at v3.5 56 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/prio_tree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21 22struct mempolicy; 23struct anon_vma; 24struct file_ra_state; 25struct user_struct; 26struct writeback_control; 27 28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 29extern unsigned long max_mapnr; 30#endif 31 32extern unsigned long num_physpages; 33extern unsigned long totalram_pages; 34extern void * high_memory; 35extern int page_cluster; 36 37#ifdef CONFIG_SYSCTL 38extern int sysctl_legacy_va_layout; 39#else 40#define sysctl_legacy_va_layout 0 41#endif 42 43#include <asm/page.h> 44#include <asm/pgtable.h> 45#include <asm/processor.h> 46 47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 48 49/* to align the pointer to the (next) page boundary */ 50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 51 52/* 53 * Linux kernel virtual memory manager primitives. 54 * The idea being to have a "virtual" mm in the same way 55 * we have a virtual fs - giving a cleaner interface to the 56 * mm details, and allowing different kinds of memory mappings 57 * (from shared memory to executable loading to arbitrary 58 * mmap() functions). 59 */ 60 61extern struct kmem_cache *vm_area_cachep; 62 63#ifndef CONFIG_MMU 64extern struct rb_root nommu_region_tree; 65extern struct rw_semaphore nommu_region_sem; 66 67extern unsigned int kobjsize(const void *objp); 68#endif 69 70/* 71 * vm_flags in vm_area_struct, see mm_types.h. 72 */ 73#define VM_READ 0x00000001 /* currently active flags */ 74#define VM_WRITE 0x00000002 75#define VM_EXEC 0x00000004 76#define VM_SHARED 0x00000008 77 78/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 79#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 80#define VM_MAYWRITE 0x00000020 81#define VM_MAYEXEC 0x00000040 82#define VM_MAYSHARE 0x00000080 83 84#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 85#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 86#define VM_GROWSUP 0x00000200 87#else 88#define VM_GROWSUP 0x00000000 89#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ 90#endif 91#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 92#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 93 94#define VM_EXECUTABLE 0x00001000 95#define VM_LOCKED 0x00002000 96#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 97 98 /* Used by sys_madvise() */ 99#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 100#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 101 102#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 103#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 104#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 105#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 106#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 107#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 108#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 109#ifndef CONFIG_TRANSPARENT_HUGEPAGE 110#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 111#else 112#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ 113#endif 114#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 115#define VM_NODUMP 0x04000000 /* Do not include in the core dump */ 116 117#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 118#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 119#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 120#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 121#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 122 123/* Bits set in the VMA until the stack is in its final location */ 124#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 125 126#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 127#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 128#endif 129 130#ifdef CONFIG_STACK_GROWSUP 131#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 132#else 133#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 134#endif 135 136#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 137#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 138#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 139#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 140#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 141 142/* 143 * Special vmas that are non-mergable, non-mlock()able. 144 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 145 */ 146#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 147 148/* 149 * mapping from the currently active vm_flags protection bits (the 150 * low four bits) to a page protection mask.. 151 */ 152extern pgprot_t protection_map[16]; 153 154#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 155#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 156#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 157#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 158#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 159#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 160 161/* 162 * This interface is used by x86 PAT code to identify a pfn mapping that is 163 * linear over entire vma. This is to optimize PAT code that deals with 164 * marking the physical region with a particular prot. This is not for generic 165 * mm use. Note also that this check will not work if the pfn mapping is 166 * linear for a vma starting at physical address 0. In which case PAT code 167 * falls back to slow path of reserving physical range page by page. 168 */ 169static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 170{ 171 return !!(vma->vm_flags & VM_PFN_AT_MMAP); 172} 173 174static inline int is_pfn_mapping(struct vm_area_struct *vma) 175{ 176 return !!(vma->vm_flags & VM_PFNMAP); 177} 178 179/* 180 * vm_fault is filled by the the pagefault handler and passed to the vma's 181 * ->fault function. The vma's ->fault is responsible for returning a bitmask 182 * of VM_FAULT_xxx flags that give details about how the fault was handled. 183 * 184 * pgoff should be used in favour of virtual_address, if possible. If pgoff 185 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 186 * mapping support. 187 */ 188struct vm_fault { 189 unsigned int flags; /* FAULT_FLAG_xxx flags */ 190 pgoff_t pgoff; /* Logical page offset based on vma */ 191 void __user *virtual_address; /* Faulting virtual address */ 192 193 struct page *page; /* ->fault handlers should return a 194 * page here, unless VM_FAULT_NOPAGE 195 * is set (which is also implied by 196 * VM_FAULT_ERROR). 197 */ 198}; 199 200/* 201 * These are the virtual MM functions - opening of an area, closing and 202 * unmapping it (needed to keep files on disk up-to-date etc), pointer 203 * to the functions called when a no-page or a wp-page exception occurs. 