at v3.6-rc3 28 kB view raw
1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _HYPERV_H 26#define _HYPERV_H 27 28#include <linux/types.h> 29 30/* 31 * An implementation of HyperV key value pair (KVP) functionality for Linux. 32 * 33 * 34 * Copyright (C) 2010, Novell, Inc. 35 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 36 * 37 */ 38 39/* 40 * Maximum value size - used for both key names and value data, and includes 41 * any applicable NULL terminators. 42 * 43 * Note: This limit is somewhat arbitrary, but falls easily within what is 44 * supported for all native guests (back to Win 2000) and what is reasonable 45 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are 46 * limited to 255 character key names. 47 * 48 * MSDN recommends not storing data values larger than 2048 bytes in the 49 * registry. 50 * 51 * Note: This value is used in defining the KVP exchange message - this value 52 * cannot be modified without affecting the message size and compatibility. 53 */ 54 55/* 56 * bytes, including any null terminators 57 */ 58#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048) 59 60 61/* 62 * Maximum key size - the registry limit for the length of an entry name 63 * is 256 characters, including the null terminator 64 */ 65 66#define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512) 67 68/* 69 * In Linux, we implement the KVP functionality in two components: 70 * 1) The kernel component which is packaged as part of the hv_utils driver 71 * is responsible for communicating with the host and responsible for 72 * implementing the host/guest protocol. 2) A user level daemon that is 73 * responsible for data gathering. 74 * 75 * Host/Guest Protocol: The host iterates over an index and expects the guest 76 * to assign a key name to the index and also return the value corresponding to 77 * the key. The host will have atmost one KVP transaction outstanding at any 78 * given point in time. The host side iteration stops when the guest returns 79 * an error. Microsoft has specified the following mapping of key names to 80 * host specified index: 81 * 82 * Index Key Name 83 * 0 FullyQualifiedDomainName 84 * 1 IntegrationServicesVersion 85 * 2 NetworkAddressIPv4 86 * 3 NetworkAddressIPv6 87 * 4 OSBuildNumber 88 * 5 OSName 89 * 6 OSMajorVersion 90 * 7 OSMinorVersion 91 * 8 OSVersion 92 * 9 ProcessorArchitecture 93 * 94 * The Windows host expects the Key Name and Key Value to be encoded in utf16. 95 * 96 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the 97 * data gathering functionality in a user mode daemon. The user level daemon 98 * is also responsible for binding the key name to the index as well. The 99 * kernel and user-level daemon communicate using a connector channel. 100 * 101 * The user mode component first registers with the 102 * the kernel component. Subsequently, the kernel component requests, data 103 * for the specified keys. In response to this message the user mode component 104 * fills in the value corresponding to the specified key. We overload the 105 * sequence field in the cn_msg header to define our KVP message types. 106 * 107 * 108 * The kernel component simply acts as a conduit for communication between the 109 * Windows host and the user-level daemon. The kernel component passes up the 110 * index received from the Host to the user-level daemon. If the index is 111 * valid (supported), the corresponding key as well as its 112 * value (both are strings) is returned. If the index is invalid 113 * (not supported), a NULL key string is returned. 114 */ 115 116 117/* 118 * Registry value types. 