Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/gfp.h>
9#include <linux/bug.h>
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/prio_tree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21
22struct mempolicy;
23struct anon_vma;
24struct file_ra_state;
25struct user_struct;
26struct writeback_control;
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
33extern unsigned long totalram_pages;
34extern void * high_memory;
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
46
47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
49/* to align the pointer to the (next) page boundary */
50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
52/*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
61extern struct kmem_cache *vm_area_cachep;
62
63#ifndef CONFIG_MMU
64extern struct rb_root nommu_region_tree;
65extern struct rw_semaphore nommu_region_sem;
66
67extern unsigned int kobjsize(const void *objp);
68#endif
69
70/*
71 * vm_flags in vm_area_struct, see mm_types.h.
72 */
73#define VM_READ 0x00000001 /* currently active flags */
74#define VM_WRITE 0x00000002
75#define VM_EXEC 0x00000004
76#define VM_SHARED 0x00000008
77
78/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
79#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
80#define VM_MAYWRITE 0x00000020
81#define VM_MAYEXEC 0x00000040
82#define VM_MAYSHARE 0x00000080
83
84#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
85#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
86#define VM_GROWSUP 0x00000200
87#else
88#define VM_GROWSUP 0x00000000
89#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
90#endif
91#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
92#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
93
94#define VM_EXECUTABLE 0x00001000
95#define VM_LOCKED 0x00002000
96#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
97
98 /* Used by sys_madvise() */
99#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
100#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
101
102#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
103#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
104#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
105#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
106#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
107#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
108#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
109#ifndef CONFIG_TRANSPARENT_HUGEPAGE
110#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
111#else
112#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
113#endif
114#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
115#define VM_NODUMP 0x04000000 /* Do not include in the core dump */
116
117#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
118#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
119#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
120#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
121#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
122
123/* Bits set in the VMA until the stack is in its final location */
124#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
125
126#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
127#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
128#endif
129
130#ifdef CONFIG_STACK_GROWSUP
131#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
132#else
133#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
134#endif
135
136#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
137#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
138#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
139#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
140#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
141
142/*
143 * Special vmas that are non-mergable, non-mlock()able.
144 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
145 */
146#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
147
148/*
149 * mapping from the currently active vm_flags protection bits (the
150 * low four bits) to a page protection mask..
151 */
152extern pgprot_t protection_map[16];
153
154#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
155#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
156#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
157#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
158#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
159#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
160
161/*
162 * This interface is used by x86 PAT code to identify a pfn mapping that is
163 * linear over entire vma. This is to optimize PAT code that deals with
164 * marking the physical region with a particular prot. This is not for generic
165 * mm use. Note also that this check will not work if the pfn mapping is
166 * linear for a vma starting at physical address 0. In which case PAT code
167 * falls back to slow path of reserving physical range page by page.
168 */
169static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
170{
171 return !!(vma->vm_flags & VM_PFN_AT_MMAP);
172}
173
174static inline int is_pfn_mapping(struct vm_area_struct *vma)
175{
176 return !!(vma->vm_flags & VM_PFNMAP);
177}
178
179/*
180 * vm_fault is filled by the the pagefault handler and passed to the vma's
181 * ->fault function. The vma's ->fault is responsible for returning a bitmask
182 * of VM_FAULT_xxx flags that give details about how the fault was handled.
183 *
184 * pgoff should be used in favour of virtual_address, if possible. If pgoff
185 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
186 * mapping support.
187 */
188struct vm_fault {
189 unsigned int flags; /* FAULT_FLAG_xxx flags */
190 pgoff_t pgoff; /* Logical page offset based on vma */
191 void __user *virtual_address; /* Faulting virtual address */
192
193 struct page *page; /* ->fault handlers should return a
194 * page here, unless VM_FAULT_NOPAGE
195 * is set (which is also implied by
196 * VM_FAULT_ERROR).
197 */
198};
199
200/*
201 * These are the virtual MM functions - opening of an area, closing and
202 * unmapping it (needed to keep files on disk up-to-date etc), pointer
203 * to the functions called when a no-page or a wp-page exception occurs.
204 */
205struct vm_operations_struct {
206 void (*open)(struct vm_area_struct * area);
207 void (*close)(struct vm_area_struct * area);
208 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
209
210 /* notification that a previously read-only page is about to become
211 * writable, if an error is returned it will cause a SIGBUS */
212 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
213
214 /* called by access_process_vm when get_user_pages() fails, typically
215 * for use by special VMAs that can switch between memory and hardware
216 */
217 int (*access)(struct vm_area_struct *vma, unsigned long addr,
218 void *buf, int len, int write);
219#ifdef CONFIG_NUMA
220 /*
221 * set_policy() op must add a reference to any non-NULL @new mempolicy
222 * to hold the policy upon return. Caller should pass NULL @new to
223 * remove a policy and fall back to surrounding context--i.e. do not
224 * install a MPOL_DEFAULT policy, nor the task or system default
225 * mempolicy.
226 */
227 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
228
229 /*
230 * get_policy() op must add reference [mpol_get()] to any policy at
231 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
232 * in mm/mempolicy.c will do this automatically.
233 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
234 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
235 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
236 * must return NULL--i.e., do not "fallback" to task or system default
237 * policy.
238 */
239 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
240 unsigned long addr);
241 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
242 const nodemask_t *to, unsigned long flags);
243#endif
244};
245
246struct mmu_gather;
247struct inode;
248
249#define page_private(page) ((page)->private)
250#define set_page_private(page, v) ((page)->private = (v))
251
252/*
253 * FIXME: take this include out, include page-flags.h in
254 * files which need it (119 of them)
255 */
256#include <linux/page-flags.h>
257#include <linux/huge_mm.h>
258
259/*
260 * Methods to modify the page usage count.