204 */ 205struct vm_operations_struct { 206 void (*open)(struct vm_area_struct * area); 207 void (*close)(struct vm_area_struct * area); 208 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 209 210 /* notification that a previously read-only page is about to become 211 * writable, if an error is returned it will cause a SIGBUS */ 212 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 213 214 /* called by access_process_vm when get_user_pages() fails, typically 215 * for use by special VMAs that can switch between memory and hardware 216 */ 217 int (*access)(struct vm_area_struct *vma, unsigned long addr, 218 void *buf, int len, int write); 219#ifdef CONFIG_NUMA 220 /* 221 * set_policy() op must add a reference to any non-NULL @new mempolicy 222 * to hold the policy upon return. Caller should pass NULL @new to 223 * remove a policy and fall back to surrounding context--i.e. do not 224 * install a MPOL_DEFAULT policy, nor the task or system default 225 * mempolicy. 226 */ 227 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 228 229 /* 230 * get_policy() op must add reference [mpol_get()] to any policy at 231 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 232 * in mm/mempolicy.c will do this automatically. 233 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 234 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 235 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 236 * must return NULL--i.e., do not "fallback" to task or system default 237 * policy. 238 */ 239 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 240 unsigned long addr); 241 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 242 const nodemask_t *to, unsigned long flags); 243#endif 244}; 245 246struct mmu_gather; 247struct inode; 248 249#define page_private(page) ((page)->private) 250#define set_page_private(page, v) ((page)->private = (v)) 251 252/* 253 * FIXME: take this include out, include page-flags.h in 254 * files which need it (119 of them) 255 */ 256#include <linux/page-flags.h> 257#include <linux/huge_mm.h> 258 259/* 260 * Methods to modify the page usage count. 261 * 262 * What counts for a page usage: 263 * - cache mapping (page->mapping) 264 * - private data (page->private) 265 * - page mapped in a task's page tables, each mapping 266 * is counted separately 267 * 268 * Also, many kernel routines increase the page count before a critical 269 * routine so they can be sure the page doesn't go away from under them. 270 */ 271 272/* 273 * Drop a ref, return true if the refcount fell to zero (the page has no users) 274 */ 275static inline int put_page_testzero(struct page *page) 276{ 277 VM_BUG_ON(atomic_read(&page->_count) == 0); 278 return atomic_dec_and_test(&page->_count); 279} 280 281/* 282 * Try to grab a ref unless the page has a refcount of zero, return false if 283 * that is the case. 284 */ 285static inline int get_page_unless_zero(struct page *page) 286{ 287 return atomic_inc_not_zero(&page->_count); 288} 289 290extern int page_is_ram(unsigned long pfn); 291 292/* Support for virtually mapped pages */ 293struct page *vmalloc_to_page(const void *addr); 294unsigned long vmalloc_to_pfn(const void *addr); 295 296/* 297 * Determine if an address is within the vmalloc range 298 * 299 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 300 * is no special casing required. 301 */ 302static inline int is_vmalloc_addr(const void *x) 303{ 304#ifdef CONFIG_MMU 305 unsigned long addr = (unsigned long)x; 306 307 return addr >= VMALLOC_START && addr < VMALLOC_END; 308#else 309 return 0; 310#endif 311} 312#ifdef CONFIG_MMU 313extern int is_vmalloc_or_module_addr(const void *x); 314#else 315static inline int is_vmalloc_or_module_addr(const void *x) 316{ 317 return 0; 318} 319#endif 320 321static inline void compound_lock(struct page *page) 322{ 323#ifdef CONFIG_TRANSPARENT_HUGEPAGE 324 VM_BUG_ON(PageSlab(page)); 325 bit_spin_lock(PG_compound_lock, &page->flags); 326#endif 327} 328 329static inline void compound_unlock(struct page *page) 330{ 331#ifdef CONFIG_TRANSPARENT_HUGEPAGE 332 VM_BUG_ON(PageSlab(page)); 333 bit_spin_unlock(PG_compound_lock, &page->flags); 334#endif 335} 336 337static inline unsigned long compound_lock_irqsave(struct page *page) 338{ 339 unsigned long uninitialized_var(flags); 340#ifdef CONFIG_TRANSPARENT_HUGEPAGE 341 local_irq_save(flags); 342 compound_lock(page); 343#endif 344 return flags; 345} 346 347static inline void compound_unlock_irqrestore(struct page *page, 348 unsigned long flags) 349{ 350#ifdef CONFIG_TRANSPARENT_HUGEPAGE 351 compound_unlock(page); 352 local_irq_restore(flags); 353#endif 354} 355 356static inline struct page *compound_head(struct page *page) 357{ 358 if (unlikely(PageTail(page))) 359 return page->first_page; 360 return page; 361} 362 363/* 364 * The atomic page->_mapcount, starts from -1: so that transitions 365 * both from it and to it can be tracked, using atomic_inc_and_test 366 * and atomic_add_negative(-1). 367 */ 368static inline void reset_page_mapcount(struct page *page) 369{ 370 atomic_set(&(page)->_mapcount, -1); 371} 372 373static inline int page_mapcount(struct page *page) 374{ 375 return atomic_read(&(page)->_mapcount) + 1; 376} 377 378static inline int page_count(struct page *page) 379{ 380 return atomic_read(&compound_head(page)->_count); 381} 382 383static inline void get_huge_page_tail(struct page *page) 384{ 385 /* 386 * __split_huge_page_refcount() cannot run 387 * from under us. 388 */ 389 VM_BUG_ON(page_mapcount(page) < 0); 390 VM_BUG_ON(atomic_read(&page->_count) != 0); 391 atomic_inc(&page->_mapcount); 392} 393 394extern bool __get_page_tail(struct page *page); 395 396static inline void get_page(struct page *page) 397{ 398 if (unlikely(PageTail(page))) 399 if (likely(__get_page_tail(page))) 400 return; 401 /* 402 * Getting a normal page or the head of a compound page 403 * requires to already have an elevated page->_count. 404 */ 405 VM_BUG_ON(atomic_read(&page->_count) <= 0); 406 atomic_inc(&page->_count); 407} 408 409static inline struct page *virt_to_head_page(const void *x) 410{ 411 struct page *page = virt_to_page(x); 412 return compound_head(page); 413} 414 415/* 416 * Setup the page count before being freed into the page allocator for 417 * the first time (boot or memory hotplug) 418 */ 419static inline void init_page_count(struct page *page) 420{ 421 atomic_set(&page->_count, 1); 422} 423 424/* 425 * PageBuddy() indicate that the page is free and in the buddy system 426 * (see mm/page_alloc.c). 427 * 428 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 429 * -2 so that an underflow of the page_mapcount() won't be mistaken 430 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 431 * efficiently by most CPU architectures. 432 */ 433#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 434 435static inline int PageBuddy(struct page *page) 436{ 437 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 438} 439 440static inline void __SetPageBuddy(struct page *page) 441{ 442 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 443 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 444} 445 446static inline void __ClearPageBuddy(struct page *page) 447{ 448 VM_BUG_ON(!PageBuddy(page)); 449 atomic_set(&page->_mapcount, -1); 450} 451 452void put_page(struct page *page); 453void put_pages_list(struct list_head *pages); 454 455void split_page(struct page *page, unsigned int order); 456int split_free_page(struct page *page); 457 458/* 459 * Compound pages have a destructor function. Provide a 460 * prototype for that function and accessor functions. 