at v3.5 36 kB view raw
1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/completion.h> 44#include <linux/debugobjects.h> 45#include <linux/bug.h> 46#include <linux/compiler.h> 47 48#ifdef CONFIG_RCU_TORTURE_TEST 49extern int rcutorture_runnable; /* for sysctl */ 50#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */ 51 52#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 53extern void rcutorture_record_test_transition(void); 54extern void rcutorture_record_progress(unsigned long vernum); 55extern void do_trace_rcu_torture_read(char *rcutorturename, 56 struct rcu_head *rhp); 57#else 58static inline void rcutorture_record_test_transition(void) 59{ 60} 61static inline void rcutorture_record_progress(unsigned long vernum) 62{ 63} 64#ifdef CONFIG_RCU_TRACE 65extern void do_trace_rcu_torture_read(char *rcutorturename, 66 struct rcu_head *rhp); 67#else 68#define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0) 69#endif 70#endif 71 72#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 73#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 74#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 75#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 76 77/* Exported common interfaces */ 78 79#ifdef CONFIG_PREEMPT_RCU 80 81/** 82 * call_rcu() - Queue an RCU callback for invocation after a grace period. 83 * @head: structure to be used for queueing the RCU updates. 84 * @func: actual callback function to be invoked after the grace period 85 * 86 * The callback function will be invoked some time after a full grace 87 * period elapses, in other words after all pre-existing RCU read-side 88 * critical sections have completed. However, the callback function 89 * might well execute concurrently with RCU read-side critical sections 90 * that started after call_rcu() was invoked. RCU read-side critical 91 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 92 * and may be nested. 93 */ 94extern void call_rcu(struct rcu_head *head, 95 void (*func)(struct rcu_head *head)); 96 97#else /* #ifdef CONFIG_PREEMPT_RCU */ 98 99/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 100#define call_rcu call_rcu_sched 101 102#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 103 104/** 105 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 106 * @head: structure to be used for queueing the RCU updates. 107 * @func: actual callback function to be invoked after the grace period 108 * 109 * The callback function will be invoked some time after a full grace 110 * period elapses, in other words after all currently executing RCU 111 * read-side critical sections have completed. call_rcu_bh() assumes 112 * that the read-side critical sections end on completion of a softirq 113 * handler. This means that read-side critical sections in process 114 * context must not be interrupted by softirqs. This interface is to be 115 * used when most of the read-side critical sections are in softirq context. 116 * RCU read-side critical sections are delimited by : 117 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 118 * OR 119 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 120 * These may be nested. 121 */ 122extern void call_rcu_bh(struct rcu_head *head, 123 void (*func)(struct rcu_head *head)); 124 125/** 126 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 127 * @head: structure to be used for queueing the RCU updates. 128 * @func: actual callback function to be invoked after the grace period 129 * 130 * The callback function will be invoked some time after a full grace 131 * period elapses, in other words after all currently executing RCU 132 * read-side critical sections have completed. call_rcu_sched() assumes 133 * that the read-side critical sections end on enabling of preemption 134 * or on voluntary preemption. 135 * RCU read-side critical sections are delimited by : 136 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 137 * OR 138 * anything that disables preemption. 139 * These may be nested. 