Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * drivers/misc/logger.c
3 *
4 * A Logging Subsystem
5 *
6 * Copyright (C) 2007-2008 Google, Inc.
7 *
8 * Robert Love <rlove@google.com>
9 *
10 * This software is licensed under the terms of the GNU General Public
11 * License version 2, as published by the Free Software Foundation, and
12 * may be copied, distributed, and modified under those terms.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#define pr_fmt(fmt) "logger: " fmt
21
22#include <linux/sched.h>
23#include <linux/module.h>
24#include <linux/fs.h>
25#include <linux/miscdevice.h>
26#include <linux/uaccess.h>
27#include <linux/poll.h>
28#include <linux/slab.h>
29#include <linux/time.h>
30#include <linux/vmalloc.h>
31#include "logger.h"
32
33#include <asm/ioctls.h>
34
35/*
36 * struct logger_log - represents a specific log, such as 'main' or 'radio'
37 *
38 * This structure lives from module insertion until module removal, so it does
39 * not need additional reference counting. The structure is protected by the
40 * mutex 'mutex'.
41 */
42struct logger_log {
43 unsigned char *buffer;/* the ring buffer itself */
44 struct miscdevice misc; /* misc device representing the log */
45 wait_queue_head_t wq; /* wait queue for readers */
46 struct list_head readers; /* this log's readers */
47 struct mutex mutex; /* mutex protecting buffer */
48 size_t w_off; /* current write head offset */
49 size_t head; /* new readers start here */
50 size_t size; /* size of the log */
51 struct list_head logs; /* list of log channels (myself)*/
52};
53
54static LIST_HEAD(log_list);
55
56
57/*
58 * struct logger_reader - a logging device open for reading
59 *
60 * This object lives from open to release, so we don't need additional
61 * reference counting. The structure is protected by log->mutex.
62 */
63struct logger_reader {
64 struct logger_log *log; /* associated log */
65 struct list_head list; /* entry in logger_log's list */
66 size_t r_off; /* current read head offset */
67};
68
69/* logger_offset - returns index 'n' into the log via (optimized) modulus */
70static size_t logger_offset(struct logger_log *log, size_t n)
71{
72 return n & (log->size - 1);
73}
74
75
76/*
77 * file_get_log - Given a file structure, return the associated log
78 *
79 * This isn't aesthetic. We have several goals:
80 *
81 * 1) Need to quickly obtain the associated log during an I/O operation
82 * 2) Readers need to maintain state (logger_reader)
83 * 3) Writers need to be very fast (open() should be a near no-op)
84 *
85 * In the reader case, we can trivially go file->logger_reader->logger_log.
86 * For a writer, we don't want to maintain a logger_reader, so we just go
87 * file->logger_log. Thus what file->private_data points at depends on whether
88 * or not the file was opened for reading. This function hides that dirtiness.
89 */
90static inline struct logger_log *file_get_log(struct file *file)
91{
92 if (file->f_mode & FMODE_READ) {
93 struct logger_reader *reader = file->private_data;
94 return reader->log;
95 } else
96 return file->private_data;
97}
98
99/*
100 * get_entry_len - Grabs the length of the payload of the next entry starting
101 * from 'off'.
102 *
103 * An entry length is 2 bytes (16 bits) in host endian order.
104 * In the log, the length does not include the size of the log entry structure.
105 * This function returns the size including the log entry structure.
106 *
107 * Caller needs to hold log->mutex.
108 */
109static __u32 get_entry_len(struct logger_log *log, size_t off)
110{
111 __u16 val;
112
113 /* copy 2 bytes from buffer, in memcpy order, */
114 /* handling possible wrap at end of buffer */
115
116 ((__u8 *)&val)[0] = log->buffer[off];
117 if (likely(off+1 < log->size))
118 ((__u8 *)&val)[1] = log->buffer[off+1];
119 else
120 ((__u8 *)&val)[1] = log->buffer[0];
121
122 return sizeof(struct logger_entry) + val;
123}
124
125/*
126 * do_read_log_to_user - reads exactly 'count' bytes from 'log' into the
127 * user-space buffer 'buf'. Returns 'count' on success.