461 * These are _only_ valid on the head of a PG_compound page. 462 */ 463typedef void compound_page_dtor(struct page *); 464 465static inline void set_compound_page_dtor(struct page *page, 466 compound_page_dtor *dtor) 467{ 468 page[1].lru.next = (void *)dtor; 469} 470 471static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 472{ 473 return (compound_page_dtor *)page[1].lru.next; 474} 475 476static inline int compound_order(struct page *page) 477{ 478 if (!PageHead(page)) 479 return 0; 480 return (unsigned long)page[1].lru.prev; 481} 482 483static inline int compound_trans_order(struct page *page) 484{ 485 int order; 486 unsigned long flags; 487 488 if (!PageHead(page)) 489 return 0; 490 491 flags = compound_lock_irqsave(page); 492 order = compound_order(page); 493 compound_unlock_irqrestore(page, flags); 494 return order; 495} 496 497static inline void set_compound_order(struct page *page, unsigned long order) 498{ 499 page[1].lru.prev = (void *)order; 500} 501 502#ifdef CONFIG_MMU 503/* 504 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 505 * servicing faults for write access. In the normal case, do always want 506 * pte_mkwrite. But get_user_pages can cause write faults for mappings 507 * that do not have writing enabled, when used by access_process_vm. 508 */ 509static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 510{ 511 if (likely(vma->vm_flags & VM_WRITE)) 512 pte = pte_mkwrite(pte); 513 return pte; 514} 515#endif 516 517/* 518 * Multiple processes may "see" the same page. E.g. for untouched 519 * mappings of /dev/null, all processes see the same page full of 520 * zeroes, and text pages of executables and shared libraries have 521 * only one copy in memory, at most, normally. 522 * 523 * For the non-reserved pages, page_count(page) denotes a reference count. 524 * page_count() == 0 means the page is free. page->lru is then used for 525 * freelist management in the buddy allocator. 526 * page_count() > 0 means the page has been allocated. 527 * 528 * Pages are allocated by the slab allocator in order to provide memory 529 * to kmalloc and kmem_cache_alloc. In this case, the management of the 530 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 531 * unless a particular usage is carefully commented. (the responsibility of 532 * freeing the kmalloc memory is the caller's, of course). 533 * 534 * A page may be used by anyone else who does a __get_free_page(). 535 * In this case, page_count still tracks the references, and should only 536 * be used through the normal accessor functions. The top bits of page->flags 537 * and page->virtual store page management information, but all other fields 538 * are unused and could be used privately, carefully. The management of this 539 * page is the responsibility of the one who allocated it, and those who have 540 * subsequently been given references to it. 541 * 542 * The other pages (we may call them "pagecache pages") are completely 543 * managed by the Linux memory manager: I/O, buffers, swapping etc. 544 * The following discussion applies only to them. 545 * 546 * A pagecache page contains an opaque `private' member, which belongs to the 547 * page's address_space. Usually, this is the address of a circular list of 548 * the page's disk buffers. PG_private must be set to tell the VM to call 549 * into the filesystem to release these pages. 550 * 551 * A page may belong to an inode's memory mapping. In this case, page->mapping 552 * is the pointer to the inode, and page->index is the file offset of the page, 553 * in units of PAGE_CACHE_SIZE. 554 * 555 * If pagecache pages are not associated with an inode, they are said to be 556 * anonymous pages. These may become associated with the swapcache, and in that 557 * case PG_swapcache is set, and page->private is an offset into the swapcache. 558 * 559 * In either case (swapcache or inode backed), the pagecache itself holds one 560 * reference to the page. Setting PG_private should also increment the 561 * refcount. The each user mapping also has a reference to the page. 562 * 563 * The pagecache pages are stored in a per-mapping radix tree, which is 564 * rooted at mapping->page_tree, and indexed by offset. 565 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 566 * lists, we instead now tag pages as dirty/writeback in the radix tree. 567 * 568 * All pagecache pages may be subject to I/O: 569 * - inode pages may need to be read from disk, 570 * - inode pages which have been modified and are MAP_SHARED may need 571 * to be written back to the inode on disk, 572 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 573 * modified may need to be swapped out to swap space and (later) to be read 574 * back into memory. 575 */ 576 577/* 578 * The zone field is never updated after free_area_init_core() 579 * sets it, so none of the operations on it need to be atomic. 580 */ 581 582 583/* 584 * page->flags layout: 585 * 586 * There are three possibilities for how page->flags get 587 * laid out. The first is for the normal case, without 588 * sparsemem. The second is for sparsemem when there is 589 * plenty of space for node and section. The last is when 590 * we have run out of space and have to fall back to an 591 * alternate (slower) way of determining the node. 592 * 593 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 594 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 595 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 596 */ 597#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 598#define SECTIONS_WIDTH SECTIONS_SHIFT 599#else 600#define SECTIONS_WIDTH 0 601#endif 602 603#define ZONES_WIDTH ZONES_SHIFT 604 605#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 606#define NODES_WIDTH NODES_SHIFT 607#else 608#ifdef CONFIG_SPARSEMEM_VMEMMAP 609#error "Vmemmap: No space for nodes field in page flags" 610#endif 611#define NODES_WIDTH 0 612#endif 613 614/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 615#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 616#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 617#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 618 619/* 620 * We are going to use the flags for the page to node mapping if its in 621 * there. This includes the case where there is no node, so it is implicit. 