the blockdevice at @pathname in the current 1659 * namespace if possible and return it. Return ERR_PTR(error) 1660 * otherwise. 1661 */ 1662struct block_device *lookup_bdev(const char *pathname) 1663{ 1664 struct block_device *bdev; 1665 struct inode *inode; 1666 struct path path; 1667 int error; 1668 1669 if (!pathname || !*pathname) 1670 return ERR_PTR(-EINVAL); 1671 1672 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1673 if (error) 1674 return ERR_PTR(error); 1675 1676 inode = path.dentry->d_inode; 1677 error = -ENOTBLK; 1678 if (!S_ISBLK(inode->i_mode)) 1679 goto fail; 1680 error = -EACCES; 1681 if (path.mnt->mnt_flags & MNT_NODEV) 1682 goto fail; 1683 error = -ENOMEM; 1684 bdev = bd_acquire(inode); 1685 if (!bdev) 1686 goto fail; 1687out: 1688 path_put(&path); 1689 return bdev; 1690fail: 1691 bdev = ERR_PTR(error); 1692 goto out; 1693} 1694EXPORT_SYMBOL(lookup_bdev); 1695 1696int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1697{ 1698 struct super_block *sb = get_super(bdev); 1699 int res = 0; 1700 1701 if (sb) { 1702 /* 1703 * no need to lock the super, get_super holds the 1704 * read mutex so the filesystem cannot go away 1705 * under us (->put_super runs with the write lock 1706 * hold). 1707 */ 1708 shrink_dcache_sb(sb); 1709 res = invalidate_inodes(sb, kill_dirty); 1710 drop_super(sb); 1711 } 1712 invalidate_bdev(bdev); 1713 return res; 1714} 1715EXPORT_SYMBOL(__invalidate_device); 1716 1717void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1718{ 1719 struct inode *inode, *old_inode = NULL; 1720 1721 spin_lock(&inode_sb_list_lock); 1722 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1723 struct address_space *mapping = inode->i_mapping; 1724 1725 spin_lock(&inode->i_lock); 1726 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1727 mapping->nrpages == 0) { 1728 spin_unlock(&inode->i_lock); 1729 continue; 1730 } 1731 __iget(inode); 1732 spin_unlock(&inode->i_lock); 1733 spin_unlock(&inode_sb_list_lock); 1734 /* 1735 * We hold a reference to 'inode' so it couldn't have been 1736 * removed from s_inodes list while we dropped the 1737 * inode_sb_list_lock. We cannot iput the inode now as we can 1738 * be holding the last reference and we cannot iput it under 1739 * inode_sb_list_lock. So we keep the reference and iput it 1740 * later. 1741 */ 1742 iput(old_inode); 1743 old_inode = inode; 1744 1745 func(I_BDEV(inode), arg); 1746 1747 spin_lock(&inode_sb_list_lock); 1748 } 1749 spin_unlock(&inode_sb_list_lock); 1750 iput(old_inode); 1751}