at v3.6-rc2 34 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef LINUX_DMAENGINE_H 22#define LINUX_DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/uio.h> 26#include <linux/bug.h> 27#include <linux/scatterlist.h> 28#include <linux/bitmap.h> 29#include <linux/types.h> 30#include <asm/page.h> 31 32/** 33 * typedef dma_cookie_t - an opaque DMA cookie 34 * 35 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 36 */ 37typedef s32 dma_cookie_t; 38#define DMA_MIN_COOKIE 1 39#define DMA_MAX_COOKIE INT_MAX 40 41#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0) 42 43/** 44 * enum dma_status - DMA transaction status 45 * @DMA_SUCCESS: transaction completed successfully 46 * @DMA_IN_PROGRESS: transaction not yet processed 47 * @DMA_PAUSED: transaction is paused 48 * @DMA_ERROR: transaction failed 49 */ 50enum dma_status { 51 DMA_SUCCESS, 52 DMA_IN_PROGRESS, 53 DMA_PAUSED, 54 DMA_ERROR, 55}; 56 57/** 58 * enum dma_transaction_type - DMA transaction types/indexes 59 * 60 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 61 * automatically set as dma devices are registered. 62 */ 63enum dma_transaction_type { 64 DMA_MEMCPY, 65 DMA_XOR, 66 DMA_PQ, 67 DMA_XOR_VAL, 68 DMA_PQ_VAL, 69 DMA_MEMSET, 70 DMA_INTERRUPT, 71 DMA_SG, 72 DMA_PRIVATE, 73 DMA_ASYNC_TX, 74 DMA_SLAVE, 75 DMA_CYCLIC, 76 DMA_INTERLEAVE, 77/* last transaction type for creation of the capabilities mask */ 78 DMA_TX_TYPE_END, 79}; 80 81/** 82 * enum dma_transfer_direction - dma transfer mode and direction indicator 83 * @DMA_MEM_TO_MEM: Async/Memcpy mode 84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 87 */ 88enum dma_transfer_direction { 89 DMA_MEM_TO_MEM, 90 DMA_MEM_TO_DEV, 91 DMA_DEV_TO_MEM, 92 DMA_DEV_TO_DEV, 93 DMA_TRANS_NONE, 94}; 95 96/** 97 * Interleaved Transfer Request 98 * ---------------------------- 99 * A chunk is collection of contiguous bytes to be transfered. 100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 101 * ICGs may or maynot change between chunks. 102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 103 * that when repeated an integral number of times, specifies the transfer. 104 * A transfer template is specification of a Frame, the number of times 105 * it is to be repeated and other per-transfer attributes. 106 * 107 * Practically, a client driver would have ready a template for each 108 * type of transfer it is going to need during its lifetime and 109 * set only 'src_start' and 'dst_start' before submitting the requests. 110 * 111 * 112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 114 * 115 * == Chunk size 116 * ... ICG 117 */ 118 119/** 120 * struct data_chunk - Element of scatter-gather list that makes a frame. 121 * @size: Number of bytes to read from source. 122 * size_dst := fn(op, size_src), so doesn't mean much for destination. 123 * @icg: Number of bytes to jump after last src/dst address of this 124 * chunk and before first src/dst address for next chunk. 125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 127 */ 128struct data_chunk { 129 size_t size; 130 size_t icg; 131}; 132 133/** 134 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 135 * and attributes. 136 * @src_start: Bus address of source for the first chunk. 137 * @dst_start: Bus address of destination for the first chunk. 138 * @dir: Specifies the type of Source and Destination. 139 * @src_inc: If the source address increments after reading from it. 140 * @dst_inc: If the destination address increments after writing to it. 141 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 142 * Otherwise, source is read contiguously (icg ignored). 143 * Ignored if src_inc is false. 144 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 145 * Otherwise, destination is filled contiguously (icg ignored). 146 * Ignored if dst_inc is false. 147 * @numf: Number of frames in this template. 148 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 149 * @sgl: Array of {chunk,icg} pairs that make up a frame. 150 */ 151struct dma_interleaved_template { 152 dma_addr_t src_start; 153 dma_addr_t dst_start; 154 enum dma_transfer_direction dir; 155 bool src_inc; 156 bool dst_inc; 157 bool src_sgl; 158 bool dst_sgl; 159 size_t numf; 160 size_t frame_size; 161 struct data_chunk sgl[0]; 162}; 163 164/** 165 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 166 * control completion, and communicate status. 