at v3.5 35 kB view raw
1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/module.h> 16#include <linux/init.h> 17#include <linux/kernel.h> 18#include <linux/security.h> 19#include <linux/integrity.h> 20#include <linux/ima.h> 21#include <linux/evm.h> 22#include <linux/fsnotify.h> 23#include <linux/mman.h> 24#include <linux/mount.h> 25#include <linux/personality.h> 26#include <linux/backing-dev.h> 27#include <net/flow.h> 28 29#define MAX_LSM_EVM_XATTR 2 30 31/* Boot-time LSM user choice */ 32static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 33 CONFIG_DEFAULT_SECURITY; 34 35static struct security_operations *security_ops; 36static struct security_operations default_security_ops = { 37 .name = "default", 38}; 39 40static inline int __init verify(struct security_operations *ops) 41{ 42 /* verify the security_operations structure exists */ 43 if (!ops) 44 return -EINVAL; 45 security_fixup_ops(ops); 46 return 0; 47} 48 49static void __init do_security_initcalls(void) 50{ 51 initcall_t *call; 52 call = __security_initcall_start; 53 while (call < __security_initcall_end) { 54 (*call) (); 55 call++; 56 } 57} 58 59/** 60 * security_init - initializes the security framework 61 * 62 * This should be called early in the kernel initialization sequence. 63 */ 64int __init security_init(void) 65{ 66 printk(KERN_INFO "Security Framework initialized\n"); 67 68 security_fixup_ops(&default_security_ops); 69 security_ops = &default_security_ops; 70 do_security_initcalls(); 71 72 return 0; 73} 74 75void reset_security_ops(void) 76{ 77 security_ops = &default_security_ops; 78} 79 80/* Save user chosen LSM */ 81static int __init choose_lsm(char *str) 82{ 83 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 84 return 1; 85} 86__setup("security=", choose_lsm); 87 88/** 89 * security_module_enable - Load given security module on boot ? 90 * @ops: a pointer to the struct security_operations that is to be checked. 91 * 92 * Each LSM must pass this method before registering its own operations 93 * to avoid security registration races. This method may also be used 94 * to check if your LSM is currently loaded during kernel initialization. 95 * 96 * Return true if: 97 * -The passed LSM is the one chosen by user at boot time, 98 * -or the passed LSM is configured as the default and the user did not 99 * choose an alternate LSM at boot time. 100 * Otherwise, return false. 101 */ 102int __init security_module_enable(struct security_operations *ops) 103{ 104 return !strcmp(ops->name, chosen_lsm); 105} 106 107/** 108 * register_security - registers a security framework with the kernel 109 * @ops: a pointer to the struct security_options that is to be registered 110 * 111 * This function allows a security module to register itself with the 112 * kernel security subsystem. Some rudimentary checking is done on the @ops 113 * value passed to this function. You'll need to check first if your LSM 114 * is allowed to register its @ops by calling security_module_enable(@ops). 115 * 116 * If there is already a security module registered with the kernel, 117 * an error will be returned. Otherwise %0 is returned on success. 118 */ 119int __init register_security(struct security_operations *ops) 120{ 121 if (verify(ops)) { 122 printk(KERN_DEBUG "%s could not verify " 123 "security_operations structure.\n", __func__); 124 return -EINVAL; 125 } 126 127 if (security_ops != &default_security_ops) 128 return -EAGAIN; 129 130 security_ops = ops; 131 132 return 0; 133} 134 135/* Security operations */ 136 137int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 138{ 139 return security_ops->ptrace_access_check(child, mode); 140} 141 142int security_ptrace_traceme(struct task_struct *parent) 143{ 144 return security_ops->ptrace_traceme(parent); 145} 146 147int security_capget(struct task_struct *target, 148 kernel_cap_t *effective, 149 kernel_cap_t *inheritable, 150 kernel_cap_t *permitted) 151{ 152 return security_ops->capget(target, effective, inheritable, permitted); 153} 154 155int security_capset(struct cred *new, const struct cred *old, 156 const kernel_cap_t *effective, 157 const kernel_cap_t *inheritable, 158 const kernel_cap_t *permitted) 159{ 160 return security_ops->capset(new, old, 161 effective, inheritable, permitted); 162} 163 164int security_capable(const struct cred *cred, struct user_namespace *ns, 165 int cap) 166{ 167 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT); 168} 169 170int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 171 int cap) 172{ 173 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT); 174} 175 176int