Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
28#include <linux/if.h>
29#include <linux/if_ether.h>
30#include <linux/if_packet.h>
31#include <linux/if_link.h>
32
33#ifdef __KERNEL__
34#include <linux/pm_qos.h>
35#include <linux/timer.h>
36#include <linux/bug.h>
37#include <linux/delay.h>
38#include <linux/atomic.h>
39#include <asm/cache.h>
40#include <asm/byteorder.h>
41
42#include <linux/percpu.h>
43#include <linux/rculist.h>
44#include <linux/dmaengine.h>
45#include <linux/workqueue.h>
46#include <linux/dynamic_queue_limits.h>
47
48#include <linux/ethtool.h>
49#include <net/net_namespace.h>
50#include <net/dsa.h>
51#ifdef CONFIG_DCB
52#include <net/dcbnl.h>
53#endif
54#include <net/netprio_cgroup.h>
55
56#include <linux/netdev_features.h>
57#include <linux/neighbour.h>
58
59struct netpoll_info;
60struct device;
61struct phy_device;
62/* 802.11 specific */
63struct wireless_dev;
64 /* source back-compat hooks */
65#define SET_ETHTOOL_OPS(netdev,ops) \
66 ( (netdev)->ethtool_ops = (ops) )
67
68/* hardware address assignment types */
69#define NET_ADDR_PERM 0 /* address is permanent (default) */
70#define NET_ADDR_RANDOM 1 /* address is generated randomly */
71#define NET_ADDR_STOLEN 2 /* address is stolen from other device */
72
73/* Backlog congestion levels */
74#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75#define NET_RX_DROP 1 /* packet dropped */
76
77/*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94/* qdisc ->enqueue() return codes. */
95#define NET_XMIT_SUCCESS 0x00
96#define NET_XMIT_DROP 0x01 /* skb dropped */
97#define NET_XMIT_CN 0x02 /* congestion notification */
98#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107/* Driver transmit return codes */
108#define NETDEV_TX_MASK 0xf0
109
110enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115};
116typedef enum netdev_tx netdev_tx_t;
117
118/*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122static inline bool dev_xmit_complete(int rc)
123{
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134}
135
136#endif
137
138#define MAX_ADDR_LEN 32 /* Largest hardware address length */
139
140/* Initial net device group. All devices belong to group 0 by default. */
141#define INIT_NETDEV_GROUP 0
142
143#ifdef __KERNEL__
144/*
145 * Compute the worst case header length according to the protocols
146 * used.
147 */
148
149#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150# if defined(CONFIG_MAC80211_MESH)
151# define LL_MAX_HEADER 128
152# else
153# define LL_MAX_HEADER 96
154# endif
155#elif IS_ENABLED(CONFIG_TR)
156# define LL_MAX_HEADER 48
157#else
158# define LL_MAX_HEADER 32
159#endif
160
161#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
162 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
163#define MAX_HEADER LL_MAX_HEADER
164#else
165#define MAX_HEADER (LL_MAX_HEADER + 48)
166#endif
167
168/*
169 * Old network device statistics. Fields are native words
170 * (unsigned long) so they can be read and written atomically.
171 */
172
173struct net_device_stats {
174 unsigned long rx_packets;
175 unsigned long tx_packets;
176 unsigned long rx_bytes;
177 unsigned long tx_bytes;
178 unsigned long rx_errors;
179 unsigned long tx_errors;
180 unsigned long rx_dropped;
181 unsigned long tx_dropped;
182 unsigned long multicast;
183 unsigned long collisions;
184 unsigned long rx_length_errors;
185 unsigned long rx_over_errors;
186 unsigned long rx_crc_errors;
187 unsigned long rx_frame_errors;
188 unsigned long rx_fifo_errors;
189 unsigned long rx_missed_errors;
190 unsigned long tx_aborted_errors;
191 unsigned long tx_carrier_errors;
192 unsigned long tx_fifo_errors;
193 unsigned long tx_heartbeat_errors;
194 unsigned long tx_window_errors;
195 unsigned long rx_compressed;
196 unsigned long tx_compressed;
197};
198
199#endif /* __KERNEL__ */
200
201
202/* Media selection options. */
203enum {
204 IF_PORT_UNKNOWN = 0,
205 IF_PORT_10BASE2,
206 IF_PORT_10BASET,
207 IF_PORT_AUI,
208 IF_PORT_100BASET,
209 IF_PORT_100BASETX,
210 IF_PORT_100BASEFX
211};
212
213#ifdef __KERNEL__
214
215#include <linux/cache.h>
216#include <linux/skbuff.h>
217
218#ifdef CONFIG_RPS
219#include <linux/static_key.h>
220extern struct static_key rps_needed;
221#endif
222
223struct neighbour;
224struct neigh_parms;
225struct sk_buff;
226
227struct netdev_hw_addr {
228 struct list_head list;
229 unsigned char addr[MAX_ADDR_LEN];
230 unsigned char type;
231#define NETDEV_HW_ADDR_T_LAN 1
232#define NETDEV_HW_ADDR_T_SAN 2
233#define NETDEV_HW_ADDR_T_SLAVE 3
234#define NETDEV_HW_ADDR_T_UNICAST 4
235#define NETDEV_HW_ADDR_T_MULTICAST 5
236 bool synced;
237 bool global_use;
238 int refcount;
239 struct rcu_head rcu_head;
240};
241
242struct netdev_hw_addr_list {
243 struct list_head list;
244 int count;
245};
246
247#define netdev_hw_addr_list_count(l) ((l)->count)
248#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249#define netdev_hw_addr_list_for_each(ha, l) \
250 list_for_each_entry(ha, &(l)->list, list)
251
252#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254#define netdev_for_each_uc_addr(ha, dev) \
255 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256
257#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259#define netdev_for_each_mc_addr(ha, dev) \
260 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261
262struct hh_cache {
263 u16 hh_len;
264 u16 __pad;
265 seqlock_t hh_lock;
266
267 /* cached hardware header; allow for machine alignment needs. */
268#define HH_DATA_MOD 16
269#define HH_DATA_OFF(__len) \
270 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
271#define HH_DATA_ALIGN(__len) \
272 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
273 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
274};
275
276/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
277 * Alternative is:
278 * dev->hard_header_len ? (dev->hard_header_len +
279 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
280 *
281 * We could use other alignment values, but we must maintain the
282 * relationship HH alignment <= LL alignment.
283 */
284#define LL_RESERVED_SPACE(dev) \
285 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
287 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
288
289struct header_ops {
290 int (*create) (struct sk_buff *skb, struct net_device *dev,
291 unsigned short type, const void *daddr,
292 const void *saddr, unsigned int len);
293 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
294 int (*rebuild)(struct sk_buff *skb);
295 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
296 void (*cache_update)(struct hh_cache *hh,
297 const struct net_device *dev,
298 const unsigned char *haddr);
299};
300
301/* These flag bits are private to the generic network queueing
302 * layer, they may not be explicitly referenced by any other
303 * code.
304 */
305
306enum netdev_state_t {
307 __LINK_STATE_START,
308 __LINK_STATE_PRESENT,
309 __LINK_STATE_NOCARRIER,
310 __LINK_STATE_LINKWATCH_PENDING,
311 __LINK_STATE_DORMANT,
312};
313
314
315/*
316 * This structure holds at boot time configured netdevice settings. They
317 * are then used in the device probing.
318 */
319struct netdev_boot_setup {
320 char name[IFNAMSIZ];
321 struct ifmap map;
322};
323#define NETDEV_BOOT_SETUP_MAX 8
324
325extern int __init netdev_boot_setup(char *str);
326
327/*
328 * Structure for NAPI scheduling similar to tasklet but with weighting
329 */
330struct napi_struct {
331 /* The poll_list must only be managed by the entity which
332 * changes the state of the NAPI_STATE_SCHED bit. This means
333 * whoever atomically sets that bit can add this napi_struct
334 * to the per-cpu poll_list, and whoever clears that bit
335 * can remove from the list right before clearing the bit.
336 */
337 struct list_head poll_list;
338
339 unsigned long state;
340 int weight;
341 int (*poll)(struct napi_struct *, int);
342#ifdef CONFIG_NETPOLL
343 spinlock_t poll_lock;
344 int poll_owner;
345#endif
346
347 unsigned int gro_count;
348
349 struct net_device *dev;
350 struct list_head dev_list;
351 struct sk_buff *gro_list;
352 struct sk_buff *skb;
353};
354
355enum {
356 NAPI_STATE_SCHED, /* Poll is scheduled */
357 NAPI_STATE_DISABLE, /* Disable pending */
358 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
359};
360
361enum gro_result {
362 GRO_MERGED,
363 GRO_MERGED_FREE,
364 GRO_HELD,
365 GRO_NORMAL,
366 GRO_DROP,
367};
368typedef enum gro_result gro_result_t;
369
370/*
371 * enum rx_handler_result - Possible return values for rx_handlers.
372 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
373 * further.
374 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
375 * case skb->dev was changed by rx_handler.
376 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
377 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
378 *
379 * rx_handlers are functions called from inside __netif_receive_skb(), to do
380 * special processing of the skb, prior to delivery to protocol handlers.
381 *
382 * Currently, a net_device can only have a single rx_handler registered. Trying
383 * to register a second rx_handler will return -EBUSY.
384 *
385 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
386 * To unregister a rx_handler on a net_device, use
387 * netdev_rx_handler_unregister().
388 *
389 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
390 * do with the skb.
391 *
392 * If the rx_handler consumed to skb in some way, it should return
393 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
394 * the skb to be delivered in some other ways.
395 *
396 * If the rx_handler changed skb->dev, to divert the skb to another
397 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
398 * new device will be called if it exists.
399 *
400 * If the rx_handler consider the skb should be ignored, it should return
401 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
402 * are registred on exact device (ptype->dev == skb->dev).
403 *
404 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
405 * delivered, it should return RX_HANDLER_PASS.
406 *
407 * A device without a registered rx_handler will behave as if rx_handler
408 * returned RX_HANDLER_PASS.
409 */
410
411enum rx_handler_result {
412 RX_HANDLER_CONSUMED,
413 RX_HANDLER_ANOTHER,
414 RX_HANDLER_EXACT,
415 RX_HANDLER_PASS,
416};
417typedef enum rx_handler_result rx_handler_result_t;
418typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
419
420extern void __napi_schedule(struct napi_struct *n);
421
422static inline bool napi_disable_pending(struct napi_struct *n)
423{
424 return test_bit(NAPI_STATE_DISABLE, &n->state);
425}
426
427/**
428 * napi_schedule_prep - check if napi can be scheduled
429 * @n: napi context
430 *
431 * Test if NAPI routine is already running, and if not mark
432 * it as running. This is used as a condition variable
433 * insure only one NAPI poll instance runs. We also make
434 * sure there is no pending NAPI disable.