128 *
129 * Caller must hold log->mutex.
130 */
131static ssize_t do_read_log_to_user(struct logger_log *log,
132 struct logger_reader *reader,
133 char __user *buf,
134 size_t count)
135{
136 size_t len;
137
138 /*
139 * We read from the log in two disjoint operations. First, we read from
140 * the current read head offset up to 'count' bytes or to the end of
141 * the log, whichever comes first.
142 */
143 len = min(count, log->size - reader->r_off);
144 if (copy_to_user(buf, log->buffer + reader->r_off, len))
145 return -EFAULT;
146
147 /*
148 * Second, we read any remaining bytes, starting back at the head of
149 * the log.
150 */
151 if (count != len)
152 if (copy_to_user(buf + len, log->buffer, count - len))
153 return -EFAULT;
154
155 reader->r_off = logger_offset(log, reader->r_off + count);
156
157 return count;
158}
159
160/*
161 * logger_read - our log's read() method
162 *
163 * Behavior:
164 *
165 * - O_NONBLOCK works
166 * - If there are no log entries to read, blocks until log is written to
167 * - Atomically reads exactly one log entry
168 *
169 * Optimal read size is LOGGER_ENTRY_MAX_LEN. Will set errno to EINVAL if read
170 * buffer is insufficient to hold next entry.
171 */
172static ssize_t logger_read(struct file *file, char __user *buf,
173 size_t count, loff_t *pos)
174{
175 struct logger_reader *reader = file->private_data;
176 struct logger_log *log = reader->log;
177 ssize_t ret;
178 DEFINE_WAIT(wait);
179
180start:
181 while (1) {
182 mutex_lock(&log->mutex);
183
184 prepare_to_wait(&log->wq, &wait, TASK_INTERRUPTIBLE);
185
186 ret = (log->w_off == reader->r_off);
187 mutex_unlock(&log->mutex);
188 if (!ret)
189 break;
190
191 if (file->f_flags & O_NONBLOCK) {
192 ret = -EAGAIN;
193 break;
194 }
195
196 if (signal_pending(current)) {
197 ret = -EINTR;
198 break;
199 }
200
201 schedule();
202 }
203
204 finish_wait(&log->wq, &wait);
205 if (ret)
206 return ret;
207
208 mutex_lock(&log->mutex);
209
210 /* is there still something to read or did we race? */
211 if (unlikely(log->w_off == reader->r_off)) {
212 mutex_unlock(&log->mutex);
213 goto start;
214 }
215
216 /* get the size of the next entry */
217 ret = get_entry_len(log, reader->r_off);
218 if (count < ret) {
219 ret = -EINVAL;
220 goto out;
221 }
222
223 /* get exactly one entry from the log */
224 ret = do_read_log_to_user(log, reader, buf, ret);
225
226out:
227 mutex_unlock(&log->mutex);
228
229 return ret;
230}
231
232/*
233 * get_next_entry - return the offset of the first valid entry at least 'len'
234 * bytes after 'off'.
235 *
236 * Caller must hold log->mutex.
237 */
238static size_t get_next_entry(struct logger_log *log, size_t off, size_t len)
239{
240 size_t count = 0;
241
242 do {
243 size_t nr = get_entry_len(log, off);
244 off = logger_offset(log, off + nr);
245 count += nr;
246 } while (count < len);
247
248 return off;
249}
250
251/*
252 * is_between - is a < c < b, accounting for wrapping of a, b, and c
253 * positions in the buffer
254 *
255 * That is, if a<b, check for c between a and b
256 * and if a>b, check for c outside (not between) a and b
257 *
258 * |------- a xxxxxxxx b --------|
259 * c^
260 *
261 * |xxxxx b --------- a xxxxxxxxx|
262 * c^
263 * or c^
264 */
265static inline int is_between(size_t a, size_t b, size_t c)
266{
267 if (a < b) {
268 /* is c between a and b? */
269 if (a < c && c <= b)
270 return 1;
271 } else {
272 /* is c outside of b through a? */
273 if (c <= b || a < c)
274 return 1;
275 }
276
277 return 0;
278}
279
280/*
281 * fix_up_readers - walk the list of all readers and "fix up" any who were
282 * lapped by the writer; also do the same for the default "start head".
