at v3.5 67 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23#include <linux/pm_runtime.h> /* for runtime PM */ 24 25struct usb_device; 26struct usb_driver; 27struct wusb_dev; 28 29/*-------------------------------------------------------------------------*/ 30 31/* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47struct ep_device; 48 49/** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @urb_list: urbs queued to this endpoint; maintained by usbcore 54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 55 * with one or more transfer descriptors (TDs) per urb 56 * @ep_dev: ep_device for sysfs info 57 * @extra: descriptors following this endpoint in the configuration 58 * @extralen: how many bytes of "extra" are valid 59 * @enabled: URBs may be submitted to this endpoint 60 * 61 * USB requests are always queued to a given endpoint, identified by a 62 * descriptor within an active interface in a given USB configuration. 63 */ 64struct usb_host_endpoint { 65 struct usb_endpoint_descriptor desc; 66 struct usb_ss_ep_comp_descriptor ss_ep_comp; 67 struct list_head urb_list; 68 void *hcpriv; 69 struct ep_device *ep_dev; /* For sysfs info */ 70 71 unsigned char *extra; /* Extra descriptors */ 72 int extralen; 73 int enabled; 74}; 75 76/* host-side wrapper for one interface setting's parsed descriptors */ 77struct usb_host_interface { 78 struct usb_interface_descriptor desc; 79 80 /* array of desc.bNumEndpoint endpoints associated with this 81 * interface setting. these will be in no particular order. 82 */ 83 struct usb_host_endpoint *endpoint; 84 85 char *string; /* iInterface string, if present */ 86 unsigned char *extra; /* Extra descriptors */ 87 int extralen; 88}; 89 90enum usb_interface_condition { 91 USB_INTERFACE_UNBOUND = 0, 92 USB_INTERFACE_BINDING, 93 USB_INTERFACE_BOUND, 94 USB_INTERFACE_UNBINDING, 95}; 96 97/** 98 * struct usb_interface - what usb device drivers talk to 99 * @altsetting: array of interface structures, one for each alternate 100 * setting that may be selected. Each one includes a set of 101 * endpoint configurations. They will be in no particular order. 102 * @cur_altsetting: the current altsetting. 103 * @num_altsetting: number of altsettings defined. 104 * @intf_assoc: interface association descriptor 105 * @minor: the minor number assigned to this interface, if this 106 * interface is bound to a driver that uses the USB major number. 107 * If this interface does not use the USB major, this field should 108 * be unused. The driver should set this value in the probe() 109 * function of the driver, after it has been assigned a minor 110 * number from the USB core by calling usb_register_dev(). 111 * @condition: binding state of the interface: not bound, binding 112 * (in probe()), bound to a driver, or unbinding (in disconnect()) 113 * @sysfs_files_created: sysfs attributes exist 114 * @ep_devs_created: endpoint child pseudo-devices exist 115 * @unregistering: flag set when the interface is being unregistered 116 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 117 * capability during autosuspend. 118 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 119 * has been deferred. 120 * @needs_binding: flag set when the driver should be re-probed or unbound 121 * following a reset or suspend operation it doesn't support. 122 * @dev: driver model's view of this device 123 * @usb_dev: if an interface is bound to the USB major, this will point 124 * to the sysfs representation for that device. 125 * @pm_usage_cnt: PM usage counter for this interface 126 * @reset_ws: Used for scheduling resets from atomic context. 127 * @reset_running: set to 1 if the interface is currently running a 128 * queued reset so that usb_cancel_queued_reset() doesn't try to 129 * remove from the workqueue when running inside the worker 130 * thread. See __usb_queue_reset_device(). 131 * @resetting_device: USB core reset the device, so use alt setting 0 as 132 * current; needs bandwidth alloc after reset. 133 * 134 * USB device drivers attach to interfaces on a physical device. Each 135 * interface encapsulates a single high level function, such as feeding 136 * an audio stream to a speaker or reporting a change in a volume control. 137 * Many USB devices only have one interface. The protocol used to talk to 138 * an interface's endpoints can be defined in a usb "class" specification, 139 * or by a product's vendor. The (default) control endpoint is part of 140 * every interface, but is never listed among the interface's descriptors. 141 * 142 * The driver that is bound to the interface can use standard driver model 143 * calls such as dev_get_drvdata() on the dev member of this structure. 144 * 145 * Each interface may have alternate settings. The initial configuration 146 * of a device sets altsetting 0, but the device driver can change 147 * that setting using usb_set_interface(). Alternate settings are often 148 * used to control the use of periodic endpoints, such as by having 149 * different endpoints use different amounts of reserved USB bandwidth. 150 * All standards-conformant USB devices that use isochronous endpoints 151 * will use them in non-default settings. 152 * 153 * The USB specification says that alternate setting numbers must run from 154 * 0 to one less than the total number of alternate settings. But some 155 * devices manage to mess this up, and the structures aren't necessarily 156 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 157 * look up an alternate setting in the altsetting array based on its number. 158 */ 159struct usb_interface { 160 /* array of alternate settings for this interface, 161 * stored in no particular order */ 162 struct usb_host_interface *altsetting; 163 164 struct usb_host_interface *cur_altsetting; /* the currently 165 * active alternate setting */ 166 unsigned num_altsetting; /* number of alternate settings */ 167 168 /* If there is an interface association descriptor then it will list 169 * the associated interfaces */ 170 struct usb_interface_assoc_descriptor *intf_assoc; 171 172 int minor; /* minor number this interface is 173 * bound to */ 174 enum usb_interface_condition condition; /* state of binding */ 175 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 176 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 177 unsigned unregistering:1; /* unregistration is in progress */ 178 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 179 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 180 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 181 unsigned reset_running:1; 182 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 183 184 struct device dev; /* interface specific device info */ 185 struct device *usb_dev; 186 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 187 struct work_struct reset_ws; /* for resets in atomic context */ 188}; 189#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 190 191static inline void *usb_get_intfdata(struct usb_interface *intf) 192{ 193 return dev_get_drvdata(&intf->dev); 194} 195 196static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 197{ 198 dev_set_drvdata(&intf->dev, data); 199} 200 201struct usb_interface *usb_get_intf(struct usb_interface *intf); 202void usb_put_intf(struct usb_interface *intf); 203 204/* this maximum is arbitrary */ 205#define USB_MAXINTERFACES 32 206#define USB_MAXIADS (USB_MAXINTERFACES/2) 207 208/** 209 * struct usb_interface_cache - long-term representation of a device interface 210 * @num_altsetting: number of altsettings defined. 211 * @ref: reference counter. 212 * @altsetting: variable-length array of interface structures, one for 213 * each alternate setting that may be selected. Each one includes a 214 * set of endpoint configurations. They will be in no particular order. 215 * 216 * These structures persist for the lifetime of a usb_device, unlike 217 * struct usb_interface (which persists only as long as its configuration 218 * is installed). The altsetting arrays can be accessed through these 219 * structures at any time, permitting comparison of configurations and 220 * providing support for the /proc/bus/usb/devices pseudo-file. 221 */ 222struct usb_interface_cache { 223 unsigned num_altsetting; /* number of alternate settings */ 224 struct kref ref; /* reference counter */ 225 226 /* variable-length array of alternate settings for this interface, 227 * stored in no particular order */ 228 struct usb_host_interface altsetting[0]; 229}; 230#define ref_to_usb_interface_cache(r) \ 231 container_of(r, struct usb_interface_cache, ref) 232#define altsetting_to_usb_interface_cache(a) \ 233 container_of(a, struct usb_interface_cache, altsetting[0]) 234 235/** 236 * struct usb_host_config - representation of a device's configuration 237 * @desc: the device's configuration descriptor. 