622 */ 623#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 624#define NODE_NOT_IN_PAGE_FLAGS 625#endif 626 627/* 628 * Define the bit shifts to access each section. For non-existent 629 * sections we define the shift as 0; that plus a 0 mask ensures 630 * the compiler will optimise away reference to them. 631 */ 632#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 633#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 634#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 635 636/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 637#ifdef NODE_NOT_IN_PAGE_FLAGS 638#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 639#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 640 SECTIONS_PGOFF : ZONES_PGOFF) 641#else 642#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 643#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 644 NODES_PGOFF : ZONES_PGOFF) 645#endif 646 647#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 648 649#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 650#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 651#endif 652 653#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 654#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 655#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 656#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 657 658static inline enum zone_type page_zonenum(const struct page *page) 659{ 660 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 661} 662 663/* 664 * The identification function is only used by the buddy allocator for 665 * determining if two pages could be buddies. We are not really 666 * identifying a zone since we could be using a the section number 667 * id if we have not node id available in page flags. 668 * We guarantee only that it will return the same value for two 669 * combinable pages in a zone. 670 */ 671static inline int page_zone_id(struct page *page) 672{ 673 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 674} 675 676static inline int zone_to_nid(struct zone *zone) 677{ 678#ifdef CONFIG_NUMA 679 return zone->node; 680#else 681 return 0; 682#endif 683} 684 685#ifdef NODE_NOT_IN_PAGE_FLAGS 686extern int page_to_nid(const struct page *page); 687#else 688static inline int page_to_nid(const struct page *page) 689{ 690 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 691} 692#endif 693 694static inline struct zone *page_zone(const struct page *page) 695{ 696 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 697} 698 699#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 700static inline void set_page_section(struct page *page, unsigned long section) 701{ 702 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 703 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 704} 705 706static inline unsigned long page_to_section(const struct page *page) 707{ 708 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 709} 710#endif 711 712static inline void set_page_zone(struct page *page, enum zone_type zone) 713{ 714 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 715 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 716} 717 718static inline void set_page_node(struct page *page, unsigned long node) 719{ 720 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 721 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 722} 723 724static inline void set_page_links(struct page *page, enum zone_type zone, 725 unsigned long node, unsigned long pfn) 726{ 727 set_page_zone(page, zone); 728 set_page_node(page, node); 729#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 730 set_page_section(page, pfn_to_section_nr(pfn)); 731#endif 732} 733 734/* 735 * Some inline functions in vmstat.h depend on page_zone() 736 */ 737#include <linux/vmstat.h> 738 739static __always_inline void *lowmem_page_address(const struct page *page) 740{ 741 return __va(PFN_PHYS(page_to_pfn(page))); 742} 743 744#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 745#define HASHED_PAGE_VIRTUAL 746#endif 747 748#if defined(WANT_PAGE_VIRTUAL) 749#define page_address(page) ((page)->virtual) 750#define set_page_address(page, address) \ 751 do { \ 752 (page)->virtual = (address); \ 753 } while(0) 754#define page_address_init() do { } while(0) 755#endif 756 757#if defined(HASHED_PAGE_VIRTUAL) 758void *page_address(const struct page *page); 759void set_page_address(struct page *page, void *virtual); 760void page_address_init(void); 761#endif 762 763#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 764#define page_address(page) lowmem_page_address(page) 765#define set_page_address(page, address) do { } while(0) 766#define page_address_init() do { } while(0) 767#endif 768 769/* 770 * On an anonymous page mapped into a user virtual memory area, 771 * page->mapping points to its anon_vma, not to a struct address_space; 772 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 773 * 774 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 775 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 776 * and then page->mapping points, not to an anon_vma, but to a private 777 * structure which KSM associates with that merged page. See ksm.h. 778 * 779 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 780 * 781 * Please note that, confusingly, "page_mapping" refers to the inode 782 * address_space which maps the page from disk; whereas "page_mapped" 783 * refers to user virtual address space into which the page is mapped. 784 */ 785#define PAGE_MAPPING_ANON 1 786#define PAGE_MAPPING_KSM 2 787#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 788 789extern struct address_space swapper_space; 790static inline struct address_space *page_mapping(struct page *page) 791{ 792 struct address_space *mapping = page->mapping; 793 794 VM_BUG_ON(PageSlab(page)); 795 if (unlikely(PageSwapCache(page))) 796 mapping = &swapper_space; 797 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 798 mapping = NULL; 799 return mapping; 800} 801 802/* Neutral page->mapping pointer to address_space or anon_vma or other */ 803static inline void *page_rmapping(struct page *page) 804{ 805 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 806} 807 808static inline int PageAnon(struct page *page) 809{ 810 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 811} 812 813/* 814 * Return the pagecache index of the passed page. Regular pagecache pages 815 * use ->index whereas swapcache pages use ->private 816 */ 817static inline pgoff_t page_index(struct page *page) 818{ 819 if (unlikely(PageSwapCache(page))) 820 return page_private(page); 821 return page->index; 822} 823 824/* 825 * Return true if this page is mapped into pagetables. 826 */ 827static inline int page_mapped(struct page *page) 828{ 829 return atomic_read(&(page)->_mapcount) >= 0; 830} 831 832/* 833 * Different kinds of faults, as returned by handle_mm_fault(). 834 * Used to decide whether a process gets delivered SIGBUS or 835 * just gets major/minor fault counters bumped up. 836 */ 837 838#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 839 840#define VM_FAULT_OOM 0x0001 841#define VM_FAULT_SIGBUS 0x0002 842#define VM_FAULT_MAJOR 0x0004 843#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 844#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 845#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 846 847#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 848#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 849#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 850 851#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 852 853#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 854 VM_FAULT_HWPOISON_LARGE) 855 856/* Encode hstate index for a hwpoisoned large page */ 857#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 858#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 859 860/* 861 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 862 */ 863extern void pagefault_out_of_memory(void); 864 865#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 866 867/* 868 * Flags passed to show_mem() and show_free_areas() to suppress output in 869 * various contexts. 