at v3.6-rc4 2824 lines 85 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24/* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30#define CLONE_NEWNET 0x40000000 /* New network namespace */ 31#define CLONE_IO 0x80000000 /* Clone io context */ 32 33/* 34 * Scheduling policies 35 */ 36#define SCHED_NORMAL 0 37#define SCHED_FIFO 1 38#define SCHED_RR 2 39#define SCHED_BATCH 3 40/* SCHED_ISO: reserved but not implemented yet */ 41#define SCHED_IDLE 5 42/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43#define SCHED_RESET_ON_FORK 0x40000000 44 45#ifdef __KERNEL__ 46 47struct sched_param { 48 int sched_priority; 49}; 50 51#include <asm/param.h> /* for HZ */ 52 53#include <linux/capability.h> 54#include <linux/threads.h> 55#include <linux/kernel.h> 56#include <linux/types.h> 57#include <linux/timex.h> 58#include <linux/jiffies.h> 59#include <linux/rbtree.h> 60#include <linux/thread_info.h> 61#include <linux/cpumask.h> 62#include <linux/errno.h> 63#include <linux/nodemask.h> 64#include <linux/mm_types.h> 65 66#include <asm/page.h> 67#include <asm/ptrace.h> 68#include <asm/cputime.h> 69 70#include <linux/smp.h> 71#include <linux/sem.h> 72#include <linux/signal.h> 73#include <linux/compiler.h> 74#include <linux/completion.h> 75#include <linux/pid.h> 76#include <linux/percpu.h> 77#include <linux/topology.h> 78#include <linux/proportions.h> 79#include <linux/seccomp.h> 80#include <linux/rcupdate.h> 81#include <linux/rculist.h> 82#include <linux/rtmutex.h> 83 84#include <linux/time.h> 85#include <linux/param.h> 86#include <linux/resource.h> 87#include <linux/timer.h> 88#include <linux/hrtimer.h> 89#include <linux/task_io_accounting.h> 90#include <linux/latencytop.h> 91#include <linux/cred.h> 92#include <linux/llist.h> 93#include <linux/uidgid.h> 94 95#include <asm/processor.h> 96 97struct exec_domain; 98struct futex_pi_state; 99struct robust_list_head; 100struct bio_list; 101struct fs_struct; 102struct perf_event_context; 103struct blk_plug; 104 105/* 106 * List of flags we want to share for kernel threads, 107 * if only because they are not used by them anyway. 108 */ 109#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 110 111/* 112 * These are the constant used to fake the fixed-point load-average 113 * counting. Some notes: 114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 115 * a load-average precision of 10 bits integer + 11 bits fractional 116 * - if you want to count load-averages more often, you need more 117 * precision, or rounding will get you. With 2-second counting freq, 118 * the EXP_n values would be 1981, 2034 and 2043 if still using only 119 * 11 bit fractions. 120 */ 121extern unsigned long avenrun[]; /* Load averages */ 122extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 123 124#define FSHIFT 11 /* nr of bits of precision */ 125#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 126#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 127#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 128#define EXP_5 2014 /* 1/exp(5sec/5min) */ 129#define EXP_15 2037 /* 1/exp(5sec/15min) */ 130 131#define CALC_LOAD(load,exp,n) \ 132 load *= exp; \ 133 load += n*(FIXED_1-exp); \ 134 load >>= FSHIFT; 135 136extern unsigned long total_forks; 137extern int nr_threads; 138DECLARE_PER_CPU(unsigned long, process_counts); 139extern int nr_processes(void); 140extern unsigned long nr_running(void); 141extern unsigned long nr_uninterruptible(void); 142extern unsigned long nr_iowait(void); 143extern unsigned long nr_iowait_cpu(int cpu); 144extern unsigned long this_cpu_load(void); 145 146 147extern void calc_global_load(unsigned long ticks); 148extern void update_cpu_load_nohz(void); 149 150extern unsigned long get_parent_ip(unsigned long addr); 151 152struct seq_file; 153struct cfs_rq; 154struct task_group; 155#ifdef CONFIG_SCHED_DEBUG 156extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 157extern void proc_sched_set_task(struct task_struct *p); 158extern void 159print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 160#else 161static inline void 162proc_sched_show_task(struct task_struct *p, struct seq_file *m) 163{ 164} 165static inline void proc_sched_set_task(struct task_struct *p) 166{ 167} 168static inline void 169print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 170{ 171} 172#endif 173 174/* 175 * Task state bitmask. NOTE! These bits are also 176 * encoded in fs/proc/array.c: get_task_state(). 177 * 178 * We have two separate sets of flags: task->state 179 * is about runnability, while task->exit_state are 180 * about the task exiting. Confusing, but this way 181 * modifying one set can't modify the other one by 182 * mistake. 183 */ 184#define TASK_RUNNING 0 185#define TASK_INTERRUPTIBLE 1 186#define TASK_UNINTERRUPTIBLE 2 187#define __TASK_STOPPED 4 188#define __TASK_TRACED 8 189/* in tsk->exit_state */ 190#define EXIT_ZOMBIE 16 191#define EXIT_DEAD 32 192/* in tsk->state again */ 193#define TASK_DEAD 64 194#define TASK_WAKEKILL 128 195#define TASK_WAKING 256 196#define TASK_STATE_MAX 512 197 198#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 199 200extern char ___assert_task_state[1 - 2*!!( 201 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 202 203/* Convenience macros for the sake of set_task_state */ 204#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 205#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 206#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 207 208/* Convenience macros for the sake of wake_up */ 209#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 210#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 211 212/* get_task_state() */ 213#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 214 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 215 __TASK_TRACED) 216 217#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 218#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 219#define task_is_dead(task) ((task)->exit_state != 0) 220#define task_is_stopped_or_traced(task) \ 221 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 222#define task_contributes_to_load(task) \ 223 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 224 (task->flags & PF_FROZEN) == 0) 225 226#define __set_task_state(tsk, state_value) \ 227 do { (tsk)->state = (state_value); } while (0) 228#define set_task_state(tsk, state_value) \ 229 set_mb((tsk)->state, (state_value)) 230 231/* 232 * set_current_state() includes a barrier so that the write of current->state 233 * is correctly serialised wrt the caller's subsequent test of whether to 234 * actually sleep: 235 * 236 * set_current_state(TASK_UNINTERRUPTIBLE); 237 * if (do_i_need_to_sleep()) 238 * schedule(); 239 * 240 * If the caller does not need such serialisation then use __set_current_state() 241 */ 242#define __set_current_state(state_value) \ 243 do { current->state = (state_value); } while (0) 244#define set_current_state(state_value) \ 245 set_mb(current->state, (state_value)) 246 247/* Task command name length */ 248#define TASK_COMM_LEN 16 249 250#include <linux/spinlock.h> 251 252/* 253 * This serializes "schedule()" and also protects 254 * the run-queue from deletions/modifications (but 255 * _adding_ to the beginning of the run-queue has 256 * a separate lock). 257 */ 258extern rwlock_t tasklist_lock; 259extern spinlock_t mmlist_lock; 260 261struct task_struct; 262 263#ifdef CONFIG_PROVE_RCU 264extern int lockdep_tasklist_lock_is_held(void); 265#endif /* #ifdef CONFIG_PROVE_RCU */ 266 267extern void sched_init(void); 268extern void sched_init_smp(void); 269extern asmlinkage void schedule_tail(struct task_struct *prev); 270extern void init_idle(struct task_struct *idle, int cpu); 271extern void init_idle_bootup_task(struct task_struct *idle); 272 273extern int runqueue_is_locked(int cpu); 274 275#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 276extern void select_nohz_load_balancer(int stop_tick); 277extern void set_cpu_sd_state_idle(void); 278extern int get_nohz_timer_target(void); 279#else 280static inline void select_nohz_load_balancer(int stop_tick) { } 281static inline void set_cpu_sd_state_idle(void) { } 282#endif 283 284/* 285 * Only dump TASK_* tasks. (0 for all tasks) 286 */ 287extern void show_state_filter(unsigned long state_filter); 288 289static inline void show_state(void) 290{ 291 show_state_filter(0); 292} 293 294extern void show_regs(struct pt_regs *); 295 296/* 297 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 298 * task), SP is the stack pointer of the first frame that should be shown in the back 299 * trace (or NULL if the entire call-chain of the task should be shown). 300 */ 301extern void show_stack(struct task_struct *task, unsigned long *sp); 302 303void io_schedule(void); 304long io_schedule_timeout(long timeout); 305 306extern void cpu_init (void); 307extern void trap_init(void); 308extern void update_process_times(int user); 309extern void scheduler_tick(void); 310 311extern void sched_show_task(struct task_struct *p); 312 313#ifdef CONFIG_LOCKUP_DETECTOR 314extern void touch_softlockup_watchdog(void); 315extern void touch_softlockup_watchdog_sync(void); 316extern void touch_all_softlockup_watchdogs(void); 317extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 318 void __user *buffer, 319 size_t *lenp, loff_t *ppos); 320extern unsigned int softlockup_panic; 321void lockup_detector_init(void); 322#else 323static inline void touch_softlockup_watchdog(void) 324{ 325} 326static inline void touch_softlockup_watchdog_sync(void) 327{ 328} 329static inline void touch_all_softlockup_watchdogs(void) 330{ 331} 332static inline void lockup_detector_init(void) 333{ 334} 335#endif 336 337#ifdef CONFIG_DETECT_HUNG_TASK 338extern unsigned int sysctl_hung_task_panic; 339extern unsigned long sysctl_hung_task_check_count; 340extern unsigned long sysctl_hung_task_timeout_secs; 341extern unsigned long sysctl_hung_task_warnings; 342extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 343 void __user *buffer, 344 size_t *lenp, loff_t *ppos); 345#else 346/* Avoid need for ifdefs elsewhere in the code */ 347enum { sysctl_hung_task_timeout_secs = 0 }; 348#endif 349 350/* Attach to any functions which should be ignored in wchan output. */ 351#define __sched __attribute__((__section__(".sched.text"))) 352 353/* Linker adds these: start and end of __sched functions */ 354extern char __sched_text_start[], __sched_text_end[]; 355 356/* Is this address in the __sched functions? */ 357extern int in_sched_functions(unsigned long addr); 358 359#define MAX_SCHEDULE_TIMEOUT LONG_MAX 360extern signed long schedule_timeout(signed long timeout); 361extern signed long schedule_timeout_interruptible(signed long timeout); 362extern signed long schedule_timeout_killable(signed long timeout); 363extern signed long schedule_timeout_uninterruptible(signed long timeout); 364asmlinkage void schedule(void); 365extern void schedule_preempt_disabled(void); 366extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 367 368struct nsproxy; 369struct user_namespace; 370 371/* 372 * Default maximum number of active map areas, this limits the number of vmas 373 * per mm struct. Users can overwrite this number by sysctl but there is a 374 * problem. 