at v3.5 1088 lines 32 kB view raw
1/* 2 * Copyright (C) 1995 Linus Torvalds 3 * Copyright 2010 Tilera Corporation. All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License 7 * as published by the Free Software Foundation, version 2. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 12 * NON INFRINGEMENT. See the GNU General Public License for 13 * more details. 14 */ 15 16#include <linux/module.h> 17#include <linux/signal.h> 18#include <linux/sched.h> 19#include <linux/kernel.h> 20#include <linux/errno.h> 21#include <linux/string.h> 22#include <linux/types.h> 23#include <linux/ptrace.h> 24#include <linux/mman.h> 25#include <linux/mm.h> 26#include <linux/hugetlb.h> 27#include <linux/swap.h> 28#include <linux/smp.h> 29#include <linux/init.h> 30#include <linux/highmem.h> 31#include <linux/pagemap.h> 32#include <linux/poison.h> 33#include <linux/bootmem.h> 34#include <linux/slab.h> 35#include <linux/proc_fs.h> 36#include <linux/efi.h> 37#include <linux/memory_hotplug.h> 38#include <linux/uaccess.h> 39#include <asm/mmu_context.h> 40#include <asm/processor.h> 41#include <asm/pgtable.h> 42#include <asm/pgalloc.h> 43#include <asm/dma.h> 44#include <asm/fixmap.h> 45#include <asm/tlb.h> 46#include <asm/tlbflush.h> 47#include <asm/sections.h> 48#include <asm/setup.h> 49#include <asm/homecache.h> 50#include <hv/hypervisor.h> 51#include <arch/chip.h> 52 53#include "migrate.h" 54 55#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0)) 56 57#ifndef __tilegx__ 58unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE; 59EXPORT_SYMBOL(VMALLOC_RESERVE); 60#endif 61 62/* Create an L2 page table */ 63static pte_t * __init alloc_pte(void) 64{ 65 return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0); 66} 67 68/* 69 * L2 page tables per controller. We allocate these all at once from 70 * the bootmem allocator and store them here. This saves on kernel L2 71 * page table memory, compared to allocating a full 64K page per L2 72 * page table, and also means that in cases where we use huge pages, 73 * we are guaranteed to later be able to shatter those huge pages and 74 * switch to using these page tables instead, without requiring 75 * further allocation. Each l2_ptes[] entry points to the first page 76 * table for the first hugepage-size piece of memory on the 77 * controller; other page tables are just indexed directly, i.e. the 78 * L2 page tables are contiguous in memory for each controller. 79 */ 80static pte_t *l2_ptes[MAX_NUMNODES]; 81static int num_l2_ptes[MAX_NUMNODES]; 82 83static void init_prealloc_ptes(int node, int pages) 84{ 85 BUG_ON(pages & (PTRS_PER_PTE - 1)); 86 if (pages) { 87 num_l2_ptes[node] = pages; 88 l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t), 89 HV_PAGE_TABLE_ALIGN, 0); 90 } 91} 92 93pte_t *get_prealloc_pte(unsigned long pfn) 94{ 95 int node = pfn_to_nid(pfn); 96 pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT)); 97 BUG_ON(node >= MAX_NUMNODES); 98 BUG_ON(pfn >= num_l2_ptes[node]); 99 return &l2_ptes[node][pfn]; 100} 101 102/* 103 * What caching do we expect pages from the heap to have when 104 * they are allocated during bootup? (Once we've installed the 105 * "real" swapper_pg_dir.) 106 */ 107static int initial_heap_home(void) 108{ 109#if CHIP_HAS_CBOX_HOME_MAP() 110 if (hash_default) 111 return PAGE_HOME_HASH; 112#endif 113 return smp_processor_id(); 114} 115 116/* 117 * Place a pointer to an L2 page table in a middle page 118 * directory entry. 119 */ 120static void __init assign_pte(pmd_t *pmd, pte_t *page_table) 121{ 122 phys_addr_t pa = __pa(page_table); 123 unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN; 124 pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn); 125 BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0); 126 pteval = pte_set_home(pteval, initial_heap_home()); 127 *(pte_t *)pmd = pteval; 128 if (page_table != (pte_t *)pmd_page_vaddr(*pmd)) 129 BUG(); 130} 131 132#ifdef __tilegx__ 133 134static inline pmd_t *alloc_pmd(void) 135{ 136 return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0); 137} 138 139static inline void assign_pmd(pud_t *pud, pmd_t *pmd) 140{ 141 assign_pte((pmd_t *)pud, (pte_t *)pmd); 142} 143 144#endif /* __tilegx__ */ 145 146/* Replace the given pmd with a full PTE table. */ 147void __init shatter_pmd(pmd_t *pmd) 148{ 149 pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd)); 150 assign_pte(pmd, pte); 151} 152 153#ifdef CONFIG_HIGHMEM 154/* 155 * This function initializes a certain range of kernel virtual memory 156 * with new bootmem page tables, everywhere page tables are missing in 157 * the given range. 