283 * We do this by "pulling forward" the readers and start head to the first
284 * entry after the new write head.
285 *
286 * The caller needs to hold log->mutex.
287 */
288static void fix_up_readers(struct logger_log *log, size_t len)
289{
290 size_t old = log->w_off;
291 size_t new = logger_offset(log, old + len);
292 struct logger_reader *reader;
293
294 if (is_between(old, new, log->head))
295 log->head = get_next_entry(log, log->head, len);
296
297 list_for_each_entry(reader, &log->readers, list)
298 if (is_between(old, new, reader->r_off))
299 reader->r_off = get_next_entry(log, reader->r_off, len);
300}
301
302/*
303 * do_write_log - writes 'len' bytes from 'buf' to 'log'
304 *
305 * The caller needs to hold log->mutex.
306 */
307static void do_write_log(struct logger_log *log, const void *buf, size_t count)
308{
309 size_t len;
310
311 len = min(count, log->size - log->w_off);
312 memcpy(log->buffer + log->w_off, buf, len);
313
314 if (count != len)
315 memcpy(log->buffer, buf + len, count - len);
316
317 log->w_off = logger_offset(log, log->w_off + count);
318
319}
320
321/*
322 * do_write_log_user - writes 'len' bytes from the user-space buffer 'buf' to
323 * the log 'log'
324 *
325 * The caller needs to hold log->mutex.
326 *
327 * Returns 'count' on success, negative error code on failure.
328 */
329static ssize_t do_write_log_from_user(struct logger_log *log,
330 const void __user *buf, size_t count)
331{
332 size_t len;
333
334 len = min(count, log->size - log->w_off);
335 if (len && copy_from_user(log->buffer + log->w_off, buf, len))
336 return -EFAULT;
337
338 if (count != len)
339 if (copy_from_user(log->buffer, buf + len, count - len))
340 /*
341 * Note that by not updating w_off, this abandons the
342 * portion of the new entry that *was* successfully
343 * copied, just above. This is intentional to avoid
344 * message corruption from missing fragments.
345 */
346 return -EFAULT;
347
348 log->w_off = logger_offset(log, log->w_off + count);
349
350 return count;
351}
352
353/*
354 * logger_aio_write - our write method, implementing support for write(),
355 * writev(), and aio_write(). Writes are our fast path, and we try to optimize
356 * them above all else.
357 */
358static ssize_t logger_aio_write(struct kiocb *iocb, const struct iovec *iov,
359 unsigned long nr_segs, loff_t ppos)
360{
361 struct logger_log *log = file_get_log(iocb->ki_filp);
362 size_t orig = log->w_off;
363 struct logger_entry header;
364 struct timespec now;
365 ssize_t ret = 0;
366
367 now = current_kernel_time();
368
369 header.pid = current->tgid;
370 header.tid = current->pid;
371 header.sec = now.tv_sec;
372 header.nsec = now.tv_nsec;
373 header.len = min_t(size_t, iocb->ki_left, LOGGER_ENTRY_MAX_PAYLOAD);
374
375 /* null writes succeed, return zero */
376 if (unlikely(!header.len))
377 return 0;
378
379 mutex_lock(&log->mutex);
380
381 /*
382 * Fix up any readers, pulling them forward to the first readable
383 * entry after (what will be) the new write offset. We do this now
384 * because if we partially fail, we can end up with clobbered log
385 * entries that encroach on readable buffer.