375 * 376 * When a program's coredump is generated as ELF format, a section is created 377 * per a vma. In ELF, the number of sections is represented in unsigned short. 378 * This means the number of sections should be smaller than 65535 at coredump. 379 * Because the kernel adds some informative sections to a image of program at 380 * generating coredump, we need some margin. The number of extra sections is 381 * 1-3 now and depends on arch. We use "5" as safe margin, here. 382 */ 383#define MAPCOUNT_ELF_CORE_MARGIN (5) 384#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 385 386extern int sysctl_max_map_count; 387 388#include <linux/aio.h> 389 390#ifdef CONFIG_MMU 391extern void arch_pick_mmap_layout(struct mm_struct *mm); 392extern unsigned long 393arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 394 unsigned long, unsigned long); 395extern unsigned long 396arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 397 unsigned long len, unsigned long pgoff, 398 unsigned long flags); 399extern void arch_unmap_area(struct mm_struct *, unsigned long); 400extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 401#else 402static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 403#endif 404 405 406extern void set_dumpable(struct mm_struct *mm, int value); 407extern int get_dumpable(struct mm_struct *mm); 408 409/* get/set_dumpable() values */ 410#define SUID_DUMPABLE_DISABLED 0 411#define SUID_DUMPABLE_ENABLED 1 412#define SUID_DUMPABLE_SAFE 2 413 414/* mm flags */ 415/* dumpable bits */ 416#define MMF_DUMPABLE 0 /* core dump is permitted */ 417#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 418 419#define MMF_DUMPABLE_BITS 2 420#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 421 422/* coredump filter bits */ 423#define MMF_DUMP_ANON_PRIVATE 2 424#define MMF_DUMP_ANON_SHARED 3 425#define MMF_DUMP_MAPPED_PRIVATE 4 426#define MMF_DUMP_MAPPED_SHARED 5 427#define MMF_DUMP_ELF_HEADERS 6 428#define MMF_DUMP_HUGETLB_PRIVATE 7 429#define MMF_DUMP_HUGETLB_SHARED 8 430 431#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 432#define MMF_DUMP_FILTER_BITS 7 433#define MMF_DUMP_FILTER_MASK \ 434 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 435#define MMF_DUMP_FILTER_DEFAULT \ 436 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 437 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 438 439#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 440# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 441#else 442# define MMF_DUMP_MASK_DEFAULT_ELF 0 443#endif 444 /* leave room for more dump flags */ 445#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 446#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 447#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 448 449#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 450 451struct sighand_struct { 452 atomic_t count; 453 struct k_sigaction action[_NSIG]; 454 spinlock_t siglock; 455 wait_queue_head_t signalfd_wqh; 456}; 457 458struct pacct_struct { 459 int ac_flag; 460 long ac_exitcode; 461 unsigned long ac_mem; 462 cputime_t ac_utime, ac_stime; 463 unsigned long ac_minflt, ac_majflt; 464}; 465 466struct cpu_itimer { 467 cputime_t expires; 468 cputime_t incr; 469 u32 error; 470 u32 incr_error; 471}; 472 473/** 474 * struct task_cputime - collected CPU time counts 475 * @utime: time spent in user mode, in &cputime_t units 476 * @stime: time spent in kernel mode, in &cputime_t units 477 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 478 * 479 * This structure groups together three kinds of CPU time that are 480 * tracked for threads and thread groups. Most things considering 481 * CPU time want to group these counts together and treat all three 482 * of them in parallel. 483 */ 484struct task_cputime { 485 cputime_t utime; 486 cputime_t stime; 487 unsigned long long sum_exec_runtime; 488}; 489/* Alternate field names when used to cache expirations. */ 490#define prof_exp stime 491#define virt_exp utime 492#define sched_exp sum_exec_runtime 493 494#define INIT_CPUTIME \ 495 (struct task_cputime) { \ 496 .utime = 0, \ 497 .stime = 0, \ 498 .sum_exec_runtime = 0, \ 499 } 500 501/* 502 * Disable preemption until the scheduler is running. 503 * Reset by start_kernel()->sched_init()->init_idle(). 504 * 505 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 506 * before the scheduler is active -- see should_resched(). 507 */ 508#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 509 510/** 511 * struct thread_group_cputimer - thread group interval timer counts 512 * @cputime: thread group interval timers. 513 * @running: non-zero when there are timers running and 514 * @cputime receives updates. 515 * @lock: lock for fields in this struct. 516 * 517 * This structure contains the version of task_cputime, above, that is 518 * used for thread group CPU timer calculations. 519 */ 520struct thread_group_cputimer { 521 struct task_cputime cputime; 522 int running; 523 raw_spinlock_t lock; 524}; 525 526#include <linux/rwsem.h> 527struct autogroup; 528 529/* 530 * NOTE! "signal_struct" does not have its own 531 * locking, because a shared signal_struct always 532 * implies a shared sighand_struct, so locking 533 * sighand_struct is always a proper superset of 534 * the locking of signal_struct. 535 */ 536struct signal_struct { 537 atomic_t sigcnt; 538 atomic_t live; 539 int nr_threads; 540 541 wait_queue_head_t wait_chldexit; /* for wait4() */ 542 543 /* current thread group signal load-balancing target: */ 544 struct task_struct *curr_target; 545 546 /* shared signal handling: */ 547 struct sigpending shared_pending; 548 549 /* thread group exit support */ 550 int group_exit_code; 551 /* overloaded: 552 * - notify group_exit_task when ->count is equal to notify_count 553 * - everyone except group_exit_task is stopped during signal delivery 554 * of fatal signals, group_exit_task processes the signal. 555 */ 556 int notify_count; 557 struct task_struct *group_exit_task; 558 559 /* thread group stop support, overloads group_exit_code too */ 560 int group_stop_count; 561 unsigned int flags; /* see SIGNAL_* flags below */ 562 563 /* 564 * PR_SET_CHILD_SUBREAPER marks a process, like a service 565 * manager, to re-parent orphan (double-forking) child processes 566 * to this process instead of 'init'. The service manager is 567 * able to receive SIGCHLD signals and is able to investigate 568 * the process until it calls wait(). All children of this 569 * process will inherit a flag if they should look for a 570 * child_subreaper process at exit. 571 */ 572 unsigned int is_child_subreaper:1; 573 unsigned int has_child_subreaper:1; 574 575 /* POSIX.1b Interval Timers */ 576 struct list_head posix_timers; 577 578 /* ITIMER_REAL timer for the process */ 579 struct hrtimer real_timer; 580 struct pid *leader_pid; 581 ktime_t it_real_incr; 582 583 /* 584 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 585 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 586 * values are defined to 0 and 1 respectively 587 */ 588 struct cpu_itimer it[2]; 589 590 /* 591 * Thread group totals for process CPU timers. 592 * See thread_group_cputimer(), et al, for details. 593 */ 594 struct thread_group_cputimer cputimer; 595 596 /* Earliest-expiration cache. */ 597 struct task_cputime cputime_expires; 598 599 struct list_head cpu_timers[3]; 600 601 struct pid *tty_old_pgrp; 602 603 /* boolean value for session group leader */ 604 int leader; 605 606 struct tty_struct *tty; /* NULL if no tty */ 607 608#ifdef CONFIG_SCHED_AUTOGROUP 609 struct autogroup *autogroup; 610#endif 611 /* 612 * Cumulative resource counters for dead threads in the group, 613 * and for reaped dead child processes forked by this group. 614 * Live threads maintain their own counters and add to these 615 * in __exit_signal, except for the group leader. 616 */ 617 cputime_t utime, stime, cutime, cstime; 618 cputime_t gtime; 619 cputime_t cgtime; 620#ifndef CONFIG_VIRT_CPU_ACCOUNTING 621 cputime_t prev_utime, prev_stime; 622#endif 623 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 624 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 625 unsigned long inblock, oublock, cinblock, coublock; 626 unsigned long maxrss, cmaxrss; 627 struct task_io_accounting ioac; 628 629 /* 630 * Cumulative ns of schedule CPU time fo dead threads in the 631 * group, not including a zombie group leader, (This only differs 632 * from jiffies_to_ns(utime + stime) if sched_clock uses something 633 * other than jiffies.) 634 */ 635 unsigned long long sum_sched_runtime; 636 637 /* 638 * We don't bother to synchronize most readers of this at all, 639 * because there is no reader checking a limit that actually needs 640 * to get both rlim_cur and rlim_max atomically, and either one 641 * alone is a single word that can safely be read normally. 642 * getrlimit/setrlimit use task_lock(current->group_leader) to 643 * protect this instead of the siglock, because they really 644 * have no need to disable irqs. 645 */ 646 struct rlimit rlim[RLIM_NLIMITS]; 647 648#ifdef CONFIG_BSD_PROCESS_ACCT 649 struct pacct_struct pacct; /* per-process accounting information */ 650#endif 651#ifdef CONFIG_TASKSTATS 652 struct taskstats *stats; 653#endif 654#ifdef CONFIG_AUDIT 655 unsigned audit_tty; 656 struct tty_audit_buf *tty_audit_buf; 657#endif 658#ifdef CONFIG_CGROUPS 659 /* 660 * group_rwsem prevents new tasks from entering the threadgroup and 661 * member tasks from exiting,a more specifically, setting of 662 * PF_EXITING. fork and exit paths are protected with this rwsem 663 * using threadgroup_change_begin/end(). Users which require 664 * threadgroup to remain stable should use threadgroup_[un]lock() 665 * which also takes care of exec path. Currently, cgroup is the 666 * only user. 667 */ 668 struct rw_semaphore group_rwsem; 669#endif 670 671 int oom_adj; /* OOM kill score adjustment (bit shift) */ 672 int oom_score_adj; /* OOM kill score adjustment */ 673 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 674 * Only settable by CAP_SYS_RESOURCE. */ 675 676 struct mutex cred_guard_mutex; /* guard against foreign influences on 677 * credential calculations 678 * (notably. ptrace) */ 679}; 680 681/* Context switch must be unlocked if interrupts are to be enabled */ 682#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 683# define __ARCH_WANT_UNLOCKED_CTXSW 684#endif 685 686/* 687 * Bits in flags field of signal_struct. 688 */ 689#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 690#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 691#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 692/* 693 * Pending notifications to parent. 694 */ 695#define SIGNAL_CLD_STOPPED 0x00000010 696#define SIGNAL_CLD_CONTINUED 0x00000020 697#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 698 699#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 700 701/* If true, all threads except ->group_exit_task have pending SIGKILL */ 702static inline int signal_group_exit(const struct signal_struct *sig) 703{ 704 return (sig->flags & SIGNAL_GROUP_EXIT) || 705 (sig->group_exit_task != NULL); 706} 707 708/* 709 * Some day this will be a full-fledged user tracking system.. 