at v3.5 37 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37}; 38 39/* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 57 PERF_COUNT_HW_REF_CPU_CYCLES = 9, 58 59 PERF_COUNT_HW_MAX, /* non-ABI */ 60}; 61 62/* 63 * Generalized hardware cache events: 64 * 65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 66 * { read, write, prefetch } x 67 * { accesses, misses } 68 */ 69enum perf_hw_cache_id { 70 PERF_COUNT_HW_CACHE_L1D = 0, 71 PERF_COUNT_HW_CACHE_L1I = 1, 72 PERF_COUNT_HW_CACHE_LL = 2, 73 PERF_COUNT_HW_CACHE_DTLB = 3, 74 PERF_COUNT_HW_CACHE_ITLB = 4, 75 PERF_COUNT_HW_CACHE_BPU = 5, 76 PERF_COUNT_HW_CACHE_NODE = 6, 77 78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 79}; 80 81enum perf_hw_cache_op_id { 82 PERF_COUNT_HW_CACHE_OP_READ = 0, 83 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 85 86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 87}; 88 89enum perf_hw_cache_op_result_id { 90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 92 93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 94}; 95 96/* 97 * Special "software" events provided by the kernel, even if the hardware 98 * does not support performance events. These events measure various 99 * physical and sw events of the kernel (and allow the profiling of them as 100 * well): 101 */ 102enum perf_sw_ids { 103 PERF_COUNT_SW_CPU_CLOCK = 0, 104 PERF_COUNT_SW_TASK_CLOCK = 1, 105 PERF_COUNT_SW_PAGE_FAULTS = 2, 106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 107 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 111 PERF_COUNT_SW_EMULATION_FAULTS = 8, 112 113 PERF_COUNT_SW_MAX, /* non-ABI */ 114}; 115 116/* 117 * Bits that can be set in attr.sample_type to request information 118 * in the overflow packets. 119 */ 120enum perf_event_sample_format { 121 PERF_SAMPLE_IP = 1U << 0, 122 PERF_SAMPLE_TID = 1U << 1, 123 PERF_SAMPLE_TIME = 1U << 2, 124 PERF_SAMPLE_ADDR = 1U << 3, 125 PERF_SAMPLE_READ = 1U << 4, 126 PERF_SAMPLE_CALLCHAIN = 1U << 5, 127 PERF_SAMPLE_ID = 1U << 6, 128 PERF_SAMPLE_CPU = 1U << 7, 129 PERF_SAMPLE_PERIOD = 1U << 8, 130 PERF_SAMPLE_STREAM_ID = 1U << 9, 131 PERF_SAMPLE_RAW = 1U << 10, 132 PERF_SAMPLE_BRANCH_STACK = 1U << 11, 133 134 PERF_SAMPLE_MAX = 1U << 12, /* non-ABI */ 135}; 136 137/* 138 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set 139 * 140 * If the user does not pass priv level information via branch_sample_type, 141 * the kernel uses the event's priv level. Branch and event priv levels do 142 * not have to match. Branch priv level is checked for permissions. 143 * 144 * The branch types can be combined, however BRANCH_ANY covers all types 145 * of branches and therefore it supersedes all the other types. 146 */ 147enum perf_branch_sample_type { 148 PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */ 149 PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */ 150 PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */ 151 152 PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */ 153 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */ 154 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */ 155 PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */ 156 157 PERF_SAMPLE_BRANCH_MAX = 1U << 7, /* non-ABI */ 158}; 159 160#define PERF_SAMPLE_BRANCH_PLM_ALL \ 161 (PERF_SAMPLE_BRANCH_USER|\ 162 PERF_SAMPLE_BRANCH_KERNEL|\ 163 PERF_SAMPLE_BRANCH_HV) 164 165/* 166 * The format of the data returned by read() on a perf event fd, 167 * as specified by attr.read_format: 168 * 169 * struct read_format { 170 * { u64 value; 171 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 172 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 173 * { u64 id; } && PERF_FORMAT_ID 174 * } && !PERF_FORMAT_GROUP 175 * 176 * { u64 nr; 177 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 178 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 179 * { u64 value; 180 * { u64 id; } && PERF_FORMAT_ID 181 * } cntr[nr]; 182 * } && PERF_FORMAT_GROUP 183 * }; 184 */ 185enum perf_event_read_format { 186 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 187 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 188 PERF_FORMAT_ID = 1U << 2, 189 PERF_FORMAT_GROUP = 1U << 3, 190 191 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 192}; 193 194#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 195#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */ 196#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */ 197 198/* 199 * Hardware event_id to monitor via a performance monitoring event: 200 */ 201struct perf_event_attr { 202 203 /* 204 * Major type: hardware/software/tracepoint/etc. 205 */ 206 __u32 type; 207 208 /* 209 * Size of the attr structure, for fwd/bwd compat. 210 */ 211 __u32 size; 212 213 /* 214 * Type specific configuration information. 