435 */
436static inline bool napi_schedule_prep(struct napi_struct *n)
437{
438 return !napi_disable_pending(n) &&
439 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
440}
441
442/**
443 * napi_schedule - schedule NAPI poll
444 * @n: napi context
445 *
446 * Schedule NAPI poll routine to be called if it is not already
447 * running.
448 */
449static inline void napi_schedule(struct napi_struct *n)
450{
451 if (napi_schedule_prep(n))
452 __napi_schedule(n);
453}
454
455/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
456static inline bool napi_reschedule(struct napi_struct *napi)
457{
458 if (napi_schedule_prep(napi)) {
459 __napi_schedule(napi);
460 return true;
461 }
462 return false;
463}
464
465/**
466 * napi_complete - NAPI processing complete
467 * @n: napi context
468 *
469 * Mark NAPI processing as complete.
470 */
471extern void __napi_complete(struct napi_struct *n);
472extern void napi_complete(struct napi_struct *n);
473
474/**
475 * napi_disable - prevent NAPI from scheduling
476 * @n: napi context
477 *
478 * Stop NAPI from being scheduled on this context.
479 * Waits till any outstanding processing completes.
480 */
481static inline void napi_disable(struct napi_struct *n)
482{
483 set_bit(NAPI_STATE_DISABLE, &n->state);
484 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
485 msleep(1);
486 clear_bit(NAPI_STATE_DISABLE, &n->state);
487}
488
489/**
490 * napi_enable - enable NAPI scheduling
491 * @n: napi context
492 *
493 * Resume NAPI from being scheduled on this context.
494 * Must be paired with napi_disable.
495 */
496static inline void napi_enable(struct napi_struct *n)
497{
498 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
499 smp_mb__before_clear_bit();
500 clear_bit(NAPI_STATE_SCHED, &n->state);
501}
502
503#ifdef CONFIG_SMP
504/**
505 * napi_synchronize - wait until NAPI is not running
506 * @n: napi context
507 *
508 * Wait until NAPI is done being scheduled on this context.
509 * Waits till any outstanding processing completes but
510 * does not disable future activations.
511 */
512static inline void napi_synchronize(const struct napi_struct *n)
513{
514 while (test_bit(NAPI_STATE_SCHED, &n->state))
515 msleep(1);
516}
517#else
518# define napi_synchronize(n) barrier()
519#endif
520
521enum netdev_queue_state_t {
522 __QUEUE_STATE_DRV_XOFF,
523 __QUEUE_STATE_STACK_XOFF,
524 __QUEUE_STATE_FROZEN,
525#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
526 (1 << __QUEUE_STATE_STACK_XOFF))
527#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
528 (1 << __QUEUE_STATE_FROZEN))
529};
530/*
531 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
532 * netif_tx_* functions below are used to manipulate this flag. The
533 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
534 * queue independently. The netif_xmit_*stopped functions below are called
535 * to check if the queue has been stopped by the driver or stack (either
536 * of the XOFF bits are set in the state). Drivers should not need to call
537 * netif_xmit*stopped functions, they should only be using netif_tx_*.
538 */
539
540struct netdev_queue {
541/*
542 * read mostly part
543 */
544 struct net_device *dev;
545 struct Qdisc *qdisc;
546 struct Qdisc *qdisc_sleeping;
547#ifdef CONFIG_SYSFS
548 struct kobject kobj;
549#endif
550#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
551 int numa_node;
552#endif
553/*
554 * write mostly part
555 */
556 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
557 int xmit_lock_owner;
558 /*
559 * please use this field instead of dev->trans_start
560 */
561 unsigned long trans_start;
562
563 /*
564 * Number of TX timeouts for this queue
565 * (/sys/class/net/DEV/Q/trans_timeout)
566 */
567 unsigned long trans_timeout;
568
569 unsigned long state;
570
571#ifdef CONFIG_BQL
572 struct dql dql;
573#endif
574} ____cacheline_aligned_in_smp;
575
576static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
577{
578#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
579 return q->numa_node;
580#else
581 return NUMA_NO_NODE;
582#endif
583}
584
585static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
586{
587#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 q->numa_node = node;
589#endif
590}
591
592#ifdef CONFIG_RPS
593/*
594 * This structure holds an RPS map which can be of variable length. The
595 * map is an array of CPUs.
596 */
597struct rps_map {
598 unsigned int len;
599 struct rcu_head rcu;
600 u16 cpus[0];
601};
602#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
603
604/*
605 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
606 * tail pointer for that CPU's input queue at the time of last enqueue, and
607 * a hardware filter index.
608 */
609struct rps_dev_flow {
610 u16 cpu;
611 u16 filter;
612 unsigned int last_qtail;
613};
614#define RPS_NO_FILTER 0xffff
615
616/*
617 * The rps_dev_flow_table structure contains a table of flow mappings.
618 */
619struct rps_dev_flow_table {
620 unsigned int mask;
621 struct rcu_head rcu;
622 struct work_struct free_work;
623 struct rps_dev_flow flows[0];
624};
625#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626 ((_num) * sizeof(struct rps_dev_flow)))
627
628/*
629 * The rps_sock_flow_table contains mappings of flows to the last CPU
630 * on which they were processed by the application (set in recvmsg).
631 */
632struct rps_sock_flow_table {
633 unsigned int mask;
634 u16 ents[0];
635};
636#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637 ((_num) * sizeof(u16)))
638
639#define RPS_NO_CPU 0xffff
640
641static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642 u32 hash)
643{
644 if (table && hash) {
645 unsigned int cpu, index = hash & table->mask;
646
647 /* We only give a hint, preemption can change cpu under us */
648 cpu = raw_smp_processor_id();
649
650 if (table->ents[index] != cpu)
651 table->ents[index] = cpu;
652 }
653}
654
655static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656 u32 hash)
657{
658 if (table && hash)
659 table->ents[hash & table->mask] = RPS_NO_CPU;
660}
661
662extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663
664#ifdef CONFIG_RFS_ACCEL
665extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
666 u32 flow_id, u16 filter_id);
667#endif
668
669/* This structure contains an instance of an RX queue. */
670struct netdev_rx_queue {
671 struct rps_map __rcu *rps_map;
672 struct rps_dev_flow_table __rcu *rps_flow_table;
673 struct kobject kobj;
674 struct net_device *dev;
675} ____cacheline_aligned_in_smp;
676#endif /* CONFIG_RPS */
677
678#ifdef CONFIG_XPS
679/*
680 * This structure holds an XPS map which can be of variable length. The
681 * map is an array of queues.
682 */
683struct xps_map {
684 unsigned int len;
685 unsigned int alloc_len;
686 struct rcu_head rcu;
687 u16 queues[0];
688};
689#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
690#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
691 / sizeof(u16))
692
693/*
694 * This structure holds all XPS maps for device. Maps are indexed by CPU.
695 */
696struct xps_dev_maps {
697 struct rcu_head rcu;
698 struct xps_map __rcu *cpu_map[0];
699};
700#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
701 (nr_cpu_ids * sizeof(struct xps_map *)))
702#endif /* CONFIG_XPS */
703
704#define TC_MAX_QUEUE 16
705#define TC_BITMASK 15
706/* HW offloaded queuing disciplines txq count and offset maps */
707struct netdev_tc_txq {
708 u16 count;
709 u16 offset;
710};
711
712#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
713/*
714 * This structure is to hold information about the device
715 * configured to run FCoE protocol stack.
716 */
717struct netdev_fcoe_hbainfo {
718 char manufacturer[64];
719 char serial_number[64];
720 char hardware_version[64];
721 char driver_version[64];
722 char optionrom_version[64];
723 char firmware_version[64];
724 char model[256];
725 char model_description[256];
726};
727#endif
728
729/*
730 * This structure defines the management hooks for network devices.
731 * The following hooks can be defined; unless noted otherwise, they are
732 * optional and can be filled with a null pointer.
733 *
734 * int (*ndo_init)(struct net_device *dev);
735 * This function is called once when network device is registered.
736 * The network device can use this to any late stage initializaton
737 * or semantic validattion. It can fail with an error code which will
738 * be propogated back to register_netdev
739 *
740 * void (*ndo_uninit)(struct net_device *dev);
741 * This function is called when device is unregistered or when registration
742 * fails. It is not called if init fails.
743 *
744 * int (*ndo_open)(struct net_device *dev);
745 * This function is called when network device transistions to the up
746 * state.
747 *
748 * int (*ndo_stop)(struct net_device *dev);
749 * This function is called when network device transistions to the down
750 * state.
751 *
752 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
753 * struct net_device *dev);
754 * Called when a packet needs to be transmitted.
755 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
756 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
757 * Required can not be NULL.
758 *
759 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
760 * Called to decide which queue to when device supports multiple
761 * transmit queues.
762 *
763 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
764 * This function is called to allow device receiver to make
765 * changes to configuration when multicast or promiscious is enabled.
766 *
767 * void (*ndo_set_rx_mode)(struct net_device *dev);
768 * This function is called device changes address list filtering.
769 * If driver handles unicast address filtering, it should set
770 * IFF_UNICAST_FLT to its priv_flags.
771 *
772 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
773 * This function is called when the Media Access Control address
774 * needs to be changed. If this interface is not defined, the
775 * mac address can not be changed.
776 *
777 * int (*ndo_validate_addr)(struct net_device *dev);
778 * Test if Media Access Control address is valid for the device.
779 *
780 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
781 * Called when a user request an ioctl which can't be handled by
782 * the generic interface code. If not defined ioctl's return
783 * not supported error code.
784 *
785 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
786 * Used to set network devices bus interface parameters. This interface
787 * is retained for legacy reason, new devices should use the bus
788 * interface (PCI) for low level management.
789 *
790 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
791 * Called when a user wants to change the Maximum Transfer Unit
792 * of a device. If not defined, any request to change MTU will
793 * will return an error.
794 *
795 * void (*ndo_tx_timeout)(struct net_device *dev);
796 * Callback uses when the transmitter has not made any progress
797 * for dev->watchdog ticks.