261 *
262 * What counts for a page usage:
263 * - cache mapping (page->mapping)
264 * - private data (page->private)
265 * - page mapped in a task's page tables, each mapping
266 * is counted separately
267 *
268 * Also, many kernel routines increase the page count before a critical
269 * routine so they can be sure the page doesn't go away from under them.
270 */
271
272/*
273 * Drop a ref, return true if the refcount fell to zero (the page has no users)
274 */
275static inline int put_page_testzero(struct page *page)
276{
277 VM_BUG_ON(atomic_read(&page->_count) == 0);
278 return atomic_dec_and_test(&page->_count);
279}
280
281/*
282 * Try to grab a ref unless the page has a refcount of zero, return false if
283 * that is the case.
284 */
285static inline int get_page_unless_zero(struct page *page)
286{
287 return atomic_inc_not_zero(&page->_count);
288}
289
290extern int page_is_ram(unsigned long pfn);
291
292/* Support for virtually mapped pages */
293struct page *vmalloc_to_page(const void *addr);
294unsigned long vmalloc_to_pfn(const void *addr);
295
296/*
297 * Determine if an address is within the vmalloc range
298 *
299 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
300 * is no special casing required.
301 */
302static inline int is_vmalloc_addr(const void *x)
303{
304#ifdef CONFIG_MMU
305 unsigned long addr = (unsigned long)x;
306
307 return addr >= VMALLOC_START && addr < VMALLOC_END;
308#else
309 return 0;
310#endif
311}
312#ifdef CONFIG_MMU
313extern int is_vmalloc_or_module_addr(const void *x);
314#else
315static inline int is_vmalloc_or_module_addr(const void *x)
316{
317 return 0;
318}
319#endif
320
321static inline void compound_lock(struct page *page)
322{
323#ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 VM_BUG_ON(PageSlab(page));
325 bit_spin_lock(PG_compound_lock, &page->flags);
326#endif
327}
328
329static inline void compound_unlock(struct page *page)
330{
331#ifdef CONFIG_TRANSPARENT_HUGEPAGE
332 VM_BUG_ON(PageSlab(page));
333 bit_spin_unlock(PG_compound_lock, &page->flags);
334#endif
335}
336
337static inline unsigned long compound_lock_irqsave(struct page *page)
338{
339 unsigned long uninitialized_var(flags);
340#ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 local_irq_save(flags);
342 compound_lock(page);
343#endif
344 return flags;
345}
346
347static inline void compound_unlock_irqrestore(struct page *page,
348 unsigned long flags)
349{
350#ifdef CONFIG_TRANSPARENT_HUGEPAGE
351 compound_unlock(page);
352 local_irq_restore(flags);
353#endif
354}
355
356static inline struct page *compound_head(struct page *page)
357{
358 if (unlikely(PageTail(page)))
359 return page->first_page;
360 return page;
361}
362
363/*
364 * The atomic page->_mapcount, starts from -1: so that transitions
365 * both from it and to it can be tracked, using atomic_inc_and_test
366 * and atomic_add_negative(-1).
367 */
368static inline void reset_page_mapcount(struct page *page)
369{
370 atomic_set(&(page)->_mapcount, -1);
371}
372
373static inline int page_mapcount(struct page *page)
374{
375 return atomic_read(&(page)->_mapcount) + 1;
376}
377
378static inline int page_count(struct page *page)
379{
380 return atomic_read(&compound_head(page)->_count);
381}
382
383static inline void get_huge_page_tail(struct page *page)
384{
385 /*
386 * __split_huge_page_refcount() cannot run
387 * from under us.
388 */
389 VM_BUG_ON(page_mapcount(page) < 0);
390 VM_BUG_ON(atomic_read(&page->_count) != 0);
391 atomic_inc(&page->_mapcount);
392}
393
394extern bool __get_page_tail(struct page *page);
395
396static inline void get_page(struct page *page)
397{
398 if (unlikely(PageTail(page)))
399 if (likely(__get_page_tail(page)))
400 return;
401 /*
402 * Getting a normal page or the head of a compound page
403 * requires to already have an elevated page->_count.
404 */
405 VM_BUG_ON(atomic_read(&page->_count) <= 0);
406 atomic_inc(&page->_count);
407}
408
409static inline struct page *virt_to_head_page(const void *x)
410{
411 struct page *page = virt_to_page(x);
412 return compound_head(page);
413}
414
415/*
416 * Setup the page count before being freed into the page allocator for
417 * the first time (boot or memory hotplug)
418 */
419static inline void init_page_count(struct page *page)
420{
421 atomic_set(&page->_count, 1);
422}
423
424/*
425 * PageBuddy() indicate that the page is free and in the buddy system
426 * (see mm/page_alloc.c).
427 *
428 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
429 * -2 so that an underflow of the page_mapcount() won't be mistaken
430 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
431 * efficiently by most CPU architectures.
432 */
433#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
434
435static inline int PageBuddy(struct page *page)
436{
437 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
438}
439
440static inline void __SetPageBuddy(struct page *page)
441{
442 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
443 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
444}
445
446static inline void __ClearPageBuddy(struct page *page)
447{
448 VM_BUG_ON(!PageBuddy(page));
449 atomic_set(&page->_mapcount, -1);
450}
451
452void put_page(struct page *page);
453void put_pages_list(struct list_head *pages);
454
455void split_page(struct page *page, unsigned int order);
456int split_free_page(struct page *page);
457
458/*
459 * Compound pages have a destructor function. Provide a
460 * prototype for that function and accessor functions.
461 * These are _only_ valid on the head of a PG_compound page.