security_quotactl(int cmds, int type, int id, struct super_block *sb) 177{ 178 return security_ops->quotactl(cmds, type, id, sb); 179} 180 181int security_quota_on(struct dentry *dentry) 182{ 183 return security_ops->quota_on(dentry); 184} 185 186int security_syslog(int type) 187{ 188 return security_ops->syslog(type); 189} 190 191int security_settime(const struct timespec *ts, const struct timezone *tz) 192{ 193 return security_ops->settime(ts, tz); 194} 195 196int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 197{ 198 return security_ops->vm_enough_memory(mm, pages); 199} 200 201int security_bprm_set_creds(struct linux_binprm *bprm) 202{ 203 return security_ops->bprm_set_creds(bprm); 204} 205 206int security_bprm_check(struct linux_binprm *bprm) 207{ 208 int ret; 209 210 ret = security_ops->bprm_check_security(bprm); 211 if (ret) 212 return ret; 213 return ima_bprm_check(bprm); 214} 215 216void security_bprm_committing_creds(struct linux_binprm *bprm) 217{ 218 security_ops->bprm_committing_creds(bprm); 219} 220 221void security_bprm_committed_creds(struct linux_binprm *bprm) 222{ 223 security_ops->bprm_committed_creds(bprm); 224} 225 226int security_bprm_secureexec(struct linux_binprm *bprm) 227{ 228 return security_ops->bprm_secureexec(bprm); 229} 230 231int security_sb_alloc(struct super_block *sb) 232{ 233 return security_ops->sb_alloc_security(sb); 234} 235 236void security_sb_free(struct super_block *sb) 237{ 238 security_ops->sb_free_security(sb); 239} 240 241int security_sb_copy_data(char *orig, char *copy) 242{ 243 return security_ops->sb_copy_data(orig, copy); 244} 245EXPORT_SYMBOL(security_sb_copy_data); 246 247int security_sb_remount(struct super_block *sb, void *data) 248{ 249 return security_ops->sb_remount(sb, data); 250} 251 252int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 253{ 254 return security_ops->sb_kern_mount(sb, flags, data); 255} 256 257int security_sb_show_options(struct seq_file *m, struct super_block *sb) 258{ 259 return security_ops->sb_show_options(m, sb); 260} 261 262int security_sb_statfs(struct dentry *dentry) 263{ 264 return security_ops->sb_statfs(dentry); 265} 266 267int security_sb_mount(char *dev_name, struct path *path, 268 char *type, unsigned long flags, void *data) 269{ 270 return security_ops->sb_mount(dev_name, path, type, flags, data); 271} 272 273int security_sb_umount(struct vfsmount *mnt, int flags) 274{ 275 return security_ops->sb_umount(mnt, flags); 276} 277 278int security_sb_pivotroot(struct path *old_path, struct path *new_path) 279{ 280 return security_ops->sb_pivotroot(old_path, new_path); 281} 282 283int security_sb_set_mnt_opts(struct super_block *sb, 284 struct security_mnt_opts *opts) 285{ 286 return security_ops->sb_set_mnt_opts(sb, opts); 287} 288EXPORT_SYMBOL(security_sb_set_mnt_opts); 289 290void security_sb_clone_mnt_opts(const struct super_block *oldsb, 291 struct super_block *newsb) 292{ 293 security_ops->sb_clone_mnt_opts(oldsb, newsb); 294} 295EXPORT_SYMBOL(security_sb_clone_mnt_opts); 296 297int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 298{ 299 return security_ops->sb_parse_opts_str(options, opts); 300} 301EXPORT_SYMBOL(security_sb_parse_opts_str); 302 303int security_inode_alloc(struct inode *inode) 304{ 305 inode->i_security = NULL; 306 return security_ops->inode_alloc_security(inode); 307} 308 309void security_inode_free(struct inode *inode) 310{ 311 integrity_inode_free(inode); 312 security_ops->inode_free_security(inode); 313} 314 315int security_inode_init_security(struct inode *inode, struct inode *dir, 316 const struct qstr *qstr, 317 const initxattrs initxattrs, void *fs_data) 318{ 319 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 320 struct xattr *lsm_xattr, *evm_xattr, *xattr; 321 int ret; 322 323 if (unlikely(IS_PRIVATE(inode))) 324 return 0; 325 326 memset(new_xattrs, 0, sizeof new_xattrs); 327 if (!initxattrs) 328 return security_ops->inode_init_security(inode, dir, qstr, 329 NULL, NULL, NULL); 330 lsm_xattr = new_xattrs; 331 ret = security_ops->inode_init_security(inode, dir, qstr, 332 &lsm_xattr->name, 333 &lsm_xattr->value, 334 &lsm_xattr->value_len); 335 if (ret) 336 goto out; 337 338 evm_xattr = lsm_xattr + 1; 339 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 340 if (ret) 341 goto out; 342 ret = initxattrs(inode, new_xattrs, fs_data); 343out: 344 for (xattr = new_xattrs; xattr->name != NULL; xattr++) { 345 kfree(xattr->name); 346 kfree(xattr->value); 347 } 348 return (ret == -EOPNOTSUPP) ? 