238 * @string: pointer to the cached version of the iConfiguration string, if 239 * present for this configuration. 240 * @intf_assoc: list of any interface association descriptors in this config 241 * @interface: array of pointers to usb_interface structures, one for each 242 * interface in the configuration. The number of interfaces is stored 243 * in desc.bNumInterfaces. These pointers are valid only while the 244 * the configuration is active. 245 * @intf_cache: array of pointers to usb_interface_cache structures, one 246 * for each interface in the configuration. These structures exist 247 * for the entire life of the device. 248 * @extra: pointer to buffer containing all extra descriptors associated 249 * with this configuration (those preceding the first interface 250 * descriptor). 251 * @extralen: length of the extra descriptors buffer. 252 * 253 * USB devices may have multiple configurations, but only one can be active 254 * at any time. Each encapsulates a different operational environment; 255 * for example, a dual-speed device would have separate configurations for 256 * full-speed and high-speed operation. The number of configurations 257 * available is stored in the device descriptor as bNumConfigurations. 258 * 259 * A configuration can contain multiple interfaces. Each corresponds to 260 * a different function of the USB device, and all are available whenever 261 * the configuration is active. The USB standard says that interfaces 262 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 263 * of devices get this wrong. In addition, the interface array is not 264 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 265 * look up an interface entry based on its number. 266 * 267 * Device drivers should not attempt to activate configurations. The choice 268 * of which configuration to install is a policy decision based on such 269 * considerations as available power, functionality provided, and the user's 270 * desires (expressed through userspace tools). However, drivers can call 271 * usb_reset_configuration() to reinitialize the current configuration and 272 * all its interfaces. 273 */ 274struct usb_host_config { 275 struct usb_config_descriptor desc; 276 277 char *string; /* iConfiguration string, if present */ 278 279 /* List of any Interface Association Descriptors in this 280 * configuration. */ 281 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 282 283 /* the interfaces associated with this configuration, 284 * stored in no particular order */ 285 struct usb_interface *interface[USB_MAXINTERFACES]; 286 287 /* Interface information available even when this is not the 288 * active configuration */ 289 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 290 291 unsigned char *extra; /* Extra descriptors */ 292 int extralen; 293}; 294 295/* USB2.0 and USB3.0 device BOS descriptor set */ 296struct usb_host_bos { 297 struct usb_bos_descriptor *desc; 298 299 /* wireless cap descriptor is handled by wusb */ 300 struct usb_ext_cap_descriptor *ext_cap; 301 struct usb_ss_cap_descriptor *ss_cap; 302 struct usb_ss_container_id_descriptor *ss_id; 303}; 304 305int __usb_get_extra_descriptor(char *buffer, unsigned size, 306 unsigned char type, void **ptr); 307#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 308 __usb_get_extra_descriptor((ifpoint)->extra, \ 309 (ifpoint)->extralen, \ 310 type, (void **)ptr) 311 312/* ----------------------------------------------------------------------- */ 313 314/* USB device number allocation bitmap */ 315struct usb_devmap { 316 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 317}; 318 319/* 320 * Allocated per bus (tree of devices) we have: 321 */ 322struct usb_bus { 323 struct device *controller; /* host/master side hardware */ 324 int busnum; /* Bus number (in order of reg) */ 325 const char *bus_name; /* stable id (PCI slot_name etc) */ 326 u8 uses_dma; /* Does the host controller use DMA? */ 327 u8 uses_pio_for_control; /* 328 * Does the host controller use PIO 329 * for control transfers? 330 */ 331 u8 otg_port; /* 0, or number of OTG/HNP port */ 332 unsigned is_b_host:1; /* true during some HNP roleswitches */ 333 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 334 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 335 336 int devnum_next; /* Next open device number in 337 * round-robin allocation */ 338 339 struct usb_devmap devmap; /* device address allocation map */ 340 struct usb_device *root_hub; /* Root hub */ 341 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 342 struct list_head bus_list; /* list of busses */ 343 344 int bandwidth_allocated; /* on this bus: how much of the time 345 * reserved for periodic (intr/iso) 346 * requests is used, on average? 347 * Units: microseconds/frame. 348 * Limits: Full/low speed reserve 90%, 349 * while high speed reserves 80%. 350 */ 351 int bandwidth_int_reqs; /* number of Interrupt requests */ 352 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 353 354#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 355 struct mon_bus *mon_bus; /* non-null when associated */ 356 int monitored; /* non-zero when monitored */ 357#endif 358}; 359 360/* ----------------------------------------------------------------------- */ 361 362/* This is arbitrary. 363 * From USB 2.0 spec Table 11-13, offset 7, a hub can 364 * have up to 255 ports. The most yet reported is 10. 365 * 366 * Current Wireless USB host hardware (Intel i1480 for example) allows 367 * up to 22 devices to connect. Upcoming hardware might raise that 368 * limit. Because the arrays need to add a bit for hub status data, we 369 * do 31, so plus one evens out to four bytes. 370 */ 371#define USB_MAXCHILDREN (31) 372 373struct usb_tt; 374 375enum usb_device_removable { 376 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 377 USB_DEVICE_REMOVABLE, 378 USB_DEVICE_FIXED, 379}; 380 381/* 382 * USB 3.0 Link Power Management (LPM) parameters. 383 * 384 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 385 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 386 * All three are stored in nanoseconds. 387 */ 388struct usb3_lpm_parameters { 389 /* 390 * Maximum exit latency (MEL) for the host to send a packet to the 391 * device (either a Ping for isoc endpoints, or a data packet for 392 * interrupt endpoints), the hubs to decode the packet, and for all hubs 393 * in the path to transition the links to U0. 394 */ 395 unsigned int mel; 396 /* 397 * Maximum exit latency for a device-initiated LPM transition to bring 398 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 399 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 400 */ 401 unsigned int pel; 402 403 /* 404 * The System Exit Latency (SEL) includes PEL, and three other 405 * latencies. After a device initiates a U0 transition, it will take 406 * some time from when the device sends the ERDY to when it will finally 407 * receive the data packet. Basically, SEL should be the worse-case 408 * latency from when a device starts initiating a U0 transition to when 409 * it will get data. 410 */ 411 unsigned int sel; 412 /* 413 * The idle timeout value that is currently programmed into the parent 414 * hub for this device. When the timer counts to zero, the parent hub 415 * will initiate an LPM transition to either U1 or U2. 416 */ 417 int timeout; 418}; 419 420/** 421 * struct usb_device - kernel's representation of a USB device 422 * @devnum: device number; address on a USB bus 423 * @devpath: device ID string for use in messages (e.g., /port/...) 424 * @route: tree topology hex string for use with xHCI 425 * @state: device state: configured, not attached, etc. 426 * @speed: device speed: high/full/low (or error) 427 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 428 * @ttport: device port on that tt hub 429 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 430 * @parent: our hub, unless we're the root 431 * @bus: bus we're part of 432 * @ep0: endpoint 0 data (default control pipe) 433 * @dev: generic device interface 434 * @descriptor: USB device descriptor 435 * @bos: USB device BOS descriptor set 436 * @config: all of the device's configs 437 * @actconfig: the active configuration 438 * @ep_in: array of IN endpoints 439 * @ep_out: array of OUT endpoints 440 * @rawdescriptors: raw descriptors for each config 441 * @bus_mA: Current available from the bus 442 * @portnum: parent port number (origin 1) 443 * @level: number of USB hub ancestors 444 * @can_submit: URBs may be submitted 445 * @persist_enabled: USB_PERSIST enabled for this device 446 * @have_langid: whether string_langid is valid 447 * @authorized: policy has said we can use it; 448 * (user space) policy determines if we authorize this device to be 449 * used or not. By default, wired USB devices are authorized. 