215 */ 216 __u64 config; 217 218 union { 219 __u64 sample_period; 220 __u64 sample_freq; 221 }; 222 223 __u64 sample_type; 224 __u64 read_format; 225 226 __u64 disabled : 1, /* off by default */ 227 inherit : 1, /* children inherit it */ 228 pinned : 1, /* must always be on PMU */ 229 exclusive : 1, /* only group on PMU */ 230 exclude_user : 1, /* don't count user */ 231 exclude_kernel : 1, /* ditto kernel */ 232 exclude_hv : 1, /* ditto hypervisor */ 233 exclude_idle : 1, /* don't count when idle */ 234 mmap : 1, /* include mmap data */ 235 comm : 1, /* include comm data */ 236 freq : 1, /* use freq, not period */ 237 inherit_stat : 1, /* per task counts */ 238 enable_on_exec : 1, /* next exec enables */ 239 task : 1, /* trace fork/exit */ 240 watermark : 1, /* wakeup_watermark */ 241 /* 242 * precise_ip: 243 * 244 * 0 - SAMPLE_IP can have arbitrary skid 245 * 1 - SAMPLE_IP must have constant skid 246 * 2 - SAMPLE_IP requested to have 0 skid 247 * 3 - SAMPLE_IP must have 0 skid 248 * 249 * See also PERF_RECORD_MISC_EXACT_IP 250 */ 251 precise_ip : 2, /* skid constraint */ 252 mmap_data : 1, /* non-exec mmap data */ 253 sample_id_all : 1, /* sample_type all events */ 254 255 exclude_host : 1, /* don't count in host */ 256 exclude_guest : 1, /* don't count in guest */ 257 258 __reserved_1 : 43; 259 260 union { 261 __u32 wakeup_events; /* wakeup every n events */ 262 __u32 wakeup_watermark; /* bytes before wakeup */ 263 }; 264 265 __u32 bp_type; 266 union { 267 __u64 bp_addr; 268 __u64 config1; /* extension of config */ 269 }; 270 union { 271 __u64 bp_len; 272 __u64 config2; /* extension of config1 */ 273 }; 274 __u64 branch_sample_type; /* enum branch_sample_type */ 275}; 276 277/* 278 * Ioctls that can be done on a perf event fd: 279 */ 280#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 281#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 282#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 283#define PERF_EVENT_IOC_RESET _IO ('$', 3) 284#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 285#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 286#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 287 288enum perf_event_ioc_flags { 289 PERF_IOC_FLAG_GROUP = 1U << 0, 290}; 291 292/* 293 * Structure of the page that can be mapped via mmap 294 */ 295struct perf_event_mmap_page { 296 __u32 version; /* version number of this structure */ 297 __u32 compat_version; /* lowest version this is compat with */ 298 299 /* 300 * Bits needed to read the hw events in user-space. 301 * 302 * u32 seq, time_mult, time_shift, idx, width; 303 * u64 count, enabled, running; 304 * u64 cyc, time_offset; 305 * s64 pmc = 0; 306 * 307 * do { 308 * seq = pc->lock; 309 * barrier() 310 * 311 * enabled = pc->time_enabled; 312 * running = pc->time_running; 313 * 314 * if (pc->cap_usr_time && enabled != running) { 315 * cyc = rdtsc(); 316 * time_offset = pc->time_offset; 317 * time_mult = pc->time_mult; 318 * time_shift = pc->time_shift; 319 * } 320 * 321 * idx = pc->index; 322 * count = pc->offset; 323 * if (pc->cap_usr_rdpmc && idx) { 324 * width = pc->pmc_width; 325 * pmc = rdpmc(idx - 1); 326 * } 327 * 328 * barrier(); 329 * } while (pc->lock != seq); 330 * 331 * NOTE: for obvious reason this only works on self-monitoring 332 * processes. 333 */ 334 __u32 lock; /* seqlock for synchronization */ 335 __u32 index; /* hardware event identifier */ 336 __s64 offset; /* add to hardware event value */ 337 __u64 time_enabled; /* time event active */ 338 __u64 time_running; /* time event on cpu */ 339 union { 340 __u64 capabilities; 341 __u64 cap_usr_time : 1, 342 cap_usr_rdpmc : 1, 343 cap_____res : 62; 344 }; 345 346 /* 347 * If cap_usr_rdpmc this field provides the bit-width of the value 348 * read using the rdpmc() or equivalent instruction. This can be used 349 * to sign extend the result like: 350 * 351 * pmc <<= 64 - width; 352 * pmc >>= 64 - width; // signed shift right 353 * count += pmc; 354 */ 355 __u16 pmc_width; 356 357 /* 358 * If cap_usr_time the below fields can be used to compute the time 359 * delta since time_enabled (in ns) using rdtsc or similar. 360 * 361 * u64 quot, rem; 362 * u64 delta; 363 * 364 * quot = (cyc >> time_shift); 365 * rem = cyc & ((1 << time_shift) - 1); 366 * delta = time_offset + quot * time_mult + 367 * ((rem * time_mult) >> time_shift); 368 * 369 * Where time_offset,time_mult,time_shift and cyc are read in the 370 * seqcount loop described above. This delta can then be added to 371 * enabled and possible running (if idx), improving the scaling: 372 * 373 * enabled += delta; 374 * if (idx) 375 * running += delta; 376 * 377 * quot = count / running; 378 * rem = count % running; 379 * count = quot * enabled + (rem * enabled) / running; 380 */ 381 __u16 time_shift; 382 __u32 time_mult; 383 __u64 time_offset; 384 385 /* 386 * Hole for extension of the self monitor capabilities 387 */ 388 389 __u64 __reserved[120]; /* align to 1k */ 390 391 /* 392 * Control data for the mmap() data buffer. 