119 */ 120 121#define REG_SZ 1 122#define REG_U32 4 123#define REG_U64 8 124 125enum hv_kvp_exchg_op { 126 KVP_OP_GET = 0, 127 KVP_OP_SET, 128 KVP_OP_DELETE, 129 KVP_OP_ENUMERATE, 130 KVP_OP_REGISTER, 131 KVP_OP_COUNT /* Number of operations, must be last. */ 132}; 133 134enum hv_kvp_exchg_pool { 135 KVP_POOL_EXTERNAL = 0, 136 KVP_POOL_GUEST, 137 KVP_POOL_AUTO, 138 KVP_POOL_AUTO_EXTERNAL, 139 KVP_POOL_AUTO_INTERNAL, 140 KVP_POOL_COUNT /* Number of pools, must be last. */ 141}; 142 143struct hv_kvp_hdr { 144 __u8 operation; 145 __u8 pool; 146 __u16 pad; 147} __attribute__((packed)); 148 149struct hv_kvp_exchg_msg_value { 150 __u32 value_type; 151 __u32 key_size; 152 __u32 value_size; 153 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 154 union { 155 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE]; 156 __u32 value_u32; 157 __u64 value_u64; 158 }; 159} __attribute__((packed)); 160 161struct hv_kvp_msg_enumerate { 162 __u32 index; 163 struct hv_kvp_exchg_msg_value data; 164} __attribute__((packed)); 165 166struct hv_kvp_msg_get { 167 struct hv_kvp_exchg_msg_value data; 168}; 169 170struct hv_kvp_msg_set { 171 struct hv_kvp_exchg_msg_value data; 172}; 173 174struct hv_kvp_msg_delete { 175 __u32 key_size; 176 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 177}; 178 179struct hv_kvp_register { 180 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 181}; 182 183struct hv_kvp_msg { 184 struct hv_kvp_hdr kvp_hdr; 185 union { 186 struct hv_kvp_msg_get kvp_get; 187 struct hv_kvp_msg_set kvp_set; 188 struct hv_kvp_msg_delete kvp_delete; 189 struct hv_kvp_msg_enumerate kvp_enum_data; 190 struct hv_kvp_register kvp_register; 191 } body; 192} __attribute__((packed)); 193 194#ifdef __KERNEL__ 195#include <linux/scatterlist.h> 196#include <linux/list.h> 197#include <linux/uuid.h> 198#include <linux/timer.h> 199#include <linux/workqueue.h> 200#include <linux/completion.h> 201#include <linux/device.h> 202#include <linux/mod_devicetable.h> 203 204 205#define MAX_PAGE_BUFFER_COUNT 19 206#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 207 208#pragma pack(push, 1) 209 210/* Single-page buffer */ 211struct hv_page_buffer { 212 u32 len; 213 u32 offset; 214 u64 pfn; 215}; 216 217/* Multiple-page buffer */ 218struct hv_multipage_buffer { 219 /* Length and Offset determines the # of pfns in the array */ 220 u32 len; 221 u32 offset; 222 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 223}; 224 225/* 0x18 includes the proprietary packet header */ 226#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 227 (sizeof(struct hv_page_buffer) * \ 228 MAX_PAGE_BUFFER_COUNT)) 229#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 230 sizeof(struct hv_multipage_buffer)) 231 232 233#pragma pack(pop) 234 235struct hv_ring_buffer { 236 /* Offset in bytes from the start of ring data below */ 237 u32 write_index; 238 239 /* Offset in bytes from the start of ring data below */ 240 u32 read_index; 241 242 u32 interrupt_mask; 243 244 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 245 u8 reserved[4084]; 246 247 /* NOTE: 248 * The interrupt_mask field is used only for channels but since our 249 * vmbus connection also uses this data structure and its data starts 250 * here, we commented out this field. 251 */ 252 253 /* 254 * Ring data starts here + RingDataStartOffset 255 * !!! DO NOT place any fields below this !!! 