450 * WUSB devices are not, until we authorize them from user space. 451 * FIXME -- complete doc 452 * @authenticated: Crypto authentication passed 453 * @wusb: device is Wireless USB 454 * @lpm_capable: device supports LPM 455 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 456 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled 457 * @string_langid: language ID for strings 458 * @product: iProduct string, if present (static) 459 * @manufacturer: iManufacturer string, if present (static) 460 * @serial: iSerialNumber string, if present (static) 461 * @filelist: usbfs files that are open to this device 462 * @usb_classdev: USB class device that was created for usbfs device 463 * access from userspace 464 * @usbfs_dentry: usbfs dentry entry for the device 465 * @maxchild: number of ports if hub 466 * @children: child devices - USB devices that are attached to this hub 467 * @quirks: quirks of the whole device 468 * @urbnum: number of URBs submitted for the whole device 469 * @active_duration: total time device is not suspended 470 * @connect_time: time device was first connected 471 * @do_remote_wakeup: remote wakeup should be enabled 472 * @reset_resume: needs reset instead of resume 473 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 474 * specific data for the device. 475 * @slot_id: Slot ID assigned by xHCI 476 * @removable: Device can be physically removed from this port 477 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 478 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 479 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 480 * to keep track of the number of functions that require USB 3.0 Link Power 481 * Management to be disabled for this usb_device. This count should only 482 * be manipulated by those functions, with the bandwidth_mutex is held. 483 * 484 * Notes: 485 * Usbcore drivers should not set usbdev->state directly. Instead use 486 * usb_set_device_state(). 487 */ 488struct usb_device { 489 int devnum; 490 char devpath[16]; 491 u32 route; 492 enum usb_device_state state; 493 enum usb_device_speed speed; 494 495 struct usb_tt *tt; 496 int ttport; 497 498 unsigned int toggle[2]; 499 500 struct usb_device *parent; 501 struct usb_bus *bus; 502 struct usb_host_endpoint ep0; 503 504 struct device dev; 505 506 struct usb_device_descriptor descriptor; 507 struct usb_host_bos *bos; 508 struct usb_host_config *config; 509 510 struct usb_host_config *actconfig; 511 struct usb_host_endpoint *ep_in[16]; 512 struct usb_host_endpoint *ep_out[16]; 513 514 char **rawdescriptors; 515 516 unsigned short bus_mA; 517 u8 portnum; 518 u8 level; 519 520 unsigned can_submit:1; 521 unsigned persist_enabled:1; 522 unsigned have_langid:1; 523 unsigned authorized:1; 524 unsigned authenticated:1; 525 unsigned wusb:1; 526 unsigned lpm_capable:1; 527 unsigned usb2_hw_lpm_capable:1; 528 unsigned usb2_hw_lpm_enabled:1; 529 unsigned usb3_lpm_enabled:1; 530 int string_langid; 531 532 /* static strings from the device */ 533 char *product; 534 char *manufacturer; 535 char *serial; 536 537 struct list_head filelist; 538 539 int maxchild; 540 struct usb_device **children; 541 542 u32 quirks; 543 atomic_t urbnum; 544 545 unsigned long active_duration; 546 547#ifdef CONFIG_PM 548 unsigned long connect_time; 549 550 unsigned do_remote_wakeup:1; 551 unsigned reset_resume:1; 552#endif 553 struct wusb_dev *wusb_dev; 554 int slot_id; 555 enum usb_device_removable removable; 556 struct usb3_lpm_parameters u1_params; 557 struct usb3_lpm_parameters u2_params; 558 unsigned lpm_disable_count; 559 unsigned hub_initiated_lpm_disable_count; 560}; 561#define to_usb_device(d) container_of(d, struct usb_device, dev) 562 563static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 564{ 565 return to_usb_device(intf->dev.parent); 566} 567 568extern struct usb_device *usb_get_dev(struct usb_device *dev); 569extern void usb_put_dev(struct usb_device *dev); 570 571/* USB device locking */ 572#define usb_lock_device(udev) device_lock(&(udev)->dev) 573#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 574#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 575extern int usb_lock_device_for_reset(struct usb_device *udev, 576 const struct usb_interface *iface); 577 578/* USB port reset for device reinitialization */ 579extern int usb_reset_device(struct usb_device *dev); 580extern void usb_queue_reset_device(struct usb_interface *dev); 581 582 583/* USB autosuspend and autoresume */ 584#ifdef CONFIG_USB_SUSPEND 585extern void usb_enable_autosuspend(struct usb_device *udev); 586extern void usb_disable_autosuspend(struct usb_device *udev); 587 588extern int usb_autopm_get_interface(struct usb_interface *intf); 589extern void usb_autopm_put_interface(struct usb_interface *intf); 590extern int usb_autopm_get_interface_async(struct usb_interface *intf); 591extern void usb_autopm_put_interface_async(struct usb_interface *intf); 592extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 593extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 594 595static inline void usb_mark_last_busy(struct usb_device *udev) 596{ 597 pm_runtime_mark_last_busy(&udev->dev); 598} 599 600#else 601 602static inline int usb_enable_autosuspend(struct usb_device *udev) 603{ return 0; } 604static inline int usb_disable_autosuspend(struct usb_device *udev) 605{ return 0; } 606 607static inline int usb_autopm_get_interface(struct usb_interface *intf) 608{ return 0; } 609static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 610{ return 0; } 611 612static inline void usb_autopm_put_interface(struct usb_interface *intf) 613{ } 614static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 615{ } 616static inline void usb_autopm_get_interface_no_resume( 617 struct usb_interface *intf) 618{ } 619static inline void usb_autopm_put_interface_no_suspend( 620 struct usb_interface *intf) 621{ } 622static inline void usb_mark_last_busy(struct usb_device *udev) 623{ } 624#endif 625 626extern int usb_disable_lpm(struct usb_device *udev); 627extern void usb_enable_lpm(struct usb_device *udev); 628/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 629extern int usb_unlocked_disable_lpm(struct usb_device *udev); 630extern void usb_unlocked_enable_lpm(struct usb_device *udev); 631 632/*-------------------------------------------------------------------------*/ 633 634/* for drivers using iso endpoints */ 635extern int usb_get_current_frame_number(struct usb_device *usb_dev); 636 637/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 638extern int usb_alloc_streams(struct usb_interface *interface, 639 struct usb_host_endpoint **eps, unsigned int num_eps, 640 unsigned int num_streams, gfp_t mem_flags); 641 642/* Reverts a group of bulk endpoints back to not using stream IDs. */ 643extern void usb_free_streams(struct usb_interface *interface, 644 struct usb_host_endpoint **eps, unsigned int num_eps, 645 gfp_t mem_flags); 646 647/* used these for multi-interface device registration */ 648extern int usb_driver_claim_interface(struct usb_driver *driver, 649 struct usb_interface *iface, void *priv); 650 651/** 652 * usb_interface_claimed - returns true iff an interface is claimed 653 * @iface: the interface being checked 654 * 655 * Returns true (nonzero) iff the interface is claimed, else false (zero). 656 * Callers must own the driver model's usb bus readlock. So driver 657 * probe() entries don't need extra locking, but other call contexts 658 * may need to explicitly claim that lock. 659 * 660 */ 661static inline int usb_interface_claimed(struct usb_interface *iface) 662{ 663 return (iface->dev.driver != NULL); 664} 665 666extern void usb_driver_release_interface(struct usb_driver *driver, 667 struct usb_interface *iface); 668const struct usb_device_id *usb_match_id(struct usb_interface *interface, 669 const struct usb_device_id *id); 670extern int usb_match_one_id(struct usb_interface *interface, 671 const struct usb_device_id *id); 672 673extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 674 int minor); 675extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 676 unsigned ifnum); 677extern struct usb_host_interface *usb_altnum_to_altsetting( 678 const struct usb_interface *intf, unsigned int altnum); 679extern struct usb_host_interface *usb_find_alt_setting( 680 struct usb_host_config *config, 681 unsigned int iface_num, 682 unsigned int alt_num); 683 684 685/** 686 * usb_make_path - returns stable device path in the usb tree 687 * @dev: the device whose path is being constructed 688 * @buf: where to put the string 689 * @size: how big is "buf"? 