870 */ 871#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 872 873extern void show_free_areas(unsigned int flags); 874extern bool skip_free_areas_node(unsigned int flags, int nid); 875 876int shmem_zero_setup(struct vm_area_struct *); 877 878extern int can_do_mlock(void); 879extern int user_shm_lock(size_t, struct user_struct *); 880extern void user_shm_unlock(size_t, struct user_struct *); 881 882/* 883 * Parameter block passed down to zap_pte_range in exceptional cases. 884 */ 885struct zap_details { 886 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 887 struct address_space *check_mapping; /* Check page->mapping if set */ 888 pgoff_t first_index; /* Lowest page->index to unmap */ 889 pgoff_t last_index; /* Highest page->index to unmap */ 890}; 891 892struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 893 pte_t pte); 894 895int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 896 unsigned long size); 897void zap_page_range(struct vm_area_struct *vma, unsigned long address, 898 unsigned long size, struct zap_details *); 899void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 900 unsigned long start, unsigned long end); 901 902/** 903 * mm_walk - callbacks for walk_page_range 904 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 905 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 906 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 907 * this handler is required to be able to handle 908 * pmd_trans_huge() pmds. They may simply choose to 909 * split_huge_page() instead of handling it explicitly. 910 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 911 * @pte_hole: if set, called for each hole at all levels 912 * @hugetlb_entry: if set, called for each hugetlb entry 913 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 914 * is used. 915 * 916 * (see walk_page_range for more details) 917 */ 918struct mm_walk { 919 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 920 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 921 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 922 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 923 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 924 int (*hugetlb_entry)(pte_t *, unsigned long, 925 unsigned long, unsigned long, struct mm_walk *); 926 struct mm_struct *mm; 927 void *private; 928}; 929 930int walk_page_range(unsigned long addr, unsigned long end, 931 struct mm_walk *walk); 932void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 933 unsigned long end, unsigned long floor, unsigned long ceiling); 934int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 935 struct vm_area_struct *vma); 936void unmap_mapping_range(struct address_space *mapping, 937 loff_t const holebegin, loff_t const holelen, int even_cows); 938int follow_pfn(struct vm_area_struct *vma, unsigned long address, 939 unsigned long *pfn); 940int follow_phys(struct vm_area_struct *vma, unsigned long address, 941 unsigned int flags, unsigned long *prot, resource_size_t *phys); 942int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 943 void *buf, int len, int write); 944 945static inline void unmap_shared_mapping_range(struct address_space *mapping, 946 loff_t const holebegin, loff_t const holelen) 947{ 948 unmap_mapping_range(mapping, holebegin, holelen, 0); 949} 950 951extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 952extern void truncate_setsize(struct inode *inode, loff_t newsize); 953extern int vmtruncate(struct inode *inode, loff_t offset); 954void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 955int truncate_inode_page(struct address_space *mapping, struct page *page); 956int generic_error_remove_page(struct address_space *mapping, struct page *page); 957int invalidate_inode_page(struct page *page); 958 959#ifdef CONFIG_MMU 960extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 961 unsigned long address, unsigned int flags); 962extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 963 unsigned long address, unsigned int fault_flags); 964#else 965static inline int handle_mm_fault(struct mm_struct *mm, 966 struct vm_area_struct *vma, unsigned long address, 967 unsigned int flags) 968{ 969 /* should never happen if there's no MMU */ 970 BUG(); 971 return VM_FAULT_SIGBUS; 972} 973static inline int fixup_user_fault(struct task_struct *tsk, 974 struct mm_struct *mm, unsigned long address, 975 unsigned int fault_flags) 976{ 977 /* should never happen if there's no MMU */ 978 BUG(); 979 return -EFAULT; 980} 981#endif 982 983extern int make_pages_present(unsigned long addr, unsigned long end); 984extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 985extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 986 void *buf, int len, int write); 987 988int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 989 unsigned long start, int len, unsigned int foll_flags, 990 struct page **pages, struct vm_area_struct **vmas, 991 int *nonblocking); 992int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 993 unsigned long start, int nr_pages, int write, int force, 994 struct page **pages, struct vm_area_struct **vmas); 995int get_user_pages_fast(unsigned long start, int nr_pages, int write, 996 struct page **pages); 997struct page *get_dump_page(unsigned long addr); 998 999extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1000extern void do_invalidatepage(struct page *page, unsigned long offset); 1001 1002int __set_page_dirty_nobuffers(struct page *page); 1003int __set_page_dirty_no_writeback(struct page *page); 1004int redirty_page_for_writepage(struct writeback_control *wbc, 1005 struct page *page); 1006void account_page_dirtied(struct page *page, struct address_space *mapping); 1007void account_page_writeback(struct page *page); 1008int set_page_dirty(struct page *page); 1009int set_page_dirty_lock(struct page *page); 1010int clear_page_dirty_for_io(struct page *page); 1011 1012/* Is the vma a continuation of the stack vma above it? */ 1013static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1014{ 1015 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1016} 1017 1018static inline int stack_guard_page_start(struct vm_area_struct *vma, 1019 unsigned long addr) 1020{ 1021 return (vma->vm_flags & VM_GROWSDOWN) && 1022 (vma->vm_start == addr) && 1023 !vma_growsdown(vma->vm_prev, addr); 1024} 1025 1026/* Is the vma a continuation of the stack vma below it? */ 1027static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1028{ 1029 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1030} 1031 1032static inline int stack_guard_page_end(struct vm_area_struct *vma, 1033 unsigned long addr) 1034{ 1035 return (vma->vm_flags & VM_GROWSUP) && 1036 (vma->vm_end == addr) && 1037 !vma_growsup(vma->vm_next, addr); 1038} 1039 1040extern pid_t 1041vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1042 1043extern unsigned long move_page_tables(struct vm_area_struct *vma, 1044 unsigned long old_addr, struct vm_area_struct *new_vma, 1045 unsigned long new_addr, unsigned long len); 1046extern unsigned long do_mremap(unsigned long addr, 1047 unsigned long old_len, unsigned long new_len, 1048 unsigned long flags, unsigned long new_addr); 1049extern int mprotect_fixup(struct vm_area_struct *vma, 1050 struct vm_area_struct **pprev, unsigned long start, 1051 unsigned long end, unsigned long newflags); 1052 1053/* 1054 * doesn't attempt to fault and will return short. 