0 : ret; 349} 350EXPORT_SYMBOL(security_inode_init_security); 351 352int security_old_inode_init_security(struct inode *inode, struct inode *dir, 353 const struct qstr *qstr, char **name, 354 void **value, size_t *len) 355{ 356 if (unlikely(IS_PRIVATE(inode))) 357 return -EOPNOTSUPP; 358 return security_ops->inode_init_security(inode, dir, qstr, name, value, 359 len); 360} 361EXPORT_SYMBOL(security_old_inode_init_security); 362 363#ifdef CONFIG_SECURITY_PATH 364int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode, 365 unsigned int dev) 366{ 367 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 368 return 0; 369 return security_ops->path_mknod(dir, dentry, mode, dev); 370} 371EXPORT_SYMBOL(security_path_mknod); 372 373int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode) 374{ 375 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 376 return 0; 377 return security_ops->path_mkdir(dir, dentry, mode); 378} 379EXPORT_SYMBOL(security_path_mkdir); 380 381int security_path_rmdir(struct path *dir, struct dentry *dentry) 382{ 383 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 384 return 0; 385 return security_ops->path_rmdir(dir, dentry); 386} 387 388int security_path_unlink(struct path *dir, struct dentry *dentry) 389{ 390 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 391 return 0; 392 return security_ops->path_unlink(dir, dentry); 393} 394EXPORT_SYMBOL(security_path_unlink); 395 396int security_path_symlink(struct path *dir, struct dentry *dentry, 397 const char *old_name) 398{ 399 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 400 return 0; 401 return security_ops->path_symlink(dir, dentry, old_name); 402} 403 404int security_path_link(struct dentry *old_dentry, struct path *new_dir, 405 struct dentry *new_dentry) 406{ 407 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 408 return 0; 409 return security_ops->path_link(old_dentry, new_dir, new_dentry); 410} 411 412int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 413 struct path *new_dir, struct dentry *new_dentry) 414{ 415 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 416 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 417 return 0; 418 return security_ops->path_rename(old_dir, old_dentry, new_dir, 419 new_dentry); 420} 421EXPORT_SYMBOL(security_path_rename); 422 423int security_path_truncate(struct path *path) 424{ 425 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 426 return 0; 427 return security_ops->path_truncate(path); 428} 429 430int security_path_chmod(struct path *path, umode_t mode) 431{ 432 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 433 return 0; 434 return security_ops->path_chmod(path, mode); 435} 436 437int security_path_chown(struct path *path, uid_t uid, gid_t gid) 438{ 439 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 440 return 0; 441 return security_ops->path_chown(path, uid, gid); 442} 443 444int security_path_chroot(struct path *path) 445{ 446 return security_ops->path_chroot(path); 447} 448#endif 449 450int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 451{ 452 if (unlikely(IS_PRIVATE(dir))) 453 return 0; 454 return security_ops->inode_create(dir, dentry, mode); 455} 456EXPORT_SYMBOL_GPL(security_inode_create); 457 458int security_inode_link(struct dentry *old_dentry, struct inode *dir, 459 struct dentry *new_dentry) 460{ 461 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 462 return 0; 463 return security_ops->inode_link(old_dentry, dir, new_dentry); 464} 465 466int security_inode_unlink(struct inode *dir, struct dentry *dentry) 467{ 468 if (unlikely(IS_PRIVATE(dentry->d_inode))) 469 return 0; 470 return security_ops->inode_unlink(dir, dentry); 471} 472 473int security_inode_symlink(struct inode *dir, struct dentry *dentry, 474 const char *old_name) 475{ 476 if (unlikely(IS_PRIVATE(dir))) 477 return 0; 478 return security_ops->inode_symlink(dir, dentry, old_name); 479} 480 481int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 482{ 483 if (unlikely(IS_PRIVATE(dir))) 484 return 0; 485 return security_ops->inode_mkdir(dir, dentry, mode); 486} 487EXPORT_SYMBOL_GPL(security_inode_mkdir); 488 489int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 490{ 491 if (unlikely(IS_PRIVATE(dentry->d_inode))) 492 return 0; 493 return security_ops->inode_rmdir(dir, dentry); 494} 495 496int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 497{ 498 if (unlikely(IS_PRIVATE(dir))) 499 return 0; 500 return security_ops->inode_mknod(dir, dentry, mode, dev); 501} 502 503int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 504 struct inode *new_dir, struct dentry *new_dentry) 505{ 506 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 507 