256 */ 257 u8 buffer[0]; 258} __packed; 259 260struct hv_ring_buffer_info { 261 struct hv_ring_buffer *ring_buffer; 262 u32 ring_size; /* Include the shared header */ 263 spinlock_t ring_lock; 264 265 u32 ring_datasize; /* < ring_size */ 266 u32 ring_data_startoffset; 267}; 268 269struct hv_ring_buffer_debug_info { 270 u32 current_interrupt_mask; 271 u32 current_read_index; 272 u32 current_write_index; 273 u32 bytes_avail_toread; 274 u32 bytes_avail_towrite; 275}; 276 277 278/* 279 * 280 * hv_get_ringbuffer_availbytes() 281 * 282 * Get number of bytes available to read and to write to 283 * for the specified ring buffer 284 */ 285static inline void 286hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi, 287 u32 *read, u32 *write) 288{ 289 u32 read_loc, write_loc, dsize; 290 291 smp_read_barrier_depends(); 292 293 /* Capture the read/write indices before they changed */ 294 read_loc = rbi->ring_buffer->read_index; 295 write_loc = rbi->ring_buffer->write_index; 296 dsize = rbi->ring_datasize; 297 298 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 299 read_loc - write_loc; 300 *read = dsize - *write; 301} 302 303 304/* 305 * We use the same version numbering for all Hyper-V modules. 306 * 307 * Definition of versioning is as follows; 308 * 309 * Major Number Changes for these scenarios; 310 * 1. When a new version of Windows Hyper-V 311 * is released. 312 * 2. A Major change has occurred in the 313 * Linux IC's. 314 * (For example the merge for the first time 315 * into the kernel) Every time the Major Number 316 * changes, the Revision number is reset to 0. 317 * Minor Number Changes when new functionality is added 318 * to the Linux IC's that is not a bug fix. 319 * 320 * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync 321 */ 322#define HV_DRV_VERSION "3.1" 323 324 325/* 326 * A revision number of vmbus that is used for ensuring both ends on a 327 * partition are using compatible versions. 328 */ 329#define VMBUS_REVISION_NUMBER 13 330 331/* Make maximum size of pipe payload of 16K */ 332#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 333 334/* Define PipeMode values. */ 335#define VMBUS_PIPE_TYPE_BYTE 0x00000000 336#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 337 338/* The size of the user defined data buffer for non-pipe offers. */ 339#define MAX_USER_DEFINED_BYTES 120 340 341/* The size of the user defined data buffer for pipe offers. */ 342#define MAX_PIPE_USER_DEFINED_BYTES 116 343 344/* 345 * At the center of the Channel Management library is the Channel Offer. This 346 * struct contains the fundamental information about an offer. 347 */ 348struct vmbus_channel_offer { 349 uuid_le if_type; 350 uuid_le if_instance; 351 u64 int_latency; /* in 100ns units */ 352 u32 if_revision; 353 u32 server_ctx_size; /* in bytes */ 354 u16 chn_flags; 355 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 356 357 union { 358 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 359 struct { 360 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 361 } std; 362 363 /* 364 * Pipes: 365 * The following sructure is an integrated pipe protocol, which 366 * is implemented on top of standard user-defined data. Pipe 367 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 368 * use. 369 */ 370 struct { 371 u32 pipe_mode; 372 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 373 } pipe; 374 } u; 375 u32 padding; 376} __packed; 377 378/* Server Flags */ 379#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 380#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 381#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 382#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 383#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 384#define VMBUS_CHANNEL_PARENT_OFFER 0x200 385#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 386 387struct vmpacket_descriptor { 388 u16 type; 389 u16 offset8; 390 u16 len8; 391 u16 flags; 392 u64 trans_id; 393} __packed; 394 395struct vmpacket_header { 396 u32 prev_pkt_start_offset; 397 struct vmpacket_descriptor descriptor; 398} __packed; 399 400struct vmtransfer_page_range { 401 u32 byte_count; 402 u32 byte_offset; 403} __packed; 404 