1055 */ 1056int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1057 struct page **pages); 1058/* 1059 * per-process(per-mm_struct) statistics. 1060 */ 1061static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1062{ 1063 long val = atomic_long_read(&mm->rss_stat.count[member]); 1064 1065#ifdef SPLIT_RSS_COUNTING 1066 /* 1067 * counter is updated in asynchronous manner and may go to minus. 1068 * But it's never be expected number for users. 1069 */ 1070 if (val < 0) 1071 val = 0; 1072#endif 1073 return (unsigned long)val; 1074} 1075 1076static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1077{ 1078 atomic_long_add(value, &mm->rss_stat.count[member]); 1079} 1080 1081static inline void inc_mm_counter(struct mm_struct *mm, int member) 1082{ 1083 atomic_long_inc(&mm->rss_stat.count[member]); 1084} 1085 1086static inline void dec_mm_counter(struct mm_struct *mm, int member) 1087{ 1088 atomic_long_dec(&mm->rss_stat.count[member]); 1089} 1090 1091static inline unsigned long get_mm_rss(struct mm_struct *mm) 1092{ 1093 return get_mm_counter(mm, MM_FILEPAGES) + 1094 get_mm_counter(mm, MM_ANONPAGES); 1095} 1096 1097static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1098{ 1099 return max(mm->hiwater_rss, get_mm_rss(mm)); 1100} 1101 1102static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1103{ 1104 return max(mm->hiwater_vm, mm->total_vm); 1105} 1106 1107static inline void update_hiwater_rss(struct mm_struct *mm) 1108{ 1109 unsigned long _rss = get_mm_rss(mm); 1110 1111 if ((mm)->hiwater_rss < _rss) 1112 (mm)->hiwater_rss = _rss; 1113} 1114 1115static inline void update_hiwater_vm(struct mm_struct *mm) 1116{ 1117 if (mm->hiwater_vm < mm->total_vm) 1118 mm->hiwater_vm = mm->total_vm; 1119} 1120 1121static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1122 struct mm_struct *mm) 1123{ 1124 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1125 1126 if (*maxrss < hiwater_rss) 1127 *maxrss = hiwater_rss; 1128} 1129 1130#if defined(SPLIT_RSS_COUNTING) 1131void sync_mm_rss(struct mm_struct *mm); 1132#else 1133static inline void sync_mm_rss(struct mm_struct *mm) 1134{ 1135} 1136#endif 1137 1138int vma_wants_writenotify(struct vm_area_struct *vma); 1139 1140extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1141 spinlock_t **ptl); 1142static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1143 spinlock_t **ptl) 1144{ 1145 pte_t *ptep; 1146 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1147 return ptep; 1148} 1149 1150#ifdef __PAGETABLE_PUD_FOLDED 1151static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1152 unsigned long address) 1153{ 1154 return 0; 1155} 1156#else 1157int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1158#endif 1159 1160#ifdef __PAGETABLE_PMD_FOLDED 1161static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1162 unsigned long address) 1163{ 1164 return 0; 1165} 1166#else 1167int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1168#endif 1169 1170int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1171 pmd_t *pmd, unsigned long address); 1172int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1173 1174/* 1175 * The following ifdef needed to get the 4level-fixup.h header to work. 1176 * Remove it when 4level-fixup.h has been removed. 1177 */ 1178#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1179static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1180{ 1181 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1182 NULL: pud_offset(pgd, address); 1183} 1184 1185static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1186{ 1187 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1188 NULL: pmd_offset(pud, address); 1189} 1190#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1191 1192#if USE_SPLIT_PTLOCKS 1193/* 1194 * We tuck a spinlock to guard each pagetable page into its struct page, 1195 * at page->private, with BUILD_BUG_ON to make sure that this will not 1196 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1197 * When freeing, reset page->mapping so free_pages_check won't complain. 1198 */ 1199#define __pte_lockptr(page) &((page)->ptl) 1200#define pte_lock_init(_page) do { \ 1201 spin_lock_init(__pte_lockptr(_page)); \ 1202} while (0) 1203#define pte_lock_deinit(page) ((page)->mapping = NULL) 1204#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1205#else /* !USE_SPLIT_PTLOCKS */ 1206/* 1207 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1208 */ 1209#define pte_lock_init(page) do {} while (0) 1210#define pte_lock_deinit(page) do {} while (0) 1211#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1212#endif /* USE_SPLIT_PTLOCKS */ 1213 1214static inline void pgtable_page_ctor(struct page *page) 1215{ 1216 pte_lock_init(page); 1217 inc_zone_page_state(page, NR_PAGETABLE); 1218} 1219 1220static inline void pgtable_page_dtor(struct page *page) 1221{ 1222 pte_lock_deinit(page); 1223 dec_zone_page_state(page, NR_PAGETABLE); 1224} 1225 1226#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1227({ \ 1228 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1229 pte_t *__pte = pte_offset_map(pmd, address); \ 1230 *(ptlp) = __ptl; \ 1231 spin_lock(__ptl); \ 1232 __pte; \ 1233}) 1234 1235#define pte_unmap_unlock(pte, ptl) do { \ 1236 spin_unlock(ptl); \ 1237 pte_unmap(pte); \ 1238} while (0) 1239 1240#define pte_alloc_map(mm, vma, pmd, address) \ 1241 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1242 pmd, address))? \ 1243 NULL: pte_offset_map(pmd, address)) 1244 1245#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1246 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1247 pmd, address))? \ 1248 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1249 1250#define pte_alloc_kernel(pmd, address) \ 1251 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1252 NULL: pte_offset_kernel(pmd, address)) 1253 1254extern void free_area_init(unsigned long * zones_size); 1255extern void free_area_init_node(int nid, unsigned long * zones_size, 1256 unsigned long zone_start_pfn, unsigned long *zholes_size); 1257extern void free_initmem(void); 1258 1259#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1260/* 1261 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1262 * zones, allocate the backing mem_map and account for memory holes in a more 1263 * architecture independent manner. This is a substitute for creating the 1264 * zone_sizes[] and zholes_size[] arrays and passing them to 1265 * free_area_init_node() 1266 * 1267 * An architecture is expected to register range of page frames backed by 1268 * physical memory with memblock_add[_node]() before calling 1269 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1270 * usage, an architecture is expected to do something like 1271 * 1272 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1273 * max_highmem_pfn}; 1274 * for_each_valid_physical_page_range() 1275 * memblock_add_node(base, size, nid) 1276 * free_area_init_nodes(max_zone_pfns); 1277 * 1278 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1279 * registered physical page range. Similarly 1280 * sparse_memory_present_with_active_regions() calls memory_present() for 1281 * each range when SPARSEMEM is enabled. 