710 */ 711struct user_struct { 712 atomic_t __count; /* reference count */ 713 atomic_t processes; /* How many processes does this user have? */ 714 atomic_t files; /* How many open files does this user have? */ 715 atomic_t sigpending; /* How many pending signals does this user have? */ 716#ifdef CONFIG_INOTIFY_USER 717 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 718 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 719#endif 720#ifdef CONFIG_FANOTIFY 721 atomic_t fanotify_listeners; 722#endif 723#ifdef CONFIG_EPOLL 724 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 725#endif 726#ifdef CONFIG_POSIX_MQUEUE 727 /* protected by mq_lock */ 728 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 729#endif 730 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 731 732#ifdef CONFIG_KEYS 733 struct key *uid_keyring; /* UID specific keyring */ 734 struct key *session_keyring; /* UID's default session keyring */ 735#endif 736 737 /* Hash table maintenance information */ 738 struct hlist_node uidhash_node; 739 kuid_t uid; 740 741#ifdef CONFIG_PERF_EVENTS 742 atomic_long_t locked_vm; 743#endif 744}; 745 746extern int uids_sysfs_init(void); 747 748extern struct user_struct *find_user(kuid_t); 749 750extern struct user_struct root_user; 751#define INIT_USER (&root_user) 752 753 754struct backing_dev_info; 755struct reclaim_state; 756 757#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 758struct sched_info { 759 /* cumulative counters */ 760 unsigned long pcount; /* # of times run on this cpu */ 761 unsigned long long run_delay; /* time spent waiting on a runqueue */ 762 763 /* timestamps */ 764 unsigned long long last_arrival,/* when we last ran on a cpu */ 765 last_queued; /* when we were last queued to run */ 766}; 767#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 768 769#ifdef CONFIG_TASK_DELAY_ACCT 770struct task_delay_info { 771 spinlock_t lock; 772 unsigned int flags; /* Private per-task flags */ 773 774 /* For each stat XXX, add following, aligned appropriately 775 * 776 * struct timespec XXX_start, XXX_end; 777 * u64 XXX_delay; 778 * u32 XXX_count; 779 * 780 * Atomicity of updates to XXX_delay, XXX_count protected by 781 * single lock above (split into XXX_lock if contention is an issue). 782 */ 783 784 /* 785 * XXX_count is incremented on every XXX operation, the delay 786 * associated with the operation is added to XXX_delay. 787 * XXX_delay contains the accumulated delay time in nanoseconds. 788 */ 789 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 790 u64 blkio_delay; /* wait for sync block io completion */ 791 u64 swapin_delay; /* wait for swapin block io completion */ 792 u32 blkio_count; /* total count of the number of sync block */ 793 /* io operations performed */ 794 u32 swapin_count; /* total count of the number of swapin block */ 795 /* io operations performed */ 796 797 struct timespec freepages_start, freepages_end; 798 u64 freepages_delay; /* wait for memory reclaim */ 799 u32 freepages_count; /* total count of memory reclaim */ 800}; 801#endif /* CONFIG_TASK_DELAY_ACCT */ 802 803static inline int sched_info_on(void) 804{ 805#ifdef CONFIG_SCHEDSTATS 806 return 1; 807#elif defined(CONFIG_TASK_DELAY_ACCT) 808 extern int delayacct_on; 809 return delayacct_on; 810#else 811 return 0; 812#endif 813} 814 815enum cpu_idle_type { 816 CPU_IDLE, 817 CPU_NOT_IDLE, 818 CPU_NEWLY_IDLE, 819 CPU_MAX_IDLE_TYPES 820}; 821 822/* 823 * Increase resolution of nice-level calculations for 64-bit architectures. 824 * The extra resolution improves shares distribution and load balancing of 825 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 826 * hierarchies, especially on larger systems. This is not a user-visible change 827 * and does not change the user-interface for setting shares/weights. 828 * 829 * We increase resolution only if we have enough bits to allow this increased 830 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 831 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 832 * increased costs. 833 */ 834#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 835# define SCHED_LOAD_RESOLUTION 10 836# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 837# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 838#else 839# define SCHED_LOAD_RESOLUTION 0 840# define scale_load(w) (w) 841# define scale_load_down(w) (w) 842#endif 843 844#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 845#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 846 847/* 848 * Increase resolution of cpu_power calculations 849 */ 850#define SCHED_POWER_SHIFT 10 851#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 852 853/* 854 * sched-domains (multiprocessor balancing) declarations: 855 */ 856#ifdef CONFIG_SMP 857#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 858#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 859#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 860#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 861#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 862#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 863#define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 864#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 865#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 866#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 867#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 868#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 869#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 870 871extern int __weak arch_sd_sibiling_asym_packing(void); 872 873struct sched_group_power { 874 atomic_t ref; 875 /* 876 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 877 * single CPU. 878 */ 879 unsigned int power, power_orig; 880 unsigned long next_update; 881 /* 882 * Number of busy cpus in this group. 883 */ 884 atomic_t nr_busy_cpus; 885 886 unsigned long cpumask[0]; /* iteration mask */ 887}; 888 889struct sched_group { 890 struct sched_group *next; /* Must be a circular list */ 891 atomic_t ref; 892 893 unsigned int group_weight; 894 struct sched_group_power *sgp; 895 896 /* 897 * The CPUs this group covers. 898 * 899 * NOTE: this field is variable length. (Allocated dynamically 900 * by attaching extra space to the end of the structure, 901 * depending on how many CPUs the kernel has booted up with) 902 */ 903 unsigned long cpumask[0]; 904}; 905 906static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 907{ 908 return to_cpumask(sg->cpumask); 909} 910 911/* 912 * cpumask masking which cpus in the group are allowed to iterate up the domain 913 * tree. 914 */ 915static inline struct cpumask *sched_group_mask(struct sched_group *sg) 916{ 917 return to_cpumask(sg->sgp->cpumask); 918} 919 920/** 921 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 922 * @group: The group whose first cpu is to be returned. 923 */ 924static inline unsigned int group_first_cpu(struct sched_group *group) 925{ 926 return cpumask_first(sched_group_cpus(group)); 927} 928 929struct sched_domain_attr { 930 int relax_domain_level; 931}; 932 933#define SD_ATTR_INIT (struct sched_domain_attr) { \ 934 .relax_domain_level = -1, \ 935} 936 937extern int sched_domain_level_max; 938 939struct sched_domain { 940 /* These fields must be setup */ 941 struct sched_domain *parent; /* top domain must be null terminated */ 942 struct sched_domain *child; /* bottom domain must be null terminated */ 943 struct sched_group *groups; /* the balancing groups of the domain */ 944 unsigned long min_interval; /* Minimum balance interval ms */ 945 unsigned long max_interval; /* Maximum balance interval ms */ 946 unsigned int busy_factor; /* less balancing by factor if busy */ 947 unsigned int imbalance_pct; /* No balance until over watermark */ 948 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 949 unsigned int busy_idx; 950 unsigned int idle_idx; 951 unsigned int newidle_idx; 952 unsigned int wake_idx; 953 unsigned int forkexec_idx; 954 unsigned int smt_gain; 955 int flags; /* See SD_* */ 956 int level; 957 int idle_buddy; /* cpu assigned to select_idle_sibling() */ 958 959 /* Runtime fields. */ 960 unsigned long last_balance; /* init to jiffies. units in jiffies */ 961 unsigned int balance_interval; /* initialise to 1. units in ms. */ 962 unsigned int nr_balance_failed; /* initialise to 0 */ 963 964 u64 last_update; 965 966#ifdef CONFIG_SCHEDSTATS 967 /* load_balance() stats */ 968 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 969 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 970 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 971 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 972 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 973 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 974 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 975 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 976 977 /* Active load balancing */ 978 unsigned int alb_count; 979 unsigned int alb_failed; 980 unsigned int alb_pushed; 981 982 /* SD_BALANCE_EXEC stats */ 983 unsigned int sbe_count; 984 unsigned int sbe_balanced; 985 unsigned int sbe_pushed; 986 987 /* SD_BALANCE_FORK stats */ 988 unsigned int sbf_count; 989 unsigned int sbf_balanced; 990 unsigned int sbf_pushed; 991 992 /* try_to_wake_up() stats */ 993 unsigned int ttwu_wake_remote; 994 unsigned int ttwu_move_affine; 995 unsigned int ttwu_move_balance; 996#endif 997#ifdef CONFIG_SCHED_DEBUG 998 char *name; 999#endif 1000 union { 1001 void *private; /* used during construction */ 1002 struct rcu_head rcu; /* used during destruction */ 1003 }; 1004 1005 unsigned int span_weight; 1006 /* 1007 * Span of all CPUs in this domain. 