393 * 394 * User-space reading the @data_head value should issue an rmb(), on 395 * SMP capable platforms, after reading this value -- see 396 * perf_event_wakeup(). 397 * 398 * When the mapping is PROT_WRITE the @data_tail value should be 399 * written by userspace to reflect the last read data. In this case 400 * the kernel will not over-write unread data. 401 */ 402 __u64 data_head; /* head in the data section */ 403 __u64 data_tail; /* user-space written tail */ 404}; 405 406#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 407#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 408#define PERF_RECORD_MISC_KERNEL (1 << 0) 409#define PERF_RECORD_MISC_USER (2 << 0) 410#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 411#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 412#define PERF_RECORD_MISC_GUEST_USER (5 << 0) 413 414/* 415 * Indicates that the content of PERF_SAMPLE_IP points to 416 * the actual instruction that triggered the event. See also 417 * perf_event_attr::precise_ip. 418 */ 419#define PERF_RECORD_MISC_EXACT_IP (1 << 14) 420/* 421 * Reserve the last bit to indicate some extended misc field 422 */ 423#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 424 425struct perf_event_header { 426 __u32 type; 427 __u16 misc; 428 __u16 size; 429}; 430 431enum perf_event_type { 432 433 /* 434 * If perf_event_attr.sample_id_all is set then all event types will 435 * have the sample_type selected fields related to where/when 436 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID) 437 * described in PERF_RECORD_SAMPLE below, it will be stashed just after 438 * the perf_event_header and the fields already present for the existing 439 * fields, i.e. at the end of the payload. That way a newer perf.data 440 * file will be supported by older perf tools, with these new optional 441 * fields being ignored. 442 * 443 * The MMAP events record the PROT_EXEC mappings so that we can 444 * correlate userspace IPs to code. They have the following structure: 445 * 446 * struct { 447 * struct perf_event_header header; 448 * 449 * u32 pid, tid; 450 * u64 addr; 451 * u64 len; 452 * u64 pgoff; 453 * char filename[]; 454 * }; 455 */ 456 PERF_RECORD_MMAP = 1, 457 458 /* 459 * struct { 460 * struct perf_event_header header; 461 * u64 id; 462 * u64 lost; 463 * }; 464 */ 465 PERF_RECORD_LOST = 2, 466 467 /* 468 * struct { 469 * struct perf_event_header header; 470 * 471 * u32 pid, tid; 472 * char comm[]; 473 * }; 474 */ 475 PERF_RECORD_COMM = 3, 476 477 /* 478 * struct { 479 * struct perf_event_header header; 480 * u32 pid, ppid; 481 * u32 tid, ptid; 482 * u64 time; 483 * }; 484 */ 485 PERF_RECORD_EXIT = 4, 486 487 /* 488 * struct { 489 * struct perf_event_header header; 490 * u64 time; 491 * u64 id; 492 * u64 stream_id; 493 * }; 494 */ 495 PERF_RECORD_THROTTLE = 5, 496 PERF_RECORD_UNTHROTTLE = 6, 497 498 /* 499 * struct { 500 * struct perf_event_header header; 501 * u32 pid, ppid; 502 * u32 tid, ptid; 503 * u64 time; 504 * }; 505 */ 506 PERF_RECORD_FORK = 7, 507 508 /* 509 * struct { 510 * struct perf_event_header header; 511 * u32 pid, tid; 512 * 513 * struct read_format values; 514 * }; 515 */ 516 PERF_RECORD_READ = 8, 517 518 /* 519 * struct { 520 * struct perf_event_header header; 521 * 522 * { u64 ip; } && PERF_SAMPLE_IP 523 * { u32 pid, tid; } && PERF_SAMPLE_TID 524 * { u64 time; } && PERF_SAMPLE_TIME 525 * { u64 addr; } && PERF_SAMPLE_ADDR 526 * { u64 id; } && PERF_SAMPLE_ID 527 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 528 * { u32 cpu, res; } && PERF_SAMPLE_CPU 529 * { u64 period; } && PERF_SAMPLE_PERIOD 530 * 531 * { struct read_format values; } && PERF_SAMPLE_READ 532 * 533 * { u64 nr, 534 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 535 * 536 * # 537 * # The RAW record below is opaque data wrt the ABI 538 * # 539 * # That is, the ABI doesn't make any promises wrt to 540 * # the stability of its content, it may vary depending 541 * # on event, hardware, kernel version and phase of 542 * # the moon. 543 * # 544 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 545 * # 546 * 547 * { u32 size; 548 * char data[size];}&& PERF_SAMPLE_RAW 549 * 550 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK 551 * }; 552 */ 553 PERF_RECORD_SAMPLE = 9, 554 555 PERF_RECORD_MAX, /* non-ABI */ 556}; 557 558#define PERF_MAX_STACK_DEPTH 127 559 560enum perf_callchain_context { 561 PERF_CONTEXT_HV = (__u64)-32, 562 PERF_CONTEXT_KERNEL = (__u64)-128, 563 PERF_CONTEXT_USER = (__u64)-512, 564 565 PERF_CONTEXT_GUEST = (__u64)-2048, 566 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 