1282 * 1283 * See mm/page_alloc.c for more information on each function exposed by 1284 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1285 */ 1286extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1287unsigned long node_map_pfn_alignment(void); 1288unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1289 unsigned long end_pfn); 1290extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1291 unsigned long end_pfn); 1292extern void get_pfn_range_for_nid(unsigned int nid, 1293 unsigned long *start_pfn, unsigned long *end_pfn); 1294extern unsigned long find_min_pfn_with_active_regions(void); 1295extern void free_bootmem_with_active_regions(int nid, 1296 unsigned long max_low_pfn); 1297extern void sparse_memory_present_with_active_regions(int nid); 1298 1299#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1300 1301#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1302 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1303static inline int __early_pfn_to_nid(unsigned long pfn) 1304{ 1305 return 0; 1306} 1307#else 1308/* please see mm/page_alloc.c */ 1309extern int __meminit early_pfn_to_nid(unsigned long pfn); 1310#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1311/* there is a per-arch backend function. */ 1312extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1313#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1314#endif 1315 1316extern void set_dma_reserve(unsigned long new_dma_reserve); 1317extern void memmap_init_zone(unsigned long, int, unsigned long, 1318 unsigned long, enum memmap_context); 1319extern void setup_per_zone_wmarks(void); 1320extern int __meminit init_per_zone_wmark_min(void); 1321extern void mem_init(void); 1322extern void __init mmap_init(void); 1323extern void show_mem(unsigned int flags); 1324extern void si_meminfo(struct sysinfo * val); 1325extern void si_meminfo_node(struct sysinfo *val, int nid); 1326extern int after_bootmem; 1327 1328extern __printf(3, 4) 1329void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1330 1331extern void setup_per_cpu_pageset(void); 1332 1333extern void zone_pcp_update(struct zone *zone); 1334 1335/* nommu.c */ 1336extern atomic_long_t mmap_pages_allocated; 1337extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1338 1339/* prio_tree.c */ 1340void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1341void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1342void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1343struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1344 struct prio_tree_iter *iter); 1345 1346#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1347 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1348 (vma = vma_prio_tree_next(vma, iter)); ) 1349 1350static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1351 struct list_head *list) 1352{ 1353 vma->shared.vm_set.parent = NULL; 1354 list_add_tail(&vma->shared.vm_set.list, list); 1355} 1356 1357/* mmap.c */ 1358extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1359extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1360 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1361extern struct vm_area_struct *vma_merge(struct mm_struct *, 1362 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1363 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1364 struct mempolicy *); 1365extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1366extern int split_vma(struct mm_struct *, 1367 struct vm_area_struct *, unsigned long addr, int new_below); 1368extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1369extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1370 struct rb_node **, struct rb_node *); 1371extern void unlink_file_vma(struct vm_area_struct *); 1372extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1373 unsigned long addr, unsigned long len, pgoff_t pgoff); 1374extern void exit_mmap(struct mm_struct *); 1375 1376extern int mm_take_all_locks(struct mm_struct *mm); 1377extern void mm_drop_all_locks(struct mm_struct *mm); 1378 1379/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1380extern void added_exe_file_vma(struct mm_struct *mm); 1381extern void removed_exe_file_vma(struct mm_struct *mm); 1382extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1383extern struct file *get_mm_exe_file(struct mm_struct *mm); 1384 1385extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1386extern int install_special_mapping(struct mm_struct *mm, 1387 unsigned long addr, unsigned long len, 1388 unsigned long flags, struct page **pages); 1389 1390extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1391 1392extern unsigned long mmap_region(struct file *file, unsigned long addr, 1393 unsigned long len, unsigned long flags, 1394 vm_flags_t vm_flags, unsigned long pgoff); 1395extern unsigned long do_mmap_pgoff(struct file *, unsigned long, 1396 unsigned long, unsigned long, 1397 unsigned long, unsigned long); 1398extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1399 1400/* These take the mm semaphore themselves */ 1401extern unsigned long vm_brk(unsigned long, unsigned long); 1402extern int vm_munmap(unsigned long, size_t); 1403extern unsigned long vm_mmap(struct file *, unsigned long, 1404 unsigned long, unsigned long, 1405 unsigned long, unsigned long); 1406 1407/* truncate.c */ 1408extern void truncate_inode_pages(struct address_space *, loff_t); 1409extern void truncate_inode_pages_range(struct address_space *, 1410 loff_t lstart, loff_t lend); 1411 1412/* generic vm_area_ops exported for stackable file systems */ 1413extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1414 1415/* mm/page-writeback.c */ 1416int write_one_page(struct page *page, int wait); 1417void task_dirty_inc(struct task_struct *tsk); 1418 1419/* readahead.c */ 1420#define VM_MAX_READAHEAD 128 /* kbytes */ 1421#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1422 1423int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1424 pgoff_t offset, unsigned long nr_to_read); 1425 1426void page_cache_sync_readahead(struct address_space *mapping, 1427 struct file_ra_state *ra, 1428 struct file *filp, 1429 pgoff_t offset, 1430 unsigned long size); 1431 1432void page_cache_async_readahead(struct address_space *mapping, 1433 struct file_ra_state *ra, 1434 struct file *filp, 1435 struct page *pg, 1436 pgoff_t offset, 1437 unsigned long size); 1438 1439unsigned long max_sane_readahead(unsigned long nr); 1440unsigned long