at v3.5 12 kB view raw
1#ifndef _LINUX_MM_TYPES_H 2#define _LINUX_MM_TYPES_H 3 4#include <linux/auxvec.h> 5#include <linux/types.h> 6#include <linux/threads.h> 7#include <linux/list.h> 8#include <linux/spinlock.h> 9#include <linux/prio_tree.h> 10#include <linux/rbtree.h> 11#include <linux/rwsem.h> 12#include <linux/completion.h> 13#include <linux/cpumask.h> 14#include <linux/page-debug-flags.h> 15#include <linux/uprobes.h> 16#include <asm/page.h> 17#include <asm/mmu.h> 18 19#ifndef AT_VECTOR_SIZE_ARCH 20#define AT_VECTOR_SIZE_ARCH 0 21#endif 22#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 23 24struct address_space; 25 26#define USE_SPLIT_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS) 27 28/* 29 * Each physical page in the system has a struct page associated with 30 * it to keep track of whatever it is we are using the page for at the 31 * moment. Note that we have no way to track which tasks are using 32 * a page, though if it is a pagecache page, rmap structures can tell us 33 * who is mapping it. 34 * 35 * The objects in struct page are organized in double word blocks in 36 * order to allows us to use atomic double word operations on portions 37 * of struct page. That is currently only used by slub but the arrangement 38 * allows the use of atomic double word operations on the flags/mapping 39 * and lru list pointers also. 40 */ 41struct page { 42 /* First double word block */ 43 unsigned long flags; /* Atomic flags, some possibly 44 * updated asynchronously */ 45 struct address_space *mapping; /* If low bit clear, points to 46 * inode address_space, or NULL. 47 * If page mapped as anonymous 48 * memory, low bit is set, and 49 * it points to anon_vma object: 50 * see PAGE_MAPPING_ANON below. 51 */ 52 /* Second double word */ 53 struct { 54 union { 55 pgoff_t index; /* Our offset within mapping. */ 56 void *freelist; /* slub first free object */ 57 }; 58 59 union { 60#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 61 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 62 /* Used for cmpxchg_double in slub */ 63 unsigned long counters; 64#else 65 /* 66 * Keep _count separate from slub cmpxchg_double data. 67 * As the rest of the double word is protected by 68 * slab_lock but _count is not. 69 */ 70 unsigned counters; 71#endif 72 73 struct { 74 75 union { 76 /* 77 * Count of ptes mapped in 78 * mms, to show when page is 79 * mapped & limit reverse map 80 * searches. 81 * 82 * Used also for tail pages 83 * refcounting instead of 84 * _count. Tail pages cannot 85 * be mapped and keeping the 86 * tail page _count zero at 87 * all times guarantees 88 * get_page_unless_zero() will 89 * never succeed on tail 90 * pages. 91 */ 92 atomic_t _mapcount; 93 94 struct { 95 unsigned inuse:16; 96 unsigned objects:15; 97 unsigned frozen:1; 98 }; 99 }; 100 atomic_t _count; /* Usage count, see below. */ 101 }; 102 }; 103 }; 104 105 /* Third double word block */ 106 union { 107 struct list_head lru; /* Pageout list, eg. active_list 108 * protected by zone->lru_lock ! 109 */ 110 struct { /* slub per cpu partial pages */ 111 struct page *next; /* Next partial slab */ 112#ifdef CONFIG_64BIT 113 int pages; /* Nr of partial slabs left */ 114 int pobjects; /* Approximate # of objects */ 115#else 116 short int pages; 117 short int pobjects; 118#endif 119 }; 120 }; 121 122 /* Remainder is not double word aligned */ 123 union { 124 unsigned long private; /* Mapping-private opaque data: 125 * usually used for buffer_heads 126 * if PagePrivate set; used for 127 * swp_entry_t if PageSwapCache; 128 * indicates order in the buddy 129 * system if PG_buddy is set. 130 */ 131#if USE_SPLIT_PTLOCKS 132 spinlock_t ptl; 133#endif 134 struct kmem_cache *slab; /* SLUB: Pointer to slab */ 135 struct page *first_page; /* Compound tail pages */ 136 }; 137 138 /* 139 * On machines where all RAM is mapped into kernel address space, 140 * we can simply calculate the virtual address. On machines with 141 * highmem some memory is mapped into kernel virtual memory 142 * dynamically, so we need a place to store that address. 