567 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 568 569 PERF_CONTEXT_MAX = (__u64)-4095, 570}; 571 572#define PERF_FLAG_FD_NO_GROUP (1U << 0) 573#define PERF_FLAG_FD_OUTPUT (1U << 1) 574#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */ 575 576#ifdef __KERNEL__ 577/* 578 * Kernel-internal data types and definitions: 579 */ 580 581#ifdef CONFIG_PERF_EVENTS 582# include <linux/cgroup.h> 583# include <asm/perf_event.h> 584# include <asm/local64.h> 585#endif 586 587struct perf_guest_info_callbacks { 588 int (*is_in_guest)(void); 589 int (*is_user_mode)(void); 590 unsigned long (*get_guest_ip)(void); 591}; 592 593#ifdef CONFIG_HAVE_HW_BREAKPOINT 594#include <asm/hw_breakpoint.h> 595#endif 596 597#include <linux/list.h> 598#include <linux/mutex.h> 599#include <linux/rculist.h> 600#include <linux/rcupdate.h> 601#include <linux/spinlock.h> 602#include <linux/hrtimer.h> 603#include <linux/fs.h> 604#include <linux/pid_namespace.h> 605#include <linux/workqueue.h> 606#include <linux/ftrace.h> 607#include <linux/cpu.h> 608#include <linux/irq_work.h> 609#include <linux/static_key.h> 610#include <linux/atomic.h> 611#include <linux/sysfs.h> 612#include <asm/local.h> 613 614struct perf_callchain_entry { 615 __u64 nr; 616 __u64 ip[PERF_MAX_STACK_DEPTH]; 617}; 618 619struct perf_raw_record { 620 u32 size; 621 void *data; 622}; 623 624/* 625 * single taken branch record layout: 626 * 627 * from: source instruction (may not always be a branch insn) 628 * to: branch target 629 * mispred: branch target was mispredicted 630 * predicted: branch target was predicted 631 * 632 * support for mispred, predicted is optional. In case it 633 * is not supported mispred = predicted = 0. 634 */ 635struct perf_branch_entry { 636 __u64 from; 637 __u64 to; 638 __u64 mispred:1, /* target mispredicted */ 639 predicted:1,/* target predicted */ 640 reserved:62; 641}; 642 643/* 644 * branch stack layout: 645 * nr: number of taken branches stored in entries[] 646 * 647 * Note that nr can vary from sample to sample 648 * branches (to, from) are stored from most recent 649 * to least recent, i.e., entries[0] contains the most 650 * recent branch. 651 */ 652struct perf_branch_stack { 653 __u64 nr; 654 struct perf_branch_entry entries[0]; 655}; 656 657struct task_struct; 658 659/* 660 * extra PMU register associated with an event 661 */ 662struct hw_perf_event_extra { 663 u64 config; /* register value */ 664 unsigned int reg; /* register address or index */ 665 int alloc; /* extra register already allocated */ 666 int idx; /* index in shared_regs->regs[] */ 667}; 668 669/** 670 * struct hw_perf_event - performance event hardware details: 671 */ 672struct hw_perf_event { 673#ifdef CONFIG_PERF_EVENTS 674 union { 675 struct { /* hardware */ 676 u64 config; 677 u64 last_tag; 678 unsigned long config_base; 679 unsigned long event_base; 680 int idx; 681 int last_cpu; 682 683 struct hw_perf_event_extra extra_reg; 684 struct hw_perf_event_extra branch_reg; 685 }; 686 struct { /* software */ 687 struct hrtimer hrtimer; 688 }; 689#ifdef CONFIG_HAVE_HW_BREAKPOINT 690 struct { /* breakpoint */ 691 struct arch_hw_breakpoint info; 692 struct list_head bp_list; 693 /* 694 * Crufty hack to avoid the chicken and egg 695 * problem hw_breakpoint has with context 696 * creation and event initalization. 697 */ 698 struct task_struct *bp_target; 699 }; 700#endif 701 }; 702 int state; 703 local64_t prev_count; 704 u64 sample_period; 705 u64 last_period; 706 local64_t period_left; 707 u64 interrupts_seq; 708 u64 interrupts; 709 710 u64 freq_time_stamp; 711 u64 freq_count_stamp; 712#endif 713}; 714 715/* 716 * hw_perf_event::state flags 717 */ 718#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 719#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 720#define PERF_HES_ARCH 0x04 721 722struct perf_event; 723 724/* 725 * Common implementation detail of pmu::{start,commit,cancel}_txn 726 */ 727#define PERF_EVENT_TXN 0x1 728 729/** 730 * struct pmu - generic performance monitoring unit 731 */ 732struct pmu { 733 struct list_head entry; 734 735 struct device *dev; 736 const struct attribute_group **attr_groups; 737 char *name; 738 int type; 739 740 int * __percpu pmu_disable_count; 741 struct perf_cpu_context * __percpu pmu_cpu_context; 742 int task_ctx_nr; 743 744 /* 745 * Fully disable/enable this PMU, can be used to protect from the PMI 746 * as well as for lazy/batch writing of the MSRs. 747 */ 748 void (*pmu_enable) (struct pmu *pmu); /* optional */ 749 void (*pmu_disable) (struct pmu *pmu); /* optional */ 750 751 /* 752 * Try and initialize the event for this PMU. 753 * Should return -ENOENT when the @event doesn't match this PMU. 754 */ 755 int (*event_init) (struct perf_event *event); 756 757#define PERF_EF_START 0x01 /* start the counter when adding */ 758#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 759#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 760 761 /* 762 * Adds/Removes a counter to/from the PMU, can be done inside 763 * a transaction, see the ->*_txn() methods. 