690 * 691 * Returns length of the string (> 0) or negative if size was too small. 692 * 693 * This identifier is intended to be "stable", reflecting physical paths in 694 * hardware such as physical bus addresses for host controllers or ports on 695 * USB hubs. That makes it stay the same until systems are physically 696 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 697 * controllers. Adding and removing devices, including virtual root hubs 698 * in host controller driver modules, does not change these path identifiers; 699 * neither does rebooting or re-enumerating. These are more useful identifiers 700 * than changeable ("unstable") ones like bus numbers or device addresses. 701 * 702 * With a partial exception for devices connected to USB 2.0 root hubs, these 703 * identifiers are also predictable. So long as the device tree isn't changed, 704 * plugging any USB device into a given hub port always gives it the same path. 705 * Because of the use of "companion" controllers, devices connected to ports on 706 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 707 * high speed, and a different one if they are full or low speed. 708 */ 709static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 710{ 711 int actual; 712 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 713 dev->devpath); 714 return (actual >= (int)size) ? -1 : actual; 715} 716 717/*-------------------------------------------------------------------------*/ 718 719#define USB_DEVICE_ID_MATCH_DEVICE \ 720 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 721#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 722 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 723#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 724 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 725#define USB_DEVICE_ID_MATCH_DEV_INFO \ 726 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 727 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 728 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 729#define USB_DEVICE_ID_MATCH_INT_INFO \ 730 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 731 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 732 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 733 734/** 735 * USB_DEVICE - macro used to describe a specific usb device 736 * @vend: the 16 bit USB Vendor ID 737 * @prod: the 16 bit USB Product ID 738 * 739 * This macro is used to create a struct usb_device_id that matches a 740 * specific device. 741 */ 742#define USB_DEVICE(vend, prod) \ 743 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 744 .idVendor = (vend), \ 745 .idProduct = (prod) 746/** 747 * USB_DEVICE_VER - describe a specific usb device with a version range 748 * @vend: the 16 bit USB Vendor ID 749 * @prod: the 16 bit USB Product ID 750 * @lo: the bcdDevice_lo value 751 * @hi: the bcdDevice_hi value 752 * 753 * This macro is used to create a struct usb_device_id that matches a 754 * specific device, with a version range. 755 */ 756#define USB_DEVICE_VER(vend, prod, lo, hi) \ 757 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 758 .idVendor = (vend), \ 759 .idProduct = (prod), \ 760 .bcdDevice_lo = (lo), \ 761 .bcdDevice_hi = (hi) 762 763/** 764 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 765 * @vend: the 16 bit USB Vendor ID 766 * @prod: the 16 bit USB Product ID 767 * @pr: bInterfaceProtocol value 768 * 769 * This macro is used to create a struct usb_device_id that matches a 770 * specific interface protocol of devices. 771 */ 772#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 773 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 774 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 775 .idVendor = (vend), \ 776 .idProduct = (prod), \ 777 .bInterfaceProtocol = (pr) 778 779/** 780 * USB_DEVICE_INFO - macro used to describe a class of usb devices 781 * @cl: bDeviceClass value 782 * @sc: bDeviceSubClass value 783 * @pr: bDeviceProtocol value 784 * 785 * This macro is used to create a struct usb_device_id that matches a 786 * specific class of devices. 787 */ 788#define USB_DEVICE_INFO(cl, sc, pr) \ 789 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 790 .bDeviceClass = (cl), \ 791 .bDeviceSubClass = (sc), \ 792 .bDeviceProtocol = (pr) 793 794/** 795 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 796 * @cl: bInterfaceClass value 797 * @sc: bInterfaceSubClass value 798 * @pr: bInterfaceProtocol value 799 * 800 * This macro is used to create a struct usb_device_id that matches a 801 * specific class of interfaces. 802 */ 803#define USB_INTERFACE_INFO(cl, sc, pr) \ 804 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 805 .bInterfaceClass = (cl), \ 806 .bInterfaceSubClass = (sc), \ 807 .bInterfaceProtocol = (pr) 808 809/** 810 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 811 * @vend: the 16 bit USB Vendor ID 812 * @prod: the 16 bit USB Product ID 813 * @cl: bInterfaceClass value 814 * @sc: bInterfaceSubClass value 815 * @pr: bInterfaceProtocol value 816 * 817 * This macro is used to create a struct usb_device_id that matches a 818 * specific device with a specific class of interfaces. 819 * 820 * This is especially useful when explicitly matching devices that have 821 * vendor specific bDeviceClass values, but standards-compliant interfaces. 822 */ 823#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 824 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 825 | USB_DEVICE_ID_MATCH_DEVICE, \ 826 .idVendor = (vend), \ 827 .idProduct = (prod), \ 828 .bInterfaceClass = (cl), \ 829 .bInterfaceSubClass = (sc), \ 830 .bInterfaceProtocol = (pr) 831 832/* ----------------------------------------------------------------------- */ 833 834/* Stuff for dynamic usb ids */ 835struct usb_dynids { 836 spinlock_t lock; 837 struct list_head list; 838}; 839 840struct usb_dynid { 841 struct list_head node; 842 struct usb_device_id id; 843}; 844 845extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 846 struct device_driver *driver, 847 const char *buf, size_t count); 848 849extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 850 851/** 852 * struct usbdrv_wrap - wrapper for driver-model structure 853 * @driver: The driver-model core driver structure. 854 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 855 */ 856struct usbdrv_wrap { 857 struct device_driver driver; 858 int for_devices; 859}; 860 861/** 862 * struct usb_driver - identifies USB interface driver to usbcore 863 * @name: The driver name should be unique among USB drivers, 864 * and should normally be the same as the module name. 865 * @probe: Called to see if the driver is willing to manage a particular 866 * interface on a device. If it is, probe returns zero and uses 867 * usb_set_intfdata() to associate driver-specific data with the 868 * interface. It may also use usb_set_interface() to specify the 869 * appropriate altsetting. If unwilling to manage the interface, 870 * return -ENODEV, if genuine IO errors occurred, an appropriate 871 * negative errno value. 872 * @disconnect: Called when the interface is no longer accessible, usually 873 * because its device has been (or is being) disconnected or the 874 * driver module is being unloaded. 875 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 876 * the "usbfs" filesystem. This lets devices provide ways to 877 * expose information to user space regardless of where they 878 * do (or don't) show up otherwise in the filesystem. 879 * @suspend: Called when the device is going to be suspended by the system. 880 * @resume: Called when the device is being resumed by the system. 881 * @reset_resume: Called when the suspended device has been reset instead 882 * of being resumed. 883 * @pre_reset: Called by usb_reset_device() when the device is about to be 884 * reset. This routine must not return until the driver has no active 885 * URBs for the device, and no more URBs may be submitted until the 886 * post_reset method is called. 887 * @post_reset: Called by usb_reset_device() after the device 888 * has been reset 889 * @id_table: USB drivers use ID table to support hotplugging. 890 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 891 * or your driver's probe function will never get called. 