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 508 return 0; 509 return security_ops->inode_rename(old_dir, old_dentry, 510 new_dir, new_dentry); 511} 512 513int security_inode_readlink(struct dentry *dentry) 514{ 515 if (unlikely(IS_PRIVATE(dentry->d_inode))) 516 return 0; 517 return security_ops->inode_readlink(dentry); 518} 519 520int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 521{ 522 if (unlikely(IS_PRIVATE(dentry->d_inode))) 523 return 0; 524 return security_ops->inode_follow_link(dentry, nd); 525} 526 527int security_inode_permission(struct inode *inode, int mask) 528{ 529 if (unlikely(IS_PRIVATE(inode))) 530 return 0; 531 return security_ops->inode_permission(inode, mask); 532} 533 534int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 535{ 536 int ret; 537 538 if (unlikely(IS_PRIVATE(dentry->d_inode))) 539 return 0; 540 ret = security_ops->inode_setattr(dentry, attr); 541 if (ret) 542 return ret; 543 return evm_inode_setattr(dentry, attr); 544} 545EXPORT_SYMBOL_GPL(security_inode_setattr); 546 547int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 548{ 549 if (unlikely(IS_PRIVATE(dentry->d_inode))) 550 return 0; 551 return security_ops->inode_getattr(mnt, dentry); 552} 553 554int security_inode_setxattr(struct dentry *dentry, const char *name, 555 const void *value, size_t size, int flags) 556{ 557 int ret; 558 559 if (unlikely(IS_PRIVATE(dentry->d_inode))) 560 return 0; 561 ret = security_ops->inode_setxattr(dentry, name, value, size, flags); 562 if (ret) 563 return ret; 564 return evm_inode_setxattr(dentry, name, value, size); 565} 566 567void security_inode_post_setxattr(struct dentry *dentry, const char *name, 568 const void *value, size_t size, int flags) 569{ 570 if (unlikely(IS_PRIVATE(dentry->d_inode))) 571 return; 572 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 573 evm_inode_post_setxattr(dentry, name, value, size); 574} 575 576int security_inode_getxattr(struct dentry *dentry, const char *name) 577{ 578 if (unlikely(IS_PRIVATE(dentry->d_inode))) 579 return 0; 580 return security_ops->inode_getxattr(dentry, name); 581} 582 583int security_inode_listxattr(struct dentry *dentry) 584{ 585 if (unlikely(IS_PRIVATE(dentry->d_inode))) 586 return 0; 587 return security_ops->inode_listxattr(dentry); 588} 589 590int security_inode_removexattr(struct dentry *dentry, const char *name) 591{ 592 int ret; 593 594 if (unlikely(IS_PRIVATE(dentry->d_inode))) 595 return 0; 596 ret = security_ops->inode_removexattr(dentry, name); 597 if (ret) 598 return ret; 599 return evm_inode_removexattr(dentry, name); 600} 601 602int security_inode_need_killpriv(struct dentry *dentry) 603{ 604 return security_ops->inode_need_killpriv(dentry); 605} 606 607int security_inode_killpriv(struct dentry *dentry) 608{ 609 return security_ops->inode_killpriv(dentry); 610} 611 612int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 613{ 614 if (unlikely(IS_PRIVATE(inode))) 615 return -EOPNOTSUPP; 616 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 617} 618 619int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 620{ 621 if (unlikely(IS_PRIVATE(inode))) 622 return -EOPNOTSUPP; 623 return security_ops->inode_setsecurity(inode, name, value, size, flags); 624} 625 626int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 627{ 628 if (unlikely(IS_PRIVATE(inode))) 629 return 0; 630 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 631} 632 633void security_inode_getsecid(const struct inode *inode, u32 *secid) 634{ 635 security_ops->inode_getsecid(inode, secid); 636} 637 638int security_file_permission(struct file *file, int mask) 639{ 640 int ret; 641 642 ret = security_ops->file_permission(file, mask); 643 if (ret) 644 return ret; 645 646 return fsnotify_perm(file, mask); 647} 648 649int security_file_alloc(struct file *file) 650{ 651 return security_ops->file_alloc_security(file); 652} 653 654void security_file_free(struct file *file) 655{ 656 security_ops->file_free_security(file); 657} 658 659int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 660{ 661 return security_ops->file_ioctl(file, cmd, arg); 662} 663 664static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 665{ 666 /* 667 * Does we have PROT_READ and does the application expect 668 * it to imply PROT_EXEC? If not, nothing to talk about... 669 */ 670 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 671 return prot; 672 if (!