405struct vmtransfer_page_packet_header { 406 struct vmpacket_descriptor d; 407 u16 xfer_pageset_id; 408 bool sender_owns_set; 409 u8 reserved; 410 u32 range_cnt; 411 struct vmtransfer_page_range ranges[1]; 412} __packed; 413 414struct vmgpadl_packet_header { 415 struct vmpacket_descriptor d; 416 u32 gpadl; 417 u32 reserved; 418} __packed; 419 420struct vmadd_remove_transfer_page_set { 421 struct vmpacket_descriptor d; 422 u32 gpadl; 423 u16 xfer_pageset_id; 424 u16 reserved; 425} __packed; 426 427/* 428 * This structure defines a range in guest physical space that can be made to 429 * look virtually contiguous. 430 */ 431struct gpa_range { 432 u32 byte_count; 433 u32 byte_offset; 434 u64 pfn_array[0]; 435}; 436 437/* 438 * This is the format for an Establish Gpadl packet, which contains a handle by 439 * which this GPADL will be known and a set of GPA ranges associated with it. 440 * This can be converted to a MDL by the guest OS. If there are multiple GPA 441 * ranges, then the resulting MDL will be "chained," representing multiple VA 442 * ranges. 443 */ 444struct vmestablish_gpadl { 445 struct vmpacket_descriptor d; 446 u32 gpadl; 447 u32 range_cnt; 448 struct gpa_range range[1]; 449} __packed; 450 451/* 452 * This is the format for a Teardown Gpadl packet, which indicates that the 453 * GPADL handle in the Establish Gpadl packet will never be referenced again. 454 */ 455struct vmteardown_gpadl { 456 struct vmpacket_descriptor d; 457 u32 gpadl; 458 u32 reserved; /* for alignment to a 8-byte boundary */ 459} __packed; 460 461/* 462 * This is the format for a GPA-Direct packet, which contains a set of GPA 463 * ranges, in addition to commands and/or data. 464 */ 465struct vmdata_gpa_direct { 466 struct vmpacket_descriptor d; 467 u32 reserved; 468 u32 range_cnt; 469 struct gpa_range range[1]; 470} __packed; 471 472/* This is the format for a Additional Data Packet. */ 473struct vmadditional_data { 474 struct vmpacket_descriptor d; 475 u64 total_bytes; 476 u32 offset; 477 u32 byte_cnt; 478 unsigned char data[1]; 479} __packed; 480 481union vmpacket_largest_possible_header { 482 struct vmpacket_descriptor simple_hdr; 483 struct vmtransfer_page_packet_header xfer_page_hdr; 484 struct vmgpadl_packet_header gpadl_hdr; 485 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 486 struct vmestablish_gpadl establish_gpadl_hdr; 487 struct vmteardown_gpadl teardown_gpadl_hdr; 488 struct vmdata_gpa_direct data_gpa_direct_hdr; 489}; 490 491#define VMPACKET_DATA_START_ADDRESS(__packet) \ 492 (void *)(((unsigned char *)__packet) + \ 493 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 494 495#define VMPACKET_DATA_LENGTH(__packet) \ 496 ((((struct vmpacket_descriptor)__packet)->len8 - \ 497 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 498 499#define VMPACKET_TRANSFER_MODE(__packet) \ 500 (((struct IMPACT)__packet)->type) 501 502enum vmbus_packet_type { 503 VM_PKT_INVALID = 0x0, 504 VM_PKT_SYNCH = 0x1, 505 VM_PKT_ADD_XFER_PAGESET = 0x2, 506 VM_PKT_RM_XFER_PAGESET = 0x3, 507 VM_PKT_ESTABLISH_GPADL = 0x4, 508 VM_PKT_TEARDOWN_GPADL = 0x5, 509 VM_PKT_DATA_INBAND = 0x6, 510 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 511 VM_PKT_DATA_USING_GPADL = 0x8, 512 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 513 VM_PKT_CANCEL_REQUEST = 0xa, 514 VM_PKT_COMP = 0xb, 515 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 516 VM_PKT_ADDITIONAL_DATA = 0xd 517}; 518 519#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 520 521 522/* Version 1 messages */ 523enum vmbus_channel_message_type { 524 CHANNELMSG_INVALID = 0, 525 CHANNELMSG_OFFERCHANNEL = 1, 526 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 527 CHANNELMSG_REQUESTOFFERS = 3, 528 