1008 * 1009 * NOTE: this field is variable length. (Allocated dynamically 1010 * by attaching extra space to the end of the structure, 1011 * depending on how many CPUs the kernel has booted up with) 1012 */ 1013 unsigned long span[0]; 1014}; 1015 1016static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1017{ 1018 return to_cpumask(sd->span); 1019} 1020 1021extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1022 struct sched_domain_attr *dattr_new); 1023 1024/* Allocate an array of sched domains, for partition_sched_domains(). */ 1025cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1026void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1027 1028/* Test a flag in parent sched domain */ 1029static inline int test_sd_parent(struct sched_domain *sd, int flag) 1030{ 1031 if (sd->parent && (sd->parent->flags & flag)) 1032 return 1; 1033 1034 return 0; 1035} 1036 1037unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1038unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1039 1040bool cpus_share_cache(int this_cpu, int that_cpu); 1041 1042#else /* CONFIG_SMP */ 1043 1044struct sched_domain_attr; 1045 1046static inline void 1047partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1048 struct sched_domain_attr *dattr_new) 1049{ 1050} 1051 1052static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1053{ 1054 return true; 1055} 1056 1057#endif /* !CONFIG_SMP */ 1058 1059 1060struct io_context; /* See blkdev.h */ 1061 1062 1063#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1064extern void prefetch_stack(struct task_struct *t); 1065#else 1066static inline void prefetch_stack(struct task_struct *t) { } 1067#endif 1068 1069struct audit_context; /* See audit.c */ 1070struct mempolicy; 1071struct pipe_inode_info; 1072struct uts_namespace; 1073 1074struct rq; 1075struct sched_domain; 1076 1077/* 1078 * wake flags 1079 */ 1080#define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1081#define WF_FORK 0x02 /* child wakeup after fork */ 1082#define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1083 1084#define ENQUEUE_WAKEUP 1 1085#define ENQUEUE_HEAD 2 1086#ifdef CONFIG_SMP 1087#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1088#else 1089#define ENQUEUE_WAKING 0 1090#endif 1091 1092#define DEQUEUE_SLEEP 1 1093 1094struct sched_class { 1095 const struct sched_class *next; 1096 1097 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1098 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1099 void (*yield_task) (struct rq *rq); 1100 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1101 1102 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1103 1104 struct task_struct * (*pick_next_task) (struct rq *rq); 1105 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1106 1107#ifdef CONFIG_SMP 1108 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1109 1110 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1111 void (*post_schedule) (struct rq *this_rq); 1112 void (*task_waking) (struct task_struct *task); 1113 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1114 1115 void (*set_cpus_allowed)(struct task_struct *p, 1116 const struct cpumask *newmask); 1117 1118 void (*rq_online)(struct rq *rq); 1119 void (*rq_offline)(struct rq *rq); 1120#endif 1121 1122 void (*set_curr_task) (struct rq *rq); 1123 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1124 void (*task_fork) (struct task_struct *p); 1125 1126 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1127 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1128 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1129 int oldprio); 1130 1131 unsigned int (*get_rr_interval) (struct rq *rq, 1132 struct task_struct *task); 1133 1134#ifdef CONFIG_FAIR_GROUP_SCHED 1135 void (*task_move_group) (struct task_struct *p, int on_rq); 1136#endif 1137}; 1138 1139struct load_weight { 1140 unsigned long weight, inv_weight; 1141}; 1142 1143#ifdef CONFIG_SCHEDSTATS 1144struct sched_statistics { 1145 u64 wait_start; 1146 u64 wait_max; 1147 u64 wait_count; 1148 u64 wait_sum; 1149 u64 iowait_count; 1150 u64 iowait_sum; 1151 1152 u64 sleep_start; 1153 u64 sleep_max; 1154 s64 sum_sleep_runtime; 1155 1156 u64 block_start; 1157 u64 block_max; 1158 u64 exec_max; 1159 u64 slice_max; 1160 1161 u64 nr_migrations_cold; 1162 u64 nr_failed_migrations_affine; 1163 u64 nr_failed_migrations_running; 1164 u64 nr_failed_migrations_hot; 1165 u64 nr_forced_migrations; 1166 1167 u64 nr_wakeups; 1168 u64 nr_wakeups_sync; 1169 u64 nr_wakeups_migrate; 1170 u64 nr_wakeups_local; 1171 u64 nr_wakeups_remote; 1172 u64 nr_wakeups_affine; 1173 u64 nr_wakeups_affine_attempts; 1174 u64 nr_wakeups_passive; 1175 u64 nr_wakeups_idle; 1176}; 1177#endif 1178 1179struct sched_entity { 1180 struct load_weight load; /* for load-balancing */ 1181 struct rb_node run_node; 1182 struct list_head group_node; 1183 unsigned int on_rq; 1184 1185 u64 exec_start; 1186 u64 sum_exec_runtime; 1187 u64 vruntime; 1188 u64 prev_sum_exec_runtime; 1189 1190 u64 nr_migrations; 1191 1192#ifdef CONFIG_SCHEDSTATS 1193 struct sched_statistics statistics; 1194#endif 1195 1196#ifdef CONFIG_FAIR_GROUP_SCHED 1197 struct sched_entity *parent; 1198 /* rq on which this entity is (to be) queued: */ 1199 struct cfs_rq *cfs_rq; 1200 /* rq "owned" by this entity/group: */ 1201 struct cfs_rq *my_q; 1202#endif 1203}; 1204 1205struct sched_rt_entity { 1206 struct list_head run_list; 1207 unsigned long timeout; 1208 unsigned int time_slice; 1209 1210 struct sched_rt_entity *back; 1211#ifdef CONFIG_RT_GROUP_SCHED 1212 struct sched_rt_entity *parent; 1213 /* rq on which this entity is (to be) queued: */ 1214 struct rt_rq *rt_rq; 1215 /* rq "owned" by this entity/group: */ 1216 struct rt_rq *my_q; 1217#endif 1218}; 1219 1220/* 1221 * default timeslice is 100 msecs (used only for SCHED_RR tasks). 1222 * Timeslices get refilled after they expire. 1223 */ 1224#define RR_TIMESLICE (100 * HZ / 1000) 1225 1226struct rcu_node; 1227 1228enum perf_event_task_context { 1229 perf_invalid_context = -1, 1230 perf_hw_context = 0, 1231 perf_sw_context, 1232 perf_nr_task_contexts, 1233}; 1234 1235struct task_struct { 1236 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1237 void *stack; 1238 atomic_t usage; 1239 unsigned int flags; /* per process flags, defined below */ 1240 unsigned int ptrace; 1241 1242#ifdef CONFIG_SMP 1243 struct llist_node wake_entry; 1244 int on_cpu; 1245#endif 1246 int on_rq; 1247 1248 int prio, static_prio, normal_prio; 1249 unsigned int rt_priority; 1250 const struct sched_class *sched_class; 1251 struct sched_entity se; 1252 struct sched_rt_entity rt; 1253#ifdef CONFIG_CGROUP_SCHED 1254 struct task_group *sched_task_group; 1255#endif 1256 1257#ifdef CONFIG_PREEMPT_NOTIFIERS 1258 /* list of struct preempt_notifier: */ 1259 struct hlist_head preempt_notifiers; 1260#endif 1261 1262 /* 1263 * fpu_counter contains the number of consecutive context switches 1264 * that the FPU is used. If this is over a threshold, the lazy fpu 1265 * saving becomes unlazy to save the trap. This is an unsigned char 1266 * so that after 256 times the counter wraps and the behavior turns 1267 * lazy again; this to deal with bursty apps that only use FPU for 1268 * a short time 1269 */ 1270 unsigned char fpu_counter; 1271#ifdef CONFIG_BLK_DEV_IO_TRACE 1272 unsigned int btrace_seq; 1273#endif 1274 1275 unsigned int policy; 1276 int nr_cpus_allowed; 1277 cpumask_t cpus_allowed; 1278 1279#ifdef CONFIG_PREEMPT_RCU 1280 int rcu_read_lock_nesting; 1281 char rcu_read_unlock_special; 1282 struct list_head rcu_node_entry; 1283#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1284#ifdef CONFIG_TREE_PREEMPT_RCU 1285 struct rcu_node *rcu_blocked_node; 1286#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1287#ifdef CONFIG_RCU_BOOST 1288 struct rt_mutex *rcu_boost_mutex; 1289#endif /* #ifdef CONFIG_RCU_BOOST */ 1290 1291#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1292 struct sched_info sched_info; 1293#endif 1294 1295 struct list_head tasks; 1296#ifdef CONFIG_SMP 1297 struct plist_node pushable_tasks; 1298#endif 1299 1300 struct mm_struct *mm, *active_mm; 1301#ifdef CONFIG_COMPAT_BRK 1302 unsigned brk_randomized:1; 1303#endif 1304#if defined(SPLIT_RSS_COUNTING) 1305 struct task_rss_stat rss_stat; 1306#endif 1307/* task state */ 1308 int exit_state; 1309 int exit_code, exit_signal; 1310 int pdeath_signal; /* The signal sent when the parent dies */ 1311 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1312 /* ??? */ 1313 unsigned int personality; 1314 unsigned did_exec:1; 1315 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1316 * execve */ 1317 unsigned in_iowait:1; 1318 1319 /* task may not gain privileges */ 1320 unsigned no_new_privs:1; 1321 1322 /* Revert to default priority/policy when forking */ 1323 unsigned sched_reset_on_fork:1; 1324 unsigned sched_contributes_to_load:1; 1325 1326 pid_t pid; 1327 pid_t tgid; 1328 1329#ifdef CONFIG_CC_STACKPROTECTOR 1330 /* Canary value for the -fstack-protector gcc feature */ 1331 unsigned long stack_canary; 1332#endif 1333 /* 1334 * pointers to (original) parent process, youngest child, younger sibling, 1335 * older sibling, respectively. (p->father can be replaced with 1336 * p->real_parent->pid) 1337 */ 1338 struct task_struct __rcu *real_parent; /* real parent process */ 1339 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1340 /* 1341 * children/sibling forms the list of my natural children 1342 */ 1343 struct list_head children; /* list of my children */ 1344 struct list_head sibling; /* linkage in my parent's children list */ 1345 struct task_struct *group_leader; /* threadgroup leader */ 1346 1347 /* 1348 * ptraced is the list of tasks this task is using ptrace on. 1349 * This includes both natural children and PTRACE_ATTACH targets. 1350 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1351 */ 1352 struct list_head ptraced; 1353 struct list_head ptrace_entry; 1354 1355 /* PID/PID hash table linkage. */ 1356 struct pid_link pids[PIDTYPE_MAX]; 1357 struct list_head thread_group; 1358 1359 struct completion *vfork_done; /* for vfork() */ 1360 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1361 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1362 1363 cputime_t utime, stime, utimescaled, stimescaled; 1364 cputime_t gtime; 1365#ifndef CONFIG_VIRT_CPU_ACCOUNTING 1366 cputime_t prev_utime, prev_stime; 1367#endif 1368 unsigned long nvcsw, nivcsw; /* context switch counts */ 1369 struct timespec start_time; /* monotonic time */ 1370 struct timespec real_start_time; /* boot based time */ 1371/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1372 unsigned long min_flt, maj_flt; 1373 1374 struct task_cputime cputime_expires; 1375 struct list_head cpu_timers[3]; 1376 1377/* process credentials */ 1378 const struct cred __rcu *real_cred; /* objective and real subjective task 1379 * credentials (COW) */ 1380 const struct cred __rcu *cred; /* effective (overridable) subjective task 1381 * credentials (COW) */ 1382 char comm[TASK_COMM_LEN]; /* executable name excluding path 1383 - access with [gs]et_task_comm (which lock 1384 it with task_lock()) 1385 - initialized normally by setup_new_exec */ 1386/* file system info */ 1387 int link_count, total_link_count; 1388#ifdef CONFIG_SYSVIPC 1389/* ipc stuff */ 1390 struct sysv_sem sysvsem; 1391#endif 1392#ifdef CONFIG_DETECT_HUNG_TASK 1393/* hung task detection */ 1394 unsigned long last_switch_count; 1395#endif 1396/* CPU-specific state of this task */ 1397 struct thread_struct thread; 1398/* filesystem information */ 1399 struct fs_struct *fs; 1400/* open file information */ 1401 struct files_struct *files; 1402/* namespaces */ 1403 struct nsproxy *nsproxy; 1404/* signal handlers */ 1405 struct signal_struct *signal; 1406 struct sighand_struct *sighand; 1407 1408 sigset_t blocked, real_blocked; 1409 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1410 struct sigpending pending; 1411 1412 unsigned long sas_ss_sp; 1413 size_t sas_ss_size; 1414 int (*notifier)(void *priv); 1415 void *notifier_data; 1416 sigset_t *notifier_mask; 1417 struct callback_head *task_works; 1418 1419 struct audit_context *audit_context; 1420#ifdef CONFIG_AUDITSYSCALL 1421 uid_t loginuid; 1422 unsigned int sessionid; 1423#endif 1424 struct seccomp seccomp; 1425 1426/* Thread group tracking */ 1427 u32 parent_exec_id; 1428 u32 self_exec_id; 1429/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1430 * mempolicy */ 1431 spinlock_t alloc_lock; 