386 */
387 fix_up_readers(log, sizeof(struct logger_entry) + header.len);
388
389 do_write_log(log, &header, sizeof(struct logger_entry));
390
391 while (nr_segs-- > 0) {
392 size_t len;
393 ssize_t nr;
394
395 /* figure out how much of this vector we can keep */
396 len = min_t(size_t, iov->iov_len, header.len - ret);
397
398 /* write out this segment's payload */
399 nr = do_write_log_from_user(log, iov->iov_base, len);
400 if (unlikely(nr < 0)) {
401 log->w_off = orig;
402 mutex_unlock(&log->mutex);
403 return nr;
404 }
405
406 iov++;
407 ret += nr;
408 }
409
410 mutex_unlock(&log->mutex);
411
412 /* wake up any blocked readers */
413 wake_up_interruptible(&log->wq);
414
415 return ret;
416}
417
418static struct logger_log *get_log_from_minor(int minor)
419{
420 struct logger_log *log;
421
422 list_for_each_entry(log, &log_list, logs)
423 if (log->misc.minor == minor)
424 return log;
425 return NULL;
426}
427
428/*
429 * logger_open - the log's open() file operation
430 *
431 * Note how near a no-op this is in the write-only case. Keep it that way!
432 */
433static int logger_open(struct inode *inode, struct file *file)
434{
435 struct logger_log *log;
436 int ret;
437
438 ret = nonseekable_open(inode, file);
439 if (ret)
440 return ret;
441
442 log = get_log_from_minor(MINOR(inode->i_rdev));
443 if (!log)
444 return -ENODEV;
445
446 if (file->f_mode & FMODE_READ) {
447 struct logger_reader *reader;
448
449 reader = kmalloc(sizeof(struct logger_reader), GFP_KERNEL);
450 if (!reader)
451 return -ENOMEM;
452
453 reader->log = log;
454 INIT_LIST_HEAD(&reader->list);
455
456 mutex_lock(&log->mutex);
457 reader->r_off = log->head;
458 list_add_tail(&reader->list, &log->readers);
459 mutex_unlock(&log->mutex);
460
461 file->private_data = reader;
462 } else
463 file->private_data = log;
464
465 return 0;
466}
467
468/*
469 * logger_release - the log's release file operation
470 *
471 * Note this is a total no-op in the write-only case. Keep it that way!
472 */
473static int logger_release(struct inode *ignored, struct file *file)
474{
475 if (file->f_mode & FMODE_READ) {
476 struct logger_reader *reader = file->private_data;
477 struct logger_log *log = reader->log;
478
479 mutex_lock(&log->mutex);
480 list_del(&reader->list);
481 mutex_unlock(&log->mutex);
482
483 kfree(reader);
484 }
485
486 return 0;
487}
488
489/*
490 * logger_poll - the log's poll file operation, for poll/select/epoll
491 *
492 * Note we always return POLLOUT, because you can always write() to the log.
493 * Note also that, strictly speaking, a return value of POLLIN does not
494 * guarantee that the log is readable without blocking, as there is a small
495 * chance that the writer can lap the reader in the interim between poll()
496 * returning and the read() request.