798 *
799 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
800 * struct rtnl_link_stats64 *storage);
801 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
802 * Called when a user wants to get the network device usage
803 * statistics. Drivers must do one of the following:
804 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
805 * rtnl_link_stats64 structure passed by the caller.
806 * 2. Define @ndo_get_stats to update a net_device_stats structure
807 * (which should normally be dev->stats) and return a pointer to
808 * it. The structure may be changed asynchronously only if each
809 * field is written atomically.
810 * 3. Update dev->stats asynchronously and atomically, and define
811 * neither operation.
812 *
813 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
814 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
815 * this function is called when a VLAN id is registered.
816 *
817 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
818 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
819 * this function is called when a VLAN id is unregistered.
820 *
821 * void (*ndo_poll_controller)(struct net_device *dev);
822 *
823 * SR-IOV management functions.
824 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
825 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
826 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
827 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
828 * int (*ndo_get_vf_config)(struct net_device *dev,
829 * int vf, struct ifla_vf_info *ivf);
830 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
831 * struct nlattr *port[]);
832 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
833 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
834 * Called to setup 'tc' number of traffic classes in the net device. This
835 * is always called from the stack with the rtnl lock held and netif tx
836 * queues stopped. This allows the netdevice to perform queue management
837 * safely.
838 *
839 * Fiber Channel over Ethernet (FCoE) offload functions.
840 * int (*ndo_fcoe_enable)(struct net_device *dev);
841 * Called when the FCoE protocol stack wants to start using LLD for FCoE
842 * so the underlying device can perform whatever needed configuration or
843 * initialization to support acceleration of FCoE traffic.
844 *
845 * int (*ndo_fcoe_disable)(struct net_device *dev);
846 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
847 * so the underlying device can perform whatever needed clean-ups to
848 * stop supporting acceleration of FCoE traffic.
849 *
850 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
851 * struct scatterlist *sgl, unsigned int sgc);
852 * Called when the FCoE Initiator wants to initialize an I/O that
853 * is a possible candidate for Direct Data Placement (DDP). The LLD can
854 * perform necessary setup and returns 1 to indicate the device is set up
855 * successfully to perform DDP on this I/O, otherwise this returns 0.
856 *
857 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
858 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
859 * indicated by the FC exchange id 'xid', so the underlying device can
860 * clean up and reuse resources for later DDP requests.
861 *
862 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
863 * struct scatterlist *sgl, unsigned int sgc);
864 * Called when the FCoE Target wants to initialize an I/O that
865 * is a possible candidate for Direct Data Placement (DDP). The LLD can
866 * perform necessary setup and returns 1 to indicate the device is set up
867 * successfully to perform DDP on this I/O, otherwise this returns 0.
868 *
869 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
870 * struct netdev_fcoe_hbainfo *hbainfo);
871 * Called when the FCoE Protocol stack wants information on the underlying
872 * device. This information is utilized by the FCoE protocol stack to
873 * register attributes with Fiber Channel management service as per the
874 * FC-GS Fabric Device Management Information(FDMI) specification.
875 *
876 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
877 * Called when the underlying device wants to override default World Wide
878 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
879 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
880 * protocol stack to use.
881 *
882 * RFS acceleration.
883 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
884 * u16 rxq_index, u32 flow_id);
885 * Set hardware filter for RFS. rxq_index is the target queue index;
886 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
887 * Return the filter ID on success, or a negative error code.
888 *
889 * Slave management functions (for bridge, bonding, etc). User should
890 * call netdev_set_master() to set dev->master properly.
891 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
892 * Called to make another netdev an underling.
893 *
894 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
895 * Called to release previously enslaved netdev.
896 *
897 * Feature/offload setting functions.
898 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
899 * netdev_features_t features);
900 * Adjusts the requested feature flags according to device-specific
901 * constraints, and returns the resulting flags. Must not modify
902 * the device state.
903 *
904 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
905 * Called to update device configuration to new features. Passed
906 * feature set might be less than what was returned by ndo_fix_features()).
907 * Must return >0 or -errno if it changed dev->features itself.
908 *
909 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct net_device *dev,
910 * unsigned char *addr, u16 flags)
911 * Adds an FDB entry to dev for addr.
912 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
913 * unsigned char *addr)
914 * Deletes the FDB entry from dev coresponding to addr.
915 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
916 * struct net_device *dev, int idx)
917 * Used to add FDB entries to dump requests. Implementers should add
918 * entries to skb and update idx with the number of entries.
919 */
920struct net_device_ops {
921 int (*ndo_init)(struct net_device *dev);
922 void (*ndo_uninit)(struct net_device *dev);
923 int (*ndo_open)(struct net_device *dev);
924 int (*ndo_stop)(struct net_device *dev);
925 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
926 struct net_device *dev);
927 u16 (*ndo_select_queue)(struct net_device *dev,
928 struct sk_buff *skb);
929 void (*ndo_change_rx_flags)(struct net_device *dev,
930 int flags);
931 void (*ndo_set_rx_mode)(struct net_device *dev);
932 int (*ndo_set_mac_address)(struct net_device *dev,
933 void *addr);
934 int (*ndo_validate_addr)(struct net_device *dev);
935 int (*ndo_do_ioctl)(struct net_device *dev,
936 struct ifreq *ifr, int cmd);
937 int (*ndo_set_config)(struct net_device *dev,
938 struct ifmap *map);
939 int (*ndo_change_mtu)(struct net_device *dev,
940 int new_mtu);
941 int (*ndo_neigh_setup)(struct net_device *dev,
942 struct neigh_parms *);
943 void (*ndo_tx_timeout) (struct net_device *dev);
944
945 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
946 struct rtnl_link_stats64 *storage);
947 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
948
949 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
950 unsigned short vid);
951 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
952 unsigned short vid);
953#ifdef CONFIG_NET_POLL_CONTROLLER
954 void (*ndo_poll_controller)(struct net_device *dev);
955 int (*ndo_netpoll_setup)(struct net_device *dev,
956 struct netpoll_info *info);
957 void (*ndo_netpoll_cleanup)(struct net_device *dev);
958#endif
959 int (*ndo_set_vf_mac)(struct net_device *dev,
960 int queue, u8 *mac);
961 int (*ndo_set_vf_vlan)(struct net_device *dev,
962 int queue, u16 vlan, u8 qos);
963 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
964 int vf, int rate);
965 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
966 int vf, bool setting);
967 int (*ndo_get_vf_config)(struct net_device *dev,
968 int vf,
969 struct ifla_vf_info *ivf);
970 int (*ndo_set_vf_port)(struct net_device *dev,
971 int vf,
972 struct nlattr *port[]);
973 int (*ndo_get_vf_port)(struct net_device *dev,
974 int vf, struct sk_buff *skb);
975 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
976#if IS_ENABLED(CONFIG_FCOE)
977 int (*ndo_fcoe_enable)(struct net_device *dev);
978 int (*ndo_fcoe_disable)(struct net_device *dev);
979 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
980 u16 xid,
981 struct scatterlist *sgl,
982 unsigned int sgc);
983 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
984 u16 xid);
985 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
986 u16 xid,
987 struct scatterlist *sgl,
988 unsigned int sgc);
989 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
990 struct netdev_fcoe_hbainfo *hbainfo);
991#endif
992
993#if IS_ENABLED(CONFIG_LIBFCOE)
994#define NETDEV_FCOE_WWNN 0
995#define NETDEV_FCOE_WWPN 1
996 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
997 u64 *wwn, int type);
998#endif
999
1000#ifdef CONFIG_RFS_ACCEL
1001 int (*ndo_rx_flow_steer)(struct net_device *dev,
1002 const struct sk_buff *skb,
1003 u16 rxq_index,
1004 u32 flow_id);
1005#endif
1006 int (*ndo_add_slave)(struct net_device *dev,
1007 struct net_device *slave_dev);
1008 int (*ndo_del_slave)(struct net_device *dev,
1009 struct net_device *slave_dev);
1010 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1011 netdev_features_t features);
1012 int (*ndo_set_features)(struct net_device *dev,
1013 netdev_features_t features);
1014 int (*ndo_neigh_construct)(struct neighbour *n);
1015 void (*ndo_neigh_destroy)(struct neighbour *n);
1016
1017 int (*ndo_fdb_add)(struct ndmsg *ndm,
1018 struct net_device *dev,
1019 unsigned char *addr,
1020 u16 flags);
1021 int (*ndo_fdb_del)(struct ndmsg *ndm,
1022 struct net_device *dev,
1023 unsigned char *addr);
1024 int (*ndo_fdb_dump)(struct sk_buff *skb,
1025 struct netlink_callback *cb,
1026 struct net_device *dev,
1027 int idx);
1028};
1029
1030/*
1031 * The DEVICE structure.
1032 * Actually, this whole structure is a big mistake. It mixes I/O
1033 * data with strictly "high-level" data, and it has to know about
1034 * almost every data structure used in the INET module.
1035 *
1036 * FIXME: cleanup struct net_device such that network protocol info
1037 * moves out.
1038 */
1039
1040struct net_device {
1041
1042 /*
1043 * This is the first field of the "visible" part of this structure
1044 * (i.e. as seen by users in the "Space.c" file). It is the name
1045 * of the interface.
1046 */
1047 char name[IFNAMSIZ];
1048
1049 /* device name hash chain, please keep it close to name[] */
1050 struct hlist_node name_hlist;
1051
1052 /* snmp alias */
1053 char *ifalias;
1054
1055 /*
1056 * I/O specific fields
1057 * FIXME: Merge these and struct ifmap into one
1058 */
1059 unsigned long mem_end; /* shared mem end */
1060 unsigned long mem_start; /* shared mem start */
1061 unsigned long base_addr; /* device I/O address */
1062 unsigned int irq; /* device IRQ number */
1063
1064 /*
1065 * Some hardware also needs these fields, but they are not
1066 * part of the usual set specified in Space.c.
1067 */
1068
1069 unsigned long state;
1070
1071 struct list_head dev_list;
1072 struct list_head napi_list;
1073 struct list_head unreg_list;
1074
1075 /* currently active device features */
1076 netdev_features_t features;
1077 /* user-changeable features */
1078 netdev_features_t hw_features;
1079 /* user-requested features */
1080 netdev_features_t wanted_features;
1081 /* mask of features inheritable by VLAN devices */
1082 netdev_features_t vlan_features;
1083
1084 /* Interface index. Unique device identifier */
1085 int ifindex;
1086 int iflink;
1087
1088 struct net_device_stats stats;
1089 atomic_long_t rx_dropped; /* dropped packets by core network
1090 * Do not use this in drivers.