140 */ 141extern void call_rcu_sched(struct rcu_head *head, 142 void (*func)(struct rcu_head *rcu)); 143 144extern void synchronize_sched(void); 145 146#ifdef CONFIG_PREEMPT_RCU 147 148extern void __rcu_read_lock(void); 149extern void __rcu_read_unlock(void); 150void synchronize_rcu(void); 151 152/* 153 * Defined as a macro as it is a very low level header included from 154 * areas that don't even know about current. This gives the rcu_read_lock() 155 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 156 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 157 */ 158#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 159 160#else /* #ifdef CONFIG_PREEMPT_RCU */ 161 162static inline void __rcu_read_lock(void) 163{ 164 preempt_disable(); 165} 166 167static inline void __rcu_read_unlock(void) 168{ 169 preempt_enable(); 170} 171 172static inline void synchronize_rcu(void) 173{ 174 synchronize_sched(); 175} 176 177static inline int rcu_preempt_depth(void) 178{ 179 return 0; 180} 181 182#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 183 184/* Internal to kernel */ 185extern void rcu_sched_qs(int cpu); 186extern void rcu_bh_qs(int cpu); 187extern void rcu_check_callbacks(int cpu, int user); 188struct notifier_block; 189extern void rcu_idle_enter(void); 190extern void rcu_idle_exit(void); 191extern void rcu_irq_enter(void); 192extern void rcu_irq_exit(void); 193extern void exit_rcu(void); 194 195/** 196 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 197 * @a: Code that RCU needs to pay attention to. 198 * 199 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 200 * in the inner idle loop, that is, between the rcu_idle_enter() and 201 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 202 * critical sections. However, things like powertop need tracepoints 203 * in the inner idle loop. 204 * 205 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 206 * will tell RCU that it needs to pay attending, invoke its argument 207 * (in this example, a call to the do_something_with_RCU() function), 208 * and then tell RCU to go back to ignoring this CPU. It is permissible 209 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 210 * quite limited. If deeper nesting is required, it will be necessary 211 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 212 * 213 * This macro may be used from process-level code only. 214 */ 215#define RCU_NONIDLE(a) \ 216 do { \ 217 rcu_idle_exit(); \ 218 do { a; } while (0); \ 219 rcu_idle_enter(); \ 220 } while (0) 221 222/* 223 * Infrastructure to implement the synchronize_() primitives in 224 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 225 */ 226 227typedef void call_rcu_func_t(struct rcu_head *head, 228 void (*func)(struct rcu_head *head)); 229void wait_rcu_gp(call_rcu_func_t crf); 230 231#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) 232#include <linux/rcutree.h> 233#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU) 234#include <linux/rcutiny.h> 235#else 236#error "Unknown RCU implementation specified to kernel configuration" 237#endif 238 239/* 240 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 241 * initialization and destruction of rcu_head on the stack. rcu_head structures 242 * allocated dynamically in the heap or defined statically don't need any 243 * initialization. 244 */ 245#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 246extern void init_rcu_head_on_stack(struct rcu_head *head); 247extern void destroy_rcu_head_on_stack(struct rcu_head *head); 248#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 249static inline void init_rcu_head_on_stack(struct rcu_head *head) 250{ 251} 252 253static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 254{ 255} 256#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 257 258#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 259bool rcu_lockdep_current_cpu_online(void); 260#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 261static inline bool rcu_lockdep_current_cpu_online(void) 262{ 263 return 1; 264} 265#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 266 267#ifdef CONFIG_DEBUG_LOCK_ALLOC 268 269#ifdef CONFIG_PROVE_RCU 270extern int rcu_is_cpu_idle(void); 271#else /* !CONFIG_PROVE_RCU */ 272static inline int rcu_is_cpu_idle(void) 273{ 274 return 0; 275} 276#endif /* else !CONFIG_PROVE_RCU */ 277 278static inline void rcu_lock_acquire(struct lockdep_map *map) 279{ 280 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_); 281} 282 283static inline void rcu_lock_release(struct lockdep_map *map) 284{ 285 lock_release(map, 1, _THIS_IP_); 286} 287 288extern struct lockdep_map rcu_lock_map; 289extern struct lockdep_map rcu_bh_lock_map; 290extern struct lockdep_map rcu_sched_lock_map; 291extern int debug_lockdep_rcu_enabled(void); 292 293/** 294 * rcu_read_lock_held() - might we be in RCU read-side critical section? 