1432 1433 /* Protection of the PI data structures: */ 1434 raw_spinlock_t pi_lock; 1435 1436#ifdef CONFIG_RT_MUTEXES 1437 /* PI waiters blocked on a rt_mutex held by this task */ 1438 struct plist_head pi_waiters; 1439 /* Deadlock detection and priority inheritance handling */ 1440 struct rt_mutex_waiter *pi_blocked_on; 1441#endif 1442 1443#ifdef CONFIG_DEBUG_MUTEXES 1444 /* mutex deadlock detection */ 1445 struct mutex_waiter *blocked_on; 1446#endif 1447#ifdef CONFIG_TRACE_IRQFLAGS 1448 unsigned int irq_events; 1449 unsigned long hardirq_enable_ip; 1450 unsigned long hardirq_disable_ip; 1451 unsigned int hardirq_enable_event; 1452 unsigned int hardirq_disable_event; 1453 int hardirqs_enabled; 1454 int hardirq_context; 1455 unsigned long softirq_disable_ip; 1456 unsigned long softirq_enable_ip; 1457 unsigned int softirq_disable_event; 1458 unsigned int softirq_enable_event; 1459 int softirqs_enabled; 1460 int softirq_context; 1461#endif 1462#ifdef CONFIG_LOCKDEP 1463# define MAX_LOCK_DEPTH 48UL 1464 u64 curr_chain_key; 1465 int lockdep_depth; 1466 unsigned int lockdep_recursion; 1467 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1468 gfp_t lockdep_reclaim_gfp; 1469#endif 1470 1471/* journalling filesystem info */ 1472 void *journal_info; 1473 1474/* stacked block device info */ 1475 struct bio_list *bio_list; 1476 1477#ifdef CONFIG_BLOCK 1478/* stack plugging */ 1479 struct blk_plug *plug; 1480#endif 1481 1482/* VM state */ 1483 struct reclaim_state *reclaim_state; 1484 1485 struct backing_dev_info *backing_dev_info; 1486 1487 struct io_context *io_context; 1488 1489 unsigned long ptrace_message; 1490 siginfo_t *last_siginfo; /* For ptrace use. */ 1491 struct task_io_accounting ioac; 1492#if defined(CONFIG_TASK_XACCT) 1493 u64 acct_rss_mem1; /* accumulated rss usage */ 1494 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1495 cputime_t acct_timexpd; /* stime + utime since last update */ 1496#endif 1497#ifdef CONFIG_CPUSETS 1498 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1499 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1500 int cpuset_mem_spread_rotor; 1501 int cpuset_slab_spread_rotor; 1502#endif 1503#ifdef CONFIG_CGROUPS 1504 /* Control Group info protected by css_set_lock */ 1505 struct css_set __rcu *cgroups; 1506 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1507 struct list_head cg_list; 1508#endif 1509#ifdef CONFIG_FUTEX 1510 struct robust_list_head __user *robust_list; 1511#ifdef CONFIG_COMPAT 1512 struct compat_robust_list_head __user *compat_robust_list; 1513#endif 1514 struct list_head pi_state_list; 1515 struct futex_pi_state *pi_state_cache; 1516#endif 1517#ifdef CONFIG_PERF_EVENTS 1518 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1519 struct mutex perf_event_mutex; 1520 struct list_head perf_event_list; 1521#endif 1522#ifdef CONFIG_NUMA 1523 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1524 short il_next; 1525 short pref_node_fork; 1526#endif 1527 struct rcu_head rcu; 1528 1529 /* 1530 * cache last used pipe for splice 1531 */ 1532 struct pipe_inode_info *splice_pipe; 1533#ifdef CONFIG_TASK_DELAY_ACCT 1534 struct task_delay_info *delays; 1535#endif 1536#ifdef CONFIG_FAULT_INJECTION 1537 int make_it_fail; 1538#endif 1539 /* 1540 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1541 * balance_dirty_pages() for some dirty throttling pause 1542 */ 1543 int nr_dirtied; 1544 int nr_dirtied_pause; 1545 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1546 1547#ifdef CONFIG_LATENCYTOP 1548 int latency_record_count; 1549 struct latency_record latency_record[LT_SAVECOUNT]; 1550#endif 1551 /* 1552 * time slack values; these are used to round up poll() and 1553 * select() etc timeout values. These are in nanoseconds. 1554 */ 1555 unsigned long timer_slack_ns; 1556 unsigned long default_timer_slack_ns; 1557 1558#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1559 /* Index of current stored address in ret_stack */ 1560 int curr_ret_stack; 1561 /* Stack of return addresses for return function tracing */ 1562 struct ftrace_ret_stack *ret_stack; 1563 /* time stamp for last schedule */ 1564 unsigned long long ftrace_timestamp; 1565 /* 1566 * Number of functions that haven't been traced 1567 * because of depth overrun. 1568 */ 1569 atomic_t trace_overrun; 1570 /* Pause for the tracing */ 1571 atomic_t tracing_graph_pause; 1572#endif 1573#ifdef CONFIG_TRACING 1574 /* state flags for use by tracers */ 1575 unsigned long trace; 1576 /* bitmask and counter of trace recursion */ 1577 unsigned long trace_recursion; 1578#endif /* CONFIG_TRACING */ 1579#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1580 struct memcg_batch_info { 1581 int do_batch; /* incremented when batch uncharge started */ 1582 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1583 unsigned long nr_pages; /* uncharged usage */ 1584 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1585 } memcg_batch; 1586#endif 1587#ifdef CONFIG_HAVE_HW_BREAKPOINT 1588 atomic_t ptrace_bp_refcnt; 1589#endif 1590#ifdef CONFIG_UPROBES 1591 struct uprobe_task *utask; 1592#endif 1593}; 1594 1595/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1596#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1597 1598/* 1599 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1600 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1601 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1602 * values are inverted: lower p->prio value means higher priority. 1603 * 1604 * The MAX_USER_RT_PRIO value allows the actual maximum 1605 * RT priority to be separate from the value exported to 1606 * user-space. This allows kernel threads to set their 1607 * priority to a value higher than any user task. Note: 1608 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1609 */ 1610 1611#define MAX_USER_RT_PRIO 100 1612#define MAX_RT_PRIO MAX_USER_RT_PRIO 1613 1614#define MAX_PRIO (MAX_RT_PRIO + 40) 1615#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1616 1617static inline int rt_prio(int prio) 1618{ 1619 if (unlikely(prio < MAX_RT_PRIO)) 1620 return 1; 1621 return 0; 1622} 1623 1624static inline int rt_task(struct task_struct *p) 1625{ 1626 return rt_prio(p->prio); 1627} 1628 1629static inline struct pid *task_pid(struct task_struct *task) 1630{ 1631 return task->pids[PIDTYPE_PID].pid; 1632} 1633 1634static inline struct pid *task_tgid(struct task_struct *task) 1635{ 1636 return task->group_leader->pids[PIDTYPE_PID].pid; 1637} 1638 1639/* 1640 * Without tasklist or rcu lock it is not safe to dereference 1641 * the result of task_pgrp/task_session even if task == current, 1642 * we can race with another thread doing sys_setsid/sys_setpgid. 1643 */ 1644static inline struct pid *task_pgrp(struct task_struct *task) 1645{ 1646 return task->group_leader->pids[PIDTYPE_PGID].pid; 1647} 1648 1649static inline struct pid *task_session(struct task_struct *task) 1650{ 1651 return task->group_leader->pids[PIDTYPE_SID].pid; 1652} 1653 1654struct pid_namespace; 1655 1656/* 1657 * the helpers to get the task's different pids as they are seen 1658 * from various namespaces 1659 * 1660 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1661 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1662 * current. 1663 * task_xid_nr_ns() : id seen from the ns specified; 1664 * 1665 * set_task_vxid() : assigns a virtual id to a task; 1666 * 1667 * see also pid_nr() etc in include/linux/pid.h 1668 */ 1669pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1670 struct pid_namespace *ns); 1671 1672static inline pid_t task_pid_nr(struct task_struct *tsk) 1673{ 1674 return tsk->pid; 1675} 1676 1677static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1678 struct pid_namespace *ns) 1679{ 1680 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1681} 1682 1683static inline pid_t task_pid_vnr(struct task_struct *tsk) 1684{ 1685 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1686} 1687 1688 1689static inline pid_t task_tgid_nr(struct task_struct *tsk) 1690{ 1691 return tsk->tgid; 1692} 1693 1694pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1695 1696static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1697{ 1698 return pid_vnr(task_tgid(tsk)); 1699} 1700 1701 1702static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1703 struct pid_namespace *ns) 1704{ 1705 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1706} 1707 1708static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1709{ 1710 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1711} 1712 1713 1714static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1715 struct pid_namespace *ns) 1716{ 1717 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1718} 1719 1720static inline pid_t task_session_vnr(struct task_struct *tsk) 1721{ 1722 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1723} 1724 1725/* obsolete, do not use */ 1726static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1727{ 1728 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1729} 1730 1731/** 1732 * pid_alive - check that a task structure is not stale 1733 * @p: Task structure to be checked. 1734 * 1735 * Test if a process is not yet dead (at most zombie state) 1736 * If pid_alive fails, then pointers within the task structure 1737 * can be stale and must not be dereferenced. 1738 */ 1739static inline int pid_alive(struct task_struct *p) 1740{ 1741 return p->pids[PIDTYPE_PID].pid != NULL; 1742} 1743 1744/** 1745 * is_global_init - check if a task structure is init 1746 * @tsk: Task structure to be checked. 1747 * 1748 * Check if a task structure is the first user space task the kernel created. 1749 */ 1750static inline int is_global_init(struct task_struct *tsk) 1751{ 1752 return tsk->pid == 1; 1753} 1754 1755/* 1756 * is_container_init: 1757 * check whether in the task is init in its own pid namespace. 1758 */ 1759extern int is_container_init(struct task_struct *tsk); 1760 1761extern struct pid *cad_pid; 1762 1763extern void free_task(struct task_struct *tsk); 1764#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1765 1766extern void __put_task_struct(struct task_struct *t); 1767 1768static inline void put_task_struct(struct task_struct *t) 1769{ 1770 if (atomic_dec_and_test(&t->usage)) 1771 __put_task_struct(t); 1772} 1773 1774extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1775extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1776 1777/* 1778 * Per process flags 1779 */ 1780#define PF_EXITING 0x00000004 /* getting shut down */ 1781#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1782#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1783#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1784#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1785#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1786#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1787#define PF_DUMPCORE 0x00000200 /* dumped core */ 1788#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1789#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1790#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1791#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1792#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1793#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1794#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1795#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1796#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1797#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1798#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1799#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1800#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1801#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1802#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1803#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1804#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1805#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1806#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1807 1808/* 1809 * Only the _current_ task can read/write to tsk->flags, but other 1810 * tasks can access tsk->flags in readonly mode for example 1811 * with tsk_used_math (like during threaded core dumping). 