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 529 CHANNELMSG_OPENCHANNEL = 5, 530 CHANNELMSG_OPENCHANNEL_RESULT = 6, 531 CHANNELMSG_CLOSECHANNEL = 7, 532 CHANNELMSG_GPADL_HEADER = 8, 533 CHANNELMSG_GPADL_BODY = 9, 534 CHANNELMSG_GPADL_CREATED = 10, 535 CHANNELMSG_GPADL_TEARDOWN = 11, 536 CHANNELMSG_GPADL_TORNDOWN = 12, 537 CHANNELMSG_RELID_RELEASED = 13, 538 CHANNELMSG_INITIATE_CONTACT = 14, 539 CHANNELMSG_VERSION_RESPONSE = 15, 540 CHANNELMSG_UNLOAD = 16, 541#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 542 CHANNELMSG_VIEWRANGE_ADD = 17, 543 CHANNELMSG_VIEWRANGE_REMOVE = 18, 544#endif 545 CHANNELMSG_COUNT 546}; 547 548struct vmbus_channel_message_header { 549 enum vmbus_channel_message_type msgtype; 550 u32 padding; 551} __packed; 552 553/* Query VMBus Version parameters */ 554struct vmbus_channel_query_vmbus_version { 555 struct vmbus_channel_message_header header; 556 u32 version; 557} __packed; 558 559/* VMBus Version Supported parameters */ 560struct vmbus_channel_version_supported { 561 struct vmbus_channel_message_header header; 562 bool version_supported; 563} __packed; 564 565/* Offer Channel parameters */ 566struct vmbus_channel_offer_channel { 567 struct vmbus_channel_message_header header; 568 struct vmbus_channel_offer offer; 569 u32 child_relid; 570 u8 monitorid; 571 bool monitor_allocated; 572} __packed; 573 574/* Rescind Offer parameters */ 575struct vmbus_channel_rescind_offer { 576 struct vmbus_channel_message_header header; 577 u32 child_relid; 578} __packed; 579 580/* 581 * Request Offer -- no parameters, SynIC message contains the partition ID 582 * Set Snoop -- no parameters, SynIC message contains the partition ID 583 * Clear Snoop -- no parameters, SynIC message contains the partition ID 584 * All Offers Delivered -- no parameters, SynIC message contains the partition 585 * ID 586 * Flush Client -- no parameters, SynIC message contains the partition ID 587 */ 588 589/* Open Channel parameters */ 590struct vmbus_channel_open_channel { 591 struct vmbus_channel_message_header header; 592 593 /* Identifies the specific VMBus channel that is being opened. */ 594 u32 child_relid; 595 596 /* ID making a particular open request at a channel offer unique. */ 597 u32 openid; 598 599 /* GPADL for the channel's ring buffer. */ 600 u32 ringbuffer_gpadlhandle; 601 602 /* GPADL for the channel's server context save area. */ 603 u32 server_contextarea_gpadlhandle; 604 605 /* 606 * The upstream ring buffer begins at offset zero in the memory 607 * described by RingBufferGpadlHandle. The downstream ring buffer 608 * follows it at this offset (in pages). 609 */ 610 u32 downstream_ringbuffer_pageoffset; 611 612 /* User-specific data to be passed along to the server endpoint. */ 613 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 614} __packed; 615 616/* Open Channel Result parameters */ 617struct vmbus_channel_open_result { 618 struct vmbus_channel_message_header header; 619 u32 child_relid; 620 u32 openid; 621 u32 status; 622} __packed; 623 624/* Close channel parameters; */ 625struct vmbus_channel_close_channel { 626 struct vmbus_channel_message_header header; 627 u32 child_relid; 628} __packed; 629 630/* Channel Message GPADL */ 631#define GPADL_TYPE_RING_BUFFER 1 632#define GPADL_TYPE_SERVER_SAVE_AREA 2 633#define GPADL_TYPE_TRANSACTION 8 634 635/* 636 * The number of PFNs in a GPADL message is defined by the number of 637 * pages that would be spanned by ByteCount and ByteOffset. If the 638 * implied number of PFNs won't fit in this packet, there will be a 639 * follow-up packet that contains more. 640 */ 641struct vmbus_channel_gpadl_header { 642 struct vmbus_channel_message_header header; 643 u32 child_relid; 644 u32 