764 */ 765 int (*add) (struct perf_event *event, int flags); 766 void (*del) (struct perf_event *event, int flags); 767 768 /* 769 * Starts/Stops a counter present on the PMU. The PMI handler 770 * should stop the counter when perf_event_overflow() returns 771 * !0. ->start() will be used to continue. 772 */ 773 void (*start) (struct perf_event *event, int flags); 774 void (*stop) (struct perf_event *event, int flags); 775 776 /* 777 * Updates the counter value of the event. 778 */ 779 void (*read) (struct perf_event *event); 780 781 /* 782 * Group events scheduling is treated as a transaction, add 783 * group events as a whole and perform one schedulability test. 784 * If the test fails, roll back the whole group 785 * 786 * Start the transaction, after this ->add() doesn't need to 787 * do schedulability tests. 788 */ 789 void (*start_txn) (struct pmu *pmu); /* optional */ 790 /* 791 * If ->start_txn() disabled the ->add() schedulability test 792 * then ->commit_txn() is required to perform one. On success 793 * the transaction is closed. On error the transaction is kept 794 * open until ->cancel_txn() is called. 795 */ 796 int (*commit_txn) (struct pmu *pmu); /* optional */ 797 /* 798 * Will cancel the transaction, assumes ->del() is called 799 * for each successful ->add() during the transaction. 800 */ 801 void (*cancel_txn) (struct pmu *pmu); /* optional */ 802 803 /* 804 * Will return the value for perf_event_mmap_page::index for this event, 805 * if no implementation is provided it will default to: event->hw.idx + 1. 806 */ 807 int (*event_idx) (struct perf_event *event); /*optional */ 808 809 /* 810 * flush branch stack on context-switches (needed in cpu-wide mode) 811 */ 812 void (*flush_branch_stack) (void); 813}; 814 815/** 816 * enum perf_event_active_state - the states of a event 817 */ 818enum perf_event_active_state { 819 PERF_EVENT_STATE_ERROR = -2, 820 PERF_EVENT_STATE_OFF = -1, 821 PERF_EVENT_STATE_INACTIVE = 0, 822 PERF_EVENT_STATE_ACTIVE = 1, 823}; 824 825struct file; 826struct perf_sample_data; 827 828typedef void (*perf_overflow_handler_t)(struct perf_event *, 829 struct perf_sample_data *, 830 struct pt_regs *regs); 831 832enum perf_group_flag { 833 PERF_GROUP_SOFTWARE = 0x1, 834}; 835 836#define SWEVENT_HLIST_BITS 8 837#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 838 839struct swevent_hlist { 840 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 841 struct rcu_head rcu_head; 842}; 843 844#define PERF_ATTACH_CONTEXT 0x01 845#define PERF_ATTACH_GROUP 0x02 846#define PERF_ATTACH_TASK 0x04 847 848#ifdef CONFIG_CGROUP_PERF 849/* 850 * perf_cgroup_info keeps track of time_enabled for a cgroup. 851 * This is a per-cpu dynamically allocated data structure. 852 */ 853struct perf_cgroup_info { 854 u64 time; 855 u64 timestamp; 856}; 857 858struct perf_cgroup { 859 struct cgroup_subsys_state css; 860 struct perf_cgroup_info *info; /* timing info, one per cpu */ 861}; 862#endif 863 864struct ring_buffer; 865 866/** 867 * struct perf_event - performance event kernel representation: 868 */ 869struct perf_event { 870#ifdef CONFIG_PERF_EVENTS 871 struct list_head group_entry; 872 struct list_head event_entry; 873 struct list_head sibling_list; 874 struct hlist_node hlist_entry; 875 int nr_siblings; 876 int group_flags; 877 struct perf_event *group_leader; 878 struct pmu *pmu; 879 880 enum perf_event_active_state state; 881 unsigned int attach_state; 882 local64_t count; 883 atomic64_t child_count; 884 885 /* 886 * These are the total time in nanoseconds that the event 887 * has been enabled (i.e. eligible to run, and the task has 888 * been scheduled in, if this is a per-task event) 889 * and running (scheduled onto the CPU), respectively. 890 * 891 * They are computed from tstamp_enabled, tstamp_running and 892 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 893 */ 894 u64 total_time_enabled; 895 u64 total_time_running; 896 897 /* 898 * These are timestamps used for computing total_time_enabled 899 * and total_time_running when the event is in INACTIVE or 900 * ACTIVE state, measured in nanoseconds from an arbitrary point 901 * in time. 902 * tstamp_enabled: the notional time when the event was enabled 903 * tstamp_running: the notional time when the event was scheduled on 904 * tstamp_stopped: in INACTIVE state, the notional time when the 905 * event was scheduled off. 906 */ 907 u64 tstamp_enabled; 908 u64 tstamp_running; 909 u64 tstamp_stopped; 910 911 /* 912 * timestamp shadows the actual context timing but it can 913 * be safely used in NMI interrupt context. It reflects the 914 * context time as it was when the event was last scheduled in. 915 * 916 * ctx_time already accounts for ctx->timestamp. Therefore to 917 * compute ctx_time for a sample, simply add perf_clock(). 