295 * 296 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU 297 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, 298 * this assumes we are in an RCU read-side critical section unless it can 299 * prove otherwise. This is useful for debug checks in functions that 300 * require that they be called within an RCU read-side critical section. 301 * 302 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot 303 * and while lockdep is disabled. 304 * 305 * Note that rcu_read_lock() and the matching rcu_read_unlock() must 306 * occur in the same context, for example, it is illegal to invoke 307 * rcu_read_unlock() in process context if the matching rcu_read_lock() 308 * was invoked from within an irq handler. 309 * 310 * Note that rcu_read_lock() is disallowed if the CPU is either idle or 311 * offline from an RCU perspective, so check for those as well. 312 */ 313static inline int rcu_read_lock_held(void) 314{ 315 if (!debug_lockdep_rcu_enabled()) 316 return 1; 317 if (rcu_is_cpu_idle()) 318 return 0; 319 if (!rcu_lockdep_current_cpu_online()) 320 return 0; 321 return lock_is_held(&rcu_lock_map); 322} 323 324/* 325 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file 326 * hell. 327 */ 328extern int rcu_read_lock_bh_held(void); 329 330/** 331 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 332 * 333 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 334 * RCU-sched read-side critical section. In absence of 335 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 336 * critical section unless it can prove otherwise. Note that disabling 337 * of preemption (including disabling irqs) counts as an RCU-sched 338 * read-side critical section. This is useful for debug checks in functions 339 * that required that they be called within an RCU-sched read-side 340 * critical section. 341 * 342 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 343 * and while lockdep is disabled. 344 * 345 * Note that if the CPU is in the idle loop from an RCU point of 346 * view (ie: that we are in the section between rcu_idle_enter() and 347 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 348 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 349 * that are in such a section, considering these as in extended quiescent 350 * state, so such a CPU is effectively never in an RCU read-side critical 351 * section regardless of what RCU primitives it invokes. This state of 352 * affairs is required --- we need to keep an RCU-free window in idle 353 * where the CPU may possibly enter into low power mode. This way we can 354 * notice an extended quiescent state to other CPUs that started a grace 355 * period. Otherwise we would delay any grace period as long as we run in 356 * the idle task. 357 * 358 * Similarly, we avoid claiming an SRCU read lock held if the current 359 * CPU is offline. 360 */ 361#ifdef CONFIG_PREEMPT_COUNT 362static inline int rcu_read_lock_sched_held(void) 363{ 364 int lockdep_opinion = 0; 365 366 if (!debug_lockdep_rcu_enabled()) 367 return 1; 368 if (rcu_is_cpu_idle()) 369 return 0; 370 if (!rcu_lockdep_current_cpu_online()) 371 return 0; 372 if (debug_locks) 373 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 374 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 375} 376#else /* #ifdef CONFIG_PREEMPT_COUNT */ 377static inline int rcu_read_lock_sched_held(void) 378{ 379 return 1; 380} 381#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 382 383#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 384 385# define rcu_lock_acquire(a) do { } while (0) 386# define rcu_lock_release(a) do { } while (0) 387 388static inline int rcu_read_lock_held(void) 389{ 390 return 1; 391} 392 393static inline int rcu_read_lock_bh_held(void) 394{ 395 return 1; 396} 397 398#ifdef CONFIG_PREEMPT_COUNT 399static inline int rcu_read_lock_sched_held(void) 400{ 401 return preempt_count() != 0 || irqs_disabled(); 402} 403#else /* #ifdef CONFIG_PREEMPT_COUNT */ 404static inline int rcu_read_lock_sched_held(void) 405{ 406 return 1; 407} 408#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 409 410#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 411 412#ifdef CONFIG_PROVE_RCU 413 414extern int rcu_my_thread_group_empty(void); 415 416/** 417 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 418 * @c: condition to check 419 * @s: informative message 420 */ 421#define rcu_lockdep_assert(c, s) \ 422 do { \ 423 static bool __section(.data.unlikely) __warned; \ 424 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 425 __warned = true; \ 426 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 427 } \ 428 } while (0) 429 430#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 431static inline void rcu_preempt_sleep_check(void) 432{ 433 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 434 "Illegal context switch in RCU read-side " 435 "critical section"); 436} 437#else /* #ifdef CONFIG_PROVE_RCU */ 438static inline void rcu_preempt_sleep_check(void) 439{ 440} 441#endif /* #else #ifdef CONFIG_PROVE_RCU */ 442 443#define rcu_sleep_check() \ 444 do { \ 445 rcu_preempt_sleep_check(); \ 446 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \ 447 "Illegal context switch in RCU-bh" \ 448 " read-side critical section"); \ 449 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \ 450 "Illegal context switch in RCU-sched"\ 451 " read-side critical section"); \ 452 } while (0) 453 454#else /* #ifdef CONFIG_PROVE_RCU */ 455 456#define rcu_lockdep_assert(c, s) do { } while (0) 457#define rcu_sleep_check() do { } while (0) 458 459#endif /* #else #ifdef CONFIG_PROVE_RCU */ 460 461/* 462 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 463 * and rcu_assign_pointer(). Some of these could be folded into their 464 * callers, but they are left separate in order to ease introduction of 465 * multiple flavors of pointers to match the multiple flavors of RCU 466 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 467 * the future. 468 */ 469 470#ifdef __CHECKER__ 471#define rcu_dereference_sparse(p, space) \ 472 ((void)(((typeof(*p) space *)p) == p)) 473#else /* #ifdef __CHECKER__ */ 474#define rcu_dereference_sparse(p, space) 475#endif /* #else #ifdef __CHECKER__ */ 476 477#define __rcu_access_pointer(p, space) \ 478 ({ \ 479 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 480 rcu_dereference_sparse(p, space); \ 481 ((typeof(*p) __force __kernel *)(_________p1)); \ 482 }) 483#define __rcu_dereference_check(p, c, space) \ 484 ({ \ 485 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \ 486 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \ 487 " usage"); \ 488 rcu_dereference_sparse(p, space); \ 489 smp_read_barrier_depends(); \ 490 ((typeof(*p) __force __kernel *)(_________p1)); \ 491 }) 492#define __rcu_dereference_protected(p, c, space) \ 493 ({ \ 494 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \ 495 " usage"); \ 496 rcu_dereference_sparse(p, space); \ 497 ((typeof(*p) __force __kernel *)(p)); \ 498 }) 499 500#define __rcu_access_index(p, space) \ 501 ({ \ 502 typeof(p) _________p1 = ACCESS_ONCE(p); \ 503 rcu_dereference_sparse(p, space); \ 504 (_________p1); \ 505 }) 506#define __rcu_dereference_index_check(p, c) \ 507 ({ \ 508 typeof(p) _________p1 = ACCESS_ONCE(p); \ 509 rcu_lockdep_assert(c, \ 510 "suspicious rcu_dereference_index_check()" \ 511 " usage"); \ 512 smp_read_barrier_depends(); \ 513 (_________p1); \ 514 }) 515#define __rcu_assign_pointer(p, v, space) \ 516 ({ \ 517 smp_wmb(); \ 518 (p) = (typeof(*v) __force space *)(v); \ 519 }) 520 521 522/** 523 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 524 * @p: The pointer to read 525 * 526 * Return the value of the specified RCU-protected pointer, but omit the 527 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 528 * when the value of this pointer is accessed, but the pointer is not 529 * dereferenced, for example, when testing an RCU-protected pointer against 530 * NULL. Although rcu_access_pointer() may also be used in cases where 531 * update-side locks prevent the value of the pointer from changing, you 532 * should instead use rcu_dereference_protected() for this use case. 533 * 534 * It is also permissible to use rcu_access_pointer() when read-side 535 * access to the pointer was removed at least one grace period ago, as 536 * is the case in the context of the RCU callback that is freeing up 537 * the data, or after a synchronize_rcu() returns. This can be useful 538 * when tearing down multi-linked structures after a grace period 539 * has elapsed. 