143 * Note that this field could be 16 bits on x86 ... ;) 144 * 145 * Architectures with slow multiplication can define 146 * WANT_PAGE_VIRTUAL in asm/page.h 147 */ 148#if defined(WANT_PAGE_VIRTUAL) 149 void *virtual; /* Kernel virtual address (NULL if 150 not kmapped, ie. highmem) */ 151#endif /* WANT_PAGE_VIRTUAL */ 152#ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS 153 unsigned long debug_flags; /* Use atomic bitops on this */ 154#endif 155 156#ifdef CONFIG_KMEMCHECK 157 /* 158 * kmemcheck wants to track the status of each byte in a page; this 159 * is a pointer to such a status block. NULL if not tracked. 160 */ 161 void *shadow; 162#endif 163} 164/* 165 * The struct page can be forced to be double word aligned so that atomic ops 166 * on double words work. The SLUB allocator can make use of such a feature. 167 */ 168#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 169 __aligned(2 * sizeof(unsigned long)) 170#endif 171; 172 173struct page_frag { 174 struct page *page; 175#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 176 __u32 offset; 177 __u32 size; 178#else 179 __u16 offset; 180 __u16 size; 181#endif 182}; 183 184typedef unsigned long __nocast vm_flags_t; 185 186/* 187 * A region containing a mapping of a non-memory backed file under NOMMU 188 * conditions. These are held in a global tree and are pinned by the VMAs that 189 * map parts of them. 190 */ 191struct vm_region { 192 struct rb_node vm_rb; /* link in global region tree */ 193 vm_flags_t vm_flags; /* VMA vm_flags */ 194 unsigned long vm_start; /* start address of region */ 195 unsigned long vm_end; /* region initialised to here */ 196 unsigned long vm_top; /* region allocated to here */ 197 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 198 struct file *vm_file; /* the backing file or NULL */ 199 200 int vm_usage; /* region usage count (access under nommu_region_sem) */ 201 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 202 * this region */ 203}; 204 205/* 206 * This struct defines a memory VMM memory area. There is one of these 207 * per VM-area/task. A VM area is any part of the process virtual memory 208 * space that has a special rule for the page-fault handlers (ie a shared 209 * library, the executable area etc). 210 */ 211struct vm_area_struct { 212 struct mm_struct * vm_mm; /* The address space we belong to. */ 213 unsigned long vm_start; /* Our start address within vm_mm. */ 214 unsigned long vm_end; /* The first byte after our end address 215 within vm_mm. */ 216 217 /* linked list of VM areas per task, sorted by address */ 218 struct vm_area_struct *vm_next, *vm_prev; 219 220 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 221 unsigned long vm_flags; /* Flags, see mm.h. */ 222 223 struct rb_node vm_rb; 224 225 /* 226 * For areas with an address space and backing store, 227 * linkage into the address_space->i_mmap prio tree, or 228 * linkage to the list of like vmas hanging off its node, or 229 * linkage of vma in the address_space->i_mmap_nonlinear list. 230 */ 231 union { 232 struct { 233 struct list_head list; 234 void *parent; /* aligns with prio_tree_node parent */ 235 struct vm_area_struct *head; 236 } vm_set; 237 238 struct raw_prio_tree_node prio_tree_node; 239 } shared; 240 241 /* 242 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 243 * list, after a COW of one of the file pages. A MAP_SHARED vma 244 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 245 * or brk vma (with NULL file) can only be in an anon_vma list. 246 */ 247 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 248 * page_table_lock */ 249 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 250 251 /* Function pointers to deal with this struct. */ 252 const struct vm_operations_struct *vm_ops; 253 254 /* Information about our backing store: */ 255 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 256 units, *not* PAGE_CACHE_SIZE */ 257 struct file * vm_file; /* File we map to (can be NULL). */ 258 void * vm_private_data; /* was vm_pte (shared mem) */ 259 260#ifndef CONFIG_MMU 261 struct vm_region *vm_region; /* NOMMU mapping region */ 262#endif 263#ifdef CONFIG_NUMA 264 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 265#endif 266}; 267 268struct core_thread { 269 struct task_struct *task; 270 struct core_thread *next; 271}; 272 273struct core_state { 274 atomic_t nr_threads; 275 struct core_thread dumper; 276 struct completion startup; 277}; 278 279enum { 280 MM_FILEPAGES, 281 MM_ANONPAGES, 282 MM_SWAPENTS, 283 NR_MM_COUNTERS 284}; 285 286#if USE_SPLIT_PTLOCKS && defined(CONFIG_MMU) 287#define SPLIT_RSS_COUNTING 288/* per-thread cached information, */ 289struct task_rss_stat { 290 int events; /* for synchronization threshold */ 291 int count[NR_MM_COUNTERS]; 292}; 293#endif /* USE_SPLIT_PTLOCKS */ 294 295struct mm_rss_stat { 296 atomic_long_t count[NR_MM_COUNTERS]; 297}; 298 299struct mm_struct { 300 struct vm_area_struct * mmap; /* list of VMAs */ 301 struct rb_root mm_rb; 302 struct vm_area_struct * mmap_cache; /* last find_vma result */ 303#ifdef CONFIG_MMU 304 unsigned long (*get_unmapped_area) (struct file *filp, 305 unsigned long addr, unsigned long len, 306 unsigned long pgoff, unsigned long flags); 307 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 308#endif 309 unsigned long mmap_base; /* base of mmap area */ 310 unsigned long task_size; /* size of task vm space */ 311 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 312 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 313 pgd_t * pgd; 314 atomic_t mm_users; /* How many users with user space? */ 315 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 316 int map_count; /* number of VMAs */ 317 318 spinlock_t page_table_lock; /* Protects page tables and some counters */ 319 struct rw_semaphore mmap_sem; 320 321 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 322 * together off init_mm.mmlist, and are protected 323 * by mmlist_lock 324 */ 325 326 327 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 328 unsigned long hiwater_vm; /* High-water virtual memory usage */ 329 330 unsigned long total_vm; /* Total pages mapped */ 331 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 332 unsigned long pinned_vm; /* Refcount permanently increased */ 333 unsigned long shared_vm; /* Shared pages (files) */ 334 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE */ 335 unsigned long stack_vm; /* VM_GROWSUP/DOWN */ 336 unsigned long reserved_vm; /* VM_RESERVED|VM_IO pages */ 337 unsigned long def_flags; 338 unsigned long nr_ptes; /* Page table pages */ 339 unsigned long start_code, end_code, start_data, end_data; 340 unsigned long start_brk, brk, start_stack; 341 unsigned long arg_start, arg_end, env_start, env_end; 342 343 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 344 345 /* 346 * Special counters, in some configurations protected by the 347 * page_table_lock, in other configurations by being atomic. 348 */ 349 struct mm_rss_stat rss_stat; 350 351 struct linux_binfmt *binfmt; 352 353 cpumask_var_t cpu_vm_mask_var; 354 355 /* Architecture-specific MM context */ 356 mm_context_t context; 357 358 unsigned long flags; /* Must use atomic bitops to access the bits */ 359 360 struct core_state *core_state; /* coredumping support */ 361#ifdef CONFIG_AIO 362 spinlock_t ioctx_lock; 363 struct hlist_head ioctx_list; 364#endif 365#ifdef CONFIG_MM_OWNER 366 /* 367 * "owner" points to a task that is regarded as the canonical 368 * user/owner of this mm. All of the following must be true in 369 * order for it to be changed: 370 * 371 * current == mm->owner 372 * current->mm != mm 373 * new_owner->mm == mm 374 * new_owner->alloc_lock is held 375 */ 376 struct task_struct __rcu *owner; 377#endif 378 379 /* store ref to file /proc/<pid>/exe symlink points to */ 380 struct file *exe_file; 381 unsigned long num_exe_file_vmas; 382#ifdef CONFIG_MMU_NOTIFIER 383 struct mmu_notifier_mm *mmu_notifier_mm; 384#endif 385#ifdef CONFIG_TRANSPARENT_HUGEPAGE 386 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 387#endif 388#ifdef CONFIG_CPUMASK_OFFSTACK 389 struct cpumask cpumask_allocation; 390#endif 391 struct uprobes_state uprobes_state; 392}; 393 394static inline void mm_init_cpumask(struct mm_struct *mm) 395{ 396#ifdef CONFIG_CPUMASK_OFFSTACK 397 mm->cpu_vm_mask_var = &mm->cpumask_allocation; 398#endif 399} 400 401/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 402static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 403{ 404 return mm->cpu_vm_mask_var; 405} 406 407#endif /* _LINUX_MM_TYPES_H */