gpadl; 645 u16 range_buflen; 646 u16 rangecount; 647 struct gpa_range range[0]; 648} __packed; 649 650/* This is the followup packet that contains more PFNs. */ 651struct vmbus_channel_gpadl_body { 652 struct vmbus_channel_message_header header; 653 u32 msgnumber; 654 u32 gpadl; 655 u64 pfn[0]; 656} __packed; 657 658struct vmbus_channel_gpadl_created { 659 struct vmbus_channel_message_header header; 660 u32 child_relid; 661 u32 gpadl; 662 u32 creation_status; 663} __packed; 664 665struct vmbus_channel_gpadl_teardown { 666 struct vmbus_channel_message_header header; 667 u32 child_relid; 668 u32 gpadl; 669} __packed; 670 671struct vmbus_channel_gpadl_torndown { 672 struct vmbus_channel_message_header header; 673 u32 gpadl; 674} __packed; 675 676#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 677struct vmbus_channel_view_range_add { 678 struct vmbus_channel_message_header header; 679 PHYSICAL_ADDRESS viewrange_base; 680 u64 viewrange_length; 681 u32 child_relid; 682} __packed; 683 684struct vmbus_channel_view_range_remove { 685 struct vmbus_channel_message_header header; 686 PHYSICAL_ADDRESS viewrange_base; 687 u32 child_relid; 688} __packed; 689#endif 690 691struct vmbus_channel_relid_released { 692 struct vmbus_channel_message_header header; 693 u32 child_relid; 694} __packed; 695 696struct vmbus_channel_initiate_contact { 697 struct vmbus_channel_message_header header; 698 u32 vmbus_version_requested; 699 u32 padding2; 700 u64 interrupt_page; 701 u64 monitor_page1; 702 u64 monitor_page2; 703} __packed; 704 705struct vmbus_channel_version_response { 706 struct vmbus_channel_message_header header; 707 bool version_supported; 708} __packed; 709 710enum vmbus_channel_state { 711 CHANNEL_OFFER_STATE, 712 CHANNEL_OPENING_STATE, 713 CHANNEL_OPEN_STATE, 714}; 715 716struct vmbus_channel_debug_info { 717 u32 relid; 718 enum vmbus_channel_state state; 719 uuid_le interfacetype; 720 uuid_le interface_instance; 721 u32 monitorid; 722 u32 servermonitor_pending; 723 u32 servermonitor_latency; 724 u32 servermonitor_connectionid; 725 u32 clientmonitor_pending; 726 u32 clientmonitor_latency; 727 u32 clientmonitor_connectionid; 728 729 struct hv_ring_buffer_debug_info inbound; 730 struct hv_ring_buffer_debug_info outbound; 731}; 732 733/* 734 * Represents each channel msg on the vmbus connection This is a 735 * variable-size data structure depending on the msg type itself 736 */ 737struct vmbus_channel_msginfo { 738 /* Bookkeeping stuff */ 739 struct list_head msglistentry; 740 741 /* So far, this is only used to handle gpadl body message */ 742 struct list_head submsglist; 743 744 /* Synchronize the request/response if needed */ 745 struct completion waitevent; 746 union { 747 struct vmbus_channel_version_supported version_supported; 748 struct vmbus_channel_open_result open_result; 749 struct vmbus_channel_gpadl_torndown gpadl_torndown; 750 struct vmbus_channel_gpadl_created gpadl_created; 751 struct vmbus_channel_version_response version_response; 752 } response; 753 754 u32 msgsize; 755 /* 756 * The channel message that goes out on the "wire". 757 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 758 */ 759 unsigned char msg[0]; 760}; 761 762struct vmbus_close_msg { 763 struct vmbus_channel_msginfo info; 764 struct vmbus_channel_close_channel msg; 765}; 766 767struct vmbus_channel { 768 struct list_head listentry; 769 770 struct hv_device *device_obj; 771 772 struct work_struct work; 773 774 enum vmbus_channel_state state; 775 776 struct vmbus_channel_offer_channel offermsg; 777 /* 778 * These are based on the OfferMsg.MonitorId. 779 * Save it here for easy access. 