540 */ 541#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 542 543/** 544 * rcu_dereference_check() - rcu_dereference with debug checking 545 * @p: The pointer to read, prior to dereferencing 546 * @c: The conditions under which the dereference will take place 547 * 548 * Do an rcu_dereference(), but check that the conditions under which the 549 * dereference will take place are correct. Typically the conditions 550 * indicate the various locking conditions that should be held at that 551 * point. The check should return true if the conditions are satisfied. 552 * An implicit check for being in an RCU read-side critical section 553 * (rcu_read_lock()) is included. 554 * 555 * For example: 556 * 557 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 558 * 559 * could be used to indicate to lockdep that foo->bar may only be dereferenced 560 * if either rcu_read_lock() is held, or that the lock required to replace 561 * the bar struct at foo->bar is held. 562 * 563 * Note that the list of conditions may also include indications of when a lock 564 * need not be held, for example during initialisation or destruction of the 565 * target struct: 566 * 567 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 568 * atomic_read(&foo->usage) == 0); 569 * 570 * Inserts memory barriers on architectures that require them 571 * (currently only the Alpha), prevents the compiler from refetching 572 * (and from merging fetches), and, more importantly, documents exactly 573 * which pointers are protected by RCU and checks that the pointer is 574 * annotated as __rcu. 575 */ 576#define rcu_dereference_check(p, c) \ 577 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu) 578 579/** 580 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 581 * @p: The pointer to read, prior to dereferencing 582 * @c: The conditions under which the dereference will take place 583 * 584 * This is the RCU-bh counterpart to rcu_dereference_check(). 585 */ 586#define rcu_dereference_bh_check(p, c) \ 587 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu) 588 589/** 590 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 591 * @p: The pointer to read, prior to dereferencing 592 * @c: The conditions under which the dereference will take place 593 * 594 * This is the RCU-sched counterpart to rcu_dereference_check(). 595 */ 596#define rcu_dereference_sched_check(p, c) \ 597 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \ 598 __rcu) 599 600#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 601 602/** 603 * rcu_access_index() - fetch RCU index with no dereferencing 604 * @p: The index to read 605 * 606 * Return the value of the specified RCU-protected index, but omit the 607 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 608 * when the value of this index is accessed, but the index is not 609 * dereferenced, for example, when testing an RCU-protected index against 610 * -1. Although rcu_access_index() may also be used in cases where 611 * update-side locks prevent the value of the index from changing, you 612 * should instead use rcu_dereference_index_protected() for this use case. 613 */ 614#define rcu_access_index(p) __rcu_access_index((p), __rcu) 615 616/** 617 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking 618 * @p: The pointer to read, prior to dereferencing 619 * @c: The conditions under which the dereference will take place 620 * 621 * Similar to rcu_dereference_check(), but omits the sparse checking. 622 * This allows rcu_dereference_index_check() to be used on integers, 623 * which can then be used as array indices. Attempting to use 624 * rcu_dereference_check() on an integer will give compiler warnings 625 * because the sparse address-space mechanism relies on dereferencing 626 * the RCU-protected pointer. Dereferencing integers is not something 627 * that even gcc will put up with. 628 * 629 * Note that this function does not implicitly check for RCU read-side 630 * critical sections. If this function gains lots of uses, it might 631 * make sense to provide versions for each flavor of RCU, but it does 632 * not make sense as of early 2010. 633 */ 634#define rcu_dereference_index_check(p, c) \ 635 __rcu_dereference_index_check((p), (c)) 636 637/** 638 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 639 * @p: The pointer to read, prior to dereferencing 640 * @c: The conditions under which the dereference will take place 641 * 642 * Return the value of the specified RCU-protected pointer, but omit 643 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This 644 * is useful in cases where update-side locks prevent the value of the 645 * pointer from changing. Please note that this primitive does -not- 646 * prevent the compiler from repeating this reference or combining it 647 * with other references, so it should not be used without protection 648 * of appropriate locks. 