1091 */
1092
1093#ifdef CONFIG_WIRELESS_EXT
1094 /* List of functions to handle Wireless Extensions (instead of ioctl).
1095 * See <net/iw_handler.h> for details. Jean II */
1096 const struct iw_handler_def * wireless_handlers;
1097 /* Instance data managed by the core of Wireless Extensions. */
1098 struct iw_public_data * wireless_data;
1099#endif
1100 /* Management operations */
1101 const struct net_device_ops *netdev_ops;
1102 const struct ethtool_ops *ethtool_ops;
1103
1104 /* Hardware header description */
1105 const struct header_ops *header_ops;
1106
1107 unsigned int flags; /* interface flags (a la BSD) */
1108 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1109 * See if.h for definitions. */
1110 unsigned short gflags;
1111 unsigned short padded; /* How much padding added by alloc_netdev() */
1112
1113 unsigned char operstate; /* RFC2863 operstate */
1114 unsigned char link_mode; /* mapping policy to operstate */
1115
1116 unsigned char if_port; /* Selectable AUI, TP,..*/
1117 unsigned char dma; /* DMA channel */
1118
1119 unsigned int mtu; /* interface MTU value */
1120 unsigned short type; /* interface hardware type */
1121 unsigned short hard_header_len; /* hardware hdr length */
1122
1123 /* extra head- and tailroom the hardware may need, but not in all cases
1124 * can this be guaranteed, especially tailroom. Some cases also use
1125 * LL_MAX_HEADER instead to allocate the skb.
1126 */
1127 unsigned short needed_headroom;
1128 unsigned short needed_tailroom;
1129
1130 /* Interface address info. */
1131 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1132 unsigned char addr_assign_type; /* hw address assignment type */
1133 unsigned char addr_len; /* hardware address length */
1134 unsigned char neigh_priv_len;
1135 unsigned short dev_id; /* for shared network cards */
1136
1137 spinlock_t addr_list_lock;
1138 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1139 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1140 bool uc_promisc;
1141 unsigned int promiscuity;
1142 unsigned int allmulti;
1143
1144
1145 /* Protocol specific pointers */
1146
1147#if IS_ENABLED(CONFIG_VLAN_8021Q)
1148 struct vlan_info __rcu *vlan_info; /* VLAN info */
1149#endif
1150#if IS_ENABLED(CONFIG_NET_DSA)
1151 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1152#endif
1153 void *atalk_ptr; /* AppleTalk link */
1154 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1155 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1156 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1157 void *ax25_ptr; /* AX.25 specific data */
1158 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1159 assign before registering */
1160
1161/*
1162 * Cache lines mostly used on receive path (including eth_type_trans())
1163 */
1164 unsigned long last_rx; /* Time of last Rx
1165 * This should not be set in
1166 * drivers, unless really needed,
1167 * because network stack (bonding)
1168 * use it if/when necessary, to
1169 * avoid dirtying this cache line.
1170 */
1171
1172 struct net_device *master; /* Pointer to master device of a group,
1173 * which this device is member of.
1174 */
1175
1176 /* Interface address info used in eth_type_trans() */
1177 unsigned char *dev_addr; /* hw address, (before bcast
1178 because most packets are
1179 unicast) */
1180
1181 struct netdev_hw_addr_list dev_addrs; /* list of device
1182 hw addresses */
1183
1184 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1185
1186#ifdef CONFIG_SYSFS
1187 struct kset *queues_kset;
1188#endif
1189
1190#ifdef CONFIG_RPS
1191 struct netdev_rx_queue *_rx;
1192
1193 /* Number of RX queues allocated at register_netdev() time */
1194 unsigned int num_rx_queues;
1195
1196 /* Number of RX queues currently active in device */
1197 unsigned int real_num_rx_queues;
1198
1199#ifdef CONFIG_RFS_ACCEL
1200 /* CPU reverse-mapping for RX completion interrupts, indexed
1201 * by RX queue number. Assigned by driver. This must only be
1202 * set if the ndo_rx_flow_steer operation is defined. */
1203 struct cpu_rmap *rx_cpu_rmap;
1204#endif
1205#endif
1206
1207 rx_handler_func_t __rcu *rx_handler;
1208 void __rcu *rx_handler_data;
1209
1210 struct netdev_queue __rcu *ingress_queue;
1211
1212/*
1213 * Cache lines mostly used on transmit path
1214 */
1215 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1216
1217 /* Number of TX queues allocated at alloc_netdev_mq() time */
1218 unsigned int num_tx_queues;
1219
1220 /* Number of TX queues currently active in device */
1221 unsigned int real_num_tx_queues;
1222
1223 /* root qdisc from userspace point of view */
1224 struct Qdisc *qdisc;
1225
1226 unsigned long tx_queue_len; /* Max frames per queue allowed */
1227 spinlock_t tx_global_lock;
1228
1229#ifdef CONFIG_XPS
1230 struct xps_dev_maps __rcu *xps_maps;
1231#endif
1232
1233 /* These may be needed for future network-power-down code. */
1234
1235 /*
1236 * trans_start here is expensive for high speed devices on SMP,
1237 * please use netdev_queue->trans_start instead.
1238 */
1239 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1240
1241 int watchdog_timeo; /* used by dev_watchdog() */
1242 struct timer_list watchdog_timer;
1243
1244 /* Number of references to this device */
1245 int __percpu *pcpu_refcnt;
1246
1247 /* delayed register/unregister */
1248 struct list_head todo_list;
1249 /* device index hash chain */
1250 struct hlist_node index_hlist;
1251
1252 struct list_head link_watch_list;
1253
1254 /* register/unregister state machine */
1255 enum { NETREG_UNINITIALIZED=0,
1256 NETREG_REGISTERED, /* completed register_netdevice */
1257 NETREG_UNREGISTERING, /* called unregister_netdevice */
1258 NETREG_UNREGISTERED, /* completed unregister todo */
1259 NETREG_RELEASED, /* called free_netdev */
1260 NETREG_DUMMY, /* dummy device for NAPI poll */
1261 } reg_state:8;
1262
1263 bool dismantle; /* device is going do be freed */
1264
1265 enum {
1266 RTNL_LINK_INITIALIZED,
1267 RTNL_LINK_INITIALIZING,
1268 } rtnl_link_state:16;
1269
1270 /* Called from unregister, can be used to call free_netdev */
1271 void (*destructor)(struct net_device *dev);
1272
1273#ifdef CONFIG_NETPOLL
1274 struct netpoll_info *npinfo;
1275#endif
1276
1277#ifdef CONFIG_NET_NS
1278 /* Network namespace this network device is inside */
1279 struct net *nd_net;
1280#endif
1281
1282 /* mid-layer private */
1283 union {
1284 void *ml_priv;
1285 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1286 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1287 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1288 };
1289 /* GARP */
1290 struct garp_port __rcu *garp_port;
1291
1292 /* class/net/name entry */
1293 struct device dev;
1294 /* space for optional device, statistics, and wireless sysfs groups */
1295 const struct attribute_group *sysfs_groups[4];
1296
1297 /* rtnetlink link ops */
1298 const struct rtnl_link_ops *rtnl_link_ops;
1299
1300 /* for setting kernel sock attribute on TCP connection setup */
1301#define GSO_MAX_SIZE 65536
1302 unsigned int gso_max_size;
1303
1304#ifdef CONFIG_DCB
1305 /* Data Center Bridging netlink ops */
1306 const struct dcbnl_rtnl_ops *dcbnl_ops;
1307#endif
1308 u8 num_tc;
1309 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1310 u8 prio_tc_map[TC_BITMASK + 1];
1311
1312#if IS_ENABLED(CONFIG_FCOE)
1313 /* max exchange id for FCoE LRO by ddp */
1314 unsigned int fcoe_ddp_xid;
1315#endif
1316#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1317 struct netprio_map __rcu *priomap;
1318#endif
1319 /* phy device may attach itself for hardware timestamping */
1320 struct phy_device *phydev;
1321
1322 /* group the device belongs to */
1323 int group;
1324
1325 struct pm_qos_request pm_qos_req;
1326};
1327#define to_net_dev(d) container_of(d, struct net_device, dev)
1328
1329#define NETDEV_ALIGN 32
1330
1331static inline
1332int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1333{
1334 return dev->prio_tc_map[prio & TC_BITMASK];
1335}
1336
1337static inline
1338int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1339{
1340 if (tc >= dev->num_tc)
1341 return -EINVAL;
1342
1343 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1344 return 0;
1345}
1346
1347static inline
1348void netdev_reset_tc(struct net_device *dev)
1349{
1350 dev->num_tc = 0;
1351 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1352 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1353}
1354
1355static inline
1356int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1357{
1358 if (tc >= dev->num_tc)
1359 return -EINVAL;
1360
1361 dev->tc_to_txq[tc].count = count;
1362 dev->tc_to_txq[tc].offset = offset;
1363 return 0;
1364}
1365
1366static inline
1367int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1368{
1369 if (num_tc > TC_MAX_QUEUE)
1370 return -EINVAL;
1371
1372 dev->num_tc = num_tc;
1373 return 0;
1374}
1375
1376static inline
1377int netdev_get_num_tc(struct net_device *dev)
1378{
1379 return dev->num_tc;
1380}
1381
1382static inline
1383struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1384 unsigned int index)
1385{
1386 return &dev->_tx[index];
1387}
1388
1389static inline void netdev_for_each_tx_queue(struct net_device *dev,
1390 void (*f)(struct net_device *,
1391 struct netdev_queue *,
1392 void *),
1393 void *arg)
1394{
1395 unsigned int i;
1396
1397 for (i = 0; i < dev->num_tx_queues; i++)
1398 f(dev, &dev->_tx[i], arg);
1399}
1400
1401/*
1402 * Net namespace inlines
1403 */
1404static inline
1405struct net *dev_net(const struct net_device *dev)
1406{
1407 return read_pnet(&dev->nd_net);
1408}
1409
1410static inline
1411void dev_net_set(struct net_device *dev, struct net *net)
1412{
1413#ifdef CONFIG_NET_NS
1414 release_net(dev->nd_net);
1415 dev->nd_net = hold_net(net);
1416#endif
1417}
1418
1419static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1420{
1421#ifdef CONFIG_NET_DSA_TAG_DSA
1422 if (dev->dsa_ptr != NULL)
1423 return dsa_uses_dsa_tags(dev->dsa_ptr);
1424#endif
1425
1426 return 0;
1427}
1428
1429static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1430{
1431#ifdef CONFIG_NET_DSA_TAG_TRAILER
1432 if (dev->dsa_ptr != NULL)
1433 return dsa_uses_trailer_tags(dev->dsa_ptr);
1434#endif
1435
1436 return 0;
1437}
1438
1439/**
1440 * netdev_priv - access network device private data
1441 * @dev: network device
1442 *
1443 * Get network device private data
1444 */
1445static inline void *netdev_priv(const struct net_device *dev)
1446{
1447 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1448}
1449
1450/* Set the sysfs physical device reference for the network logical device
1451 * if set prior to registration will cause a symlink during initialization.