918 */ 919 u64 shadow_ctx_time; 920 921 struct perf_event_attr attr; 922 u16 header_size; 923 u16 id_header_size; 924 u16 read_size; 925 struct hw_perf_event hw; 926 927 struct perf_event_context *ctx; 928 struct file *filp; 929 930 /* 931 * These accumulate total time (in nanoseconds) that children 932 * events have been enabled and running, respectively. 933 */ 934 atomic64_t child_total_time_enabled; 935 atomic64_t child_total_time_running; 936 937 /* 938 * Protect attach/detach and child_list: 939 */ 940 struct mutex child_mutex; 941 struct list_head child_list; 942 struct perf_event *parent; 943 944 int oncpu; 945 int cpu; 946 947 struct list_head owner_entry; 948 struct task_struct *owner; 949 950 /* mmap bits */ 951 struct mutex mmap_mutex; 952 atomic_t mmap_count; 953 int mmap_locked; 954 struct user_struct *mmap_user; 955 struct ring_buffer *rb; 956 struct list_head rb_entry; 957 958 /* poll related */ 959 wait_queue_head_t waitq; 960 struct fasync_struct *fasync; 961 962 /* delayed work for NMIs and such */ 963 int pending_wakeup; 964 int pending_kill; 965 int pending_disable; 966 struct irq_work pending; 967 968 atomic_t event_limit; 969 970 void (*destroy)(struct perf_event *); 971 struct rcu_head rcu_head; 972 973 struct pid_namespace *ns; 974 u64 id; 975 976 perf_overflow_handler_t overflow_handler; 977 void *overflow_handler_context; 978 979#ifdef CONFIG_EVENT_TRACING 980 struct ftrace_event_call *tp_event; 981 struct event_filter *filter; 982#ifdef CONFIG_FUNCTION_TRACER 983 struct ftrace_ops ftrace_ops; 984#endif 985#endif 986 987#ifdef CONFIG_CGROUP_PERF 988 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 989 int cgrp_defer_enabled; 990#endif 991 992#endif /* CONFIG_PERF_EVENTS */ 993}; 994 995enum perf_event_context_type { 996 task_context, 997 cpu_context, 998}; 999 1000/** 1001 * struct perf_event_context - event context structure 1002 * 1003 * Used as a container for task events and CPU events as well: 1004 */ 1005struct perf_event_context { 1006 struct pmu *pmu; 1007 enum perf_event_context_type type; 1008 /* 1009 * Protect the states of the events in the list, 1010 * nr_active, and the list: 1011 */ 1012 raw_spinlock_t lock; 1013 /* 1014 * Protect the list of events. Locking either mutex or lock 1015 * is sufficient to ensure the list doesn't change; to change 1016 * the list you need to lock both the mutex and the spinlock. 1017 */ 1018 struct mutex mutex; 1019 1020 struct list_head pinned_groups; 1021 struct list_head flexible_groups; 1022 struct list_head event_list; 1023 int nr_events; 1024 int nr_active; 1025 int is_active; 1026 int nr_stat; 1027 int nr_freq; 1028 int rotate_disable; 1029 atomic_t refcount; 1030 struct task_struct *task; 1031 1032 /* 1033 * Context clock, runs when context enabled. 1034 */ 1035 u64 time; 1036 u64 timestamp; 1037 1038 /* 1039 * These fields let us detect when two contexts have both 1040 * been cloned (inherited) from a common ancestor. 1041 */ 1042 struct perf_event_context *parent_ctx; 1043 u64 parent_gen; 1044 u64 generation; 1045 int pin_count; 1046 int nr_cgroups; /* cgroup evts */ 1047 int nr_branch_stack; /* branch_stack evt */ 1048 struct rcu_head rcu_head; 1049}; 1050 1051/* 1052 * Number of contexts where an event can trigger: 1053 * task, softirq, hardirq, nmi. 1054 */ 1055#define PERF_NR_CONTEXTS 4 1056 1057/** 1058 * struct perf_event_cpu_context - per cpu event context structure 1059 */ 1060struct perf_cpu_context { 1061 struct perf_event_context ctx; 1062 struct perf_event_context *task_ctx; 1063 int active_oncpu; 1064 int exclusive; 1065 struct list_head rotation_list; 1066 int jiffies_interval; 1067 struct pmu *active_pmu; 1068 struct perf_cgroup *cgrp; 1069}; 1070 1071struct perf_output_handle { 1072 struct perf_event *event; 1073 struct ring_buffer *rb; 1074 unsigned long wakeup; 1075 unsigned long size; 1076 void *addr; 1077 int page; 1078}; 1079 1080#ifdef CONFIG_PERF_EVENTS 1081 1082extern int perf_pmu_register(struct pmu *pmu, char *name, int type); 1083extern void perf_pmu_unregister(struct pmu *pmu); 1084 1085extern int perf_num_counters(void); 1086extern const char *perf_pmu_name(void); 1087extern void __perf_event_task_sched_in(struct task_struct *prev, 1088 struct task_struct *task); 1089extern void __perf_event_task_sched_out(struct task_struct *prev, 1090 struct task_struct *next); 1091extern int perf_event_init_task(struct task_struct *child); 1092extern void perf_event_exit_task(struct task_struct *child); 1093extern