649 * 650 * This function is only for update-side use. Using this function 651 * when protected only by rcu_read_lock() will result in infrequent 652 * but very ugly failures. 653 */ 654#define rcu_dereference_protected(p, c) \ 655 __rcu_dereference_protected((p), (c), __rcu) 656 657 658/** 659 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 660 * @p: The pointer to read, prior to dereferencing 661 * 662 * This is a simple wrapper around rcu_dereference_check(). 663 */ 664#define rcu_dereference(p) rcu_dereference_check(p, 0) 665 666/** 667 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 668 * @p: The pointer to read, prior to dereferencing 669 * 670 * Makes rcu_dereference_check() do the dirty work. 671 */ 672#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 673 674/** 675 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 676 * @p: The pointer to read, prior to dereferencing 677 * 678 * Makes rcu_dereference_check() do the dirty work. 679 */ 680#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 681 682/** 683 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 684 * 685 * When synchronize_rcu() is invoked on one CPU while other CPUs 686 * are within RCU read-side critical sections, then the 687 * synchronize_rcu() is guaranteed to block until after all the other 688 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 689 * on one CPU while other CPUs are within RCU read-side critical 690 * sections, invocation of the corresponding RCU callback is deferred 691 * until after the all the other CPUs exit their critical sections. 692 * 693 * Note, however, that RCU callbacks are permitted to run concurrently 694 * with new RCU read-side critical sections. One way that this can happen 695 * is via the following sequence of events: (1) CPU 0 enters an RCU 696 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 697 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 698 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 699 * callback is invoked. This is legal, because the RCU read-side critical 700 * section that was running concurrently with the call_rcu() (and which 701 * therefore might be referencing something that the corresponding RCU 702 * callback would free up) has completed before the corresponding 703 * RCU callback is invoked. 704 * 705 * RCU read-side critical sections may be nested. Any deferred actions 706 * will be deferred until the outermost RCU read-side critical section 707 * completes. 708 * 709 * You can avoid reading and understanding the next paragraph by 710 * following this rule: don't put anything in an rcu_read_lock() RCU 711 * read-side critical section that would block in a !PREEMPT kernel. 712 * But if you want the full story, read on! 713 * 714 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it 715 * is illegal to block while in an RCU read-side critical section. In 716 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU) 717 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may 718 * be preempted, but explicit blocking is illegal. Finally, in preemptible 719 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds, 720 * RCU read-side critical sections may be preempted and they may also 721 * block, but only when acquiring spinlocks that are subject to priority 722 * inheritance. 723 */ 724static inline void rcu_read_lock(void) 725{ 726 __rcu_read_lock(); 727 __acquire(RCU); 728 rcu_lock_acquire(&rcu_lock_map); 729 rcu_lockdep_assert(!rcu_is_cpu_idle(), 730 "rcu_read_lock() used illegally while idle"); 731} 732 733/* 734 * So where is rcu_write_lock()? It does not exist, as there is no 735 * way for writers to lock out RCU readers. This is a feature, not 736 * a bug -- this property is what provides RCU's performance benefits. 737 * Of course, writers must coordinate with each other. The normal 738 * spinlock primitives work well for this, but any other technique may be 739 * used as well. RCU does not care how the writers keep out of each 740 * others' way, as long as they do so. 741 */ 742 743/** 744 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 745 * 746 * See rcu_read_lock() for more information. 