497 */
498static unsigned int logger_poll(struct file *file, poll_table *wait)
499{
500 struct logger_reader *reader;
501 struct logger_log *log;
502 unsigned int ret = POLLOUT | POLLWRNORM;
503
504 if (!(file->f_mode & FMODE_READ))
505 return ret;
506
507 reader = file->private_data;
508 log = reader->log;
509
510 poll_wait(file, &log->wq, wait);
511
512 mutex_lock(&log->mutex);
513 if (log->w_off != reader->r_off)
514 ret |= POLLIN | POLLRDNORM;
515 mutex_unlock(&log->mutex);
516
517 return ret;
518}
519
520static long logger_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
521{
522 struct logger_log *log = file_get_log(file);
523 struct logger_reader *reader;
524 long ret = -ENOTTY;
525
526 mutex_lock(&log->mutex);
527
528 switch (cmd) {
529 case LOGGER_GET_LOG_BUF_SIZE:
530 ret = log->size;
531 break;
532 case LOGGER_GET_LOG_LEN:
533 if (!(file->f_mode & FMODE_READ)) {
534 ret = -EBADF;
535 break;
536 }
537 reader = file->private_data;
538 if (log->w_off >= reader->r_off)
539 ret = log->w_off - reader->r_off;
540 else
541 ret = (log->size - reader->r_off) + log->w_off;
542 break;
543 case LOGGER_GET_NEXT_ENTRY_LEN:
544 if (!(file->f_mode & FMODE_READ)) {
545 ret = -EBADF;
546 break;
547 }
548 reader = file->private_data;
549 if (log->w_off != reader->r_off)
550 ret = get_entry_len(log, reader->r_off);
551 else
552 ret = 0;
553 break;
554 case LOGGER_FLUSH_LOG:
555 if (!(file->f_mode & FMODE_WRITE)) {
556 ret = -EBADF;
557 break;
558 }
559 list_for_each_entry(reader, &log->readers, list)
560 reader->r_off = log->w_off;
561 log->head = log->w_off;
562 ret = 0;
563 break;
564 }
565
566 mutex_unlock(&log->mutex);
567
568 return ret;
569}
570
571static const struct file_operations logger_fops = {
572 .owner = THIS_MODULE,
573 .read = logger_read,
574 .aio_write = logger_aio_write,
575 .poll = logger_poll,
576 .unlocked_ioctl = logger_ioctl,
577 .compat_ioctl = logger_ioctl,
578 .open = logger_open,
579 .release = logger_release,
580};
581
582/*
583 * Log size must be a power of two, greater than LOGGER_ENTRY_MAX_LEN,
584 * and less than LONG_MAX minus LOGGER_ENTRY_MAX_LEN.
585 */
586static int __init create_log(char *log_name, int size)
587{
588 int ret = 0;
589 struct logger_log *log;
590 unsigned char *buffer;
591
592 buffer = vmalloc(size);
593 if (buffer == NULL)
594 return -ENOMEM;
595
596 log = kzalloc(sizeof(struct logger_log), GFP_KERNEL);
597 if (log == NULL) {
598 ret = -ENOMEM;
599 goto out_free_buffer;
600 }
601 log->buffer = buffer;
602
603 log->misc.minor = MISC_DYNAMIC_MINOR;
604 log->misc.name = kstrdup(log_name, GFP_KERNEL);
605 if (log->misc.name == NULL) {
606 ret = -ENOMEM;
607 goto out_free_log;
608 }
609
610 log->misc.fops = &logger_fops;
611 log->misc.parent = NULL;
612
613 init_waitqueue_head(&log->wq);
614 INIT_LIST_HEAD(&log->readers);
615 mutex_init(&log->mutex);
616 log->w_off = 0;
617 log->head = 0;
618 log->size = size;
619
620 INIT_LIST_HEAD(&log->logs);
621 list_add_tail(&log->logs, &log_list);
622
623 /* finally, initialize the misc device for this log */
624 ret = misc_register(&log->misc);
625 if (unlikely(ret)) {
626 pr_err("failed to register misc device for log '%s'!\n",
627 log->misc.name);
628 goto out_free_log;
629 }
630
631 pr_info("created %luK log '%s'\n",
632 (unsigned long) log->size >> 10, log->misc.name);
633
634 return 0;
635
636out_free_log:
637 kfree(log);
638
639out_free_buffer:
640 vfree(buffer);
641 return ret;
642}
643
644static int __init logger_init(void)
645{
646 int ret;
647
648 ret = create_log(LOGGER_LOG_MAIN, 256*1024);
649 if (unlikely(ret))
650 goto out;
651
652 ret = create_log(LOGGER_LOG_EVENTS, 256*1024);
653 if (unlikely(ret))
654 goto out;
655
656 ret = create_log(LOGGER_LOG_RADIO, 256*1024);
657 if (unlikely(ret))
658 goto out;
659
660 ret = create_log(LOGGER_LOG_SYSTEM, 256*1024);
661 if (unlikely(ret))
662 goto out;
663
664out:
665 return ret;
666}
667device_initcall(logger_init);