void perf_event_free_task(struct task_struct *task); 1094extern void perf_event_delayed_put(struct task_struct *task); 1095extern void perf_event_print_debug(void); 1096extern void perf_pmu_disable(struct pmu *pmu); 1097extern void perf_pmu_enable(struct pmu *pmu); 1098extern int perf_event_task_disable(void); 1099extern int perf_event_task_enable(void); 1100extern int perf_event_refresh(struct perf_event *event, int refresh); 1101extern void perf_event_update_userpage(struct perf_event *event); 1102extern int perf_event_release_kernel(struct perf_event *event); 1103extern struct perf_event * 1104perf_event_create_kernel_counter(struct perf_event_attr *attr, 1105 int cpu, 1106 struct task_struct *task, 1107 perf_overflow_handler_t callback, 1108 void *context); 1109extern u64 perf_event_read_value(struct perf_event *event, 1110 u64 *enabled, u64 *running); 1111 1112 1113struct perf_sample_data { 1114 u64 type; 1115 1116 u64 ip; 1117 struct { 1118 u32 pid; 1119 u32 tid; 1120 } tid_entry; 1121 u64 time; 1122 u64 addr; 1123 u64 id; 1124 u64 stream_id; 1125 struct { 1126 u32 cpu; 1127 u32 reserved; 1128 } cpu_entry; 1129 u64 period; 1130 struct perf_callchain_entry *callchain; 1131 struct perf_raw_record *raw; 1132 struct perf_branch_stack *br_stack; 1133}; 1134 1135static inline void perf_sample_data_init(struct perf_sample_data *data, 1136 u64 addr, u64 period) 1137{ 1138 /* remaining struct members initialized in perf_prepare_sample() */ 1139 data->addr = addr; 1140 data->raw = NULL; 1141 data->br_stack = NULL; 1142 data->period = period; 1143} 1144 1145extern void perf_output_sample(struct perf_output_handle *handle, 1146 struct perf_event_header *header, 1147 struct perf_sample_data *data, 1148 struct perf_event *event); 1149extern void perf_prepare_sample(struct perf_event_header *header, 1150 struct perf_sample_data *data, 1151 struct perf_event *event, 1152 struct pt_regs *regs); 1153 1154extern int perf_event_overflow(struct perf_event *event, 1155 struct perf_sample_data *data, 1156 struct pt_regs *regs); 1157 1158static inline bool is_sampling_event(struct perf_event *event) 1159{ 1160 return event->attr.sample_period != 0; 1161} 1162 1163/* 1164 * Return 1 for a software event, 0 for a hardware event 1165 */ 1166static inline int is_software_event(struct perf_event *event) 1167{ 1168 return event->pmu->task_ctx_nr == perf_sw_context; 1169} 1170 1171extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1172 1173extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1174 1175#ifndef perf_arch_fetch_caller_regs 1176static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1177#endif 1178 1179/* 1180 * Take a snapshot of the regs. Skip ip and frame pointer to 1181 * the nth caller. We only need a few of the regs: 1182 * - ip for PERF_SAMPLE_IP 1183 * - cs for user_mode() tests 1184 * - bp for callchains 1185 * - eflags, for future purposes, just in case 1186 */ 1187static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1188{ 1189 memset(regs, 0, sizeof(*regs)); 1190 1191 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1192} 1193 1194static __always_inline void 1195perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1196{ 1197 struct pt_regs hot_regs; 1198 1199 if (static_key_false(&perf_swevent_enabled[event_id])) { 1200 if (!regs) { 1201 perf_fetch_caller_regs(&hot_regs); 1202 regs = &hot_regs; 1203 } 1204 __perf_sw_event(event_id, nr, regs, addr); 1205 } 1206} 1207 1208extern struct static_key_deferred perf_sched_events; 1209 1210static inline void perf_event_task_sched_in(struct task_struct *prev, 1211 struct task_struct *task) 1212{ 1213 if (static_key_false(&perf_sched_events.key)) 1214 __perf_event_task_sched_in(prev, task); 1215} 1216 1217static inline void perf_event_task_sched_out(struct task_struct *prev, 1218 struct task_struct *next) 1219{ 1220 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 1221 1222 if (static_key_false(&perf_sched_events.key)) 1223 __perf_event_task_sched_out(prev, next); 1224} 1225 1226extern void perf_event_mmap(struct vm_area_struct *vma); 1227extern struct perf_guest_info_callbacks *perf_guest_cbs; 1228extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1229extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1230 1231extern void perf_event_comm(struct task_struct *tsk); 1232extern void perf_event_fork(struct task_struct *tsk); 1233 1234/* Callchains */ 1235DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1236 1237extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 1238extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 1239 1240static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 1241{ 1242 if (entry->nr < PERF_MAX_STACK_DEPTH) 1243 entry->ip[entry->nr++] = ip; 1244} 1245 1246extern int sysctl_perf_event_paranoid; 