1452 */
1453#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1454
1455/* Set the sysfs device type for the network logical device to allow
1456 * fin grained indentification of different network device types. For
1457 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1458 */
1459#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1460
1461/**
1462 * netif_napi_add - initialize a napi context
1463 * @dev: network device
1464 * @napi: napi context
1465 * @poll: polling function
1466 * @weight: default weight
1467 *
1468 * netif_napi_add() must be used to initialize a napi context prior to calling
1469 * *any* of the other napi related functions.
1470 */
1471void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1472 int (*poll)(struct napi_struct *, int), int weight);
1473
1474/**
1475 * netif_napi_del - remove a napi context
1476 * @napi: napi context
1477 *
1478 * netif_napi_del() removes a napi context from the network device napi list
1479 */
1480void netif_napi_del(struct napi_struct *napi);
1481
1482struct napi_gro_cb {
1483 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1484 void *frag0;
1485
1486 /* Length of frag0. */
1487 unsigned int frag0_len;
1488
1489 /* This indicates where we are processing relative to skb->data. */
1490 int data_offset;
1491
1492 /* This is non-zero if the packet may be of the same flow. */
1493 int same_flow;
1494
1495 /* This is non-zero if the packet cannot be merged with the new skb. */
1496 int flush;
1497
1498 /* Number of segments aggregated. */
1499 int count;
1500
1501 /* Free the skb? */
1502 int free;
1503#define NAPI_GRO_FREE 1
1504#define NAPI_GRO_FREE_STOLEN_HEAD 2
1505};
1506
1507#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1508
1509struct packet_type {
1510 __be16 type; /* This is really htons(ether_type). */
1511 struct net_device *dev; /* NULL is wildcarded here */
1512 int (*func) (struct sk_buff *,
1513 struct net_device *,
1514 struct packet_type *,
1515 struct net_device *);
1516 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1517 netdev_features_t features);
1518 int (*gso_send_check)(struct sk_buff *skb);
1519 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1520 struct sk_buff *skb);
1521 int (*gro_complete)(struct sk_buff *skb);
1522 void *af_packet_priv;
1523 struct list_head list;
1524};
1525
1526#include <linux/notifier.h>
1527
1528/* netdevice notifier chain. Please remember to update the rtnetlink
1529 * notification exclusion list in rtnetlink_event() when adding new
1530 * types.
1531 */
1532#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1533#define NETDEV_DOWN 0x0002
1534#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1535 detected a hardware crash and restarted
1536 - we can use this eg to kick tcp sessions
1537 once done */
1538#define NETDEV_CHANGE 0x0004 /* Notify device state change */
1539#define NETDEV_REGISTER 0x0005
1540#define NETDEV_UNREGISTER 0x0006
1541#define NETDEV_CHANGEMTU 0x0007
1542#define NETDEV_CHANGEADDR 0x0008
1543#define NETDEV_GOING_DOWN 0x0009
1544#define NETDEV_CHANGENAME 0x000A
1545#define NETDEV_FEAT_CHANGE 0x000B
1546#define NETDEV_BONDING_FAILOVER 0x000C
1547#define NETDEV_PRE_UP 0x000D
1548#define NETDEV_PRE_TYPE_CHANGE 0x000E
1549#define NETDEV_POST_TYPE_CHANGE 0x000F
1550#define NETDEV_POST_INIT 0x0010
1551#define NETDEV_UNREGISTER_BATCH 0x0011
1552#define NETDEV_RELEASE 0x0012
1553#define NETDEV_NOTIFY_PEERS 0x0013
1554#define NETDEV_JOIN 0x0014
1555
1556extern int register_netdevice_notifier(struct notifier_block *nb);
1557extern int unregister_netdevice_notifier(struct notifier_block *nb);
1558extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1559
1560
1561extern rwlock_t dev_base_lock; /* Device list lock */
1562
1563
1564#define for_each_netdev(net, d) \
1565 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1566#define for_each_netdev_reverse(net, d) \
1567 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1568#define for_each_netdev_rcu(net, d) \
1569 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1570#define for_each_netdev_safe(net, d, n) \
1571 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1572#define for_each_netdev_continue(net, d) \
1573 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1574#define for_each_netdev_continue_rcu(net, d) \
1575 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1576#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1577
1578static inline struct net_device *next_net_device(struct net_device *dev)
1579{
1580 struct list_head *lh;
1581 struct net *net;
1582
1583 net = dev_net(dev);
1584 lh = dev->dev_list.next;
1585 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1586}
1587
1588static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1589{
1590 struct list_head *lh;
1591 struct net *net;
1592
1593 net = dev_net(dev);
1594 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1595 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1596}
1597
1598static inline struct net_device *first_net_device(struct net *net)
1599{
1600 return list_empty(&net->dev_base_head) ? NULL :
1601 net_device_entry(net->dev_base_head.next);
1602}
1603
1604static inline struct net_device *first_net_device_rcu(struct net *net)
1605{
1606 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1607
1608 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1609}
1610
1611extern int netdev_boot_setup_check(struct net_device *dev);
1612extern unsigned long netdev_boot_base(const char *prefix, int unit);
1613extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1614 const char *hwaddr);
1615extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1616extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1617extern void dev_add_pack(struct packet_type *pt);
1618extern void dev_remove_pack(struct packet_type *pt);
1619extern void __dev_remove_pack(struct packet_type *pt);
1620
1621extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1622 unsigned short mask);
1623extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1624extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1625extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1626extern int dev_alloc_name(struct net_device *dev, const char *name);
1627extern int dev_open(struct net_device *dev);
1628extern int dev_close(struct net_device *dev);
1629extern void dev_disable_lro(struct net_device *dev);
1630extern int dev_loopback_xmit(struct sk_buff *newskb);
1631extern int dev_queue_xmit(struct sk_buff *skb);
1632extern int register_netdevice(struct net_device *dev);
1633extern void unregister_netdevice_queue(struct net_device *dev,
1634 struct list_head *head);
1635extern void unregister_netdevice_many(struct list_head *head);
1636static inline void unregister_netdevice(struct net_device *dev)
1637{
1638 unregister_netdevice_queue(dev, NULL);
1639}
1640
1641extern int netdev_refcnt_read(const struct net_device *dev);
1642extern void free_netdev(struct net_device *dev);
1643extern void synchronize_net(void);
1644extern int init_dummy_netdev(struct net_device *dev);
1645extern void netdev_resync_ops(struct net_device *dev);
1646
1647extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1648extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1649extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1650extern int dev_restart(struct net_device *dev);
1651#ifdef CONFIG_NETPOLL_TRAP
1652extern int netpoll_trap(void);
1653#endif
1654extern int skb_gro_receive(struct sk_buff **head,
1655 struct sk_buff *skb);
1656extern void skb_gro_reset_offset(struct sk_buff *skb);
1657
1658static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1659{
1660 return NAPI_GRO_CB(skb)->data_offset;
1661}
1662
1663static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1664{
1665 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1666}
1667
1668static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1669{
1670 NAPI_GRO_CB(skb)->data_offset += len;
1671}
1672
1673static inline void *skb_gro_header_fast(struct sk_buff *skb,
1674 unsigned int offset)
1675{
1676 return NAPI_GRO_CB(skb)->frag0 + offset;
1677}
1678
1679static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1680{
1681 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1682}
1683
1684static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1685 unsigned int offset)
1686{
1687 if (!pskb_may_pull(skb, hlen))
1688 return NULL;
1689
1690 NAPI_GRO_CB(skb)->frag0 = NULL;
1691 NAPI_GRO_CB(skb)->frag0_len = 0;
1692 return skb->data + offset;
1693}
1694
1695static inline void *skb_gro_mac_header(struct sk_buff *skb)
1696{
1697 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1698}
1699
1700static inline void *skb_gro_network_header(struct sk_buff *skb)
1701{
1702 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1703 skb_network_offset(skb);
1704}
1705
1706static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1707 unsigned short type,
1708 const void *daddr, const void *saddr,
1709 unsigned int len)
1710{
1711 if (!dev->header_ops || !dev->header_ops->create)
1712 return 0;
1713
1714 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1715}
1716
1717static inline int dev_parse_header(const struct sk_buff *skb,
1718 unsigned char *haddr)
1719{
1720 const struct net_device *dev = skb->dev;
1721
1722 if (!dev->header_ops || !dev->header_ops->parse)
1723 return 0;
1724 return dev->header_ops->parse(skb, haddr);
1725}
1726
1727typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1728extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1729static inline int unregister_gifconf(unsigned int family)
1730{
1731 return register_gifconf(family, NULL);
1732}
1733
1734/*
1735 * Incoming packets are placed on per-cpu queues
1736 */
1737struct softnet_data {
1738 struct Qdisc *output_queue;
1739 struct Qdisc **output_queue_tailp;
1740 struct list_head poll_list;
1741 struct sk_buff *completion_queue;
1742 struct sk_buff_head process_queue;
1743
1744 /* stats */
1745 unsigned int processed;
1746 unsigned int time_squeeze;
1747 unsigned int cpu_collision;
1748 unsigned int received_rps;
1749
1750#ifdef CONFIG_RPS
1751 struct softnet_data *rps_ipi_list;
1752
1753 /* Elements below can be accessed between CPUs for RPS */
1754 struct call_single_data csd ____cacheline_aligned_in_smp;
1755 struct softnet_data *rps_ipi_next;
1756 unsigned int cpu;
1757 unsigned int input_queue_head;
1758 unsigned int input_queue_tail;
1759#endif
1760 unsigned int dropped;
1761 struct sk_buff_head input_pkt_queue;
1762 struct napi_struct backlog;
1763};
1764
1765static inline void input_queue_head_incr(struct softnet_data *sd)
1766{
1767#ifdef CONFIG_RPS
1768 sd->input_queue_head++;
1769#endif
1770}
1771
1772static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1773 unsigned int *qtail)
1774{
1775#ifdef CONFIG_RPS
1776 *qtail = ++sd->input_queue_tail;
1777#endif
1778}
1779
1780DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1781
1782extern void __netif_schedule(struct Qdisc *q);
1783
1784static inline void netif_schedule_queue(struct netdev_queue *txq)
1785{
1786 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1787 __netif_schedule(txq->qdisc);
1788}
1789
1790static inline void netif_tx_schedule_all(struct net_device *dev)
1791{
1792 unsigned int i;
1793
1794 for (i = 0; i < dev->num_tx_queues; i++)
1795 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1796}
1797
1798static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1799{
1800 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1801}
1802
1803/**
1804 * netif_start_queue - allow transmit
1805 * @dev: network device
1806 *
1807 * Allow upper layers to call the device hard_start_xmit routine.