462 */
463typedef void compound_page_dtor(struct page *);
464
465static inline void set_compound_page_dtor(struct page *page,
466 compound_page_dtor *dtor)
467{
468 page[1].lru.next = (void *)dtor;
469}
470
471static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
472{
473 return (compound_page_dtor *)page[1].lru.next;
474}
475
476static inline int compound_order(struct page *page)
477{
478 if (!PageHead(page))
479 return 0;
480 return (unsigned long)page[1].lru.prev;
481}
482
483static inline int compound_trans_order(struct page *page)
484{
485 int order;
486 unsigned long flags;
487
488 if (!PageHead(page))
489 return 0;
490
491 flags = compound_lock_irqsave(page);
492 order = compound_order(page);
493 compound_unlock_irqrestore(page, flags);
494 return order;
495}
496
497static inline void set_compound_order(struct page *page, unsigned long order)
498{
499 page[1].lru.prev = (void *)order;
500}
501
502#ifdef CONFIG_MMU
503/*
504 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
505 * servicing faults for write access. In the normal case, do always want
506 * pte_mkwrite. But get_user_pages can cause write faults for mappings
507 * that do not have writing enabled, when used by access_process_vm.
508 */
509static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
510{
511 if (likely(vma->vm_flags & VM_WRITE))
512 pte = pte_mkwrite(pte);
513 return pte;
514}
515#endif
516
517/*
518 * Multiple processes may "see" the same page. E.g. for untouched
519 * mappings of /dev/null, all processes see the same page full of
520 * zeroes, and text pages of executables and shared libraries have
521 * only one copy in memory, at most, normally.
522 *
523 * For the non-reserved pages, page_count(page) denotes a reference count.
524 * page_count() == 0 means the page is free. page->lru is then used for
525 * freelist management in the buddy allocator.
526 * page_count() > 0 means the page has been allocated.
527 *
528 * Pages are allocated by the slab allocator in order to provide memory
529 * to kmalloc and kmem_cache_alloc. In this case, the management of the
530 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
531 * unless a particular usage is carefully commented. (the responsibility of
532 * freeing the kmalloc memory is the caller's, of course).
533 *
534 * A page may be used by anyone else who does a __get_free_page().
535 * In this case, page_count still tracks the references, and should only
536 * be used through the normal accessor functions. The top bits of page->flags
537 * and page->virtual store page management information, but all other fields
538 * are unused and could be used privately, carefully. The management of this
539 * page is the responsibility of the one who allocated it, and those who have
540 * subsequently been given references to it.
541 *
542 * The other pages (we may call them "pagecache pages") are completely
543 * managed by the Linux memory manager: I/O, buffers, swapping etc.
544 * The following discussion applies only to them.
545 *
546 * A pagecache page contains an opaque `private' member, which belongs to the
547 * page's address_space. Usually, this is the address of a circular list of
548 * the page's disk buffers. PG_private must be set to tell the VM to call
549 * into the filesystem to release these pages.
550 *
551 * A page may belong to an inode's memory mapping. In this case, page->mapping
552 * is the pointer to the inode, and page->index is the file offset of the page,
553 * in units of PAGE_CACHE_SIZE.
554 *
555 * If pagecache pages are not associated with an inode, they are said to be
556 * anonymous pages. These may become associated with the swapcache, and in that
557 * case PG_swapcache is set, and page->private is an offset into the swapcache.
558 *
559 * In either case (swapcache or inode backed), the pagecache itself holds one
560 * reference to the page. Setting PG_private should also increment the
561 * refcount. The each user mapping also has a reference to the page.
562 *
563 * The pagecache pages are stored in a per-mapping radix tree, which is
564 * rooted at mapping->page_tree, and indexed by offset.
565 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
566 * lists, we instead now tag pages as dirty/writeback in the radix tree.
567 *
568 * All pagecache pages may be subject to I/O:
569 * - inode pages may need to be read from disk,
570 * - inode pages which have been modified and are MAP_SHARED may need
571 * to be written back to the inode on disk,
572 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
573 * modified may need to be swapped out to swap space and (later) to be read
574 * back into memory.
575 */
576
577/*
578 * The zone field is never updated after free_area_init_core()
579 * sets it, so none of the operations on it need to be atomic.
580 */
581
582
583/*
584 * page->flags layout:
585 *
586 * There are three possibilities for how page->flags get
587 * laid out. The first is for the normal case, without
588 * sparsemem. The second is for sparsemem when there is
589 * plenty of space for node and section. The last is when
590 * we have run out of space and have to fall back to an
591 * alternate (slower) way of determining the node.
592 *
593 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
594 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
595 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
596 */
597#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
598#define SECTIONS_WIDTH SECTIONS_SHIFT
599#else
600#define SECTIONS_WIDTH 0
601#endif
602
603#define ZONES_WIDTH ZONES_SHIFT
604
605#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
606#define NODES_WIDTH NODES_SHIFT
607#else
608#ifdef CONFIG_SPARSEMEM_VMEMMAP
609#error "Vmemmap: No space for nodes field in page flags"
610#endif
611#define NODES_WIDTH 0
612#endif
613
614/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
615#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
616#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
617#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
618
619/*
620 * We are going to use the flags for the page to node mapping if its in
621 * there. This includes the case where there is no node, so it is implicit.
622 */
623#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
624#define NODE_NOT_IN_PAGE_FLAGS
625#endif
626
627/*
628 * Define the bit shifts to access each section. For non-existent
629 * sections we define the shift as 0; that plus a 0 mask ensures
630 * the compiler will optimise away reference to them.
631 */
632#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
633#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
634#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
635
636/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
637#ifdef NODE_NOT_IN_PAGE_FLAGS
638#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
639#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
640 SECTIONS_PGOFF : ZONES_PGOFF)
641#else
642#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
643#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
644 NODES_PGOFF : ZONES_PGOFF)
645#endif
646
647#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
648
649#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
650#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
651#endif
652
653#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
654#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
655#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
656#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
657
658static inline enum zone_type page_zonenum(const struct page *page)
659{
660 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
661}
662
663/*
664 * The identification function is only used by the buddy allocator for
665 * determining if two pages could be buddies. We are not really
666 * identifying a zone since we could be using a the section number
667 * id if we have not node id available in page flags.
