at v3.5 14 kB view raw
1/** 2 * @file buffer_sync.c 3 * 4 * @remark Copyright 2002-2009 OProfile authors 5 * @remark Read the file COPYING 6 * 7 * @author John Levon <levon@movementarian.org> 8 * @author Barry Kasindorf 9 * @author Robert Richter <robert.richter@amd.com> 10 * 11 * This is the core of the buffer management. Each 12 * CPU buffer is processed and entered into the 13 * global event buffer. Such processing is necessary 14 * in several circumstances, mentioned below. 15 * 16 * The processing does the job of converting the 17 * transitory EIP value into a persistent dentry/offset 18 * value that the profiler can record at its leisure. 19 * 20 * See fs/dcookies.c for a description of the dentry/offset 21 * objects. 22 */ 23 24#include <linux/mm.h> 25#include <linux/workqueue.h> 26#include <linux/notifier.h> 27#include <linux/dcookies.h> 28#include <linux/profile.h> 29#include <linux/module.h> 30#include <linux/fs.h> 31#include <linux/oprofile.h> 32#include <linux/sched.h> 33#include <linux/gfp.h> 34 35#include "oprofile_stats.h" 36#include "event_buffer.h" 37#include "cpu_buffer.h" 38#include "buffer_sync.h" 39 40static LIST_HEAD(dying_tasks); 41static LIST_HEAD(dead_tasks); 42static cpumask_var_t marked_cpus; 43static DEFINE_SPINLOCK(task_mortuary); 44static void process_task_mortuary(void); 45 46/* Take ownership of the task struct and place it on the 47 * list for processing. Only after two full buffer syncs 48 * does the task eventually get freed, because by then 49 * we are sure we will not reference it again. 50 * Can be invoked from softirq via RCU callback due to 51 * call_rcu() of the task struct, hence the _irqsave. 52 */ 53static int 54task_free_notify(struct notifier_block *self, unsigned long val, void *data) 55{ 56 unsigned long flags; 57 struct task_struct *task = data; 58 spin_lock_irqsave(&task_mortuary, flags); 59 list_add(&task->tasks, &dying_tasks); 60 spin_unlock_irqrestore(&task_mortuary, flags); 61 return NOTIFY_OK; 62} 63 64 65/* The task is on its way out. A sync of the buffer means we can catch 66 * any remaining samples for this task. 67 */ 68static int 69task_exit_notify(struct notifier_block *self, unsigned long val, void *data) 70{ 71 /* To avoid latency problems, we only process the current CPU, 72 * hoping that most samples for the task are on this CPU 73 */ 74 sync_buffer(raw_smp_processor_id()); 75 return 0; 76} 77 78 79/* The task is about to try a do_munmap(). We peek at what it's going to 80 * do, and if it's an executable region, process the samples first, so 81 * we don't lose any. This does not have to be exact, it's a QoI issue 82 * only. 83 */ 84static int 85munmap_notify(struct notifier_block *self, unsigned long val, void *data) 86{ 87 unsigned long addr = (unsigned long)data; 88 struct mm_struct *mm = current->mm; 89 struct vm_area_struct *mpnt; 90 91 down_read(&mm->mmap_sem); 92 93 mpnt = find_vma(mm, addr); 94 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) { 95 up_read(&mm->mmap_sem); 96 /* To avoid latency problems, we only process the current CPU, 97 * hoping that most samples for the task are on this CPU 98 */ 99 sync_buffer(raw_smp_processor_id()); 100 return 0; 101 } 102 103 up_read(&mm->mmap_sem); 104 return 0; 105} 106 107 108/* We need to be told about new modules so we don't attribute to a previously 109 * loaded module, or drop the samples on the floor. 