780 */ 781 u8 monitor_grp; 782 u8 monitor_bit; 783 784 u32 ringbuffer_gpadlhandle; 785 786 /* Allocated memory for ring buffer */ 787 void *ringbuffer_pages; 788 u32 ringbuffer_pagecount; 789 struct hv_ring_buffer_info outbound; /* send to parent */ 790 struct hv_ring_buffer_info inbound; /* receive from parent */ 791 spinlock_t inbound_lock; 792 struct workqueue_struct *controlwq; 793 794 struct vmbus_close_msg close_msg; 795 796 /* Channel callback are invoked in this workqueue context */ 797 /* HANDLE dataWorkQueue; */ 798 799 void (*onchannel_callback)(void *context); 800 void *channel_callback_context; 801}; 802 803void vmbus_onmessage(void *context); 804 805int vmbus_request_offers(void); 806 807/* The format must be the same as struct vmdata_gpa_direct */ 808struct vmbus_channel_packet_page_buffer { 809 u16 type; 810 u16 dataoffset8; 811 u16 length8; 812 u16 flags; 813 u64 transactionid; 814 u32 reserved; 815 u32 rangecount; 816 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 817} __packed; 818 819/* The format must be the same as struct vmdata_gpa_direct */ 820struct vmbus_channel_packet_multipage_buffer { 821 u16 type; 822 u16 dataoffset8; 823 u16 length8; 824 u16 flags; 825 u64 transactionid; 826 u32 reserved; 827 u32 rangecount; /* Always 1 in this case */ 828 struct hv_multipage_buffer range; 829} __packed; 830 831 832extern int vmbus_open(struct vmbus_channel *channel, 833 u32 send_ringbuffersize, 834 u32 recv_ringbuffersize, 835 void *userdata, 836 u32 userdatalen, 837 void(*onchannel_callback)(void *context), 838 void *context); 839 840extern void vmbus_close(struct vmbus_channel *channel); 841 842extern int vmbus_sendpacket(struct vmbus_channel *channel, 843 const void *buffer, 844 u32 bufferLen, 845 u64 requestid, 846 enum vmbus_packet_type type, 847 u32 flags); 848 849extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 850 struct hv_page_buffer pagebuffers[], 851 u32 pagecount, 852 void *buffer, 853 u32 bufferlen, 854 u64 requestid); 855 856extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 857 struct hv_multipage_buffer *mpb, 858 void *buffer, 859 u32 bufferlen, 860 u64 requestid); 861 862extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 863 void *kbuffer, 864 u32 size, 865 u32 *gpadl_handle); 866 867extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 868 u32 gpadl_handle); 869 870extern int vmbus_recvpacket(struct vmbus_channel *channel, 871 void *buffer, 872 u32 bufferlen, 873 u32 *buffer_actual_len, 874 u64 *requestid); 875 876extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 877 void *buffer, 878 u32 bufferlen, 879 u32 *buffer_actual_len, 880 u64 *requestid); 881 882 883extern void vmbus_get_debug_info(struct vmbus_channel *channel, 884 struct vmbus_channel_debug_info *debug); 885 886extern void vmbus_ontimer(unsigned long data); 887 888struct hv_dev_port_info { 889 u32 int_mask; 890 u32 read_idx; 891 u32 write_idx; 892 u32 bytes_avail_toread; 893 u32 bytes_avail_towrite; 894}; 895 896/* Base driver object */ 897struct hv_driver { 898 const char *name; 899 900 /* the device type supported by this driver */ 901 uuid_le dev_type; 902 const struct hv_vmbus_device_id *id_table; 903 904 struct device_driver driver; 905 906 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 907 int (*remove)(struct hv_device *); 908 void (*shutdown)(struct hv_device *); 909 910}; 911 912/* Base device object */ 913struct hv_device { 914 /* the device type id of this device */ 915 uuid_le dev_type; 916 917 /* the device instance id of this device */ 918 uuid_le dev_instance; 919 920 struct device device; 921 922 struct vmbus_channel *channel; 923}; 924 925 926static inline struct hv_device *device_to_hv_device(struct device *d) 927{ 928 return container_of(d, struct hv_device, device); 929} 930 