1808 */
1809static inline void netif_start_queue(struct net_device *dev)
1810{
1811 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1812}
1813
1814static inline void netif_tx_start_all_queues(struct net_device *dev)
1815{
1816 unsigned int i;
1817
1818 for (i = 0; i < dev->num_tx_queues; i++) {
1819 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1820 netif_tx_start_queue(txq);
1821 }
1822}
1823
1824static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1825{
1826#ifdef CONFIG_NETPOLL_TRAP
1827 if (netpoll_trap()) {
1828 netif_tx_start_queue(dev_queue);
1829 return;
1830 }
1831#endif
1832 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1833 __netif_schedule(dev_queue->qdisc);
1834}
1835
1836/**
1837 * netif_wake_queue - restart transmit
1838 * @dev: network device
1839 *
1840 * Allow upper layers to call the device hard_start_xmit routine.
1841 * Used for flow control when transmit resources are available.
1842 */
1843static inline void netif_wake_queue(struct net_device *dev)
1844{
1845 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1846}
1847
1848static inline void netif_tx_wake_all_queues(struct net_device *dev)
1849{
1850 unsigned int i;
1851
1852 for (i = 0; i < dev->num_tx_queues; i++) {
1853 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1854 netif_tx_wake_queue(txq);
1855 }
1856}
1857
1858static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1859{
1860 if (WARN_ON(!dev_queue)) {
1861 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1862 return;
1863 }
1864 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1865}
1866
1867/**
1868 * netif_stop_queue - stop transmitted packets
1869 * @dev: network device
1870 *
1871 * Stop upper layers calling the device hard_start_xmit routine.
1872 * Used for flow control when transmit resources are unavailable.
1873 */
1874static inline void netif_stop_queue(struct net_device *dev)
1875{
1876 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1877}
1878
1879static inline void netif_tx_stop_all_queues(struct net_device *dev)
1880{
1881 unsigned int i;
1882
1883 for (i = 0; i < dev->num_tx_queues; i++) {
1884 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1885 netif_tx_stop_queue(txq);
1886 }
1887}
1888
1889static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1890{
1891 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1892}
1893
1894/**
1895 * netif_queue_stopped - test if transmit queue is flowblocked
1896 * @dev: network device
1897 *
1898 * Test if transmit queue on device is currently unable to send.
1899 */
1900static inline bool netif_queue_stopped(const struct net_device *dev)
1901{
1902 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1903}
1904
1905static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1906{
1907 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1908}
1909
1910static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1911{
1912 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1913}
1914
1915static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1916 unsigned int bytes)
1917{
1918#ifdef CONFIG_BQL
1919 dql_queued(&dev_queue->dql, bytes);
1920
1921 if (likely(dql_avail(&dev_queue->dql) >= 0))
1922 return;
1923
1924 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1925
1926 /*
1927 * The XOFF flag must be set before checking the dql_avail below,
1928 * because in netdev_tx_completed_queue we update the dql_completed
1929 * before checking the XOFF flag.
1930 */
1931 smp_mb();
1932
1933 /* check again in case another CPU has just made room avail */
1934 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1935 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1936#endif
1937}
1938
1939static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1940{
1941 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1942}
1943
1944static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1945 unsigned int pkts, unsigned int bytes)
1946{
1947#ifdef CONFIG_BQL
1948 if (unlikely(!bytes))
1949 return;
1950
1951 dql_completed(&dev_queue->dql, bytes);
1952
1953 /*
1954 * Without the memory barrier there is a small possiblity that
1955 * netdev_tx_sent_queue will miss the update and cause the queue to
1956 * be stopped forever
1957 */
1958 smp_mb();
1959
1960 if (dql_avail(&dev_queue->dql) < 0)
1961 return;
1962
1963 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1964 netif_schedule_queue(dev_queue);
1965#endif
1966}
1967
1968static inline void netdev_completed_queue(struct net_device *dev,
1969 unsigned int pkts, unsigned int bytes)
1970{
1971 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1972}
1973
1974static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1975{
1976#ifdef CONFIG_BQL
1977 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1978 dql_reset(&q->dql);
1979#endif
1980}
1981
1982static inline void netdev_reset_queue(struct net_device *dev_queue)
1983{
1984 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1985}
1986
1987/**
1988 * netif_running - test if up
1989 * @dev: network device
1990 *
1991 * Test if the device has been brought up.
1992 */
1993static inline bool netif_running(const struct net_device *dev)
1994{
1995 return test_bit(__LINK_STATE_START, &dev->state);
1996}
1997
1998/*
1999 * Routines to manage the subqueues on a device. We only need start
2000 * stop, and a check if it's stopped. All other device management is
2001 * done at the overall netdevice level.
2002 * Also test the device if we're multiqueue.
2003 */
2004
2005/**
2006 * netif_start_subqueue - allow sending packets on subqueue
2007 * @dev: network device
2008 * @queue_index: sub queue index
2009 *
2010 * Start individual transmit queue of a device with multiple transmit queues.
2011 */
2012static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2013{
2014 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2015
2016 netif_tx_start_queue(txq);
2017}
2018
2019/**
2020 * netif_stop_subqueue - stop sending packets on subqueue
2021 * @dev: network device
2022 * @queue_index: sub queue index
2023 *
2024 * Stop individual transmit queue of a device with multiple transmit queues.
2025 */
2026static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2027{
2028 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2029#ifdef CONFIG_NETPOLL_TRAP
2030 if (netpoll_trap())
2031 return;
2032#endif
2033 netif_tx_stop_queue(txq);
2034}
2035
2036/**
2037 * netif_subqueue_stopped - test status of subqueue
2038 * @dev: network device
2039 * @queue_index: sub queue index
2040 *
2041 * Check individual transmit queue of a device with multiple transmit queues.
2042 */
2043static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2044 u16 queue_index)
2045{
2046 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2047
2048 return netif_tx_queue_stopped(txq);
2049}
2050
2051static inline bool netif_subqueue_stopped(const struct net_device *dev,
2052 struct sk_buff *skb)
2053{
2054 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2055}
2056
2057/**
2058 * netif_wake_subqueue - allow sending packets on subqueue
2059 * @dev: network device
2060 * @queue_index: sub queue index
2061 *
2062 * Resume individual transmit queue of a device with multiple transmit queues.
2063 */
2064static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2065{
2066 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2067#ifdef CONFIG_NETPOLL_TRAP
2068 if (netpoll_trap())
2069 return;
2070#endif
2071 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2072 __netif_schedule(txq->qdisc);
2073}
2074
2075/*
2076 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2077 * as a distribution range limit for the returned value.
2078 */
2079static inline u16 skb_tx_hash(const struct net_device *dev,
2080 const struct sk_buff *skb)
2081{
2082 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2083}
2084
2085/**
2086 * netif_is_multiqueue - test if device has multiple transmit queues
2087 * @dev: network device
2088 *
2089 * Check if device has multiple transmit queues
2090 */
2091static inline bool netif_is_multiqueue(const struct net_device *dev)
2092{
2093 return dev->num_tx_queues > 1;
2094}
2095
2096extern int netif_set_real_num_tx_queues(struct net_device *dev,
2097 unsigned int txq);
2098
2099#ifdef CONFIG_RPS
2100extern int netif_set_real_num_rx_queues(struct net_device *dev,
2101 unsigned int rxq);
2102#else
2103static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2104 unsigned int rxq)
2105{
2106 return 0;
2107}
2108#endif
2109
2110static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2111 const struct net_device *from_dev)
2112{
2113 int err;
2114
2115 err = netif_set_real_num_tx_queues(to_dev,
2116 from_dev->real_num_tx_queues);
2117 if (err)
2118 return err;
2119#ifdef CONFIG_RPS
2120 return netif_set_real_num_rx_queues(to_dev,
2121 from_dev->real_num_rx_queues);
2122#else
2123 return 0;
2124#endif
2125}
2126
2127#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2128extern int netif_get_num_default_rss_queues(void);
2129
2130/* Use this variant when it is known for sure that it
2131 * is executing from hardware interrupt context or with hardware interrupts
2132 * disabled.
2133 */
2134extern void dev_kfree_skb_irq(struct sk_buff *skb);
2135
2136/* Use this variant in places where it could be invoked
2137 * from either hardware interrupt or other context, with hardware interrupts
2138 * either disabled or enabled.
2139 */
2140extern void dev_kfree_skb_any(struct sk_buff *skb);
2141
2142extern int netif_rx(struct sk_buff *skb);
2143extern int netif_rx_ni(struct sk_buff *skb);
2144extern int netif_receive_skb(struct sk_buff *skb);
2145extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2146 struct sk_buff *skb);
2147extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2148extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2149 struct sk_buff *skb);
2150extern void napi_gro_flush(struct napi_struct *napi);
2151extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2152extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2153 struct sk_buff *skb,
2154 gro_result_t ret);
2155extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2156
2157static inline void napi_free_frags(struct napi_struct *napi)
2158{
2159 kfree_skb(napi->skb);
2160 napi->skb = NULL;
2161}
2162
2163extern int netdev_rx_handler_register(struct net_device *dev,
2164 rx_handler_func_t *rx_handler,
2165 void *rx_handler_data);
2166extern void netdev_rx_handler_unregister(struct net_device *dev);
2167
2168extern bool dev_valid_name(const char *name);
2169extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2170extern int dev_ethtool(struct net *net, struct ifreq *);
2171extern unsigned int dev_get_flags(const struct net_device *);
2172extern int __dev_change_flags(struct net_device *, unsigned int flags);
2173extern int dev_change_flags(struct net_device *, unsigned int);
2174extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2175extern int dev_change_name(struct net_device *, const char *);
2176extern int dev_set_alias(struct net_device *, const char *, size_t);
2177extern int dev_change_net_namespace(struct net_device *,
2178 struct net *, const char *);
2179extern int dev_set_mtu(struct net_device *, int);
2180extern void dev_set_group(struct net_device *, int);
2181extern int dev_set_mac_address(struct net_device *,
2182 struct sockaddr *);
2183extern int dev_hard_start_xmit(struct sk_buff *skb,
2184 struct net_device *dev,
2185 struct netdev_queue *txq);
2186extern int dev_forward_skb(struct net_device *dev,
2187 struct sk_buff *skb);
2188
2189extern int netdev_budget;
2190
2191/* Called by rtnetlink.c:rtnl_unlock() */
2192extern void netdev_run_todo(void);
2193
2194/**
2195 * dev_put - release reference to device
2196 * @dev: network device
2197 *
2198 * Release reference to device to allow it to be freed.