110 */ 111static int 112module_load_notify(struct notifier_block *self, unsigned long val, void *data) 113{ 114#ifdef CONFIG_MODULES 115 if (val != MODULE_STATE_COMING) 116 return 0; 117 118 /* FIXME: should we process all CPU buffers ? */ 119 mutex_lock(&buffer_mutex); 120 add_event_entry(ESCAPE_CODE); 121 add_event_entry(MODULE_LOADED_CODE); 122 mutex_unlock(&buffer_mutex); 123#endif 124 return 0; 125} 126 127 128static struct notifier_block task_free_nb = { 129 .notifier_call = task_free_notify, 130}; 131 132static struct notifier_block task_exit_nb = { 133 .notifier_call = task_exit_notify, 134}; 135 136static struct notifier_block munmap_nb = { 137 .notifier_call = munmap_notify, 138}; 139 140static struct notifier_block module_load_nb = { 141 .notifier_call = module_load_notify, 142}; 143 144static void free_all_tasks(void) 145{ 146 /* make sure we don't leak task structs */ 147 process_task_mortuary(); 148 process_task_mortuary(); 149} 150 151int sync_start(void) 152{ 153 int err; 154 155 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL)) 156 return -ENOMEM; 157 158 err = task_handoff_register(&task_free_nb); 159 if (err) 160 goto out1; 161 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb); 162 if (err) 163 goto out2; 164 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb); 165 if (err) 166 goto out3; 167 err = register_module_notifier(&module_load_nb); 168 if (err) 169 goto out4; 170 171 start_cpu_work(); 172 173out: 174 return err; 175out4: 176 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 177out3: 178 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 179out2: 180 task_handoff_unregister(&task_free_nb); 181 free_all_tasks(); 182out1: 183 free_cpumask_var(marked_cpus); 184 goto out; 185} 186 187 188void sync_stop(void) 189{ 190 end_cpu_work(); 191 unregister_module_notifier(&module_load_nb); 192 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 193 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 194 task_handoff_unregister(&task_free_nb); 195 barrier(); /* do all of the above first */ 196 197 flush_cpu_work(); 198 199 free_all_tasks(); 200 free_cpumask_var(marked_cpus); 201} 202 203 204/* Optimisation. We can manage without taking the dcookie sem 205 * because we cannot reach this code without at least one 206 * dcookie user still being registered (namely, the reader 207 * of the event buffer). */ 208static inline unsigned long fast_get_dcookie(struct path *path) 209{ 210 unsigned long cookie; 211 212 if (path->dentry->d_flags & DCACHE_COOKIE) 213 return (unsigned long)path->dentry; 214 get_dcookie(path, &cookie); 215 return cookie; 216} 217 218 219/* Look up the dcookie for the task's first VM_EXECUTABLE mapping, 220 * which corresponds loosely to "application name". This is 221 * not strictly necessary but allows oprofile to associate 222 * shared-library samples with particular applications 223 */ 224static unsigned long get_exec_dcookie(struct mm_struct *mm) 225{ 226 unsigned long cookie = NO_COOKIE; 227 struct vm_area_struct *vma; 228 229 if (!mm) 230 goto out; 231 232 for (vma = mm->mmap; vma; vma = vma->vm_next) { 233 if (!vma->vm_file) 234 continue; 235 if (!(vma->vm_flags & VM_EXECUTABLE)) 236 continue; 237 cookie = fast_get_dcookie(&vma->vm_file->f_path); 238 break; 239 } 240 241out: 242 return cookie; 243} 244 245 246/* Convert the EIP value of a sample into a persistent dentry/offset 247 * pair that can then be added to the global event buffer. We make 248 * sure to do this lookup before a mm->mmap modification happens so 249 * we don't lose track. 250 */ 251static unsigned long 252lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset) 253{ 254 unsigned long cookie = NO_COOKIE; 255 struct vm_area_struct *vma; 256 257 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { 258 259 if (addr < vma->vm_start || addr >= vma->vm_end) 260 continue; 261 262 if (vma->vm_file) { 263 cookie = fast_get_dcookie(&vma->vm_file->f_path); 264 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - 265 vma->vm_start; 266 } else { 267 /* must be an anonymous map */ 268 *offset = addr; 269 } 270 271 break; 272 } 273 274 if (!vma) 275 cookie = INVALID_COOKIE; 276 277 return cookie; 278} 279 280static unsigned long last_cookie = INVALID_COOKIE; 