892 * @dynids: used internally to hold the list of dynamically added device 893 * ids for this driver. 894 * @drvwrap: Driver-model core structure wrapper. 895 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 896 * added to this driver by preventing the sysfs file from being created. 897 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 898 * for interfaces bound to this driver. 899 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 900 * endpoints before calling the driver's disconnect method. 901 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs 902 * to initiate lower power link state transitions when an idle timeout 903 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 904 * 905 * USB interface drivers must provide a name, probe() and disconnect() 906 * methods, and an id_table. Other driver fields are optional. 907 * 908 * The id_table is used in hotplugging. It holds a set of descriptors, 909 * and specialized data may be associated with each entry. That table 910 * is used by both user and kernel mode hotplugging support. 911 * 912 * The probe() and disconnect() methods are called in a context where 913 * they can sleep, but they should avoid abusing the privilege. Most 914 * work to connect to a device should be done when the device is opened, 915 * and undone at the last close. The disconnect code needs to address 916 * concurrency issues with respect to open() and close() methods, as 917 * well as forcing all pending I/O requests to complete (by unlinking 918 * them as necessary, and blocking until the unlinks complete). 919 */ 920struct usb_driver { 921 const char *name; 922 923 int (*probe) (struct usb_interface *intf, 924 const struct usb_device_id *id); 925 926 void (*disconnect) (struct usb_interface *intf); 927 928 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 929 void *buf); 930 931 int (*suspend) (struct usb_interface *intf, pm_message_t message); 932 int (*resume) (struct usb_interface *intf); 933 int (*reset_resume)(struct usb_interface *intf); 934 935 int (*pre_reset)(struct usb_interface *intf); 936 int (*post_reset)(struct usb_interface *intf); 937 938 const struct usb_device_id *id_table; 939 940 struct usb_dynids dynids; 941 struct usbdrv_wrap drvwrap; 942 unsigned int no_dynamic_id:1; 943 unsigned int supports_autosuspend:1; 944 unsigned int disable_hub_initiated_lpm:1; 945 unsigned int soft_unbind:1; 946}; 947#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 948 949/** 950 * struct usb_device_driver - identifies USB device driver to usbcore 951 * @name: The driver name should be unique among USB drivers, 952 * and should normally be the same as the module name. 953 * @probe: Called to see if the driver is willing to manage a particular 954 * device. If it is, probe returns zero and uses dev_set_drvdata() 955 * to associate driver-specific data with the device. If unwilling 956 * to manage the device, return a negative errno value. 957 * @disconnect: Called when the device is no longer accessible, usually 958 * because it has been (or is being) disconnected or the driver's 959 * module is being unloaded. 960 * @suspend: Called when the device is going to be suspended by the system. 961 * @resume: Called when the device is being resumed by the system. 962 * @drvwrap: Driver-model core structure wrapper. 963 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 964 * for devices bound to this driver. 965 * 966 * USB drivers must provide all the fields listed above except drvwrap. 967 */ 968struct usb_device_driver { 969 const char *name; 970 971 int (*probe) (struct usb_device *udev); 972 void (*disconnect) (struct usb_device *udev); 973 974 int (*suspend) (struct usb_device *udev, pm_message_t message); 975 int (*resume) (struct usb_device *udev, pm_message_t message); 976 struct usbdrv_wrap drvwrap; 977 unsigned int supports_autosuspend:1; 978}; 979#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 980 drvwrap.driver) 981 982extern struct bus_type usb_bus_type; 983 984/** 985 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 986 * @name: the usb class device name for this driver. Will show up in sysfs. 987 * @devnode: Callback to provide a naming hint for a possible 988 * device node to create. 989 * @fops: pointer to the struct file_operations of this driver. 990 * @minor_base: the start of the minor range for this driver. 991 * 992 * This structure is used for the usb_register_dev() and 993 * usb_unregister_dev() functions, to consolidate a number of the 994 * parameters used for them. 995 */ 996struct usb_class_driver { 997 char *name; 998 char *(*devnode)(struct device *dev, umode_t *mode); 999 const struct file_operations *fops; 1000 int minor_base; 1001}; 1002 1003/* 1004 * use these in module_init()/module_exit() 1005 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1006 */ 1007extern int usb_register_driver(struct usb_driver *, struct module *, 1008 const char *); 1009 1010/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1011#define usb_register(driver) \ 1012 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1013 1014extern void usb_deregister(struct usb_driver *); 1015 1016/** 1017 * module_usb_driver() - Helper macro for registering a USB driver 1018 * @__usb_driver: usb_driver struct 1019 * 1020 * Helper macro for USB drivers which do not do anything special in module 1021 * init/exit. This eliminates a lot of boilerplate. Each module may only 1022 * use this macro once, and calling it replaces module_init() and module_exit() 1023 */ 1024#define module_usb_driver(__usb_driver) \ 1025 module_driver(__usb_driver, usb_register, \ 1026 usb_deregister) 1027 1028extern int usb_register_device_driver(struct usb_device_driver *, 1029 struct module *); 1030extern void usb_deregister_device_driver(struct usb_device_driver *); 1031 1032extern int usb_register_dev(struct usb_interface *intf, 1033 struct usb_class_driver *class_driver); 1034extern void usb_deregister_dev(struct usb_interface *intf, 1035 struct usb_class_driver *class_driver); 1036 1037extern int usb_disabled(void); 1038 1039/* ----------------------------------------------------------------------- */ 1040 1041/* 1042 * URB support, for asynchronous request completions 1043 */ 1044 1045/* 1046 * urb->transfer_flags: 1047 * 1048 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1049 */ 1050#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1051#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 1052 * ignored */ 1053#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1054#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1055#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1056#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1057 * needed */ 1058#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1059 1060/* The following flags are used internally by usbcore and HCDs */ 1061#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1062#define URB_DIR_OUT 0 1063#define URB_DIR_MASK URB_DIR_IN 1064 1065#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1066#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1067#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1068#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1069#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1070#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1071#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1072#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1073 1074struct usb_iso_packet_descriptor { 1075 unsigned int offset; 1076 unsigned int length; /* expected length */ 1077 unsigned int actual_length; 1078 int status; 1079}; 1080 1081struct urb; 1082 1083struct usb_anchor { 1084 struct list_head urb_list; 1085 wait_queue_head_t wait; 1086 spinlock_t lock; 1087 unsigned int poisoned:1; 1088}; 1089 1090static inline void init_usb_anchor(struct usb_anchor *anchor) 1091{ 1092 INIT_LIST_HEAD(&anchor->urb_list); 1093 init_waitqueue_head(&anchor->wait); 1094 spin_lock_init(&anchor->lock); 1095} 1096 1097typedef void (*usb_complete_t)(struct urb *); 1098 1099/** 1100 * struct urb - USB Request Block 1101 * @urb_list: For use by current owner of the URB. 1102 * @anchor_list: membership in the list of an anchor 1103 * @anchor: to anchor URBs to a common mooring 1104 * @ep: Points to the endpoint's data structure. Will eventually 1105 * replace @pipe. 1106 * @pipe: Holds endpoint number, direction, type, and more. 1107 * Create these values with the eight macros available; 1108 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1109 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1110 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1111 * numbers range from zero to fifteen. Note that "in" endpoint two 1112 * is a different endpoint (and pipe) from "out" endpoint two. 1113 * The current configuration controls the existence, type, and 1114 * maximum packet size of any given endpoint. 