1247extern int sysctl_perf_event_mlock; 1248extern int sysctl_perf_event_sample_rate; 1249 1250extern int perf_proc_update_handler(struct ctl_table *table, int write, 1251 void __user *buffer, size_t *lenp, 1252 loff_t *ppos); 1253 1254static inline bool perf_paranoid_tracepoint_raw(void) 1255{ 1256 return sysctl_perf_event_paranoid > -1; 1257} 1258 1259static inline bool perf_paranoid_cpu(void) 1260{ 1261 return sysctl_perf_event_paranoid > 0; 1262} 1263 1264static inline bool perf_paranoid_kernel(void) 1265{ 1266 return sysctl_perf_event_paranoid > 1; 1267} 1268 1269extern void perf_event_init(void); 1270extern void perf_tp_event(u64 addr, u64 count, void *record, 1271 int entry_size, struct pt_regs *regs, 1272 struct hlist_head *head, int rctx); 1273extern void perf_bp_event(struct perf_event *event, void *data); 1274 1275#ifndef perf_misc_flags 1276# define perf_misc_flags(regs) \ 1277 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1278# define perf_instruction_pointer(regs) instruction_pointer(regs) 1279#endif 1280 1281static inline bool has_branch_stack(struct perf_event *event) 1282{ 1283 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1284} 1285 1286extern int perf_output_begin(struct perf_output_handle *handle, 1287 struct perf_event *event, unsigned int size); 1288extern void perf_output_end(struct perf_output_handle *handle); 1289extern void perf_output_copy(struct perf_output_handle *handle, 1290 const void *buf, unsigned int len); 1291extern int perf_swevent_get_recursion_context(void); 1292extern void perf_swevent_put_recursion_context(int rctx); 1293extern void perf_event_enable(struct perf_event *event); 1294extern void perf_event_disable(struct perf_event *event); 1295extern void perf_event_task_tick(void); 1296#else 1297static inline void 1298perf_event_task_sched_in(struct task_struct *prev, 1299 struct task_struct *task) { } 1300static inline void 1301perf_event_task_sched_out(struct task_struct *prev, 1302 struct task_struct *next) { } 1303static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1304static inline void perf_event_exit_task(struct task_struct *child) { } 1305static inline void perf_event_free_task(struct task_struct *task) { } 1306static inline void perf_event_delayed_put(struct task_struct *task) { } 1307static inline void perf_event_print_debug(void) { } 1308static inline int perf_event_task_disable(void) { return -EINVAL; } 1309static inline int perf_event_task_enable(void) { return -EINVAL; } 1310static inline int perf_event_refresh(struct perf_event *event, int refresh) 1311{ 1312 return -EINVAL; 1313} 1314 1315static inline void 1316perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1317static inline void 1318perf_bp_event(struct perf_event *event, void *data) { } 1319 1320static inline int perf_register_guest_info_callbacks 1321(struct perf_guest_info_callbacks *callbacks) { return 0; } 1322static inline int perf_unregister_guest_info_callbacks 1323(struct perf_guest_info_callbacks *callbacks) { return 0; } 1324 1325static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1326static inline void perf_event_comm(struct task_struct *tsk) { } 1327static inline void perf_event_fork(struct task_struct *tsk) { } 1328static inline void perf_event_init(void) { } 1329static inline int perf_swevent_get_recursion_context(void) { return -1; } 1330static inline void perf_swevent_put_recursion_context(int rctx) { } 1331static inline void perf_event_enable(struct perf_event *event) { } 1332static inline void perf_event_disable(struct perf_event *event) { } 1333static inline void perf_event_task_tick(void) { } 1334#endif 1335 1336#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1337 1338/* 1339 * This has to have a higher priority than migration_notifier in sched.c. 1340 */ 1341#define perf_cpu_notifier(fn) \ 1342do { \ 1343 static struct notifier_block fn##_nb __cpuinitdata = \ 1344 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1345 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1346 (void *)(unsigned long)smp_processor_id()); \ 1347 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1348 (void *)(unsigned long)smp_processor_id()); \ 1349 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1350 (void *)(unsigned long)smp_processor_id()); \ 1351 register_cpu_notifier(&fn##_nb); \ 1352} while (0) 1353 1354 1355#define PMU_FORMAT_ATTR(_name, _format) \ 1356static ssize_t \ 1357_name##_show(struct device *dev, \ 1358 struct device_attribute *attr, \ 1359 char *page) \ 1360{ \ 1361 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1362 return sprintf(page, _format "\n"); \ 1363} \ 1364 \ 1365static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1366 1367#endif /* __KERNEL__ */ 1368#endif /* _LINUX_PERF_EVENT_H */