668 * We guarantee only that it will return the same value for two
669 * combinable pages in a zone.
670 */
671static inline int page_zone_id(struct page *page)
672{
673 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
674}
675
676static inline int zone_to_nid(struct zone *zone)
677{
678#ifdef CONFIG_NUMA
679 return zone->node;
680#else
681 return 0;
682#endif
683}
684
685#ifdef NODE_NOT_IN_PAGE_FLAGS
686extern int page_to_nid(const struct page *page);
687#else
688static inline int page_to_nid(const struct page *page)
689{
690 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
691}
692#endif
693
694static inline struct zone *page_zone(const struct page *page)
695{
696 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
697}
698
699#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
700static inline void set_page_section(struct page *page, unsigned long section)
701{
702 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
703 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
704}
705
706static inline unsigned long page_to_section(const struct page *page)
707{
708 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
709}
710#endif
711
712static inline void set_page_zone(struct page *page, enum zone_type zone)
713{
714 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
715 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
716}
717
718static inline void set_page_node(struct page *page, unsigned long node)
719{
720 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
721 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
722}
723
724static inline void set_page_links(struct page *page, enum zone_type zone,
725 unsigned long node, unsigned long pfn)
726{
727 set_page_zone(page, zone);
728 set_page_node(page, node);
729#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
730 set_page_section(page, pfn_to_section_nr(pfn));
731#endif
732}
733
734/*
735 * Some inline functions in vmstat.h depend on page_zone()
736 */
737#include <linux/vmstat.h>
738
739static __always_inline void *lowmem_page_address(const struct page *page)
740{
741 return __va(PFN_PHYS(page_to_pfn(page)));
742}
743
744#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
745#define HASHED_PAGE_VIRTUAL
746#endif
747
748#if defined(WANT_PAGE_VIRTUAL)
749#define page_address(page) ((page)->virtual)
750#define set_page_address(page, address) \
751 do { \
752 (page)->virtual = (address); \
753 } while(0)
754#define page_address_init() do { } while(0)
755#endif
756
757#if defined(HASHED_PAGE_VIRTUAL)
758void *page_address(const struct page *page);
759void set_page_address(struct page *page, void *virtual);
760void page_address_init(void);
761#endif
762
763#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
764#define page_address(page) lowmem_page_address(page)
765#define set_page_address(page, address) do { } while(0)
766#define page_address_init() do { } while(0)
767#endif
768
769/*
770 * On an anonymous page mapped into a user virtual memory area,
771 * page->mapping points to its anon_vma, not to a struct address_space;
772 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
773 *
774 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
775 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
776 * and then page->mapping points, not to an anon_vma, but to a private
777 * structure which KSM associates with that merged page. See ksm.h.
778 *
779 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
780 *
781 * Please note that, confusingly, "page_mapping" refers to the inode
782 * address_space which maps the page from disk; whereas "page_mapped"
783 * refers to user virtual address space into which the page is mapped.
784 */
785#define PAGE_MAPPING_ANON 1
786#define PAGE_MAPPING_KSM 2
787#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
788
789extern struct address_space swapper_space;
790static inline struct address_space *page_mapping(struct page *page)
791{
792 struct address_space *mapping = page->mapping;
793
794 VM_BUG_ON(PageSlab(page));
795 if (unlikely(PageSwapCache(page)))
796 mapping = &swapper_space;
797 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
798 mapping = NULL;
799 return mapping;
800}
801
802/* Neutral page->mapping pointer to address_space or anon_vma or other */
803static inline void *page_rmapping(struct page *page)
804{
805 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
806}
807
808static inline int PageAnon(struct page *page)
809{
810 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
811}
812
813/*
814 * Return the pagecache index of the passed page. Regular pagecache pages
815 * use ->index whereas swapcache pages use ->private
816 */
817static inline pgoff_t page_index(struct page *page)
818{
819 if (unlikely(PageSwapCache(page)))
820 return page_private(page);
821 return page->index;
822}
823
824/*
825 * Return true if this page is mapped into pagetables.
826 */
827static inline int page_mapped(struct page *page)
828{
829 return atomic_read(&(page)->_mapcount) >= 0;
830}
831
832/*
833 * Different kinds of faults, as returned by handle_mm_fault().
834 * Used to decide whether a process gets delivered SIGBUS or
835 * just gets major/minor fault counters bumped up.
836 */
837
838#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
839
840#define VM_FAULT_OOM 0x0001
841#define VM_FAULT_SIGBUS 0x0002
842#define VM_FAULT_MAJOR 0x0004
843#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
844#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
845#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
846
847#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
848#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
849#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
850
851#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
852
853#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
854 VM_FAULT_HWPOISON_LARGE)
855
856/* Encode hstate index for a hwpoisoned large page */
857#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
858#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
859
860/*
861 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
862 */
863extern void pagefault_out_of_memory(void);
864
865#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
866
867/*
868 * Flags passed to show_mem() and show_free_areas() to suppress output in
869 * various contexts.
870 */
871#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
872
873extern void show_free_areas(unsigned int flags);
874extern bool skip_free_areas_node(unsigned int flags, int nid);
875
876int shmem_zero_setup(struct vm_area_struct *);
877
878extern int can_do_mlock(void);
879extern int user_shm_lock(size_t, struct user_struct *);
880extern void user_shm_unlock(size_t, struct user_struct *);
881
882/*
883 * Parameter block passed down to zap_pte_range in exceptional cases.
884 */
885struct zap_details {
886 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
887 struct address_space *check_mapping; /* Check page->mapping if set */
888 pgoff_t first_index; /* Lowest page->index to unmap */
889 pgoff_t last_index; /* Highest page->index to unmap */
890};
891
892struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
893 pte_t pte);
894
895int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
896 unsigned long size);
897void zap_page_range(struct vm_area_struct *vma, unsigned long address,
898 unsigned long size, struct zap_details *);
899void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
900 unsigned long start, unsigned long end);
901
902/**
903 * mm_walk - callbacks for walk_page_range
904 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
905 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
906 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
907 * this handler is required to be able to handle
908 * pmd_trans_huge() pmds. They may simply choose to
909 * split_huge_page() instead of handling it explicitly.