167 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 168 * this transaction 169 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 170 * acknowledges receipt, i.e. has has a chance to establish any dependency 171 * chains 172 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s) 173 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s) 174 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single 175 * (if not set, do the source dma-unmapping as page) 176 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single 177 * (if not set, do the destination dma-unmapping as page) 178 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 179 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 180 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 181 * sources that were the result of a previous operation, in the case of a PQ 182 * operation it continues the calculation with new sources 183 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 184 * on the result of this operation 185 */ 186enum dma_ctrl_flags { 187 DMA_PREP_INTERRUPT = (1 << 0), 188 DMA_CTRL_ACK = (1 << 1), 189 DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2), 190 DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3), 191 DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4), 192 DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5), 193 DMA_PREP_PQ_DISABLE_P = (1 << 6), 194 DMA_PREP_PQ_DISABLE_Q = (1 << 7), 195 DMA_PREP_CONTINUE = (1 << 8), 196 DMA_PREP_FENCE = (1 << 9), 197}; 198 199/** 200 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 201 * on a running channel. 202 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 203 * @DMA_PAUSE: pause ongoing transfers 204 * @DMA_RESUME: resume paused transfer 205 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers 206 * that need to runtime reconfigure the slave channels (as opposed to passing 207 * configuration data in statically from the platform). An additional 208 * argument of struct dma_slave_config must be passed in with this 209 * command. 210 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller 211 * into external start mode. 212 */ 213enum dma_ctrl_cmd { 214 DMA_TERMINATE_ALL, 215 DMA_PAUSE, 216 DMA_RESUME, 217 DMA_SLAVE_CONFIG, 218 FSLDMA_EXTERNAL_START, 219}; 220 221/** 222 * enum sum_check_bits - bit position of pq_check_flags 223 */ 224enum sum_check_bits { 225 SUM_CHECK_P = 0, 226 SUM_CHECK_Q = 1, 227}; 228 229/** 230 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 231 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 232 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 233 */ 234enum sum_check_flags { 235 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 236 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 237}; 238 239 240/** 241 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 242 * See linux/cpumask.h 243 */ 244typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 245 246/** 247 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 248 * @memcpy_count: transaction counter 249 * @bytes_transferred: byte counter 250 */ 251 252struct dma_chan_percpu { 253 /* stats */ 254 unsigned long memcpy_count; 255 unsigned long bytes_transferred; 256}; 257 258/** 259 * struct dma_chan - devices supply DMA channels, clients use them 260 * @device: ptr to the dma device who supplies this channel, always !%NULL 261 * @cookie: last cookie value returned to client 262 * @completed_cookie: last completed cookie for this channel 263 * @chan_id: channel ID for sysfs 264 * @dev: class device for sysfs 265 * @device_node: used to add this to the device chan list 266 * @local: per-cpu pointer to a struct dma_chan_percpu 267 * @client-count: how many clients are using this channel 268 * @table_count: number of appearances in the mem-to-mem allocation table 269 * @private: private data for certain client-channel associations 270 */ 271struct dma_chan { 272 struct dma_device *device; 273 dma_cookie_t cookie; 274 dma_cookie_t completed_cookie; 275 276 /* sysfs */ 277 int chan_id; 278 struct dma_chan_dev *dev; 279 280 struct list_head device_node; 281 struct dma_chan_percpu __percpu *local; 282 int client_count; 283 int table_count; 284 void *private; 285}; 286 287/** 288 * struct dma_chan_dev - relate sysfs device node to backing channel device 289 * @chan - driver channel device 290 * @device - sysfs device 291 * @dev_id - parent dma_device dev_id 292 * @idr_ref - reference count to gate release of dma_device dev_id 293 */ 294struct dma_chan_dev { 295 struct dma_chan *chan; 296 struct device device; 297 int dev_id; 298 atomic_t *idr_ref; 299}; 300 301/** 302 * enum dma_slave_buswidth - defines bus with of the DMA slave 303 * device, source or target buses 304 */ 305enum dma_slave_buswidth { 306 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 307 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 308 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 309 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 310 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 311}; 312 313/** 314 * struct dma_slave_config - dma slave channel runtime config 315 * @direction: whether the data shall go in or out on this slave 316 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are 317 * legal values, DMA_BIDIRECTIONAL is not acceptable since we 318 * need to differentiate source and target addresses. 