1812 * There is however an exception to this rule during ptrace 1813 * or during fork: the ptracer task is allowed to write to the 1814 * child->flags of its traced child (same goes for fork, the parent 1815 * can write to the child->flags), because we're guaranteed the 1816 * child is not running and in turn not changing child->flags 1817 * at the same time the parent does it. 1818 */ 1819#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1820#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1821#define clear_used_math() clear_stopped_child_used_math(current) 1822#define set_used_math() set_stopped_child_used_math(current) 1823#define conditional_stopped_child_used_math(condition, child) \ 1824 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1825#define conditional_used_math(condition) \ 1826 conditional_stopped_child_used_math(condition, current) 1827#define copy_to_stopped_child_used_math(child) \ 1828 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1829/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1830#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1831#define used_math() tsk_used_math(current) 1832 1833/* 1834 * task->jobctl flags 1835 */ 1836#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1837 1838#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1839#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1840#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1841#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1842#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1843#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1844#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1845 1846#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1847#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1848#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1849#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1850#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1851#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1852#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1853 1854#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1855#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1856 1857extern bool task_set_jobctl_pending(struct task_struct *task, 1858 unsigned int mask); 1859extern void task_clear_jobctl_trapping(struct task_struct *task); 1860extern void task_clear_jobctl_pending(struct task_struct *task, 1861 unsigned int mask); 1862 1863#ifdef CONFIG_PREEMPT_RCU 1864 1865#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1866#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1867 1868static inline void rcu_copy_process(struct task_struct *p) 1869{ 1870 p->rcu_read_lock_nesting = 0; 1871 p->rcu_read_unlock_special = 0; 1872#ifdef CONFIG_TREE_PREEMPT_RCU 1873 p->rcu_blocked_node = NULL; 1874#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1875#ifdef CONFIG_RCU_BOOST 1876 p->rcu_boost_mutex = NULL; 1877#endif /* #ifdef CONFIG_RCU_BOOST */ 1878 INIT_LIST_HEAD(&p->rcu_node_entry); 1879} 1880 1881#else 1882 1883static inline void rcu_copy_process(struct task_struct *p) 1884{ 1885} 1886 1887#endif 1888 1889static inline void tsk_restore_flags(struct task_struct *task, 1890 unsigned long orig_flags, unsigned long flags) 1891{ 1892 task->flags &= ~flags; 1893 task->flags |= orig_flags & flags; 1894} 1895 1896#ifdef CONFIG_SMP 1897extern void do_set_cpus_allowed(struct task_struct *p, 1898 const struct cpumask *new_mask); 1899 1900extern int set_cpus_allowed_ptr(struct task_struct *p, 1901 const struct cpumask *new_mask); 1902#else 1903static inline void do_set_cpus_allowed(struct task_struct *p, 1904 const struct cpumask *new_mask) 1905{ 1906} 1907static inline int set_cpus_allowed_ptr(struct task_struct *p, 1908 const struct cpumask *new_mask) 1909{ 1910 if (!cpumask_test_cpu(0, new_mask)) 1911 return -EINVAL; 1912 return 0; 1913} 1914#endif 1915 1916#ifdef CONFIG_NO_HZ 1917void calc_load_enter_idle(void); 1918void calc_load_exit_idle(void); 1919#else 1920static inline void calc_load_enter_idle(void) { } 1921static inline void calc_load_exit_idle(void) { } 1922#endif /* CONFIG_NO_HZ */ 1923 1924#ifndef CONFIG_CPUMASK_OFFSTACK 1925static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1926{ 1927 return set_cpus_allowed_ptr(p, &new_mask); 1928} 1929#endif 1930 1931/* 1932 * Do not use outside of architecture code which knows its limitations. 1933 * 1934 * sched_clock() has no promise of monotonicity or bounded drift between 1935 * CPUs, use (which you should not) requires disabling IRQs. 1936 * 1937 * Please use one of the three interfaces below. 1938 */ 1939extern unsigned long long notrace sched_clock(void); 1940/* 1941 * See the comment in kernel/sched/clock.c 1942 */ 1943extern u64 cpu_clock(int cpu); 1944extern u64 local_clock(void); 1945extern u64 sched_clock_cpu(int cpu); 1946 1947 1948extern void sched_clock_init(void); 1949 1950#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1951static inline void sched_clock_tick(void) 1952{ 1953} 1954 1955static inline void sched_clock_idle_sleep_event(void) 1956{ 1957} 1958 1959static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1960{ 1961} 1962#else 1963/* 1964 * Architectures can set this to 1 if they have specified 1965 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1966 * but then during bootup it turns out that sched_clock() 1967 * is reliable after all: 1968 */ 1969extern int sched_clock_stable; 1970 1971extern void sched_clock_tick(void); 1972extern void sched_clock_idle_sleep_event(void); 1973extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1974#endif 1975 1976#ifdef CONFIG_IRQ_TIME_ACCOUNTING 1977/* 1978 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1979 * The reason for this explicit opt-in is not to have perf penalty with 1980 * slow sched_clocks. 1981 */ 1982extern void enable_sched_clock_irqtime(void); 1983extern void disable_sched_clock_irqtime(void); 1984#else 1985static inline void enable_sched_clock_irqtime(void) {} 1986static inline void disable_sched_clock_irqtime(void) {} 1987#endif 1988 1989extern unsigned long long 1990task_sched_runtime(struct task_struct *task); 1991 1992/* sched_exec is called by processes performing an exec */ 1993#ifdef CONFIG_SMP 1994extern void sched_exec(void); 1995#else 1996#define sched_exec() {} 1997#endif 1998 1999extern void sched_clock_idle_sleep_event(void); 2000extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2001 2002#ifdef CONFIG_HOTPLUG_CPU 2003extern void idle_task_exit(void); 2004#else 2005static inline void idle_task_exit(void) {} 2006#endif 2007 2008#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 2009extern void wake_up_idle_cpu(int cpu); 2010#else 2011static inline void wake_up_idle_cpu(int cpu) { } 2012#endif 2013 2014extern unsigned int sysctl_sched_latency; 2015extern unsigned int sysctl_sched_min_granularity; 2016extern unsigned int sysctl_sched_wakeup_granularity; 2017extern unsigned int sysctl_sched_child_runs_first; 2018 2019enum sched_tunable_scaling { 2020 SCHED_TUNABLESCALING_NONE, 2021 SCHED_TUNABLESCALING_LOG, 2022 SCHED_TUNABLESCALING_LINEAR, 2023 SCHED_TUNABLESCALING_END, 2024}; 2025extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 2026 2027#ifdef CONFIG_SCHED_DEBUG 2028extern unsigned int sysctl_sched_migration_cost; 2029extern unsigned int sysctl_sched_nr_migrate; 2030extern unsigned int sysctl_sched_time_avg; 2031extern unsigned int sysctl_timer_migration; 2032extern unsigned int sysctl_sched_shares_window; 2033 2034int sched_proc_update_handler(struct ctl_table *table, int write, 2035 void __user *buffer, size_t *length, 2036 loff_t *ppos); 2037#endif 2038#ifdef CONFIG_SCHED_DEBUG 2039static inline unsigned int get_sysctl_timer_migration(void) 2040{ 2041 return sysctl_timer_migration; 2042} 2043#else 2044static inline unsigned int get_sysctl_timer_migration(void) 2045{ 2046 return 1; 2047} 2048#endif 2049extern unsigned int sysctl_sched_rt_period; 2050extern int sysctl_sched_rt_runtime; 2051 2052int sched_rt_handler(struct ctl_table *table, int write, 2053 void __user *buffer, size_t *lenp, 2054 loff_t *ppos); 2055 2056#ifdef CONFIG_SCHED_AUTOGROUP 2057extern unsigned int sysctl_sched_autogroup_enabled; 2058 2059extern void sched_autogroup_create_attach(struct task_struct *p); 2060extern void sched_autogroup_detach(struct task_struct *p); 2061extern void sched_autogroup_fork(struct signal_struct *sig); 2062extern void sched_autogroup_exit(struct signal_struct *sig); 2063#ifdef CONFIG_PROC_FS 2064extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2065extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2066#endif 2067#else 2068static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2069static inline void sched_autogroup_detach(struct task_struct *p) { } 2070static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2071static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2072#endif 2073 2074#ifdef CONFIG_CFS_BANDWIDTH 2075extern unsigned int sysctl_sched_cfs_bandwidth_slice; 2076#endif 2077 2078#ifdef CONFIG_RT_MUTEXES 2079extern int rt_mutex_getprio(struct task_struct *p); 2080extern void rt_mutex_setprio(struct task_struct *p, int prio); 2081extern void rt_mutex_adjust_pi(struct task_struct *p); 2082static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2083{ 2084 return tsk->pi_blocked_on != NULL; 2085} 2086#else 2087static inline int rt_mutex_getprio(struct task_struct *p) 2088{ 2089 return p->normal_prio; 2090} 2091# define rt_mutex_adjust_pi(p) do { } while (0) 2092static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2093{ 2094 return false; 2095} 2096#endif 2097 2098extern bool yield_to(struct task_struct *p, bool preempt); 2099extern void set_user_nice(struct task_struct *p, long nice); 2100extern int task_prio(const struct task_struct *p); 2101extern int task_nice(const struct task_struct *p); 2102extern int can_nice(const struct task_struct *p, const int nice); 2103extern int task_curr(const struct task_struct *p); 2104extern int idle_cpu(int cpu); 2105extern int sched_setscheduler(struct task_struct *, int, 2106 const struct sched_param *); 2107extern int sched_setscheduler_nocheck(struct task_struct *, int, 2108 const struct sched_param *); 2109extern struct task_struct *idle_task(int cpu); 2110/** 2111 * is_idle_task - is the specified task an idle task? 2112 * @p: the task in question. 