2199 */
2200static inline void dev_put(struct net_device *dev)
2201{
2202 this_cpu_dec(*dev->pcpu_refcnt);
2203}
2204
2205/**
2206 * dev_hold - get reference to device
2207 * @dev: network device
2208 *
2209 * Hold reference to device to keep it from being freed.
2210 */
2211static inline void dev_hold(struct net_device *dev)
2212{
2213 this_cpu_inc(*dev->pcpu_refcnt);
2214}
2215
2216/* Carrier loss detection, dial on demand. The functions netif_carrier_on
2217 * and _off may be called from IRQ context, but it is caller
2218 * who is responsible for serialization of these calls.
2219 *
2220 * The name carrier is inappropriate, these functions should really be
2221 * called netif_lowerlayer_*() because they represent the state of any
2222 * kind of lower layer not just hardware media.
2223 */
2224
2225extern void linkwatch_fire_event(struct net_device *dev);
2226extern void linkwatch_forget_dev(struct net_device *dev);
2227
2228/**
2229 * netif_carrier_ok - test if carrier present
2230 * @dev: network device
2231 *
2232 * Check if carrier is present on device
2233 */
2234static inline bool netif_carrier_ok(const struct net_device *dev)
2235{
2236 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2237}
2238
2239extern unsigned long dev_trans_start(struct net_device *dev);
2240
2241extern void __netdev_watchdog_up(struct net_device *dev);
2242
2243extern void netif_carrier_on(struct net_device *dev);
2244
2245extern void netif_carrier_off(struct net_device *dev);
2246
2247extern void netif_notify_peers(struct net_device *dev);
2248
2249/**
2250 * netif_dormant_on - mark device as dormant.
2251 * @dev: network device
2252 *
2253 * Mark device as dormant (as per RFC2863).
2254 *
2255 * The dormant state indicates that the relevant interface is not
2256 * actually in a condition to pass packets (i.e., it is not 'up') but is
2257 * in a "pending" state, waiting for some external event. For "on-
2258 * demand" interfaces, this new state identifies the situation where the
2259 * interface is waiting for events to place it in the up state.
2260 *
2261 */
2262static inline void netif_dormant_on(struct net_device *dev)
2263{
2264 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2265 linkwatch_fire_event(dev);
2266}
2267
2268/**
2269 * netif_dormant_off - set device as not dormant.
2270 * @dev: network device
2271 *
2272 * Device is not in dormant state.
2273 */
2274static inline void netif_dormant_off(struct net_device *dev)
2275{
2276 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2277 linkwatch_fire_event(dev);
2278}
2279
2280/**
2281 * netif_dormant - test if carrier present
2282 * @dev: network device
2283 *
2284 * Check if carrier is present on device
2285 */
2286static inline bool netif_dormant(const struct net_device *dev)
2287{
2288 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2289}
2290
2291
2292/**
2293 * netif_oper_up - test if device is operational
2294 * @dev: network device
2295 *
2296 * Check if carrier is operational
2297 */
2298static inline bool netif_oper_up(const struct net_device *dev)
2299{
2300 return (dev->operstate == IF_OPER_UP ||
2301 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2302}
2303
2304/**
2305 * netif_device_present - is device available or removed
2306 * @dev: network device
2307 *
2308 * Check if device has not been removed from system.
2309 */
2310static inline bool netif_device_present(struct net_device *dev)
2311{
2312 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2313}
2314
2315extern void netif_device_detach(struct net_device *dev);
2316
2317extern void netif_device_attach(struct net_device *dev);
2318
2319/*
2320 * Network interface message level settings
2321 */
2322
2323enum {
2324 NETIF_MSG_DRV = 0x0001,
2325 NETIF_MSG_PROBE = 0x0002,
2326 NETIF_MSG_LINK = 0x0004,
2327 NETIF_MSG_TIMER = 0x0008,
2328 NETIF_MSG_IFDOWN = 0x0010,
2329 NETIF_MSG_IFUP = 0x0020,
2330 NETIF_MSG_RX_ERR = 0x0040,
2331 NETIF_MSG_TX_ERR = 0x0080,
2332 NETIF_MSG_TX_QUEUED = 0x0100,
2333 NETIF_MSG_INTR = 0x0200,
2334 NETIF_MSG_TX_DONE = 0x0400,
2335 NETIF_MSG_RX_STATUS = 0x0800,
2336 NETIF_MSG_PKTDATA = 0x1000,
2337 NETIF_MSG_HW = 0x2000,
2338 NETIF_MSG_WOL = 0x4000,
2339};
2340
2341#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2342#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2343#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2344#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2345#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2346#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2347#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2348#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2349#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2350#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2351#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2352#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2353#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2354#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2355#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2356
2357static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2358{
2359 /* use default */
2360 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2361 return default_msg_enable_bits;
2362 if (debug_value == 0) /* no output */
2363 return 0;
2364 /* set low N bits */
2365 return (1 << debug_value) - 1;
2366}
2367
2368static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2369{
2370 spin_lock(&txq->_xmit_lock);
2371 txq->xmit_lock_owner = cpu;
2372}
2373
2374static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2375{
2376 spin_lock_bh(&txq->_xmit_lock);
2377 txq->xmit_lock_owner = smp_processor_id();
2378}
2379
2380static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2381{
2382 bool ok = spin_trylock(&txq->_xmit_lock);
2383 if (likely(ok))
2384 txq->xmit_lock_owner = smp_processor_id();
2385 return ok;
2386}
2387
2388static inline void __netif_tx_unlock(struct netdev_queue *txq)
2389{
2390 txq->xmit_lock_owner = -1;
2391 spin_unlock(&txq->_xmit_lock);
2392}
2393
2394static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2395{
2396 txq->xmit_lock_owner = -1;
2397 spin_unlock_bh(&txq->_xmit_lock);
2398}
2399
2400static inline void txq_trans_update(struct netdev_queue *txq)
2401{
2402 if (txq->xmit_lock_owner != -1)
2403 txq->trans_start = jiffies;
2404}
2405
2406/**
2407 * netif_tx_lock - grab network device transmit lock
2408 * @dev: network device
2409 *
2410 * Get network device transmit lock
2411 */
2412static inline void netif_tx_lock(struct net_device *dev)
2413{
2414 unsigned int i;
2415 int cpu;
2416
2417 spin_lock(&dev->tx_global_lock);
2418 cpu = smp_processor_id();
2419 for (i = 0; i < dev->num_tx_queues; i++) {
2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2421
2422 /* We are the only thread of execution doing a
2423 * freeze, but we have to grab the _xmit_lock in
2424 * order to synchronize with threads which are in
2425 * the ->hard_start_xmit() handler and already
2426 * checked the frozen bit.
2427 */
2428 __netif_tx_lock(txq, cpu);
2429 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2430 __netif_tx_unlock(txq);
2431 }
2432}
2433
2434static inline void netif_tx_lock_bh(struct net_device *dev)
2435{
2436 local_bh_disable();
2437 netif_tx_lock(dev);
2438}
2439
2440static inline void netif_tx_unlock(struct net_device *dev)
2441{
2442 unsigned int i;
2443
2444 for (i = 0; i < dev->num_tx_queues; i++) {
2445 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2446
2447 /* No need to grab the _xmit_lock here. If the
2448 * queue is not stopped for another reason, we
2449 * force a schedule.
2450 */
2451 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2452 netif_schedule_queue(txq);
2453 }
2454 spin_unlock(&dev->tx_global_lock);
2455}
2456
2457static inline void netif_tx_unlock_bh(struct net_device *dev)
2458{
2459 netif_tx_unlock(dev);
2460 local_bh_enable();
2461}
2462
2463#define HARD_TX_LOCK(dev, txq, cpu) { \
2464 if ((dev->features & NETIF_F_LLTX) == 0) { \
2465 __netif_tx_lock(txq, cpu); \
2466 } \
2467}
2468
2469#define HARD_TX_UNLOCK(dev, txq) { \
2470 if ((dev->features & NETIF_F_LLTX) == 0) { \
2471 __netif_tx_unlock(txq); \
2472 } \
2473}
2474
2475static inline void netif_tx_disable(struct net_device *dev)
2476{
2477 unsigned int i;
2478 int cpu;
2479
2480 local_bh_disable();
2481 cpu = smp_processor_id();
2482 for (i = 0; i < dev->num_tx_queues; i++) {
2483 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2484
2485 __netif_tx_lock(txq, cpu);
2486 netif_tx_stop_queue(txq);
2487 __netif_tx_unlock(txq);
2488 }
2489 local_bh_enable();
2490}
2491
2492static inline void netif_addr_lock(struct net_device *dev)
2493{
2494 spin_lock(&dev->addr_list_lock);
2495}
2496
2497static inline void netif_addr_lock_nested(struct net_device *dev)
2498{
2499 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2500}
2501
2502static inline void netif_addr_lock_bh(struct net_device *dev)
2503{
2504 spin_lock_bh(&dev->addr_list_lock);
2505}
2506
2507static inline void netif_addr_unlock(struct net_device *dev)
2508{
2509 spin_unlock(&dev->addr_list_lock);
2510}
2511
2512static inline void netif_addr_unlock_bh(struct net_device *dev)
2513{
2514 spin_unlock_bh(&dev->addr_list_lock);
2515}
2516
2517/*
2518 * dev_addrs walker. Should be used only for read access. Call with
2519 * rcu_read_lock held.