319 * @src_addr: this is the physical address where DMA slave data 320 * should be read (RX), if the source is memory this argument is 321 * ignored. 322 * @dst_addr: this is the physical address where DMA slave data 323 * should be written (TX), if the source is memory this argument 324 * is ignored. 325 * @src_addr_width: this is the width in bytes of the source (RX) 326 * register where DMA data shall be read. If the source 327 * is memory this may be ignored depending on architecture. 328 * Legal values: 1, 2, 4, 8. 329 * @dst_addr_width: same as src_addr_width but for destination 330 * target (TX) mutatis mutandis. 331 * @src_maxburst: the maximum number of words (note: words, as in 332 * units of the src_addr_width member, not bytes) that can be sent 333 * in one burst to the device. Typically something like half the 334 * FIFO depth on I/O peripherals so you don't overflow it. This 335 * may or may not be applicable on memory sources. 336 * @dst_maxburst: same as src_maxburst but for destination target 337 * mutatis mutandis. 338 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 339 * with 'true' if peripheral should be flow controller. Direction will be 340 * selected at Runtime. 341 * @slave_id: Slave requester id. Only valid for slave channels. The dma 342 * slave peripheral will have unique id as dma requester which need to be 343 * pass as slave config. 344 * 345 * This struct is passed in as configuration data to a DMA engine 346 * in order to set up a certain channel for DMA transport at runtime. 347 * The DMA device/engine has to provide support for an additional 348 * command in the channel config interface, DMA_SLAVE_CONFIG 349 * and this struct will then be passed in as an argument to the 350 * DMA engine device_control() function. 351 * 352 * The rationale for adding configuration information to this struct 353 * is as follows: if it is likely that most DMA slave controllers in 354 * the world will support the configuration option, then make it 355 * generic. If not: if it is fixed so that it be sent in static from 356 * the platform data, then prefer to do that. Else, if it is neither 357 * fixed at runtime, nor generic enough (such as bus mastership on 358 * some CPU family and whatnot) then create a custom slave config 359 * struct and pass that, then make this config a member of that 360 * struct, if applicable. 361 */ 362struct dma_slave_config { 363 enum dma_transfer_direction direction; 364 dma_addr_t src_addr; 365 dma_addr_t dst_addr; 366 enum dma_slave_buswidth src_addr_width; 367 enum dma_slave_buswidth dst_addr_width; 368 u32 src_maxburst; 369 u32 dst_maxburst; 370 bool device_fc; 371 unsigned int slave_id; 372}; 373 374static inline const char *dma_chan_name(struct dma_chan *chan) 375{ 376 return dev_name(&chan->dev->device); 377} 378 379void dma_chan_cleanup(struct kref *kref); 380 381/** 382 * typedef dma_filter_fn - callback filter for dma_request_channel 383 * @chan: channel to be reviewed 384 * @filter_param: opaque parameter passed through dma_request_channel 385 * 386 * When this optional parameter is specified in a call to dma_request_channel a 387 * suitable channel is passed to this routine for further dispositioning before 388 * being returned. Where 'suitable' indicates a non-busy channel that 389 * satisfies the given capability mask. It returns 'true' to indicate that the 390 * channel is suitable. 391 */ 392typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 393 394typedef void (*dma_async_tx_callback)(void *dma_async_param); 395/** 396 * struct dma_async_tx_descriptor - async transaction descriptor 397 * ---dma generic offload fields--- 398 * @cookie: tracking cookie for this transaction, set to -EBUSY if 399 * this tx is sitting on a dependency list 400 * @flags: flags to augment operation preparation, control completion, and 401 * communicate status 402 * @phys: physical address of the descriptor 403 * @chan: target channel for this operation 404 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 405 * @callback: routine to call after this operation is complete 406 * @callback_param: general parameter to pass to the callback routine 407 * ---async_tx api specific fields--- 408 * @next: at completion submit this descriptor 409 * @parent: pointer to the next level up in the dependency chain 410 * @lock: protect the parent and next pointers 411 */ 412struct dma_async_tx_descriptor { 413 dma_cookie_t cookie; 414 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 415 dma_addr_t phys; 416 struct dma_chan *chan; 417 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 418 dma_async_tx_callback callback; 419 void *callback_param; 420#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 421 struct dma_async_tx_descriptor *next; 422 struct dma_async_tx_descriptor *parent; 423 spinlock_t