1115 * @stream_id: the endpoint's stream ID for bulk streams 1116 * @dev: Identifies the USB device to perform the request. 1117 * @status: This is read in non-iso completion functions to get the 1118 * status of the particular request. ISO requests only use it 1119 * to tell whether the URB was unlinked; detailed status for 1120 * each frame is in the fields of the iso_frame-desc. 1121 * @transfer_flags: A variety of flags may be used to affect how URB 1122 * submission, unlinking, or operation are handled. Different 1123 * kinds of URB can use different flags. 1124 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1125 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1126 * (however, do not leave garbage in transfer_buffer even then). 1127 * This buffer must be suitable for DMA; allocate it with 1128 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1129 * of this buffer will be modified. This buffer is used for the data 1130 * stage of control transfers. 1131 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1132 * the device driver is saying that it provided this DMA address, 1133 * which the host controller driver should use in preference to the 1134 * transfer_buffer. 1135 * @sg: scatter gather buffer list 1136 * @num_mapped_sgs: (internal) number of mapped sg entries 1137 * @num_sgs: number of entries in the sg list 1138 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1139 * be broken up into chunks according to the current maximum packet 1140 * size for the endpoint, which is a function of the configuration 1141 * and is encoded in the pipe. When the length is zero, neither 1142 * transfer_buffer nor transfer_dma is used. 1143 * @actual_length: This is read in non-iso completion functions, and 1144 * it tells how many bytes (out of transfer_buffer_length) were 1145 * transferred. It will normally be the same as requested, unless 1146 * either an error was reported or a short read was performed. 1147 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1148 * short reads be reported as errors. 1149 * @setup_packet: Only used for control transfers, this points to eight bytes 1150 * of setup data. Control transfers always start by sending this data 1151 * to the device. Then transfer_buffer is read or written, if needed. 1152 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1153 * this field; setup_packet must point to a valid buffer. 1154 * @start_frame: Returns the initial frame for isochronous transfers. 1155 * @number_of_packets: Lists the number of ISO transfer buffers. 1156 * @interval: Specifies the polling interval for interrupt or isochronous 1157 * transfers. The units are frames (milliseconds) for full and low 1158 * speed devices, and microframes (1/8 millisecond) for highspeed 1159 * and SuperSpeed devices. 1160 * @error_count: Returns the number of ISO transfers that reported errors. 1161 * @context: For use in completion functions. This normally points to 1162 * request-specific driver context. 1163 * @complete: Completion handler. This URB is passed as the parameter to the 1164 * completion function. The completion function may then do what 1165 * it likes with the URB, including resubmitting or freeing it. 1166 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1167 * collect the transfer status for each buffer. 1168 * 1169 * This structure identifies USB transfer requests. URBs must be allocated by 1170 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1171 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1172 * are submitted using usb_submit_urb(), and pending requests may be canceled 1173 * using usb_unlink_urb() or usb_kill_urb(). 1174 * 1175 * Data Transfer Buffers: 1176 * 1177 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1178 * taken from the general page pool. That is provided by transfer_buffer 1179 * (control requests also use setup_packet), and host controller drivers 1180 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1181 * mapping operations can be expensive on some platforms (perhaps using a dma 1182 * bounce buffer or talking to an IOMMU), 1183 * although they're cheap on commodity x86 and ppc hardware. 1184 * 1185 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1186 * which tells the host controller driver that no such mapping is needed for 1187 * the transfer_buffer since 1188 * the device driver is DMA-aware. For example, a device driver might 1189 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1190 * When this transfer flag is provided, host controller drivers will 1191 * attempt to use the dma address found in the transfer_dma 1192 * field rather than determining a dma address themselves. 1193 * 1194 * Note that transfer_buffer must still be set if the controller 1195 * does not support DMA (as indicated by bus.uses_dma) and when talking 1196 * to root hub. If you have to trasfer between highmem zone and the device 1197 * on such controller, create a bounce buffer or bail out with an error. 1198 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1199 * capable, assign NULL to it, so that usbmon knows not to use the value. 1200 * The setup_packet must always be set, so it cannot be located in highmem. 1201 * 1202 * Initialization: 1203 * 1204 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1205 * zero), and complete fields. All URBs must also initialize 1206 * transfer_buffer and transfer_buffer_length. They may provide the 1207 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1208 * to be treated as errors; that flag is invalid for write requests. 1209 * 1210 * Bulk URBs may 1211 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1212 * should always terminate with a short packet, even if it means adding an 1213 * extra zero length packet. 1214 * 1215 * Control URBs must provide a valid pointer in the setup_packet field. 1216 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1217 * beforehand. 1218 * 1219 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1220 * or, for highspeed devices, 125 microsecond units) 1221 * to poll for transfers. After the URB has been submitted, the interval 1222 * field reflects how the transfer was actually scheduled. 1223 * The polling interval may be more frequent than requested. 1224 * For example, some controllers have a maximum interval of 32 milliseconds, 1225 * while others support intervals of up to 1024 milliseconds. 1226 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1227 * endpoints, as well as high speed interrupt endpoints, the encoding of 1228 * the transfer interval in the endpoint descriptor is logarithmic. 1229 * Device drivers must convert that value to linear units themselves.) 1230 * 1231 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 1232 * the host controller to schedule the transfer as soon as bandwidth 1233 * utilization allows, and then set start_frame to reflect the actual frame 1234 * selected during submission. Otherwise drivers must specify the start_frame 1235 * and handle the case where the transfer can't begin then. However, drivers 1236 * won't know how bandwidth is currently allocated, and while they can 1237 * find the current frame using usb_get_current_frame_number () they can't 1238 * know the range for that frame number. (Ranges for frame counter values 1239 * are HC-specific, and can go from 256 to 65536 frames from "now".) 1240 * 1241 * Isochronous URBs have a different data transfer model, in part because 1242 * the quality of service is only "best effort". Callers provide specially 1243 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1244 * at the end. Each such packet is an individual ISO transfer. Isochronous 1245 * URBs are normally queued, submitted by drivers to arrange that 1246 * transfers are at least double buffered, and then explicitly resubmitted 1247 * in completion handlers, so 1248 * that data (such as audio or video) streams at as constant a rate as the 1249 * host controller scheduler can support. 1250 * 1251 * Completion Callbacks: 1252 * 1253 * The completion callback is made in_interrupt(), and one of the first 1254 * things that a completion handler should do is check the status field. 