(current->personality & READ_IMPLIES_EXEC)) 673 return prot; 674 /* 675 * if that's an anonymous mapping, let it. 676 */ 677 if (!file) 678 return prot | PROT_EXEC; 679 /* 680 * ditto if it's not on noexec mount, except that on !MMU we need 681 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case 682 */ 683 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) { 684#ifndef CONFIG_MMU 685 unsigned long caps = 0; 686 struct address_space *mapping = file->f_mapping; 687 if (mapping && mapping->backing_dev_info) 688 caps = mapping->backing_dev_info->capabilities; 689 if (!(caps & BDI_CAP_EXEC_MAP)) 690 return prot; 691#endif 692 return prot | PROT_EXEC; 693 } 694 /* anything on noexec mount won't get PROT_EXEC */ 695 return prot; 696} 697 698int security_mmap_file(struct file *file, unsigned long prot, 699 unsigned long flags) 700{ 701 int ret; 702 ret = security_ops->mmap_file(file, prot, 703 mmap_prot(file, prot), flags); 704 if (ret) 705 return ret; 706 return ima_file_mmap(file, prot); 707} 708 709int security_mmap_addr(unsigned long addr) 710{ 711 return security_ops->mmap_addr(addr); 712} 713 714int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 715 unsigned long prot) 716{ 717 return security_ops->file_mprotect(vma, reqprot, prot); 718} 719 720int security_file_lock(struct file *file, unsigned int cmd) 721{ 722 return security_ops->file_lock(file, cmd); 723} 724 725int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 726{ 727 return security_ops->file_fcntl(file, cmd, arg); 728} 729 730int security_file_set_fowner(struct file *file) 731{ 732 return security_ops->file_set_fowner(file); 733} 734 735int security_file_send_sigiotask(struct task_struct *tsk, 736 struct fown_struct *fown, int sig) 737{ 738 return security_ops->file_send_sigiotask(tsk, fown, sig); 739} 740 741int security_file_receive(struct file *file) 742{ 743 return security_ops->file_receive(file); 744} 745 746int security_file_open(struct file *file, const struct cred *cred) 747{ 748 int ret; 749 750 ret = security_ops->file_open(file, cred); 751 if (ret) 752 return ret; 753 754 return fsnotify_perm(file, MAY_OPEN); 755} 756 757int security_task_create(unsigned long clone_flags) 758{ 759 return security_ops->task_create(clone_flags); 760} 761 762void security_task_free(struct task_struct *task) 763{ 764 security_ops->task_free(task); 765} 766 767int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 768{ 769 return security_ops->cred_alloc_blank(cred, gfp); 770} 771 772void security_cred_free(struct cred *cred) 773{ 774 security_ops->cred_free(cred); 775} 776 777int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 778{ 779 return security_ops->cred_prepare(new, old, gfp); 780} 781 782void security_transfer_creds(struct cred *new, const struct cred *old) 783{ 784 security_ops->cred_transfer(new, old); 785} 786 787int security_kernel_act_as(struct cred *new, u32 secid) 788{ 789 return security_ops->kernel_act_as(new, secid); 790} 791 792int security_kernel_create_files_as(struct cred *new, struct inode *inode) 793{ 794 return security_ops->kernel_create_files_as(new, inode); 795} 796 797int security_kernel_module_request(char *kmod_name) 798{ 799 return security_ops->kernel_module_request(kmod_name); 800} 801 802int security_task_fix_setuid(struct cred *new, const struct cred *old, 803 int flags) 804{ 805 return security_ops->task_fix_setuid(new, old, flags); 806} 807 808int security_task_setpgid(struct task_struct *p, pid_t pgid) 809{ 810 return security_ops->task_setpgid(p, pgid); 811} 812 813int security_task_getpgid(struct task_struct *p) 814{ 815 return security_ops->task_getpgid(p); 816} 817 818int security_task_getsid(struct task_struct *p) 819{ 820 return security_ops->task_getsid(p); 821} 822 823void security_task_getsecid(struct task_struct *p, u32 *secid) 824{ 825 security_ops->task_getsecid(p, secid); 826} 827EXPORT_SYMBOL(security_task_getsecid); 828 829int security_task_setnice(struct task_struct *p, int nice) 830{ 831 return security_ops->task_setnice(p, nice); 832} 833 834int security_task_setioprio(struct task_struct *p, int ioprio) 835{ 836 return security_ops->task_setioprio(p, ioprio); 837} 838 839int security_task_getioprio(struct task_struct *p) 840{ 841 return security_ops->task_getioprio(p); 842} 843 844int security_task_setrlimit(struct task_struct *p, unsigned int resource, 845 struct rlimit *new_rlim) 846{ 847 return security_ops->task_setrlimit(p, resource, new_rlim); 848} 849 850int security_task_setscheduler(struct task_struct *p) 851{ 852 return security_ops->task_setscheduler(p); 853} 854 855int security_task_getscheduler(struct task_struct *p) 856{ 857 return security_ops->task_getscheduler(p); 858} 859 860int security_task_movememory(struct task_struct *p) 861{ 862 return security_ops->task_movememory(p); 