lock; 424#endif 425}; 426 427#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 428static inline void txd_lock(struct dma_async_tx_descriptor *txd) 429{ 430} 431static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 432{ 433} 434static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 435{ 436 BUG(); 437} 438static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 439{ 440} 441static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 442{ 443} 444static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 445{ 446 return NULL; 447} 448static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 449{ 450 return NULL; 451} 452 453#else 454static inline void txd_lock(struct dma_async_tx_descriptor *txd) 455{ 456 spin_lock_bh(&txd->lock); 457} 458static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 459{ 460 spin_unlock_bh(&txd->lock); 461} 462static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 463{ 464 txd->next = next; 465 next->parent = txd; 466} 467static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 468{ 469 txd->parent = NULL; 470} 471static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 472{ 473 txd->next = NULL; 474} 475static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 476{ 477 return txd->parent; 478} 479static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 480{ 481 return txd->next; 482} 483#endif 484 485/** 486 * struct dma_tx_state - filled in to report the status of 487 * a transfer. 488 * @last: last completed DMA cookie 489 * @used: last issued DMA cookie (i.e. the one in progress) 490 * @residue: the remaining number of bytes left to transmit 491 * on the selected transfer for states DMA_IN_PROGRESS and 492 * DMA_PAUSED if this is implemented in the driver, else 0 493 */ 494struct dma_tx_state { 495 dma_cookie_t last; 496 dma_cookie_t used; 497 u32 residue; 498}; 499 500/** 501 * struct dma_device - info on the entity supplying DMA services 502 * @chancnt: how many DMA channels are supported 503 * @privatecnt: how many DMA channels are requested by dma_request_channel 504 * @channels: the list of struct dma_chan 505 * @global_node: list_head for global dma_device_list 506 * @cap_mask: one or more dma_capability flags 507 * @max_xor: maximum number of xor sources, 0 if no capability 508 * @max_pq: maximum number of PQ sources and PQ-continue capability 509 * @copy_align: alignment shift for memcpy operations 510 * @xor_align: alignment shift for xor operations 511 * @pq_align: alignment shift for pq operations 512 * @fill_align: alignment shift for memset operations 513 * @dev_id: unique device ID 514 * @dev: struct device reference for dma mapping api 515 * @device_alloc_chan_resources: allocate resources and return the 516 * number of allocated descriptors 517 * @device_free_chan_resources: release DMA channel's resources 518 * @device_prep_dma_memcpy: prepares a memcpy operation 519 * @device_prep_dma_xor: prepares a xor operation 520 * @device_prep_dma_xor_val: prepares a xor validation operation 521 * @device_prep_dma_pq: prepares a pq operation 522 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 523 * @device_prep_dma_memset: prepares a memset operation 524 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 525 * @device_prep_slave_sg: prepares a slave dma operation 526 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 527 * The function takes a buffer of size buf_len. The callback function will 528 * be called after period_len bytes have been transferred. 529 * @device_prep_interleaved_dma: Transfer expression in a generic way. 530 * @device_control: manipulate all pending operations on a channel, returns 531 * zero or error code 532 * @device_tx_status: poll for transaction completion, the optional 533 * txstate parameter can be supplied with a pointer to get a 534 * struct with auxiliary transfer status information, otherwise the call 535 * will just return a simple status code 536 * @device_issue_pending: push pending transactions to hardware 537 */ 538struct dma_device { 539 540 unsigned int chancnt; 541 unsigned int privatecnt; 542 struct list_head channels; 543 struct list_head global_node; 544 dma_cap_mask_t cap_mask; 545 unsigned short max_xor; 546 unsigned short max_pq; 547 u8 copy_align; 548 u8 xor_align; 549 u8 pq_align; 550 u8 fill_align; 551 #define DMA_HAS_PQ_CONTINUE (1 << 15) 552 553 int dev_id; 554 struct device *dev; 555 556 int (*device_alloc_chan_resources)(struct dma_chan *chan); 557 void (*device_free_chan_resources)(struct dma_chan *chan); 558 559 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 560 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 561 size_t len, unsigned long flags); 562 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 563 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 564 unsigned int src_cnt, size_t len, unsigned