1255 * The status field is provided for all URBs. It is used to report 1256 * unlinked URBs, and status for all non-ISO transfers. It should not 1257 * be examined before the URB is returned to the completion handler. 1258 * 1259 * The context field is normally used to link URBs back to the relevant 1260 * driver or request state. 1261 * 1262 * When the completion callback is invoked for non-isochronous URBs, the 1263 * actual_length field tells how many bytes were transferred. This field 1264 * is updated even when the URB terminated with an error or was unlinked. 1265 * 1266 * ISO transfer status is reported in the status and actual_length fields 1267 * of the iso_frame_desc array, and the number of errors is reported in 1268 * error_count. Completion callbacks for ISO transfers will normally 1269 * (re)submit URBs to ensure a constant transfer rate. 1270 * 1271 * Note that even fields marked "public" should not be touched by the driver 1272 * when the urb is owned by the hcd, that is, since the call to 1273 * usb_submit_urb() till the entry into the completion routine. 1274 */ 1275struct urb { 1276 /* private: usb core and host controller only fields in the urb */ 1277 struct kref kref; /* reference count of the URB */ 1278 void *hcpriv; /* private data for host controller */ 1279 atomic_t use_count; /* concurrent submissions counter */ 1280 atomic_t reject; /* submissions will fail */ 1281 int unlinked; /* unlink error code */ 1282 1283 /* public: documented fields in the urb that can be used by drivers */ 1284 struct list_head urb_list; /* list head for use by the urb's 1285 * current owner */ 1286 struct list_head anchor_list; /* the URB may be anchored */ 1287 struct usb_anchor *anchor; 1288 struct usb_device *dev; /* (in) pointer to associated device */ 1289 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1290 unsigned int pipe; /* (in) pipe information */ 1291 unsigned int stream_id; /* (in) stream ID */ 1292 int status; /* (return) non-ISO status */ 1293 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1294 void *transfer_buffer; /* (in) associated data buffer */ 1295 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1296 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1297 int num_mapped_sgs; /* (internal) mapped sg entries */ 1298 int num_sgs; /* (in) number of entries in the sg list */ 1299 u32 transfer_buffer_length; /* (in) data buffer length */ 1300 u32 actual_length; /* (return) actual transfer length */ 1301 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1302 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1303 int start_frame; /* (modify) start frame (ISO) */ 1304 int number_of_packets; /* (in) number of ISO packets */ 1305 int interval; /* (modify) transfer interval 1306 * (INT/ISO) */ 1307 int error_count; /* (return) number of ISO errors */ 1308 void *context; /* (in) context for completion */ 1309 usb_complete_t complete; /* (in) completion routine */ 1310 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1311 /* (in) ISO ONLY */ 1312}; 1313 1314/* ----------------------------------------------------------------------- */ 1315 1316/** 1317 * usb_fill_control_urb - initializes a control urb 1318 * @urb: pointer to the urb to initialize. 1319 * @dev: pointer to the struct usb_device for this urb. 1320 * @pipe: the endpoint pipe 1321 * @setup_packet: pointer to the setup_packet buffer 1322 * @transfer_buffer: pointer to the transfer buffer 1323 * @buffer_length: length of the transfer buffer 1324 * @complete_fn: pointer to the usb_complete_t function 1325 * @context: what to set the urb context to. 1326 * 1327 * Initializes a control urb with the proper information needed to submit 1328 * it to a device. 1329 */ 1330static inline void usb_fill_control_urb(struct urb *urb, 1331 struct usb_device *dev, 1332 unsigned int pipe, 1333 unsigned char *setup_packet, 1334 void *transfer_buffer, 1335 int buffer_length, 1336 usb_complete_t complete_fn, 1337 void *context) 1338{ 1339 urb->dev = dev; 1340 urb->pipe = pipe; 1341 urb->setup_packet = setup_packet; 1342 urb->transfer_buffer = transfer_buffer; 1343 urb->transfer_buffer_length = buffer_length; 1344 urb->complete = complete_fn; 1345 urb->context = context; 1346} 1347 1348/** 1349 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1350 * @urb: pointer to the urb to initialize. 1351 * @dev: pointer to the struct usb_device for this urb. 1352 * @pipe: the endpoint pipe 1353 * @transfer_buffer: pointer to the transfer buffer 1354 * @buffer_length: length of the transfer buffer 1355 * @complete_fn: pointer to the usb_complete_t function 1356 * @context: what to set the urb context to. 1357 * 1358 * Initializes a bulk urb with the proper information needed to submit it 1359 * to a device. 1360 */ 1361static inline void usb_fill_bulk_urb(struct urb *urb, 1362 struct usb_device *dev, 1363 unsigned int pipe, 1364 void *transfer_buffer, 1365 int buffer_length, 1366 usb_complete_t complete_fn, 1367 void *context) 1368{ 1369 urb->dev = dev; 1370 urb->pipe = pipe; 1371 urb->transfer_buffer = transfer_buffer; 1372 urb->transfer_buffer_length = buffer_length; 1373 urb->complete = complete_fn; 1374 urb->context = context; 1375} 1376 1377/** 1378 * usb_fill_int_urb - macro to help initialize a interrupt urb 1379 * @urb: pointer to the urb to initialize. 1380 * @dev: pointer to the struct usb_device for this urb. 1381 * @pipe: the endpoint pipe 1382 * @transfer_buffer: pointer to the transfer buffer 1383 * @buffer_length: length of the transfer buffer 1384 * @complete_fn: pointer to the usb_complete_t function 1385 * @context: what to set the urb context to. 1386 * @interval: what to set the urb interval to, encoded like 1387 * the endpoint descriptor's bInterval value. 1388 * 1389 * Initializes a interrupt urb with the proper information needed to submit 1390 * it to a device. 1391 * 1392 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1393 * encoding of the endpoint interval, and express polling intervals in 1394 * microframes (eight per millisecond) rather than in frames (one per 1395 * millisecond). 1396 * 1397 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1398 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1399 * through to the host controller, rather than being translated into microframe 1400 * units. 1401 */ 1402static inline void usb_fill_int_urb(struct urb *urb, 1403 struct usb_device *dev, 1404 unsigned int pipe, 1405 void *transfer_buffer, 1406 int buffer_length, 1407 usb_complete_t complete_fn, 1408 void *context, 1409 int interval) 1410{ 1411 urb->dev = dev; 1412 urb->pipe = pipe; 1413 urb->transfer_buffer = transfer_buffer; 1414 urb->transfer_buffer_length = buffer_length; 1415 urb->complete = complete_fn; 1416 urb->context = context; 1417 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) 1418 urb->interval = 1 << (interval - 1); 1419 else 1420 urb->interval = interval; 1421 urb->start_frame = -1; 1422} 1423 1424extern void usb_init_urb(struct urb *urb); 1425extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1426extern void usb_free_urb(struct urb *urb); 1427#define usb_put_urb usb_free_urb 1428extern struct urb *usb_get_urb(struct urb *urb); 1429extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1430extern int usb_unlink_urb(struct urb *urb); 1431extern void usb_kill_urb(struct urb *urb); 1432extern void usb_poison_urb(struct urb *urb); 1433extern void usb_unpoison_urb(struct urb *urb); 1434extern void usb_block_urb(struct urb *urb); 1435extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1436extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1437extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1438extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1439extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1440extern void usb_unanchor_urb(struct urb *urb); 1441extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1442 unsigned int timeout); 1443extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1444extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1445extern int usb_anchor_empty(struct usb_anchor *anchor); 1446 1447#define usb_unblock_urb usb_unpoison_urb 1448 1449/** 1450 * usb_urb_dir_in - check if an URB describes an IN transfer 1451 * @urb: URB to be checked 1452 * 1453 * Returns 1 if @urb describes an IN transfer (device-to-host), 1454 * otherwise 0. 1455 */ 1456static inline int usb_urb_dir_in(struct urb *urb) 1457{ 1458 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1459} 1460 1461/** 1462 * usb_urb_dir_out - check if an URB describes an OUT transfer 1463 * @urb: URB to be checked 1464 * 1465 * Returns 1 if @urb describes an OUT transfer (host-to-device), 1466 * otherwise 0. 