747 */ 748static inline void rcu_read_unlock(void) 749{ 750 rcu_lockdep_assert(!rcu_is_cpu_idle(), 751 "rcu_read_unlock() used illegally while idle"); 752 rcu_lock_release(&rcu_lock_map); 753 __release(RCU); 754 __rcu_read_unlock(); 755} 756 757/** 758 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 759 * 760 * This is equivalent of rcu_read_lock(), but to be used when updates 761 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 762 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 763 * softirq handler to be a quiescent state, a process in RCU read-side 764 * critical section must be protected by disabling softirqs. Read-side 765 * critical sections in interrupt context can use just rcu_read_lock(), 766 * though this should at least be commented to avoid confusing people 767 * reading the code. 768 * 769 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 770 * must occur in the same context, for example, it is illegal to invoke 771 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 772 * was invoked from some other task. 773 */ 774static inline void rcu_read_lock_bh(void) 775{ 776 local_bh_disable(); 777 __acquire(RCU_BH); 778 rcu_lock_acquire(&rcu_bh_lock_map); 779 rcu_lockdep_assert(!rcu_is_cpu_idle(), 780 "rcu_read_lock_bh() used illegally while idle"); 781} 782 783/* 784 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 785 * 786 * See rcu_read_lock_bh() for more information. 787 */ 788static inline void rcu_read_unlock_bh(void) 789{ 790 rcu_lockdep_assert(!rcu_is_cpu_idle(), 791 "rcu_read_unlock_bh() used illegally while idle"); 792 rcu_lock_release(&rcu_bh_lock_map); 793 __release(RCU_BH); 794 local_bh_enable(); 795} 796 797/** 798 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 799 * 800 * This is equivalent of rcu_read_lock(), but to be used when updates 801 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 802 * Read-side critical sections can also be introduced by anything that 803 * disables preemption, including local_irq_disable() and friends. 804 * 805 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 806 * must occur in the same context, for example, it is illegal to invoke 807 * rcu_read_unlock_sched() from process context if the matching 808 * rcu_read_lock_sched() was invoked from an NMI handler. 809 */ 810static inline void rcu_read_lock_sched(void) 811{ 812 preempt_disable(); 813 __acquire(RCU_SCHED); 814 rcu_lock_acquire(&rcu_sched_lock_map); 815 rcu_lockdep_assert(!rcu_is_cpu_idle(), 816 "rcu_read_lock_sched() used illegally while idle"); 817} 818 819/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 820static inline notrace void rcu_read_lock_sched_notrace(void) 821{ 822 preempt_disable_notrace(); 823 __acquire(RCU_SCHED); 824} 825 826/* 827 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 828 * 829 * See rcu_read_lock_sched for more information. 830 */ 831static inline void rcu_read_unlock_sched(void) 832{ 833 rcu_lockdep_assert(!rcu_is_cpu_idle(), 834 "rcu_read_unlock_sched() used illegally while idle"); 835 rcu_lock_release(&rcu_sched_lock_map); 836 __release(RCU_SCHED); 837 preempt_enable(); 838} 839 840/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 841static inline notrace void rcu_read_unlock_sched_notrace(void) 842{ 843 __release(RCU_SCHED); 844 preempt_enable_notrace(); 845} 846 847/** 848 * rcu_assign_pointer() - assign to RCU-protected pointer 849 * @p: pointer to assign to 850 * @v: value to assign (publish) 851 * 852 * Assigns the specified value to the specified RCU-protected 853 * pointer, ensuring that any concurrent RCU readers will see 854 * any prior initialization. Returns the value assigned. 855 * 856 * Inserts memory barriers on architectures that require them 857 * (which is most of them), and also prevents the compiler from 858 * reordering the code that initializes the structure after the pointer 859 * assignment. More importantly, this call documents which pointers 860 * will be dereferenced by RCU read-side code. 861 * 862 * In some special cases, you may use RCU_INIT_POINTER() instead 863 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 864 * to the fact that it does not constrain either the CPU or the compiler. 865 * That said, using RCU_INIT_POINTER() when you should have used 866 * rcu_assign_pointer() is a very bad thing that results in 867 * impossible-to-diagnose memory corruption. So please be careful. 