2113 */ 2114static inline bool is_idle_task(const struct task_struct *p) 2115{ 2116 return p->pid == 0; 2117} 2118extern struct task_struct *curr_task(int cpu); 2119extern void set_curr_task(int cpu, struct task_struct *p); 2120 2121void yield(void); 2122 2123/* 2124 * The default (Linux) execution domain. 2125 */ 2126extern struct exec_domain default_exec_domain; 2127 2128union thread_union { 2129 struct thread_info thread_info; 2130 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2131}; 2132 2133#ifndef __HAVE_ARCH_KSTACK_END 2134static inline int kstack_end(void *addr) 2135{ 2136 /* Reliable end of stack detection: 2137 * Some APM bios versions misalign the stack 2138 */ 2139 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2140} 2141#endif 2142 2143extern union thread_union init_thread_union; 2144extern struct task_struct init_task; 2145 2146extern struct mm_struct init_mm; 2147 2148extern struct pid_namespace init_pid_ns; 2149 2150/* 2151 * find a task by one of its numerical ids 2152 * 2153 * find_task_by_pid_ns(): 2154 * finds a task by its pid in the specified namespace 2155 * find_task_by_vpid(): 2156 * finds a task by its virtual pid 2157 * 2158 * see also find_vpid() etc in include/linux/pid.h 2159 */ 2160 2161extern struct task_struct *find_task_by_vpid(pid_t nr); 2162extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2163 struct pid_namespace *ns); 2164 2165extern void __set_special_pids(struct pid *pid); 2166 2167/* per-UID process charging. */ 2168extern struct user_struct * alloc_uid(kuid_t); 2169static inline struct user_struct *get_uid(struct user_struct *u) 2170{ 2171 atomic_inc(&u->__count); 2172 return u; 2173} 2174extern void free_uid(struct user_struct *); 2175 2176#include <asm/current.h> 2177 2178extern void xtime_update(unsigned long ticks); 2179 2180extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2181extern int wake_up_process(struct task_struct *tsk); 2182extern void wake_up_new_task(struct task_struct *tsk); 2183#ifdef CONFIG_SMP 2184 extern void kick_process(struct task_struct *tsk); 2185#else 2186 static inline void kick_process(struct task_struct *tsk) { } 2187#endif 2188extern void sched_fork(struct task_struct *p); 2189extern void sched_dead(struct task_struct *p); 2190 2191extern void proc_caches_init(void); 2192extern void flush_signals(struct task_struct *); 2193extern void __flush_signals(struct task_struct *); 2194extern void ignore_signals(struct task_struct *); 2195extern void flush_signal_handlers(struct task_struct *, int force_default); 2196extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2197 2198static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2199{ 2200 unsigned long flags; 2201 int ret; 2202 2203 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2204 ret = dequeue_signal(tsk, mask, info); 2205 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2206 2207 return ret; 2208} 2209 2210extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2211 sigset_t *mask); 2212extern void unblock_all_signals(void); 2213extern void release_task(struct task_struct * p); 2214extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2215extern int force_sigsegv(int, struct task_struct *); 2216extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2217extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2218extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2219extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2220 const struct cred *, u32); 2221extern int kill_pgrp(struct pid *pid, int sig, int priv); 2222extern int kill_pid(struct pid *pid, int sig, int priv); 2223extern int kill_proc_info(int, struct siginfo *, pid_t); 2224extern __must_check bool do_notify_parent(struct task_struct *, int); 2225extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2226extern void force_sig(int, struct task_struct *); 2227extern int send_sig(int, struct task_struct *, int); 2228extern int zap_other_threads(struct task_struct *p); 2229extern struct sigqueue *sigqueue_alloc(void); 2230extern void sigqueue_free(struct sigqueue *); 2231extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2232extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2233extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2234 2235static inline void restore_saved_sigmask(void) 2236{ 2237 if (test_and_clear_restore_sigmask()) 2238 __set_current_blocked(&current->saved_sigmask); 2239} 2240 2241static inline sigset_t *sigmask_to_save(void) 2242{ 2243 sigset_t *res = &current->blocked; 2244 if (unlikely(test_restore_sigmask())) 2245 res = &current->saved_sigmask; 2246 return res; 2247} 2248 2249static inline int kill_cad_pid(int sig, int priv) 2250{ 2251 return kill_pid(cad_pid, sig, priv); 2252} 2253 2254/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2255#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2256#define SEND_SIG_PRIV ((struct siginfo *) 1) 2257#define SEND_SIG_FORCED ((struct siginfo *) 2) 2258 2259/* 2260 * True if we are on the alternate signal stack. 2261 */ 2262static inline int on_sig_stack(unsigned long sp) 2263{ 2264#ifdef CONFIG_STACK_GROWSUP 2265 return sp >= current->sas_ss_sp && 2266 sp - current->sas_ss_sp < current->sas_ss_size; 2267#else 2268 return sp > current->sas_ss_sp && 2269 sp - current->sas_ss_sp <= current->sas_ss_size; 2270#endif 2271} 2272 2273static inline int sas_ss_flags(unsigned long sp) 2274{ 2275 return (current->sas_ss_size == 0 ? SS_DISABLE 2276 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2277} 2278 2279/* 2280 * Routines for handling mm_structs 2281 */ 2282extern struct mm_struct * mm_alloc(void); 2283 2284/* mmdrop drops the mm and the page tables */ 2285extern void __mmdrop(struct mm_struct *); 2286static inline void mmdrop(struct mm_struct * mm) 2287{ 2288 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2289 __mmdrop(mm); 2290} 2291 2292/* mmput gets rid of the mappings and all user-space */ 2293extern void mmput(struct mm_struct *); 2294/* Grab a reference to a task's mm, if it is not already going away */ 2295extern struct mm_struct *get_task_mm(struct task_struct *task); 2296/* 2297 * Grab a reference to a task's mm, if it is not already going away 2298 * and ptrace_may_access with the mode parameter passed to it 2299 * succeeds. 2300 */ 2301extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2302/* Remove the current tasks stale references to the old mm_struct */ 2303extern void mm_release(struct task_struct *, struct mm_struct *); 2304/* Allocate a new mm structure and copy contents from tsk->mm */ 2305extern struct mm_struct *dup_mm(struct task_struct *tsk); 2306 2307extern int copy_thread(unsigned long, unsigned long, unsigned long, 2308 struct task_struct *, struct pt_regs *); 2309extern void flush_thread(void); 2310extern void exit_thread(void); 2311 2312extern void exit_files(struct task_struct *); 2313extern void __cleanup_sighand(struct sighand_struct *); 2314 2315extern void exit_itimers(struct signal_struct *); 2316extern void flush_itimer_signals(void); 2317 2318extern void do_group_exit(int); 2319 2320extern void daemonize(const char *, ...); 2321extern int allow_signal(int); 2322extern int disallow_signal(int); 2323 2324extern int do_execve(const char *, 2325 const char __user * const __user *, 2326 const char __user * const __user *, struct pt_regs *); 2327extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2328struct task_struct *fork_idle(int); 2329 2330extern void set_task_comm(struct task_struct *tsk, char *from); 2331extern char *get_task_comm(char *to, struct task_struct *tsk); 2332 2333#ifdef CONFIG_SMP 2334void scheduler_ipi(void); 2335extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2336#else 2337static inline void scheduler_ipi(void) { } 2338static inline unsigned long wait_task_inactive(struct task_struct *p, 2339 long match_state) 2340{ 2341 return 1; 2342} 2343#endif 2344 2345#define next_task(p) \ 2346 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2347 2348#define for_each_process(p) \ 2349 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2350 2351extern bool current_is_single_threaded(void); 2352 2353/* 2354 * Careful: do_each_thread/while_each_thread is a double loop so 2355 * 'break' will not work as expected - use goto instead. 2356 */ 2357#define do_each_thread(g, t) \ 2358 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2359 2360#define while_each_thread(g, t) \ 2361 while ((t = next_thread(t)) != g) 2362 2363static inline int get_nr_threads(struct task_struct *tsk) 2364{ 2365 return tsk->signal->nr_threads; 2366} 2367 2368static inline bool thread_group_leader(struct task_struct *p) 2369{ 2370 return p->exit_signal >= 0; 2371} 2372 2373/* Do to the insanities of de_thread it is possible for a process 2374 * to have the pid of the thread group leader without actually being 2375 * the thread group leader. For iteration through the pids in proc 2376 * all we care about is that we have a task with the appropriate 2377 * pid, we don't actually care if we have the right task. 2378 */ 2379static inline int has_group_leader_pid(struct task_struct *p) 2380{ 2381 return p->pid == p->tgid; 2382} 2383 2384static inline 2385int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2386{ 2387 return p1->tgid == p2->tgid; 2388} 2389 2390static inline struct task_struct *next_thread(const struct task_struct *p) 2391{ 2392 return list_entry_rcu(p->thread_group.next, 2393 struct task_struct, thread_group); 2394} 2395 2396static inline int thread_group_empty(struct task_struct *p) 2397{ 2398 return list_empty(&p->thread_group); 2399} 2400 2401#define delay_group_leader(p) \ 2402 (thread_group_leader(p) && !thread_group_empty(p)) 2403 2404/* 2405 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2406 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2407 * pins the final release of task.io_context. Also protects ->cpuset and 2408 * ->cgroup.subsys[]. And ->vfork_done. 2409 * 2410 * Nests both inside and outside of read_lock(&tasklist_lock). 2411 * It must not be nested with write_lock_irq(&tasklist_lock), 2412 * neither inside nor outside. 2413 */ 2414static inline void task_lock(struct task_struct *p) 2415{ 2416 spin_lock(&p->alloc_lock); 2417} 2418 2419static inline void task_unlock(struct task_struct *p) 2420{ 2421 spin_unlock(&p->alloc_lock); 2422} 2423 2424extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2425 unsigned long *flags); 2426 2427static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2428 unsigned long *flags) 2429{ 2430 struct sighand_struct *ret; 2431 2432 ret = __lock_task_sighand(tsk, flags); 2433 (void)__cond_lock(&tsk->sighand->siglock, ret); 2434 return ret; 2435} 2436 2437static inline void unlock_task_sighand(struct task_struct *tsk, 2438 unsigned long *flags) 2439{ 2440 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2441} 2442 2443#ifdef CONFIG_CGROUPS 2444static inline void threadgroup_change_begin(struct task_struct *tsk) 2445{ 2446 down_read(&tsk->signal->group_rwsem); 2447} 2448static inline void threadgroup_change_end(struct task_struct *tsk) 2449{ 2450 up_read(&tsk->signal->group_rwsem); 2451} 2452 2453/** 2454 * threadgroup_lock - lock threadgroup 2455 * @tsk: member task of the threadgroup to lock 2456 * 2457 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2458 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2459 * perform exec. This is useful for cases where the threadgroup needs to 2460 * stay stable across blockable operations. 