281 282static void add_cpu_switch(int i) 283{ 284 add_event_entry(ESCAPE_CODE); 285 add_event_entry(CPU_SWITCH_CODE); 286 add_event_entry(i); 287 last_cookie = INVALID_COOKIE; 288} 289 290static void add_kernel_ctx_switch(unsigned int in_kernel) 291{ 292 add_event_entry(ESCAPE_CODE); 293 if (in_kernel) 294 add_event_entry(KERNEL_ENTER_SWITCH_CODE); 295 else 296 add_event_entry(KERNEL_EXIT_SWITCH_CODE); 297} 298 299static void 300add_user_ctx_switch(struct task_struct const *task, unsigned long cookie) 301{ 302 add_event_entry(ESCAPE_CODE); 303 add_event_entry(CTX_SWITCH_CODE); 304 add_event_entry(task->pid); 305 add_event_entry(cookie); 306 /* Another code for daemon back-compat */ 307 add_event_entry(ESCAPE_CODE); 308 add_event_entry(CTX_TGID_CODE); 309 add_event_entry(task->tgid); 310} 311 312 313static void add_cookie_switch(unsigned long cookie) 314{ 315 add_event_entry(ESCAPE_CODE); 316 add_event_entry(COOKIE_SWITCH_CODE); 317 add_event_entry(cookie); 318} 319 320 321static void add_trace_begin(void) 322{ 323 add_event_entry(ESCAPE_CODE); 324 add_event_entry(TRACE_BEGIN_CODE); 325} 326 327static void add_data(struct op_entry *entry, struct mm_struct *mm) 328{ 329 unsigned long code, pc, val; 330 unsigned long cookie; 331 off_t offset; 332 333 if (!op_cpu_buffer_get_data(entry, &code)) 334 return; 335 if (!op_cpu_buffer_get_data(entry, &pc)) 336 return; 337 if (!op_cpu_buffer_get_size(entry)) 338 return; 339 340 if (mm) { 341 cookie = lookup_dcookie(mm, pc, &offset); 342 343 if (cookie == NO_COOKIE) 344 offset = pc; 345 if (cookie == INVALID_COOKIE) { 346 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 347 offset = pc; 348 } 349 if (cookie != last_cookie) { 350 add_cookie_switch(cookie); 351 last_cookie = cookie; 352 } 353 } else 354 offset = pc; 355 356 add_event_entry(ESCAPE_CODE); 357 add_event_entry(code); 358 add_event_entry(offset); /* Offset from Dcookie */ 359 360 while (op_cpu_buffer_get_data(entry, &val)) 361 add_event_entry(val); 362} 363 364static inline void add_sample_entry(unsigned long offset, unsigned long event) 365{ 366 add_event_entry(offset); 367 add_event_entry(event); 368} 369 370 371/* 372 * Add a sample to the global event buffer. If possible the 373 * sample is converted into a persistent dentry/offset pair 374 * for later lookup from userspace. Return 0 on failure. 375 */ 376static int 377add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel) 378{ 379 unsigned long cookie; 380 off_t offset; 381 382 if (in_kernel) { 383 add_sample_entry(s->eip, s->event); 384 return 1; 385 } 386 387 /* add userspace sample */ 388 389 if (!mm) { 390 atomic_inc(&oprofile_stats.sample_lost_no_mm); 391 return 0; 392 } 393 394 cookie = lookup_dcookie(mm, s->eip, &offset); 395 396 if (cookie == INVALID_COOKIE) { 397 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 398 return 0; 399 } 400 401 if (cookie != last_cookie) { 402 add_cookie_switch(cookie); 403 last_cookie = cookie; 404 } 405 406 add_sample_entry(offset, s->event); 407 408 return 1; 409} 410 411 412static void release_mm(struct mm_struct *mm) 413{ 414 if (!mm) 415 return; 416 up_read(&mm->mmap_sem); 417 mmput(mm); 418} 419 420 421static struct mm_struct *take_tasks_mm(struct task_struct *task) 422{ 423 struct mm_struct *mm = get_task_mm(task); 424 if (mm) 425 down_read(&mm->mmap_sem); 426 return mm; 427} 428 429 430static inline int is_code(unsigned long val) 431{ 432 return val == ESCAPE_CODE; 433} 434 435 436/* Move tasks along towards death. Any tasks on dead_tasks 437 * will definitely have no remaining references in any 438 * CPU buffers at this point, because we use two lists, 439 * and to have reached the list, it must have gone through 440 * one full sync already. 