910 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
911 * @pte_hole: if set, called for each hole at all levels
912 * @hugetlb_entry: if set, called for each hugetlb entry
913 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
914 * is used.
915 *
916 * (see walk_page_range for more details)
917 */
918struct mm_walk {
919 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
920 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
921 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
922 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
923 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
924 int (*hugetlb_entry)(pte_t *, unsigned long,
925 unsigned long, unsigned long, struct mm_walk *);
926 struct mm_struct *mm;
927 void *private;
928};
929
930int walk_page_range(unsigned long addr, unsigned long end,
931 struct mm_walk *walk);
932void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
933 unsigned long end, unsigned long floor, unsigned long ceiling);
934int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
935 struct vm_area_struct *vma);
936void unmap_mapping_range(struct address_space *mapping,
937 loff_t const holebegin, loff_t const holelen, int even_cows);
938int follow_pfn(struct vm_area_struct *vma, unsigned long address,
939 unsigned long *pfn);
940int follow_phys(struct vm_area_struct *vma, unsigned long address,
941 unsigned int flags, unsigned long *prot, resource_size_t *phys);
942int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
943 void *buf, int len, int write);
944
945static inline void unmap_shared_mapping_range(struct address_space *mapping,
946 loff_t const holebegin, loff_t const holelen)
947{
948 unmap_mapping_range(mapping, holebegin, holelen, 0);
949}
950
951extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
952extern void truncate_setsize(struct inode *inode, loff_t newsize);
953extern int vmtruncate(struct inode *inode, loff_t offset);
954void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
955int truncate_inode_page(struct address_space *mapping, struct page *page);
956int generic_error_remove_page(struct address_space *mapping, struct page *page);
957int invalidate_inode_page(struct page *page);
958
959#ifdef CONFIG_MMU
960extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
961 unsigned long address, unsigned int flags);
962extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
963 unsigned long address, unsigned int fault_flags);
964#else
965static inline int handle_mm_fault(struct mm_struct *mm,
966 struct vm_area_struct *vma, unsigned long address,
967 unsigned int flags)
968{
969 /* should never happen if there's no MMU */
970 BUG();
971 return VM_FAULT_SIGBUS;
972}
973static inline int fixup_user_fault(struct task_struct *tsk,
974 struct mm_struct *mm, unsigned long address,
975 unsigned int fault_flags)
976{
977 /* should never happen if there's no MMU */
978 BUG();
979 return -EFAULT;
980}
981#endif
982
983extern int make_pages_present(unsigned long addr, unsigned long end);
984extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
985extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
986 void *buf, int len, int write);
987
988int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
989 unsigned long start, int len, unsigned int foll_flags,
990 struct page **pages, struct vm_area_struct **vmas,
991 int *nonblocking);
992int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
993 unsigned long start, int nr_pages, int write, int force,
994 struct page **pages, struct vm_area_struct **vmas);
995int get_user_pages_fast(unsigned long start, int nr_pages, int write,
996 struct page **pages);
997struct page *get_dump_page(unsigned long addr);
998
999extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1000extern void do_invalidatepage(struct page *page, unsigned long offset);
1001
1002int __set_page_dirty_nobuffers(struct page *page);
1003int __set_page_dirty_no_writeback(struct page *page);
1004int redirty_page_for_writepage(struct writeback_control *wbc,
1005 struct page *page);
1006void account_page_dirtied(struct page *page, struct address_space *mapping);
1007void account_page_writeback(struct page *page);
1008int set_page_dirty(struct page *page);
1009int set_page_dirty_lock(struct page *page);
1010int clear_page_dirty_for_io(struct page *page);
1011
1012/* Is the vma a continuation of the stack vma above it? */
1013static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1014{
1015 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1016}
1017
1018static inline int stack_guard_page_start(struct vm_area_struct *vma,
1019 unsigned long addr)
1020{
1021 return (vma->vm_flags & VM_GROWSDOWN) &&
1022 (vma->vm_start == addr) &&
1023 !vma_growsdown(vma->vm_prev, addr);
1024}
1025
1026/* Is the vma a continuation of the stack vma below it? */
1027static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1028{
1029 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1030}
1031
1032static inline int stack_guard_page_end(struct vm_area_struct *vma,
1033 unsigned long addr)
1034{
1035 return (vma->vm_flags & VM_GROWSUP) &&
1036 (vma->vm_end == addr) &&
1037 !vma_growsup(vma->vm_next, addr);
1038}
1039
1040extern pid_t
1041vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1042
1043extern unsigned long move_page_tables(struct vm_area_struct *vma,
1044 unsigned long old_addr, struct vm_area_struct *new_vma,
1045 unsigned long new_addr, unsigned long len);
1046extern unsigned long do_mremap(unsigned long addr,
1047 unsigned long old_len, unsigned long new_len,
1048 unsigned long flags, unsigned long new_addr);
1049extern int mprotect_fixup(struct vm_area_struct *vma,
1050 struct vm_area_struct **pprev, unsigned long start,
1051 unsigned long end, unsigned long newflags);
1052
1053/*
1054 * doesn't attempt to fault and will return short.
1055 */
1056int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1057 struct page **pages);
1058/*
1059 * per-process(per-mm_struct) statistics.
1060 */
1061static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1062{
1063 long val = atomic_long_read(&mm->rss_stat.count[member]);
1064
1065#ifdef SPLIT_RSS_COUNTING
1066 /*
1067 * counter is updated in asynchronous manner and may go to minus.
1068 * But it's never be expected number for users.