1467 */ 1468static inline int usb_urb_dir_out(struct urb *urb) 1469{ 1470 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1471} 1472 1473void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1474 gfp_t mem_flags, dma_addr_t *dma); 1475void usb_free_coherent(struct usb_device *dev, size_t size, 1476 void *addr, dma_addr_t dma); 1477 1478#if 0 1479struct urb *usb_buffer_map(struct urb *urb); 1480void usb_buffer_dmasync(struct urb *urb); 1481void usb_buffer_unmap(struct urb *urb); 1482#endif 1483 1484struct scatterlist; 1485int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1486 struct scatterlist *sg, int nents); 1487#if 0 1488void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1489 struct scatterlist *sg, int n_hw_ents); 1490#endif 1491void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1492 struct scatterlist *sg, int n_hw_ents); 1493 1494/*-------------------------------------------------------------------* 1495 * SYNCHRONOUS CALL SUPPORT * 1496 *-------------------------------------------------------------------*/ 1497 1498extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1499 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1500 void *data, __u16 size, int timeout); 1501extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1502 void *data, int len, int *actual_length, int timeout); 1503extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1504 void *data, int len, int *actual_length, 1505 int timeout); 1506 1507/* wrappers around usb_control_msg() for the most common standard requests */ 1508extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1509 unsigned char descindex, void *buf, int size); 1510extern int usb_get_status(struct usb_device *dev, 1511 int type, int target, void *data); 1512extern int usb_string(struct usb_device *dev, int index, 1513 char *buf, size_t size); 1514 1515/* wrappers that also update important state inside usbcore */ 1516extern int usb_clear_halt(struct usb_device *dev, int pipe); 1517extern int usb_reset_configuration(struct usb_device *dev); 1518extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1519extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1520 1521/* this request isn't really synchronous, but it belongs with the others */ 1522extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1523 1524/* 1525 * timeouts, in milliseconds, used for sending/receiving control messages 1526 * they typically complete within a few frames (msec) after they're issued 1527 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1528 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1529 */ 1530#define USB_CTRL_GET_TIMEOUT 5000 1531#define USB_CTRL_SET_TIMEOUT 5000 1532 1533 1534/** 1535 * struct usb_sg_request - support for scatter/gather I/O 1536 * @status: zero indicates success, else negative errno 1537 * @bytes: counts bytes transferred. 1538 * 1539 * These requests are initialized using usb_sg_init(), and then are used 1540 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1541 * members of the request object aren't for driver access. 1542 * 1543 * The status and bytecount values are valid only after usb_sg_wait() 1544 * returns. If the status is zero, then the bytecount matches the total 1545 * from the request. 1546 * 1547 * After an error completion, drivers may need to clear a halt condition 1548 * on the endpoint. 1549 */ 1550struct usb_sg_request { 1551 int status; 1552 size_t bytes; 1553 1554 /* private: 1555 * members below are private to usbcore, 1556 * and are not provided for driver access! 1557 */ 1558 spinlock_t lock; 1559 1560 struct usb_device *dev; 1561 int pipe; 1562 1563 int entries; 1564 struct urb **urbs; 1565 1566 int count; 1567 struct completion complete; 1568}; 1569 1570int usb_sg_init( 1571 struct usb_sg_request *io, 1572 struct usb_device *dev, 1573 unsigned pipe, 1574 unsigned period, 1575 struct scatterlist *sg, 1576 int nents, 1577 size_t length, 1578 gfp_t mem_flags 1579); 1580void usb_sg_cancel(struct usb_sg_request *io); 1581void usb_sg_wait(struct usb_sg_request *io); 1582 1583 1584/* ----------------------------------------------------------------------- */ 1585 1586/* 1587 * For various legacy reasons, Linux has a small cookie that's paired with 1588 * a struct usb_device to identify an endpoint queue. Queue characteristics 1589 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1590 * an unsigned int encoded as: 1591 * 1592 * - direction: bit 7 (0 = Host-to-Device [Out], 1593 * 1 = Device-to-Host [In] ... 1594 * like endpoint bEndpointAddress) 1595 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1596 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1597 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1598 * 10 = control, 11 = bulk) 1599 * 1600 * Given the device address and endpoint descriptor, pipes are redundant. 1601 */ 1602 1603/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1604/* (yet ... they're the values used by usbfs) */ 1605#define PIPE_ISOCHRONOUS 0 1606#define PIPE_INTERRUPT 1 1607#define PIPE_CONTROL 2 1608#define PIPE_BULK 3 1609 1610#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1611#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1612 1613#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1614#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1615 1616#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1617#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1618#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1619#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1620#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1621 1622static inline unsigned int __create_pipe(struct usb_device *dev, 1623 unsigned int endpoint) 1624{ 1625 return (dev->devnum << 8) | (endpoint << 15); 1626} 1627 1628/* Create various pipes... */ 1629#define usb_sndctrlpipe(dev, endpoint) \ 1630 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1631#define usb_rcvctrlpipe(dev, endpoint) \ 1632 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1633#define usb_sndisocpipe(dev, endpoint) \ 1634 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1635#define usb_rcvisocpipe(dev, endpoint) \ 1636 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1637#define usb_sndbulkpipe(dev, endpoint) \ 1638 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1639#define usb_rcvbulkpipe(dev, endpoint) \ 1640 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1641#define usb_sndintpipe(dev, endpoint) \ 1642 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1643#define usb_rcvintpipe(dev, endpoint) \ 1644 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1645 1646static inline struct usb_host_endpoint * 1647usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1648{ 1649 struct usb_host_endpoint **eps; 1650 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1651 return eps[usb_pipeendpoint(pipe)]; 1652} 1653 1654/*-------------------------------------------------------------------------*/ 1655 1656static inline __u16 1657usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1658{ 1659 struct usb_host_endpoint *ep; 1660 unsigned epnum = usb_pipeendpoint(pipe); 1661 1662 if (is_out) { 1663 WARN_ON(usb_pipein(pipe)); 1664 ep = udev->ep_out[epnum]; 1665 } else { 1666 WARN_ON(usb_pipeout(pipe)); 1667 ep = udev->ep_in[epnum]; 1668 } 1669 if (!ep) 1670 return 0; 1671 1672 /* NOTE: only 0x07ff bits are for packet size... */ 1673 return usb_endpoint_maxp(&ep->desc); 1674} 1675 1676/* ----------------------------------------------------------------------- */ 1677 1678/* translate USB error codes to codes user space understands */ 1679static inline int usb_translate_errors(int error_code) 1680{ 1681 switch (error_code) { 1682 case 0: 1683 case -ENOMEM: 1684 case -ENODEV: 1685 case -EOPNOTSUPP: 1686 return error_code; 1687 default: 1688 return -EIO; 1689 } 1690} 1691 1692/* Events from the usb core */ 1693#define USB_DEVICE_ADD 0x0001 1694#define USB_DEVICE_REMOVE 0x0002 1695#define USB_BUS_ADD 0x0003 1696#define USB_BUS_REMOVE 0x0004 1697extern void usb_register_notify(struct notifier_block *nb); 1698extern void usb_unregister_notify(struct notifier_block *nb); 1699 1700#ifdef DEBUG 1701#define dbg(format, arg...) \ 1702 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg) 1703#else 1704#define dbg(format, arg...) \ 1705do { \ 1706 if (0) \ 1707 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \ 1708} while (0) 1709#endif 1710 1711/* debugfs stuff */ 1712extern struct dentry *usb_debug_root; 1713 1714#endif /* __KERNEL__ */ 1715 1716#endif