931static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 932{ 933 return container_of(d, struct hv_driver, driver); 934} 935 936static inline void hv_set_drvdata(struct hv_device *dev, void *data) 937{ 938 dev_set_drvdata(&dev->device, data); 939} 940 941static inline void *hv_get_drvdata(struct hv_device *dev) 942{ 943 return dev_get_drvdata(&dev->device); 944} 945 946/* Vmbus interface */ 947#define vmbus_driver_register(driver) \ 948 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 949int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 950 struct module *owner, 951 const char *mod_name); 952void vmbus_driver_unregister(struct hv_driver *hv_driver); 953 954/** 955 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device 956 * 957 * This macro is used to create a struct hv_vmbus_device_id that matches a 958 * specific device. 959 */ 960#define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \ 961 g8, g9, ga, gb, gc, gd, ge, gf) \ 962 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \ 963 g8, g9, ga, gb, gc, gd, ge, gf }, 964 965/* 966 * Common header for Hyper-V ICs 967 */ 968 969#define ICMSGTYPE_NEGOTIATE 0 970#define ICMSGTYPE_HEARTBEAT 1 971#define ICMSGTYPE_KVPEXCHANGE 2 972#define ICMSGTYPE_SHUTDOWN 3 973#define ICMSGTYPE_TIMESYNC 4 974#define ICMSGTYPE_VSS 5 975 976#define ICMSGHDRFLAG_TRANSACTION 1 977#define ICMSGHDRFLAG_REQUEST 2 978#define ICMSGHDRFLAG_RESPONSE 4 979 980#define HV_S_OK 0x00000000 981#define HV_E_FAIL 0x80004005 982#define HV_S_CONT 0x80070103 983#define HV_ERROR_NOT_SUPPORTED 0x80070032 984#define HV_ERROR_MACHINE_LOCKED 0x800704F7 985 986/* 987 * While we want to handle util services as regular devices, 988 * there is only one instance of each of these services; so 989 * we statically allocate the service specific state. 990 */ 991 992struct hv_util_service { 993 u8 *recv_buffer; 994 void (*util_cb)(void *); 995 int (*util_init)(struct hv_util_service *); 996 void (*util_deinit)(void); 997}; 998 999struct vmbuspipe_hdr { 1000 u32 flags; 1001 u32 msgsize; 1002} __packed; 1003 1004struct ic_version { 1005 u16 major; 1006 u16 minor; 1007} __packed; 1008 1009struct icmsg_hdr { 1010 struct ic_version icverframe; 1011 u16 icmsgtype; 1012 struct ic_version icvermsg; 1013 u16 icmsgsize; 1014 u32 status; 1015 u8 ictransaction_id; 1016 u8 icflags; 1017 u8 reserved[2]; 1018} __packed; 1019 1020struct icmsg_negotiate { 1021 u16 icframe_vercnt; 1022 u16 icmsg_vercnt; 1023 u32 reserved; 1024 struct ic_version icversion_data[1]; /* any size array */ 1025} __packed; 1026 1027struct shutdown_msg_data { 1028 u32 reason_code; 1029 u32 timeout_seconds; 1030 u32 flags; 1031 u8 display_message[2048]; 1032} __packed; 1033 1034struct heartbeat_msg_data { 1035 u64 seq_num; 1036 u32 reserved[8]; 1037} __packed; 1038 1039/* Time Sync IC defs */ 1040#define ICTIMESYNCFLAG_PROBE 0 1041#define ICTIMESYNCFLAG_SYNC 1 1042#define ICTIMESYNCFLAG_SAMPLE 2 1043 1044#ifdef __x86_64__ 1045#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1046#else 1047#define WLTIMEDELTA 116444736000000000LL 1048#endif 1049 1050struct ictimesync_data { 1051 u64 parenttime; 1052 u64 childtime; 1053 u64 roundtriptime; 1054 u8 flags; 1055} __packed; 1056 1057struct hyperv_service_callback { 1058 u8 msg_type; 1059 char *log_msg; 1060 uuid_le data; 1061 struct vmbus_channel *channel; 1062 void (*callback) (void *context); 1063}; 1064 1065#define MAX_SRV_VER 0x7ffffff 1066extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *, 1067 struct icmsg_negotiate *, u8 *, int, 1068 int); 1069 1070int hv_kvp_init(struct hv_util_service *); 1071void hv_kvp_deinit(void); 1072void hv_kvp_onchannelcallback(void *); 1073 1074#endif /* __KERNEL__ */ 1075#endif /* _HYPERV_H */