1069 */
1070 if (val < 0)
1071 val = 0;
1072#endif
1073 return (unsigned long)val;
1074}
1075
1076static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1077{
1078 atomic_long_add(value, &mm->rss_stat.count[member]);
1079}
1080
1081static inline void inc_mm_counter(struct mm_struct *mm, int member)
1082{
1083 atomic_long_inc(&mm->rss_stat.count[member]);
1084}
1085
1086static inline void dec_mm_counter(struct mm_struct *mm, int member)
1087{
1088 atomic_long_dec(&mm->rss_stat.count[member]);
1089}
1090
1091static inline unsigned long get_mm_rss(struct mm_struct *mm)
1092{
1093 return get_mm_counter(mm, MM_FILEPAGES) +
1094 get_mm_counter(mm, MM_ANONPAGES);
1095}
1096
1097static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1098{
1099 return max(mm->hiwater_rss, get_mm_rss(mm));
1100}
1101
1102static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1103{
1104 return max(mm->hiwater_vm, mm->total_vm);
1105}
1106
1107static inline void update_hiwater_rss(struct mm_struct *mm)
1108{
1109 unsigned long _rss = get_mm_rss(mm);
1110
1111 if ((mm)->hiwater_rss < _rss)
1112 (mm)->hiwater_rss = _rss;
1113}
1114
1115static inline void update_hiwater_vm(struct mm_struct *mm)
1116{
1117 if (mm->hiwater_vm < mm->total_vm)
1118 mm->hiwater_vm = mm->total_vm;
1119}
1120
1121static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1122 struct mm_struct *mm)
1123{
1124 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1125
1126 if (*maxrss < hiwater_rss)
1127 *maxrss = hiwater_rss;
1128}
1129
1130#if defined(SPLIT_RSS_COUNTING)
1131void sync_mm_rss(struct mm_struct *mm);
1132#else
1133static inline void sync_mm_rss(struct mm_struct *mm)
1134{
1135}
1136#endif
1137
1138int vma_wants_writenotify(struct vm_area_struct *vma);
1139
1140extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1141 spinlock_t **ptl);
1142static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1143 spinlock_t **ptl)
1144{
1145 pte_t *ptep;
1146 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1147 return ptep;
1148}
1149
1150#ifdef __PAGETABLE_PUD_FOLDED
1151static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1152 unsigned long address)
1153{
1154 return 0;
1155}
1156#else
1157int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1158#endif
1159
1160#ifdef __PAGETABLE_PMD_FOLDED
1161static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1162 unsigned long address)
1163{
1164 return 0;
1165}
1166#else
1167int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1168#endif
1169
1170int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1171 pmd_t *pmd, unsigned long address);
1172int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1173
1174/*
1175 * The following ifdef needed to get the 4level-fixup.h header to work.
1176 * Remove it when 4level-fixup.h has been removed.
1177 */
1178#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1179static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1180{
1181 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1182 NULL: pud_offset(pgd, address);
1183}
1184
1185static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1186{
1187 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1188 NULL: pmd_offset(pud, address);
1189}
1190#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1191
1192#if USE_SPLIT_PTLOCKS
1193/*
1194 * We tuck a spinlock to guard each pagetable page into its struct page,
1195 * at page->private, with BUILD_BUG_ON to make sure that this will not
1196 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1197 * When freeing, reset page->mapping so free_pages_check won't complain.
1198 */
1199#define __pte_lockptr(page) &((page)->ptl)
1200#define pte_lock_init(_page) do { \
1201 spin_lock_init(__pte_lockptr(_page)); \
1202} while (0)
1203#define pte_lock_deinit(page) ((page)->mapping = NULL)
1204#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1205#else /* !USE_SPLIT_PTLOCKS */
1206/*
1207 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1208 */
1209#define pte_lock_init(page) do {} while (0)
1210#define pte_lock_deinit(page) do {} while (0)
1211#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1212#endif /* USE_SPLIT_PTLOCKS */
1213
1214static inline void pgtable_page_ctor(struct page *page)
1215{
1216 pte_lock_init(page);
1217 inc_zone_page_state(page, NR_PAGETABLE);
1218}
1219
1220static inline void pgtable_page_dtor(struct page *page)
1221{
1222 pte_lock_deinit(page);
1223 dec_zone_page_state(page, NR_PAGETABLE);
1224}
1225
1226#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1227({ \
1228 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1229 pte_t *__pte = pte_offset_map(pmd, address); \
1230 *(ptlp) = __ptl; \
1231 spin_lock(__ptl); \
1232 __pte; \
1233})
1234
1235#define pte_unmap_unlock(pte, ptl) do { \
1236 spin_unlock(ptl); \
1237 pte_unmap(pte); \
1238} while (0)
1239
1240#define pte_alloc_map(mm, vma, pmd, address) \
1241 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1242 pmd, address))? \
1243 NULL: pte_offset_map(pmd, address))
1244
1245#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1246 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1247 pmd, address))? \
1248 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1249
1250#define pte_alloc_kernel(pmd, address) \
1251 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1252 NULL: pte_offset_kernel(pmd, address))
1253
1254extern void free_area_init(unsigned long * zones_size);
1255extern void free_area_init_node(int nid, unsigned long * zones_size,
1256 unsigned long zone_start_pfn, unsigned long *zholes_size);
1257extern void free_initmem(void);
1258
1259#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1260/*
1261 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1262 * zones, allocate the backing mem_map and account for memory holes in a more
1263 * architecture independent manner. This is a substitute for creating the
1264 * zone_sizes[] and zholes_size[] arrays and passing them to
1265 * free_area_init_node()
1266 *
1267 * An architecture is expected to register range of page frames backed by
1268 * physical memory with memblock_add[_node]() before calling
1269 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1270 * usage, an architecture is expected to do something like
1271 *
1272 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1273 * max_highmem_pfn};
1274 * for_each_valid_physical_page_range()
1275 * memblock_add_node(base, size, nid)
1276 * free_area_init_nodes(max_zone_pfns);
1277 *
1278 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1279 * registered physical page range. Similarly
1280 * sparse_memory_present_with_active_regions() calls memory_present() for
1281 * each range when SPARSEMEM is enabled.