long flags); 565 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 566 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 567 size_t len, enum sum_check_flags *result, unsigned long flags); 568 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 569 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 570 unsigned int src_cnt, const unsigned char *scf, 571 size_t len, unsigned long flags); 572 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 573 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 574 unsigned int src_cnt, const unsigned char *scf, size_t len, 575 enum sum_check_flags *pqres, unsigned long flags); 576 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 577 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 578 unsigned long flags); 579 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 580 struct dma_chan *chan, unsigned long flags); 581 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 582 struct dma_chan *chan, 583 struct scatterlist *dst_sg, unsigned int dst_nents, 584 struct scatterlist *src_sg, unsigned int src_nents, 585 unsigned long flags); 586 587 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 588 struct dma_chan *chan, struct scatterlist *sgl, 589 unsigned int sg_len, enum dma_transfer_direction direction, 590 unsigned long flags, void *context); 591 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 592 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 593 size_t period_len, enum dma_transfer_direction direction, 594 void *context); 595 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 596 struct dma_chan *chan, struct dma_interleaved_template *xt, 597 unsigned long flags); 598 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 599 unsigned long arg); 600 601 enum dma_status (*device_tx_status)(struct dma_chan *chan, 602 dma_cookie_t cookie, 603 struct dma_tx_state *txstate); 604 void (*device_issue_pending)(struct dma_chan *chan); 605}; 606 607static inline int dmaengine_device_control(struct dma_chan *chan, 608 enum dma_ctrl_cmd cmd, 609 unsigned long arg) 610{ 611 return chan->device->device_control(chan, cmd, arg); 612} 613 614static inline int dmaengine_slave_config(struct dma_chan *chan, 615 struct dma_slave_config *config) 616{ 617 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG, 618 (unsigned long)config); 619} 620 621static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 622 struct dma_chan *chan, dma_addr_t buf, size_t len, 623 enum dma_transfer_direction dir, unsigned long flags) 624{ 625 struct scatterlist sg; 626 sg_init_table(&sg, 1); 627 sg_dma_address(&sg) = buf; 628 sg_dma_len(&sg) = len; 629 630 return chan->device->device_prep_slave_sg(chan, &sg, 1, 631 dir, flags, NULL); 632} 633 634static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 635 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 636 enum dma_transfer_direction dir, unsigned long flags) 637{ 638 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 639 dir, flags, NULL); 640} 641 642#ifdef CONFIG_RAPIDIO_DMA_ENGINE 643struct rio_dma_ext; 644static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 645 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 646 enum dma_transfer_direction dir, unsigned long flags, 647 struct rio_dma_ext *rio_ext) 648{ 649 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 650 dir, flags, rio_ext); 651} 652#endif 653 654static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 655 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 656 size_t period_len, enum dma_transfer_direction dir) 657{ 658 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 659 period_len, dir, NULL); 660} 661 662static inline int dmaengine_terminate_all(struct dma_chan *chan) 663{ 664 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0); 665} 666 667static inline int dmaengine_pause(struct dma_chan *chan) 668{ 669 return dmaengine_device_control(chan, DMA_PAUSE, 0); 670} 671 672static inline int dmaengine_resume(struct dma_chan *chan) 673{ 674 return dmaengine_device_control(chan, DMA_RESUME, 0); 675} 676 677static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 678 dma_cookie_t cookie, struct dma_tx_state *state) 679{ 680 return chan->device->device_tx_status(chan, cookie, state); 681} 682 683static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 684{ 685 return desc->tx_submit(desc); 686} 687 688static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 689{ 690 size_t mask; 691 692 if (!align) 693 return true; 694 mask = (1 << align) - 1; 695 if (mask & (off1 | off2 | len)) 696 return false; 697 return true; 698} 699 700static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 701 size_t off2, size_t len) 702{ 703 return dmaengine_check_align(dev->copy_align, off1, off2, len); 704} 705 706static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 707 size_t off2, size_t