868 * See the RCU_INIT_POINTER() comment header for details. 869 */ 870#define rcu_assign_pointer(p, v) \ 871 __rcu_assign_pointer((p), (v), __rcu) 872 873/** 874 * RCU_INIT_POINTER() - initialize an RCU protected pointer 875 * 876 * Initialize an RCU-protected pointer in special cases where readers 877 * do not need ordering constraints on the CPU or the compiler. These 878 * special cases are: 879 * 880 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 881 * 2. The caller has taken whatever steps are required to prevent 882 * RCU readers from concurrently accessing this pointer -or- 883 * 3. The referenced data structure has already been exposed to 884 * readers either at compile time or via rcu_assign_pointer() -and- 885 * a. You have not made -any- reader-visible changes to 886 * this structure since then -or- 887 * b. It is OK for readers accessing this structure from its 888 * new location to see the old state of the structure. (For 889 * example, the changes were to statistical counters or to 890 * other state where exact synchronization is not required.) 891 * 892 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 893 * result in impossible-to-diagnose memory corruption. As in the structures 894 * will look OK in crash dumps, but any concurrent RCU readers might 895 * see pre-initialized values of the referenced data structure. So 896 * please be very careful how you use RCU_INIT_POINTER()!!! 897 * 898 * If you are creating an RCU-protected linked structure that is accessed 899 * by a single external-to-structure RCU-protected pointer, then you may 900 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 901 * pointers, but you must use rcu_assign_pointer() to initialize the 902 * external-to-structure pointer -after- you have completely initialized 903 * the reader-accessible portions of the linked structure. 904 */ 905#define RCU_INIT_POINTER(p, v) \ 906 p = (typeof(*v) __force __rcu *)(v) 907 908static __always_inline bool __is_kfree_rcu_offset(unsigned long offset) 909{ 910 return offset < 4096; 911} 912 913static __always_inline 914void __kfree_rcu(struct rcu_head *head, unsigned long offset) 915{ 916 typedef void (*rcu_callback)(struct rcu_head *); 917 918 BUILD_BUG_ON(!__builtin_constant_p(offset)); 919 920 /* See the kfree_rcu() header comment. */ 921 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); 922 923 kfree_call_rcu(head, (rcu_callback)offset); 924} 925 926/* 927 * Does the specified offset indicate that the corresponding rcu_head 928 * structure can be handled by kfree_rcu()? 929 */ 930#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 931 932/* 933 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 934 */ 935#define __kfree_rcu(head, offset) \ 936 do { \ 937 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 938 call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \ 939 } while (0) 940 941/** 942 * kfree_rcu() - kfree an object after a grace period. 943 * @ptr: pointer to kfree 944 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 945 * 946 * Many rcu callbacks functions just call kfree() on the base structure. 947 * These functions are trivial, but their size adds up, and furthermore 948 * when they are used in a kernel module, that module must invoke the 949 * high-latency rcu_barrier() function at module-unload time. 950 * 951 * The kfree_rcu() function handles this issue. Rather than encoding a 952 * function address in the embedded rcu_head structure, kfree_rcu() instead 953 * encodes the offset of the rcu_head structure within the base structure. 954 * Because the functions are not allowed in the low-order 4096 bytes of 955 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 956 * If the offset is larger than 4095 bytes, a compile-time error will 957 * be generated in __kfree_rcu(). If this error is triggered, you can 958 * either fall back to use of call_rcu() or rearrange the structure to 959 * position the rcu_head structure into the first 4096 bytes. 960 * 961 * Note that the allowable offset might decrease in the future, for example, 962 * to allow something like kmem_cache_free_rcu(). 963 * 964 * The BUILD_BUG_ON check must not involve any function calls, hence the 965 * checks are done in macros here. 966 */ 967#define kfree_rcu(ptr, rcu_head) \ 968 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 969 970#endif /* __LINUX_RCUPDATE_H */