1282 *
1283 * See mm/page_alloc.c for more information on each function exposed by
1284 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1285 */
1286extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1287unsigned long node_map_pfn_alignment(void);
1288unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1289 unsigned long end_pfn);
1290extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1291 unsigned long end_pfn);
1292extern void get_pfn_range_for_nid(unsigned int nid,
1293 unsigned long *start_pfn, unsigned long *end_pfn);
1294extern unsigned long find_min_pfn_with_active_regions(void);
1295extern void free_bootmem_with_active_regions(int nid,
1296 unsigned long max_low_pfn);
1297extern void sparse_memory_present_with_active_regions(int nid);
1298
1299#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1300
1301#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1302 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1303static inline int __early_pfn_to_nid(unsigned long pfn)
1304{
1305 return 0;
1306}
1307#else
1308/* please see mm/page_alloc.c */
1309extern int __meminit early_pfn_to_nid(unsigned long pfn);
1310#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1311/* there is a per-arch backend function. */
1312extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1313#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1314#endif
1315
1316extern void set_dma_reserve(unsigned long new_dma_reserve);
1317extern void memmap_init_zone(unsigned long, int, unsigned long,
1318 unsigned long, enum memmap_context);
1319extern void setup_per_zone_wmarks(void);
1320extern int __meminit init_per_zone_wmark_min(void);
1321extern void mem_init(void);
1322extern void __init mmap_init(void);
1323extern void show_mem(unsigned int flags);
1324extern void si_meminfo(struct sysinfo * val);
1325extern void si_meminfo_node(struct sysinfo *val, int nid);
1326extern int after_bootmem;
1327
1328extern __printf(3, 4)
1329void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1330
1331extern void setup_per_cpu_pageset(void);
1332
1333extern void zone_pcp_update(struct zone *zone);
1334
1335/* nommu.c */
1336extern atomic_long_t mmap_pages_allocated;
1337extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1338
1339/* prio_tree.c */
1340void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1341void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1342void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1343struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1344 struct prio_tree_iter *iter);
1345
1346#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1347 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1348 (vma = vma_prio_tree_next(vma, iter)); )
1349
1350static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1351 struct list_head *list)
1352{
1353 vma->shared.vm_set.parent = NULL;
1354 list_add_tail(&vma->shared.vm_set.list, list);
1355}
1356
1357/* mmap.c */
1358extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1359extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1360 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1361extern struct vm_area_struct *vma_merge(struct mm_struct *,
1362 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1363 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1364 struct mempolicy *);
1365extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1366extern int split_vma(struct mm_struct *,
1367 struct vm_area_struct *, unsigned long addr, int new_below);
1368extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1369extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1370 struct rb_node **, struct rb_node *);
1371extern void unlink_file_vma(struct vm_area_struct *);
1372extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1373 unsigned long addr, unsigned long len, pgoff_t pgoff);
1374extern void exit_mmap(struct mm_struct *);
1375
1376extern int mm_take_all_locks(struct mm_struct *mm);
1377extern void mm_drop_all_locks(struct mm_struct *mm);
1378
1379/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1380extern void added_exe_file_vma(struct mm_struct *mm);
1381extern void removed_exe_file_vma(struct mm_struct *mm);
1382extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1383extern struct file *get_mm_exe_file(struct mm_struct *mm);
1384
1385extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1386extern int install_special_mapping(struct mm_struct *mm,
1387 unsigned long addr, unsigned long len,
1388 unsigned long flags, struct page **pages);
1389
1390extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1391
1392extern unsigned long mmap_region(struct file *file, unsigned long addr,
1393 unsigned long len, unsigned long flags,
1394 vm_flags_t vm_flags, unsigned long pgoff);
1395extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1396 unsigned long, unsigned long,
1397 unsigned long, unsigned long);
1398extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1399
1400/* These take the mm semaphore themselves */
1401extern unsigned long vm_brk(unsigned long, unsigned long);
1402extern int vm_munmap(unsigned long, size_t);
1403extern unsigned long vm_mmap(struct file *, unsigned long,
1404 unsigned long, unsigned long,
1405 unsigned long, unsigned long);
1406
1407/* truncate.c */
1408extern void truncate_inode_pages(struct address_space *, loff_t);
1409extern void truncate_inode_pages_range(struct address_space *,
1410 loff_t lstart, loff_t lend);
1411
1412/* generic vm_area_ops exported for stackable file systems */
1413extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1414
1415/* mm/page-writeback.c */
1416int write_one_page(struct page *page, int wait);
1417void task_dirty_inc(struct task_struct *tsk);
1418
1419/* readahead.c */
1420#define VM_MAX_READAHEAD 128 /* kbytes */
1421#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1422
1423int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1424 pgoff_t offset, unsigned long nr_to_read);
1425
1426void page_cache_sync_readahead(struct address_space *mapping,
1427 struct file_ra_state *ra,
1428 struct file *filp,
1429 pgoff_t offset,
1430 unsigned long size);
1431
1432void page_cache_async_readahead(struct address_space *mapping,
1433 struct file_ra_state *ra,
1434 struct file *filp,
1435 struct page *pg,
1436 pgoff_t offset,
1437 unsigned long size);
1438
1439unsigned long max_sane_readahead(unsigned long nr);
1440unsigned long ra_submit(struct file_ra_state *ra,
1441 struct address_space *mapping,
1442 struct file *filp);
1443
1444/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1445extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1446
1447/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1448extern int expand_downwards(struct vm_area_struct *vma,