len) 708{ 709 return dmaengine_check_align(dev->xor_align, off1, off2, len); 710} 711 712static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 713 size_t off2, size_t len) 714{ 715 return dmaengine_check_align(dev->pq_align, off1, off2, len); 716} 717 718static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 719 size_t off2, size_t len) 720{ 721 return dmaengine_check_align(dev->fill_align, off1, off2, len); 722} 723 724static inline void 725dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 726{ 727 dma->max_pq = maxpq; 728 if (has_pq_continue) 729 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 730} 731 732static inline bool dmaf_continue(enum dma_ctrl_flags flags) 733{ 734 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 735} 736 737static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 738{ 739 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 740 741 return (flags & mask) == mask; 742} 743 744static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 745{ 746 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 747} 748 749static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 750{ 751 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 752} 753 754/* dma_maxpq - reduce maxpq in the face of continued operations 755 * @dma - dma device with PQ capability 756 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 757 * 758 * When an engine does not support native continuation we need 3 extra 759 * source slots to reuse P and Q with the following coefficients: 760 * 1/ {00} * P : remove P from Q', but use it as a source for P' 761 * 2/ {01} * Q : use Q to continue Q' calculation 762 * 3/ {00} * Q : subtract Q from P' to cancel (2) 763 * 764 * In the case where P is disabled we only need 1 extra source: 765 * 1/ {01} * Q : use Q to continue Q' calculation 766 */ 767static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 768{ 769 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 770 return dma_dev_to_maxpq(dma); 771 else if (dmaf_p_disabled_continue(flags)) 772 return dma_dev_to_maxpq(dma) - 1; 773 else if (dmaf_continue(flags)) 774 return dma_dev_to_maxpq(dma) - 3; 775 BUG(); 776} 777 778/* --- public DMA engine API --- */ 779 780#ifdef CONFIG_DMA_ENGINE 781void dmaengine_get(void); 782void dmaengine_put(void); 783#else 784static inline void dmaengine_get(void) 785{ 786} 787static inline void dmaengine_put(void) 788{ 789} 790#endif 791 792#ifdef CONFIG_NET_DMA 793#define net_dmaengine_get() dmaengine_get() 794#define net_dmaengine_put() dmaengine_put() 795#else 796static inline void net_dmaengine_get(void) 797{ 798} 799static inline void net_dmaengine_put(void) 800{ 801} 802#endif 803 804#ifdef CONFIG_ASYNC_TX_DMA 805#define async_dmaengine_get() dmaengine_get() 806#define async_dmaengine_put() dmaengine_put() 807#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 808#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 809#else 810#define async_dma_find_channel(type) dma_find_channel(type) 811#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 812#else 813static inline void async_dmaengine_get(void) 814{ 815} 816static inline void async_dmaengine_put(void) 817{ 818} 819static inline struct dma_chan * 820async_dma_find_channel(enum dma_transaction_type type) 821{ 822 return NULL; 823} 824#endif /* CONFIG_ASYNC_TX_DMA */ 825 826dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan, 827 void *dest, void *src, size_t len); 828dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan, 829 struct page *page, unsigned int offset, void *kdata, size_t len); 830dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan, 831 struct page *dest_pg, unsigned int dest_off, struct page *src_pg, 832 unsigned int src_off, size_t len); 833void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 834 struct dma_chan *chan); 835 836static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 837{ 838 tx->flags |= DMA_CTRL_ACK; 839} 840 841static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 842{ 843 tx->flags &= ~DMA_CTRL_ACK; 844} 845 846static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 847{ 848 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 849} 850 851#define first_dma_cap(mask) __first_dma_cap(&(mask)) 852static inline int __first_dma_cap(const dma_cap_mask_t *srcp) 853{ 854 return min_t(int, DMA_TX_TYPE_END, 855 find_first_bit(srcp->bits, DMA_TX_TYPE_END)); 856} 857 858#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask)) 859static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp) 860{ 861 return min_t(int, DMA_TX_TYPE_END, 862 find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1)); 863} 864 865#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 866static inline void 867__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 868{ 869 set_bit(tx_type, dstp->bits); 870} 871 