2461 * 2462 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2463 * synchronization. While held, no new task will be added to threadgroup 2464 * and no existing live task will have its PF_EXITING set. 2465 * 2466 * During exec, a task goes and puts its thread group through unusual 2467 * changes. After de-threading, exclusive access is assumed to resources 2468 * which are usually shared by tasks in the same group - e.g. sighand may 2469 * be replaced with a new one. Also, the exec'ing task takes over group 2470 * leader role including its pid. Exclude these changes while locked by 2471 * grabbing cred_guard_mutex which is used to synchronize exec path. 2472 */ 2473static inline void threadgroup_lock(struct task_struct *tsk) 2474{ 2475 /* 2476 * exec uses exit for de-threading nesting group_rwsem inside 2477 * cred_guard_mutex. Grab cred_guard_mutex first. 2478 */ 2479 mutex_lock(&tsk->signal->cred_guard_mutex); 2480 down_write(&tsk->signal->group_rwsem); 2481} 2482 2483/** 2484 * threadgroup_unlock - unlock threadgroup 2485 * @tsk: member task of the threadgroup to unlock 2486 * 2487 * Reverse threadgroup_lock(). 2488 */ 2489static inline void threadgroup_unlock(struct task_struct *tsk) 2490{ 2491 up_write(&tsk->signal->group_rwsem); 2492 mutex_unlock(&tsk->signal->cred_guard_mutex); 2493} 2494#else 2495static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2496static inline void threadgroup_change_end(struct task_struct *tsk) {} 2497static inline void threadgroup_lock(struct task_struct *tsk) {} 2498static inline void threadgroup_unlock(struct task_struct *tsk) {} 2499#endif 2500 2501#ifndef __HAVE_THREAD_FUNCTIONS 2502 2503#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2504#define task_stack_page(task) ((task)->stack) 2505 2506static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2507{ 2508 *task_thread_info(p) = *task_thread_info(org); 2509 task_thread_info(p)->task = p; 2510} 2511 2512static inline unsigned long *end_of_stack(struct task_struct *p) 2513{ 2514 return (unsigned long *)(task_thread_info(p) + 1); 2515} 2516 2517#endif 2518 2519static inline int object_is_on_stack(void *obj) 2520{ 2521 void *stack = task_stack_page(current); 2522 2523 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2524} 2525 2526extern void thread_info_cache_init(void); 2527 2528#ifdef CONFIG_DEBUG_STACK_USAGE 2529static inline unsigned long stack_not_used(struct task_struct *p) 2530{ 2531 unsigned long *n = end_of_stack(p); 2532 2533 do { /* Skip over canary */ 2534 n++; 2535 } while (!*n); 2536 2537 return (unsigned long)n - (unsigned long)end_of_stack(p); 2538} 2539#endif 2540 2541/* set thread flags in other task's structures 2542 * - see asm/thread_info.h for TIF_xxxx flags available 2543 */ 2544static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2545{ 2546 set_ti_thread_flag(task_thread_info(tsk), flag); 2547} 2548 2549static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2550{ 2551 clear_ti_thread_flag(task_thread_info(tsk), flag); 2552} 2553 2554static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2555{ 2556 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2557} 2558 2559static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2560{ 2561 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2562} 2563 2564static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2565{ 2566 return test_ti_thread_flag(task_thread_info(tsk), flag); 2567} 2568 2569static inline void set_tsk_need_resched(struct task_struct *tsk) 2570{ 2571 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2572} 2573 2574static inline void clear_tsk_need_resched(struct task_struct *tsk) 2575{ 2576 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2577} 2578 2579static inline int test_tsk_need_resched(struct task_struct *tsk) 2580{ 2581 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2582} 2583 2584static inline int restart_syscall(void) 2585{ 2586 set_tsk_thread_flag(current, TIF_SIGPENDING); 2587 return -ERESTARTNOINTR; 2588} 2589 2590static inline int signal_pending(struct task_struct *p) 2591{ 2592 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2593} 2594 2595static inline int __fatal_signal_pending(struct task_struct *p) 2596{ 2597 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2598} 2599 2600static inline int fatal_signal_pending(struct task_struct *p) 2601{ 2602 return signal_pending(p) && __fatal_signal_pending(p); 2603} 2604 2605static inline int signal_pending_state(long state, struct task_struct *p) 2606{ 2607 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2608 return 0; 2609 if (!signal_pending(p)) 2610 return 0; 2611 2612 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2613} 2614 2615static inline int need_resched(void) 2616{ 2617 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2618} 2619 2620/* 2621 * cond_resched() and cond_resched_lock(): latency reduction via 2622 * explicit rescheduling in places that are safe. The return 2623 * value indicates whether a reschedule was done in fact. 2624 * cond_resched_lock() will drop the spinlock before scheduling, 2625 * cond_resched_softirq() will enable bhs before scheduling. 2626 */ 2627extern int _cond_resched(void); 2628 2629#define cond_resched() ({ \ 2630 __might_sleep(__FILE__, __LINE__, 0); \ 2631 _cond_resched(); \ 2632}) 2633 2634extern int __cond_resched_lock(spinlock_t *lock); 2635 2636#ifdef CONFIG_PREEMPT_COUNT 2637#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2638#else 2639#define PREEMPT_LOCK_OFFSET 0 2640#endif 2641 2642#define cond_resched_lock(lock) ({ \ 2643 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2644 __cond_resched_lock(lock); \ 2645}) 2646 2647extern int __cond_resched_softirq(void); 2648 2649#define cond_resched_softirq() ({ \ 2650 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2651 __cond_resched_softirq(); \ 2652}) 2653 2654/* 2655 * Does a critical section need to be broken due to another 2656 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2657 * but a general need for low latency) 2658 */ 2659static inline int spin_needbreak(spinlock_t *lock) 2660{ 2661#ifdef CONFIG_PREEMPT 2662 return spin_is_contended(lock); 2663#else 2664 return 0; 2665#endif 2666} 2667 2668/* 2669 * Thread group CPU time accounting. 2670 */ 2671void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2672void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2673 2674static inline void thread_group_cputime_init(struct signal_struct *sig) 2675{ 2676 raw_spin_lock_init(&sig->cputimer.lock); 2677} 2678 2679/* 2680 * Reevaluate whether the task has signals pending delivery. 2681 * Wake the task if so. 2682 * This is required every time the blocked sigset_t changes. 2683 * callers must hold sighand->siglock. 2684 */ 2685extern void recalc_sigpending_and_wake(struct task_struct *t); 2686extern void recalc_sigpending(void); 2687 2688extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2689 2690/* 2691 * Wrappers for p->thread_info->cpu access. No-op on UP. 2692 */ 2693#ifdef CONFIG_SMP 2694 2695static inline unsigned int task_cpu(const struct task_struct *p) 2696{ 2697 return task_thread_info(p)->cpu; 2698} 2699 2700extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2701 2702#else 2703 2704static inline unsigned int task_cpu(const struct task_struct *p) 2705{ 2706 return 0; 2707} 2708 2709static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2710{ 2711} 2712 2713#endif /* CONFIG_SMP */ 2714 2715extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2716extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2717 2718extern void normalize_rt_tasks(void); 2719 2720#ifdef CONFIG_CGROUP_SCHED 2721 2722extern struct task_group root_task_group; 2723 2724extern struct task_group *sched_create_group(struct task_group *parent); 2725extern void sched_destroy_group(struct task_group *tg); 2726extern void sched_move_task(struct task_struct *tsk); 2727#ifdef CONFIG_FAIR_GROUP_SCHED 2728extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2729extern unsigned long sched_group_shares(struct task_group *tg); 2730#endif 2731#ifdef CONFIG_RT_GROUP_SCHED 2732extern int sched_group_set_rt_runtime(struct task_group *tg, 2733 long rt_runtime_us); 2734extern long sched_group_rt_runtime(struct task_group *tg); 2735extern int sched_group_set_rt_period(struct task_group *tg, 2736 long rt_period_us); 2737extern long sched_group_rt_period(struct task_group *tg); 2738extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2739#endif 2740#endif /* CONFIG_CGROUP_SCHED */ 2741 2742extern int task_can_switch_user(struct user_struct *up, 2743 struct task_struct *tsk); 2744 2745#ifdef CONFIG_TASK_XACCT 2746static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2747{ 2748 tsk->ioac.rchar += amt; 2749} 2750 2751static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2752{ 2753 tsk->ioac.wchar += amt; 2754} 2755 2756static inline void inc_syscr(struct task_struct *tsk) 2757{ 2758 tsk->ioac.syscr++; 2759} 2760 2761static inline void inc_syscw(struct task_struct *tsk) 2762{ 2763 tsk->ioac.syscw++; 2764} 2765#else 2766static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2767{ 2768} 2769 2770static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2771{ 2772} 2773 2774static inline void inc_syscr(struct task_struct *tsk) 2775{ 2776} 2777 2778static inline void inc_syscw(struct task_struct *tsk) 2779{ 2780} 2781#endif 2782 2783#ifndef TASK_SIZE_OF 2784#define TASK_SIZE_OF(tsk) TASK_SIZE 2785#endif 2786 2787#ifdef CONFIG_MM_OWNER 2788extern void mm_update_next_owner(struct mm_struct *mm); 2789extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2790#else 2791static inline void mm_update_next_owner(struct mm_struct *mm) 2792{ 2793} 2794 2795static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2796{ 2797} 2798#endif /* CONFIG_MM_OWNER */ 2799 2800static inline unsigned long task_rlimit(const struct task_struct *tsk, 2801 unsigned int limit) 2802{ 2803 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2804} 2805 2806static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2807 unsigned int limit) 2808{ 2809 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2810} 2811 2812static inline unsigned long rlimit(unsigned int limit) 2813{ 2814 return task_rlimit(current, limit); 2815} 2816 2817static inline unsigned long rlimit_max(unsigned int limit) 2818{ 2819 return task_rlimit_max(current, limit); 2820} 2821 2822#endif /* __KERNEL__ */ 2823 2824#endif