2520 */
2521#define for_each_dev_addr(dev, ha) \
2522 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2523
2524/* These functions live elsewhere (drivers/net/net_init.c, but related) */
2525
2526extern void ether_setup(struct net_device *dev);
2527
2528/* Support for loadable net-drivers */
2529extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2530 void (*setup)(struct net_device *),
2531 unsigned int txqs, unsigned int rxqs);
2532#define alloc_netdev(sizeof_priv, name, setup) \
2533 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2534
2535#define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2536 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2537
2538extern int register_netdev(struct net_device *dev);
2539extern void unregister_netdev(struct net_device *dev);
2540
2541/* General hardware address lists handling functions */
2542extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2543 struct netdev_hw_addr_list *from_list,
2544 int addr_len, unsigned char addr_type);
2545extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2546 struct netdev_hw_addr_list *from_list,
2547 int addr_len, unsigned char addr_type);
2548extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2549 struct netdev_hw_addr_list *from_list,
2550 int addr_len);
2551extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2552 struct netdev_hw_addr_list *from_list,
2553 int addr_len);
2554extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2555extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2556
2557/* Functions used for device addresses handling */
2558extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2559 unsigned char addr_type);
2560extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2561 unsigned char addr_type);
2562extern int dev_addr_add_multiple(struct net_device *to_dev,
2563 struct net_device *from_dev,
2564 unsigned char addr_type);
2565extern int dev_addr_del_multiple(struct net_device *to_dev,
2566 struct net_device *from_dev,
2567 unsigned char addr_type);
2568extern void dev_addr_flush(struct net_device *dev);
2569extern int dev_addr_init(struct net_device *dev);
2570
2571/* Functions used for unicast addresses handling */
2572extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2573extern int dev_uc_add_excl(struct net_device *dev, unsigned char *addr);
2574extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2575extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2576extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2577extern void dev_uc_flush(struct net_device *dev);
2578extern void dev_uc_init(struct net_device *dev);
2579
2580/* Functions used for multicast addresses handling */
2581extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2582extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2583extern int dev_mc_add_excl(struct net_device *dev, unsigned char *addr);
2584extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2585extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2586extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2587extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2588extern void dev_mc_flush(struct net_device *dev);
2589extern void dev_mc_init(struct net_device *dev);
2590
2591/* Functions used for secondary unicast and multicast support */
2592extern void dev_set_rx_mode(struct net_device *dev);
2593extern void __dev_set_rx_mode(struct net_device *dev);
2594extern int dev_set_promiscuity(struct net_device *dev, int inc);
2595extern int dev_set_allmulti(struct net_device *dev, int inc);
2596extern void netdev_state_change(struct net_device *dev);
2597extern int netdev_bonding_change(struct net_device *dev,
2598 unsigned long event);
2599extern void netdev_features_change(struct net_device *dev);
2600/* Load a device via the kmod */
2601extern void dev_load(struct net *net, const char *name);
2602extern void dev_mcast_init(void);
2603extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2604 struct rtnl_link_stats64 *storage);
2605extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2606 const struct net_device_stats *netdev_stats);
2607
2608extern int netdev_max_backlog;
2609extern int netdev_tstamp_prequeue;
2610extern int weight_p;
2611extern int bpf_jit_enable;
2612extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2613extern int netdev_set_bond_master(struct net_device *dev,
2614 struct net_device *master);
2615extern int skb_checksum_help(struct sk_buff *skb);
2616extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2617 netdev_features_t features);
2618#ifdef CONFIG_BUG
2619extern void netdev_rx_csum_fault(struct net_device *dev);
2620#else
2621static inline void netdev_rx_csum_fault(struct net_device *dev)
2622{
2623}
2624#endif
2625/* rx skb timestamps */
2626extern void net_enable_timestamp(void);
2627extern void net_disable_timestamp(void);
2628
2629#ifdef CONFIG_PROC_FS
2630extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2631extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2632extern void dev_seq_stop(struct seq_file *seq, void *v);
2633#endif
2634
2635extern int netdev_class_create_file(struct class_attribute *class_attr);
2636extern void netdev_class_remove_file(struct class_attribute *class_attr);
2637
2638extern struct kobj_ns_type_operations net_ns_type_operations;
2639
2640extern const char *netdev_drivername(const struct net_device *dev);
2641
2642extern void linkwatch_run_queue(void);
2643
2644static inline netdev_features_t netdev_get_wanted_features(
2645 struct net_device *dev)
2646{
2647 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2648}
2649netdev_features_t netdev_increment_features(netdev_features_t all,
2650 netdev_features_t one, netdev_features_t mask);
2651int __netdev_update_features(struct net_device *dev);
2652void netdev_update_features(struct net_device *dev);
2653void netdev_change_features(struct net_device *dev);
2654
2655void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2656 struct net_device *dev);
2657
2658netdev_features_t netif_skb_features(struct sk_buff *skb);
2659
2660static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2661{
2662 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2663
2664 /* check flags correspondence */
2665 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2666 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2667 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2668 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2669 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2670 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2671
2672 return (features & feature) == feature;
2673}
2674
2675static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2676{
2677 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2678 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2679}
2680
2681static inline bool netif_needs_gso(struct sk_buff *skb,
2682 netdev_features_t features)
2683{
2684 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2685 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2686 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2687}
2688
2689static inline void netif_set_gso_max_size(struct net_device *dev,
2690 unsigned int size)
2691{
2692 dev->gso_max_size = size;
2693}
2694
2695static inline bool netif_is_bond_slave(struct net_device *dev)
2696{
2697 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2698}
2699
2700static inline bool netif_supports_nofcs(struct net_device *dev)
2701{
2702 return dev->priv_flags & IFF_SUPP_NOFCS;
2703}
2704
2705extern struct pernet_operations __net_initdata loopback_net_ops;
2706
2707/* Logging, debugging and troubleshooting/diagnostic helpers. */
2708
2709/* netdev_printk helpers, similar to dev_printk */
2710
2711static inline const char *netdev_name(const struct net_device *dev)
2712{
2713 if (dev->reg_state != NETREG_REGISTERED)
2714 return "(unregistered net_device)";
2715 return dev->name;
2716}
2717
2718extern int __netdev_printk(const char *level, const struct net_device *dev,
2719 struct va_format *vaf);
2720
2721extern __printf(3, 4)
2722int netdev_printk(const char *level, const struct net_device *dev,
2723 const char *format, ...);
2724extern __printf(2, 3)
2725int netdev_emerg(const struct net_device *dev, const char *format, ...);
2726extern __printf(2, 3)
2727int netdev_alert(const struct net_device *dev, const char *format, ...);
2728extern __printf(2, 3)
2729int netdev_crit(const struct net_device *dev, const char *format, ...);
2730extern __printf(2, 3)
2731int netdev_err(const struct net_device *dev, const char *format, ...);
2732extern __printf(2, 3)
2733int netdev_warn(const struct net_device *dev, const char *format, ...);
2734extern __printf(2, 3)
2735int netdev_notice(const struct net_device *dev, const char *format, ...);
2736extern __printf(2, 3)
2737int netdev_info(const struct net_device *dev, const char *format, ...);
2738
2739#define MODULE_ALIAS_NETDEV(device) \
2740 MODULE_ALIAS("netdev-" device)
2741
2742#if defined(CONFIG_DYNAMIC_DEBUG)
2743#define netdev_dbg(__dev, format, args...) \
2744do { \
2745 dynamic_netdev_dbg(__dev, format, ##args); \
2746} while (0)
2747#elif defined(DEBUG)
2748#define netdev_dbg(__dev, format, args...) \
2749 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2750#else
2751#define netdev_dbg(__dev, format, args...) \
2752({ \
2753 if (0) \
2754 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2755 0; \
2756})
2757#endif
2758
2759#if defined(VERBOSE_DEBUG)
2760#define netdev_vdbg netdev_dbg
2761#else
2762
2763#define netdev_vdbg(dev, format, args...) \
2764({ \
2765 if (0) \
2766 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2767 0; \
2768})
2769#endif
2770
2771/*
2772 * netdev_WARN() acts like dev_printk(), but with the key difference
2773 * of using a WARN/WARN_ON to get the message out, including the
2774 * file/line information and a backtrace.
2775 */
2776#define netdev_WARN(dev, format, args...) \
2777 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2778
2779/* netif printk helpers, similar to netdev_printk */
2780
2781#define netif_printk(priv, type, level, dev, fmt, args...) \
2782do { \
2783 if (netif_msg_##type(priv)) \
2784 netdev_printk(level, (dev), fmt, ##args); \
2785} while (0)
2786
2787#define netif_level(level, priv, type, dev, fmt, args...) \
2788do { \
2789 if (netif_msg_##type(priv)) \
2790 netdev_##level(dev, fmt, ##args); \
2791} while (0)
2792
2793#define netif_emerg(priv, type, dev, fmt, args...) \
2794 netif_level(emerg, priv, type, dev, fmt, ##args)
2795#define netif_alert(priv, type, dev, fmt, args...) \
2796 netif_level(alert, priv, type, dev, fmt, ##args)
2797#define netif_crit(priv, type, dev, fmt, args...) \
2798 netif_level(crit, priv, type, dev, fmt, ##args)
2799#define netif_err(priv, type, dev, fmt, args...) \
2800 netif_level(err, priv, type, dev, fmt, ##args)
2801#define netif_warn(priv, type, dev, fmt, args...) \
2802 netif_level(warn, priv, type, dev, fmt, ##args)
2803#define netif_notice(priv, type, dev, fmt, args...) \
2804 netif_level(notice, priv, type, dev, fmt, ##args)
2805#define netif_info(priv, type, dev, fmt, args...) \
2806 netif_level(info, priv, type, dev, fmt, ##args)
2807
2808#if defined(CONFIG_DYNAMIC_DEBUG)
2809#define netif_dbg(priv, type, netdev, format, args...) \
2810do { \
2811 if (netif_msg_##type(priv)) \
2812 dynamic_netdev_dbg(netdev, format, ##args); \
2813} while (0)
2814#elif defined(DEBUG)
2815#define netif_dbg(priv, type, dev, format, args...) \
2816 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2817#else
2818#define netif_dbg(priv, type, dev, format, args...) \
2819({ \
2820 if (0) \
2821 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2822 0; \
2823})
2824#endif
2825
2826#if defined(VERBOSE_DEBUG)
2827#define netif_vdbg netif_dbg
2828#else
2829#define netif_vdbg(priv, type, dev, format, args...) \
2830({ \
2831 if (0) \
2832 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2833 0; \
2834})
2835#endif
2836
2837#endif /* __KERNEL__ */
2838
2839#endif /* _LINUX_NETDEVICE_H */