ra_submit(struct file_ra_state *ra, 1441 struct address_space *mapping, 1442 struct file *filp); 1443 1444/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1445extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1446 1447/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1448extern int expand_downwards(struct vm_area_struct *vma, 1449 unsigned long address); 1450#if VM_GROWSUP 1451extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1452#else 1453 #define expand_upwards(vma, address) do { } while (0) 1454#endif 1455 1456/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1457extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1458extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1459 struct vm_area_struct **pprev); 1460 1461/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1462 NULL if none. Assume start_addr < end_addr. */ 1463static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1464{ 1465 struct vm_area_struct * vma = find_vma(mm,start_addr); 1466 1467 if (vma && end_addr <= vma->vm_start) 1468 vma = NULL; 1469 return vma; 1470} 1471 1472static inline unsigned long vma_pages(struct vm_area_struct *vma) 1473{ 1474 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1475} 1476 1477/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1478static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1479 unsigned long vm_start, unsigned long vm_end) 1480{ 1481 struct vm_area_struct *vma = find_vma(mm, vm_start); 1482 1483 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1484 vma = NULL; 1485 1486 return vma; 1487} 1488 1489#ifdef CONFIG_MMU 1490pgprot_t vm_get_page_prot(unsigned long vm_flags); 1491#else 1492static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1493{ 1494 return __pgprot(0); 1495} 1496#endif 1497 1498struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1499int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1500 unsigned long pfn, unsigned long size, pgprot_t); 1501int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1502int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1503 unsigned long pfn); 1504int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1505 unsigned long pfn); 1506 1507struct page *follow_page(struct vm_area_struct *, unsigned long address, 1508 unsigned int foll_flags); 1509#define FOLL_WRITE 0x01 /* check pte is writable */ 1510#define FOLL_TOUCH 0x02 /* mark page accessed */ 1511#define FOLL_GET 0x04 /* do get_page on page */ 1512#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1513#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1514#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1515 * and return without waiting upon it */ 1516#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1517#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1518#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1519 1520typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1521 void *data); 1522extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1523 unsigned long size, pte_fn_t fn, void *data); 1524 1525#ifdef CONFIG_PROC_FS 1526void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1527#else 1528static inline void vm_stat_account(struct mm_struct *mm, 1529 unsigned long flags, struct file *file, long pages) 1530{ 1531} 1532#endif /* CONFIG_PROC_FS */ 1533 1534#ifdef CONFIG_DEBUG_PAGEALLOC 1535extern void kernel_map_pages(struct page *page, int numpages, int enable); 1536#ifdef CONFIG_HIBERNATION 1537extern bool kernel_page_present(struct page *page); 1538#endif /* CONFIG_HIBERNATION */ 1539#else 1540static inline void 1541kernel_map_pages(struct page *page, int numpages, int enable) {} 1542#ifdef CONFIG_HIBERNATION 1543static inline bool kernel_page_present(struct page *page) { return true; } 1544#endif /* CONFIG_HIBERNATION */ 1545#endif 1546 1547extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1548#ifdef __HAVE_ARCH_GATE_AREA 1549int in_gate_area_no_mm(unsigned long addr); 1550int in_gate_area(struct mm_struct *mm, unsigned long addr); 1551#else 1552int in_gate_area_no_mm(unsigned long addr); 1553#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1554#endif /* __HAVE_ARCH_GATE_AREA */ 1555 1556int drop_caches_sysctl_handler(struct ctl_table *, int, 1557 void __user *, size_t *, loff_t *); 1558unsigned long shrink_slab(struct shrink_control *shrink, 1559 unsigned long nr_pages_scanned, 1560 unsigned long lru_pages); 1561 1562#ifndef CONFIG_MMU 1563#define randomize_va_space 0 1564#else 1565extern int randomize_va_space; 1566#endif 1567 1568const char * arch_vma_name(struct vm_area_struct *vma); 1569void print_vma_addr(char *prefix, unsigned long rip); 1570 1571void sparse_mem_maps_populate_node(struct page **map_map, 1572 unsigned long pnum_begin, 1573 unsigned long pnum_end, 1574 unsigned long map_count, 1575 int nodeid); 1576 1577struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1578pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1579pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1580pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1581pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1582void *vmemmap_alloc_block(unsigned long size, int node); 1583void *vmemmap_alloc_block_buf(unsigned long size, int node); 1584void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1585int vmemmap_populate_basepages(struct page *start_page, 1586 unsigned long pages, int node); 1587int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1588void vmemmap_populate_print_last(void); 1589 1590 1591enum mf_flags { 1592 MF_COUNT_INCREASED = 1 << 0, 1593 MF_ACTION_REQUIRED = 1 << 1, 1594}; 1595extern int memory_failure(unsigned long pfn, int trapno, int flags); 1596extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1597extern int unpoison_memory(unsigned long pfn); 1598extern int sysctl_memory_failure_early_kill; 1599extern int sysctl_memory_failure_recovery; 1600extern void shake_page(struct page *p, int access); 1601extern atomic_long_t mce_bad_pages; 1602extern int soft_offline_page(struct page *page, int flags); 1603 1604extern void dump_page(struct page *page); 1605 1606#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1607extern void clear_huge_page(struct page *page, 1608 unsigned long addr, 1609 unsigned int pages_per_huge_page); 1610extern void copy_user_huge_page(struct page *dst, struct page *src, 1611 unsigned long addr, struct vm_area_struct *vma, 1612 unsigned int pages_per_huge_page); 1613#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1614 1615#ifdef CONFIG_DEBUG_PAGEALLOC 1616extern unsigned int _debug_guardpage_minorder; 1617 1618static inline unsigned int debug_guardpage_minorder(void) 1619{ 1620 return _debug_guardpage_minorder; 1621} 1622 1623static inline bool page_is_guard(struct page *page) 1624{ 1625 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1626} 1627#else 1628static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1629static inline bool page_is_guard(struct page *page) { return false; } 1630#endif /* CONFIG_DEBUG_PAGEALLOC */ 1631 1632#endif /* __KERNEL__ */ 1633#endif /* _LINUX_MM_H */