441 */ 442static void process_task_mortuary(void) 443{ 444 unsigned long flags; 445 LIST_HEAD(local_dead_tasks); 446 struct task_struct *task; 447 struct task_struct *ttask; 448 449 spin_lock_irqsave(&task_mortuary, flags); 450 451 list_splice_init(&dead_tasks, &local_dead_tasks); 452 list_splice_init(&dying_tasks, &dead_tasks); 453 454 spin_unlock_irqrestore(&task_mortuary, flags); 455 456 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) { 457 list_del(&task->tasks); 458 free_task(task); 459 } 460} 461 462 463static void mark_done(int cpu) 464{ 465 int i; 466 467 cpumask_set_cpu(cpu, marked_cpus); 468 469 for_each_online_cpu(i) { 470 if (!cpumask_test_cpu(i, marked_cpus)) 471 return; 472 } 473 474 /* All CPUs have been processed at least once, 475 * we can process the mortuary once 476 */ 477 process_task_mortuary(); 478 479 cpumask_clear(marked_cpus); 480} 481 482 483/* FIXME: this is not sufficient if we implement syscall barrier backtrace 484 * traversal, the code switch to sb_sample_start at first kernel enter/exit 485 * switch so we need a fifth state and some special handling in sync_buffer() 486 */ 487typedef enum { 488 sb_bt_ignore = -2, 489 sb_buffer_start, 490 sb_bt_start, 491 sb_sample_start, 492} sync_buffer_state; 493 494/* Sync one of the CPU's buffers into the global event buffer. 495 * Here we need to go through each batch of samples punctuated 496 * by context switch notes, taking the task's mmap_sem and doing 497 * lookup in task->mm->mmap to convert EIP into dcookie/offset 498 * value. 499 */ 500void sync_buffer(int cpu) 501{ 502 struct mm_struct *mm = NULL; 503 struct mm_struct *oldmm; 504 unsigned long val; 505 struct task_struct *new; 506 unsigned long cookie = 0; 507 int in_kernel = 1; 508 sync_buffer_state state = sb_buffer_start; 509 unsigned int i; 510 unsigned long available; 511 unsigned long flags; 512 struct op_entry entry; 513 struct op_sample *sample; 514 515 mutex_lock(&buffer_mutex); 516 517 add_cpu_switch(cpu); 518 519 op_cpu_buffer_reset(cpu); 520 available = op_cpu_buffer_entries(cpu); 521 522 for (i = 0; i < available; ++i) { 523 sample = op_cpu_buffer_read_entry(&entry, cpu); 524 if (!sample) 525 break; 526 527 if (is_code(sample->eip)) { 528 flags = sample->event; 529 if (flags & TRACE_BEGIN) { 530 state = sb_bt_start; 531 add_trace_begin(); 532 } 533 if (flags & KERNEL_CTX_SWITCH) { 534 /* kernel/userspace switch */ 535 in_kernel = flags & IS_KERNEL; 536 if (state == sb_buffer_start) 537 state = sb_sample_start; 538 add_kernel_ctx_switch(flags & IS_KERNEL); 539 } 540 if (flags & USER_CTX_SWITCH 541 && op_cpu_buffer_get_data(&entry, &val)) { 542 /* userspace context switch */ 543 new = (struct task_struct *)val; 544 oldmm = mm; 545 release_mm(oldmm); 546 mm = take_tasks_mm(new); 547 if (mm != oldmm) 548 cookie = get_exec_dcookie(mm); 549 add_user_ctx_switch(new, cookie); 550 } 551 if (op_cpu_buffer_get_size(&entry)) 552 add_data(&entry, mm); 553 continue; 554 } 555 556 if (state < sb_bt_start) 557 /* ignore sample */ 558 continue; 559 560 if (add_sample(mm, sample, in_kernel)) 561 continue; 562 563 /* ignore backtraces if failed to add a sample */ 564 if (state == sb_bt_start) { 565 state = sb_bt_ignore; 566 atomic_inc(&oprofile_stats.bt_lost_no_mapping); 567 } 568 } 569 release_mm(mm); 570 571 mark_done(cpu); 572 573 mutex_unlock(&buffer_mutex); 574} 575 576/* The function can be used to add a buffer worth of data directly to 577 * the kernel buffer. The buffer is assumed to be a circular buffer. 578 * Take the entries from index start and end at index end, wrapping 579 * at max_entries. 580 */ 581void oprofile_put_buff(unsigned long *buf, unsigned int start, 582 unsigned int stop, unsigned int max) 583{ 584 int i; 585 586 i = start; 587 588 mutex_lock(&buffer_mutex); 589 while (i != stop) { 590 add_event_entry(buf[i++]); 591 592 if (i >= max) 593 i = 0; 594 } 595 596 mutex_unlock(&buffer_mutex); 597} 598