872#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 873static inline void 874__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 875{ 876 clear_bit(tx_type, dstp->bits); 877} 878 879#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 880static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 881{ 882 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 883} 884 885#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 886static inline int 887__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 888{ 889 return test_bit(tx_type, srcp->bits); 890} 891 892#define for_each_dma_cap_mask(cap, mask) \ 893 for ((cap) = first_dma_cap(mask); \ 894 (cap) < DMA_TX_TYPE_END; \ 895 (cap) = next_dma_cap((cap), (mask))) 896 897/** 898 * dma_async_issue_pending - flush pending transactions to HW 899 * @chan: target DMA channel 900 * 901 * This allows drivers to push copies to HW in batches, 902 * reducing MMIO writes where possible. 903 */ 904static inline void dma_async_issue_pending(struct dma_chan *chan) 905{ 906 chan->device->device_issue_pending(chan); 907} 908 909#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan) 910 911/** 912 * dma_async_is_tx_complete - poll for transaction completion 913 * @chan: DMA channel 914 * @cookie: transaction identifier to check status of 915 * @last: returns last completed cookie, can be NULL 916 * @used: returns last issued cookie, can be NULL 917 * 918 * If @last and @used are passed in, upon return they reflect the driver 919 * internal state and can be used with dma_async_is_complete() to check 920 * the status of multiple cookies without re-checking hardware state. 921 */ 922static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 923 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 924{ 925 struct dma_tx_state state; 926 enum dma_status status; 927 928 status = chan->device->device_tx_status(chan, cookie, &state); 929 if (last) 930 *last = state.last; 931 if (used) 932 *used = state.used; 933 return status; 934} 935 936#define dma_async_memcpy_complete(chan, cookie, last, used)\ 937 dma_async_is_tx_complete(chan, cookie, last, used) 938 939/** 940 * dma_async_is_complete - test a cookie against chan state 941 * @cookie: transaction identifier to test status of 942 * @last_complete: last know completed transaction 943 * @last_used: last cookie value handed out 944 * 945 * dma_async_is_complete() is used in dma_async_memcpy_complete() 946 * the test logic is separated for lightweight testing of multiple cookies 947 */ 948static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 949 dma_cookie_t last_complete, dma_cookie_t last_used) 950{ 951 if (last_complete <= last_used) { 952 if ((cookie <= last_complete) || (cookie > last_used)) 953 return DMA_SUCCESS; 954 } else { 955 if ((cookie <= last_complete) && (cookie > last_used)) 956 return DMA_SUCCESS; 957 } 958 return DMA_IN_PROGRESS; 959} 960 961static inline void 962dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 963{ 964 if (st) { 965 st->last = last; 966 st->used = used; 967 st->residue = residue; 968 } 969} 970 971enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 972#ifdef CONFIG_DMA_ENGINE 973enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 974void dma_issue_pending_all(void); 975struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); 976void dma_release_channel(struct dma_chan *chan); 977#else 978static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 979{ 980 return DMA_SUCCESS; 981} 982static inline void dma_issue_pending_all(void) 983{ 984} 985static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, 986 dma_filter_fn fn, void *fn_param) 987{ 988 return NULL; 989} 990static inline void dma_release_channel(struct dma_chan *chan) 991{ 992} 993#endif 994 995/* --- DMA device --- */ 996 997int dma_async_device_register(struct dma_device *device); 998void dma_async_device_unregister(struct dma_device *device); 999void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1000struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1001struct dma_chan *net_dma_find_channel(void); 1002#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 1003 1004/* --- Helper iov-locking functions --- */ 1005 1006struct dma_page_list { 1007 char __user *base_address; 1008 int nr_pages; 1009 struct page **pages; 1010}; 1011 1012struct dma_pinned_list { 1013 int nr_iovecs; 1014 struct dma_page_list page_list[0]; 1015}; 1016 1017struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 1018void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 1019 1020dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 1021 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 1022dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 1023 struct dma_pinned_list *pinned_list, struct page *page, 1024 unsigned int offset, size_t len); 1025 1026#endif /* DMAENGINE_H */