863} 864 865int security_task_kill(struct task_struct *p, struct siginfo *info, 866 int sig, u32 secid) 867{ 868 return security_ops->task_kill(p, info, sig, secid); 869} 870 871int security_task_wait(struct task_struct *p) 872{ 873 return security_ops->task_wait(p); 874} 875 876int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 877 unsigned long arg4, unsigned long arg5) 878{ 879 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 880} 881 882void security_task_to_inode(struct task_struct *p, struct inode *inode) 883{ 884 security_ops->task_to_inode(p, inode); 885} 886 887int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 888{ 889 return security_ops->ipc_permission(ipcp, flag); 890} 891 892void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 893{ 894 security_ops->ipc_getsecid(ipcp, secid); 895} 896 897int security_msg_msg_alloc(struct msg_msg *msg) 898{ 899 return security_ops->msg_msg_alloc_security(msg); 900} 901 902void security_msg_msg_free(struct msg_msg *msg) 903{ 904 security_ops->msg_msg_free_security(msg); 905} 906 907int security_msg_queue_alloc(struct msg_queue *msq) 908{ 909 return security_ops->msg_queue_alloc_security(msq); 910} 911 912void security_msg_queue_free(struct msg_queue *msq) 913{ 914 security_ops->msg_queue_free_security(msq); 915} 916 917int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 918{ 919 return security_ops->msg_queue_associate(msq, msqflg); 920} 921 922int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 923{ 924 return security_ops->msg_queue_msgctl(msq, cmd); 925} 926 927int security_msg_queue_msgsnd(struct msg_queue *msq, 928 struct msg_msg *msg, int msqflg) 929{ 930 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 931} 932 933int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 934 struct task_struct *target, long type, int mode) 935{ 936 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 937} 938 939int security_shm_alloc(struct shmid_kernel *shp) 940{ 941 return security_ops->shm_alloc_security(shp); 942} 943 944void security_shm_free(struct shmid_kernel *shp) 945{ 946 security_ops->shm_free_security(shp); 947} 948 949int security_shm_associate(struct shmid_kernel *shp, int shmflg) 950{ 951 return security_ops->shm_associate(shp, shmflg); 952} 953 954int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 955{ 956 return security_ops->shm_shmctl(shp, cmd); 957} 958 959int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 960{ 961 return security_ops->shm_shmat(shp, shmaddr, shmflg); 962} 963 964int security_sem_alloc(struct sem_array *sma) 965{ 966 return security_ops->sem_alloc_security(sma); 967} 968 969void security_sem_free(struct sem_array *sma) 970{ 971 security_ops->sem_free_security(sma); 972} 973 974int security_sem_associate(struct sem_array *sma, int semflg) 975{ 976 return security_ops->sem_associate(sma, semflg); 977} 978 979int security_sem_semctl(struct sem_array *sma, int cmd) 980{ 981 return security_ops->sem_semctl(sma, cmd); 982} 983 984int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 985 unsigned nsops, int alter) 986{ 987 return security_ops->sem_semop(sma, sops, nsops, alter); 988} 989 990void security_d_instantiate(struct dentry *dentry, struct inode *inode) 991{ 992 if (unlikely(inode && IS_PRIVATE(inode))) 993 return; 994 security_ops->d_instantiate(dentry, inode); 995} 996EXPORT_SYMBOL(security_d_instantiate); 997 998int security_getprocattr(struct task_struct *p, char *name, char **value) 999{ 1000 return security_ops->getprocattr(p, name, value); 1001} 1002 1003int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 1004{ 1005 return security_ops->setprocattr(p, name, value, size); 1006} 1007 1008int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1009{ 1010 return security_ops->netlink_send(sk, skb); 1011} 1012 1013int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1014{ 1015 return security_ops->secid_to_secctx(secid, secdata, seclen); 1016} 1017EXPORT_SYMBOL(security_secid_to_secctx); 1018 1019int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1020{ 1021 return security_ops->secctx_to_secid(secdata, seclen, secid); 1022} 1023EXPORT_SYMBOL(security_secctx_to_secid); 1024 1025void security_release_secctx(char *secdata, u32 seclen) 1026{ 1027 security_ops->release_secctx(secdata, seclen); 1028} 1029EXPORT_SYMBOL(security_release_secctx); 1030 1031int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1032{ 1033 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1034} 1035EXPORT_SYMBOL(security_inode_notifysecctx); 1036 1037int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1038{ 