1449 unsigned long address);
1450#if VM_GROWSUP
1451extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1452#else
1453 #define expand_upwards(vma, address) do { } while (0)
1454#endif
1455
1456/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1457extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1458extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1459 struct vm_area_struct **pprev);
1460
1461/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1462 NULL if none. Assume start_addr < end_addr. */
1463static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1464{
1465 struct vm_area_struct * vma = find_vma(mm,start_addr);
1466
1467 if (vma && end_addr <= vma->vm_start)
1468 vma = NULL;
1469 return vma;
1470}
1471
1472static inline unsigned long vma_pages(struct vm_area_struct *vma)
1473{
1474 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1475}
1476
1477/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1478static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1479 unsigned long vm_start, unsigned long vm_end)
1480{
1481 struct vm_area_struct *vma = find_vma(mm, vm_start);
1482
1483 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1484 vma = NULL;
1485
1486 return vma;
1487}
1488
1489#ifdef CONFIG_MMU
1490pgprot_t vm_get_page_prot(unsigned long vm_flags);
1491#else
1492static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1493{
1494 return __pgprot(0);
1495}
1496#endif
1497
1498struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1499int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1500 unsigned long pfn, unsigned long size, pgprot_t);
1501int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1502int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1503 unsigned long pfn);
1504int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1505 unsigned long pfn);
1506
1507struct page *follow_page(struct vm_area_struct *, unsigned long address,
1508 unsigned int foll_flags);
1509#define FOLL_WRITE 0x01 /* check pte is writable */
1510#define FOLL_TOUCH 0x02 /* mark page accessed */
1511#define FOLL_GET 0x04 /* do get_page on page */
1512#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1513#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1514#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1515 * and return without waiting upon it */
1516#define FOLL_MLOCK 0x40 /* mark page as mlocked */
1517#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1518#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1519
1520typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1521 void *data);
1522extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1523 unsigned long size, pte_fn_t fn, void *data);
1524
1525#ifdef CONFIG_PROC_FS
1526void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1527#else
1528static inline void vm_stat_account(struct mm_struct *mm,
1529 unsigned long flags, struct file *file, long pages)
1530{
1531}
1532#endif /* CONFIG_PROC_FS */
1533
1534#ifdef CONFIG_DEBUG_PAGEALLOC
1535extern void kernel_map_pages(struct page *page, int numpages, int enable);
1536#ifdef CONFIG_HIBERNATION
1537extern bool kernel_page_present(struct page *page);
1538#endif /* CONFIG_HIBERNATION */
1539#else
1540static inline void
1541kernel_map_pages(struct page *page, int numpages, int enable) {}
1542#ifdef CONFIG_HIBERNATION
1543static inline bool kernel_page_present(struct page *page) { return true; }
1544#endif /* CONFIG_HIBERNATION */
1545#endif
1546
1547extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1548#ifdef __HAVE_ARCH_GATE_AREA
1549int in_gate_area_no_mm(unsigned long addr);
1550int in_gate_area(struct mm_struct *mm, unsigned long addr);
1551#else
1552int in_gate_area_no_mm(unsigned long addr);
1553#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1554#endif /* __HAVE_ARCH_GATE_AREA */
1555
1556int drop_caches_sysctl_handler(struct ctl_table *, int,
1557 void __user *, size_t *, loff_t *);
1558unsigned long shrink_slab(struct shrink_control *shrink,
1559 unsigned long nr_pages_scanned,
1560 unsigned long lru_pages);
1561
1562#ifndef CONFIG_MMU
1563#define randomize_va_space 0
1564#else
1565extern int randomize_va_space;
1566#endif
1567
1568const char * arch_vma_name(struct vm_area_struct *vma);
1569void print_vma_addr(char *prefix, unsigned long rip);
1570
1571void sparse_mem_maps_populate_node(struct page **map_map,
1572 unsigned long pnum_begin,
1573 unsigned long pnum_end,
1574 unsigned long map_count,
1575 int nodeid);
1576
1577struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1578pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1579pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1580pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1581pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1582void *vmemmap_alloc_block(unsigned long size, int node);
1583void *vmemmap_alloc_block_buf(unsigned long size, int node);
1584void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1585int vmemmap_populate_basepages(struct page *start_page,
1586 unsigned long pages, int node);
1587int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1588void vmemmap_populate_print_last(void);
1589
1590
1591enum mf_flags {
1592 MF_COUNT_INCREASED = 1 << 0,
1593 MF_ACTION_REQUIRED = 1 << 1,
1594};
1595extern int memory_failure(unsigned long pfn, int trapno, int flags);
1596extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1597extern int unpoison_memory(unsigned long pfn);
1598extern int sysctl_memory_failure_early_kill;
1599extern int sysctl_memory_failure_recovery;
1600extern void shake_page(struct page *p, int access);
1601extern atomic_long_t mce_bad_pages;
1602extern int soft_offline_page(struct page *page, int flags);
1603
1604extern void dump_page(struct page *page);
1605
1606#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1607extern void clear_huge_page(struct page *page,
1608 unsigned long addr,
1609 unsigned int pages_per_huge_page);
1610extern void copy_user_huge_page(struct page *dst, struct page *src,
1611 unsigned long addr, struct vm_area_struct *vma,
1612 unsigned int pages_per_huge_page);
1613#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1614
1615#ifdef CONFIG_DEBUG_PAGEALLOC
1616extern unsigned int _debug_guardpage_minorder;
1617
1618static inline unsigned int debug_guardpage_minorder(void)
1619{
1620 return _debug_guardpage_minorder;
1621}
1622
1623static inline bool page_is_guard(struct page *page)
1624{
1625 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1626}
1627#else
1628static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1629static inline bool page_is_guard(struct page *page) { return false; }
1630#endif /* CONFIG_DEBUG_PAGEALLOC */
1631
1632#endif /* __KERNEL__ */
1633#endif /* _LINUX_MM_H */