1039 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1040} 1041EXPORT_SYMBOL(security_inode_setsecctx); 1042 1043int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1044{ 1045 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1046} 1047EXPORT_SYMBOL(security_inode_getsecctx); 1048 1049#ifdef CONFIG_SECURITY_NETWORK 1050 1051int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1052{ 1053 return security_ops->unix_stream_connect(sock, other, newsk); 1054} 1055EXPORT_SYMBOL(security_unix_stream_connect); 1056 1057int security_unix_may_send(struct socket *sock, struct socket *other) 1058{ 1059 return security_ops->unix_may_send(sock, other); 1060} 1061EXPORT_SYMBOL(security_unix_may_send); 1062 1063int security_socket_create(int family, int type, int protocol, int kern) 1064{ 1065 return security_ops->socket_create(family, type, protocol, kern); 1066} 1067 1068int security_socket_post_create(struct socket *sock, int family, 1069 int type, int protocol, int kern) 1070{ 1071 return security_ops->socket_post_create(sock, family, type, 1072 protocol, kern); 1073} 1074 1075int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1076{ 1077 return security_ops->socket_bind(sock, address, addrlen); 1078} 1079 1080int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1081{ 1082 return security_ops->socket_connect(sock, address, addrlen); 1083} 1084 1085int security_socket_listen(struct socket *sock, int backlog) 1086{ 1087 return security_ops->socket_listen(sock, backlog); 1088} 1089 1090int security_socket_accept(struct socket *sock, struct socket *newsock) 1091{ 1092 return security_ops->socket_accept(sock, newsock); 1093} 1094 1095int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1096{ 1097 return security_ops->socket_sendmsg(sock, msg, size); 1098} 1099 1100int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1101 int size, int flags) 1102{ 1103 return security_ops->socket_recvmsg(sock, msg, size, flags); 1104} 1105 1106int security_socket_getsockname(struct socket *sock) 1107{ 1108 return security_ops->socket_getsockname(sock); 1109} 1110 1111int security_socket_getpeername(struct socket *sock) 1112{ 1113 return security_ops->socket_getpeername(sock); 1114} 1115 1116int security_socket_getsockopt(struct socket *sock, int level, int optname) 1117{ 1118 return security_ops->socket_getsockopt(sock, level, optname); 1119} 1120 1121int security_socket_setsockopt(struct socket *sock, int level, int optname) 1122{ 1123 return security_ops->socket_setsockopt(sock, level, optname); 1124} 1125 1126int security_socket_shutdown(struct socket *sock, int how) 1127{ 1128 return security_ops->socket_shutdown(sock, how); 1129} 1130 1131int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1132{ 1133 return security_ops->socket_sock_rcv_skb(sk, skb); 1134} 1135EXPORT_SYMBOL(security_sock_rcv_skb); 1136 1137int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1138 int __user *optlen, unsigned len) 1139{ 1140 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1141} 1142 1143int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1144{ 1145 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1146} 1147EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1148 1149int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1150{ 1151 return security_ops->sk_alloc_security(sk, family, priority); 1152} 1153 1154void security_sk_free(struct sock *sk) 1155{ 1156 security_ops->sk_free_security(sk); 1157} 1158 1159void security_sk_clone(const struct sock *sk, struct sock *newsk) 1160{ 1161 security_ops->sk_clone_security(sk, newsk); 1162} 1163EXPORT_SYMBOL(security_sk_clone); 1164 1165void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1166{ 1167 security_ops->sk_getsecid(sk, &fl->flowi_secid); 1168} 1169EXPORT_SYMBOL(security_sk_classify_flow); 1170 1171void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1172{ 1173 security_ops->req_classify_flow(req, fl); 1174} 1175EXPORT_SYMBOL(security_req_classify_flow); 1176 1177void security_sock_graft(struct sock *sk, struct socket *parent) 1178{ 1179 security_ops->sock_graft(sk, parent); 1180} 1181EXPORT_SYMBOL(security_sock_graft); 1182 1183int security_inet_conn_request(struct sock *sk, 1184 struct sk_buff *skb, struct request_sock *req) 1185{ 1186 return security_ops->inet_conn_request(sk, skb, req); 1187} 1188EXPORT_SYMBOL(security_inet_conn_request); 1189 1190void security_inet_csk_clone(struct sock *newsk, 1191 const struct request_sock *req) 1192{ 1193 security_ops->inet_csk_clone(newsk, req); 1194} 1195 1196void security_inet_conn_established(struct sock *sk, 1197 struct sk_buff *skb) 1198{ 1199 security_ops->inet_conn_established(sk, skb); 1200} 1201 1202int security_secmark_relabel_packet(u32 secid) 1203{ 1204 return security_ops->secmark_relabel_packet(secid); 1205} 1206EXPORT_SYMBOL(security_secmark_relabel_packet); 1207 1208void security_secmark_refcount_inc(void) 1209{ 1210 security_ops->secmark_refcount_inc(); 1211} 1212EXPORT_SYMBOL(security_secmark_refcount_inc); 1213 1214void security_secmark_refcount_dec(void) 1215{ 1216 security_ops->secmark_refcount_dec(); 1217} 1218EXPORT_SYMBOL(security_secmark_refcount_dec); 1219 1220int security_tun_dev_create(void) 1221{ 1222 return security_ops->tun_dev_create(); 1223} 1224EXPORT_SYMBOL(security_tun_dev_create); 1225 1226void security_tun_dev_post_create(struct sock *sk) 1227{ 1228 return security_ops->tun_dev_post_create(sk); 1229} 1230EXPORT_SYMBOL(security_tun_dev_post_create); 1231 1232int security_tun_dev_attach(struct sock *sk) 1233{ 1234 return security_ops->tun_dev_attach(sk); 1235} 1236EXPORT_SYMBOL(security_tun_dev_attach); 1237 1238#endif /* CONFIG_SECURITY_NETWORK */ 1239 1240#ifdef CONFIG_SECURITY_NETWORK_XFRM 1241 1242int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1243{ 1244 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1245} 1246EXPORT_SYMBOL(security_xfrm_policy_alloc); 1247 1248int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1249 struct xfrm_sec_ctx **new_ctxp) 1250{ 1251 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1252} 1253 1254void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1255{ 1256 security_ops->xfrm_policy_free_security(ctx); 1257} 1258EXPORT_SYMBOL(security_xfrm_policy_free); 1259 1260int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1261{ 1262 return security_ops->xfrm_policy_delete_security(ctx); 1263} 1264 1265int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1266{ 1267 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1268} 1269EXPORT_SYMBOL(security_xfrm_state_alloc); 1270 1271int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1272 struct xfrm_sec_ctx *polsec, u32 secid) 1273{ 1274 if (!polsec) 1275 return 0; 1276 /* 1277 * We want the context to be taken from secid which is usually 1278 * from the sock. 1279 */ 1280 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1281} 1282 1283int security_xfrm_state_delete(struct xfrm_state *x) 1284{ 1285 return security_ops->xfrm_state_delete_security(x); 1286} 1287EXPORT_SYMBOL(security_xfrm_state_delete); 1288 1289void security_xfrm_state_free(struct xfrm_state *x) 1290{ 1291 security_ops->xfrm_state_free_security(x); 1292} 1293 1294int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1295{ 1296 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1297} 1298 1299int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1300 struct xfrm_policy *xp, 1301 const struct flowi *fl) 1302{ 1303 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1304} 1305 1306int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1307{ 1308 return security_ops->xfrm_decode_session(skb, secid, 1); 1309} 1310 1311void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1312{ 1313 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0); 1314 1315 BUG_ON(rc); 1316} 1317EXPORT_SYMBOL(security_skb_classify_flow); 1318 1319#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1320 1321#ifdef CONFIG_KEYS 1322 1323int security_key_alloc(struct key *key, const struct cred *cred, 1324 unsigned long flags) 1325{ 1326 return security_ops->key_alloc(key, cred, flags); 1327} 1328 1329void security_key_free(struct key *key) 1330{ 1331 security_ops->key_free(key); 1332} 1333 1334int security_key_permission(key_ref_t key_ref, 1335 const struct cred *cred, key_perm_t perm) 1336{ 1337 return security_ops->key_permission(key_ref, cred, perm); 1338} 1339 1340int security_key_getsecurity(struct key *key, char **_buffer) 1341{ 1342 return security_ops->key_getsecurity(key, _buffer); 1343} 1344 1345#endif /* CONFIG_KEYS */ 1346 1347#ifdef CONFIG_AUDIT 1348 1349int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1350{ 1351 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1352} 1353 1354int security_audit_rule_known(struct audit_krule *krule) 1355{ 1356 return security_ops->audit_rule_known(krule); 1357} 1358 1359void security_audit_rule_free(void *lsmrule) 1360{ 1361 security_ops->audit_rule_free(lsmrule); 1362} 1363 1364int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1365 struct audit_context *actx) 1366{ 1367 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1368} 1369 1370#endif /* CONFIG_AUDIT */