158 */ 159 160/* 161 * NOTE: The pagetables are allocated contiguous on the physical space 162 * so we can cache the place of the first one and move around without 163 * checking the pgd every time. 164 */ 165static void __init page_table_range_init(unsigned long start, 166 unsigned long end, pgd_t *pgd_base) 167{ 168 pgd_t *pgd; 169 int pgd_idx; 170 unsigned long vaddr; 171 172 vaddr = start; 173 pgd_idx = pgd_index(vaddr); 174 pgd = pgd_base + pgd_idx; 175 176 for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) { 177 pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr); 178 if (pmd_none(*pmd)) 179 assign_pte(pmd, alloc_pte()); 180 vaddr += PMD_SIZE; 181 } 182} 183#endif /* CONFIG_HIGHMEM */ 184 185 186#if CHIP_HAS_CBOX_HOME_MAP() 187 188static int __initdata ktext_hash = 1; /* .text pages */ 189static int __initdata kdata_hash = 1; /* .data and .bss pages */ 190int __write_once hash_default = 1; /* kernel allocator pages */ 191EXPORT_SYMBOL(hash_default); 192int __write_once kstack_hash = 1; /* if no homecaching, use h4h */ 193#endif /* CHIP_HAS_CBOX_HOME_MAP */ 194 195/* 196 * CPUs to use to for striping the pages of kernel data. If hash-for-home 197 * is available, this is only relevant if kcache_hash sets up the 198 * .data and .bss to be page-homed, and we don't want the default mode 199 * of using the full set of kernel cpus for the striping. 200 */ 201static __initdata struct cpumask kdata_mask; 202static __initdata int kdata_arg_seen; 203 204int __write_once kdata_huge; /* if no homecaching, small pages */ 205 206 207/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */ 208static pgprot_t __init construct_pgprot(pgprot_t prot, int home) 209{ 210 prot = pte_set_home(prot, home); 211#if CHIP_HAS_CBOX_HOME_MAP() 212 if (home == PAGE_HOME_IMMUTABLE) { 213 if (ktext_hash) 214 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3); 215 else 216 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3); 217 } 218#endif 219 return prot; 220} 221 222/* 223 * For a given kernel data VA, how should it be cached? 224 * We return the complete pgprot_t with caching bits set. 225 */ 226static pgprot_t __init init_pgprot(ulong address) 227{ 228 int cpu; 229 unsigned long page; 230 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET }; 231 232#if CHIP_HAS_CBOX_HOME_MAP() 233 /* For kdata=huge, everything is just hash-for-home. */ 234 if (kdata_huge) 235 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); 236#endif 237 238 /* We map the aliased pages of permanent text inaccessible. */ 239 if (address < (ulong) _sinittext - CODE_DELTA) 240 return PAGE_NONE; 241 242 /* 243 * We map read-only data non-coherent for performance. We could 244 * use neighborhood caching on TILE64, but it's not clear it's a win. 245 */ 246 if ((address >= (ulong) __start_rodata && 247 address < (ulong) __end_rodata) || 248 address == (ulong) empty_zero_page) { 249 return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE); 250 } 251 252#ifndef __tilegx__ 253#if !ATOMIC_LOCKS_FOUND_VIA_TABLE() 254 /* Force the atomic_locks[] array page to be hash-for-home. */ 255 if (address == (ulong) atomic_locks) 256 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); 257#endif 258#endif 259 260 /* 261 * Everything else that isn't data or bss is heap, so mark it 262 * with the initial heap home (hash-for-home, or this cpu). This 263 * includes any addresses after the loaded image and any address before 264 * _einitdata, since we already captured the case of text before 265 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata). 266 * 267 * All the LOWMEM pages that we mark this way will get their 268 * struct page homecache properly marked later, in set_page_homes(). 269 * The HIGHMEM pages we leave with a default zero for their 270 * homes, but with a zero free_time we don't have to actually 271 * do a flush action the first time we use them, either. 272 */ 273 if (address >= (ulong) _end || address < (ulong) _einitdata) 274 return construct_pgprot(PAGE_KERNEL, initial_heap_home()); 275 276#if CHIP_HAS_CBOX_HOME_MAP() 277 /* Use hash-for-home if requested for data/bss. */ 278 if (kdata_hash) 279 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); 280#endif 281 282 /* 283 * Make the w1data homed like heap to start with, to avoid 284 * making it part of the page-striped data area when we're just 285 * going to convert it to read-only soon anyway. 286 */ 287 if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end) 288 return construct_pgprot(PAGE_KERNEL, initial_heap_home()); 289 290 /* 291 * Otherwise we just hand out consecutive cpus. To avoid 292 * requiring this function to hold state, we just walk forward from 293 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach 294 * the requested address, while walking cpu home around kdata_mask. 295 * This is typically no more than a dozen or so iterations. 296 */ 297 page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK; 298 BUG_ON(address < page || address >= (ulong)_end); 299 cpu = cpumask_first(&kdata_mask); 300 for (; page < address; page += PAGE_SIZE) { 301 if (page >= (ulong)&init_thread_union && 302 page < (ulong)&init_thread_union + THREAD_SIZE) 303 continue; 304 if (page == (ulong)empty_zero_page) 305 continue; 306#ifndef __tilegx__ 307#if !ATOMIC_LOCKS_FOUND_VIA_TABLE() 308 if (page == (ulong)atomic_locks) 309 continue; 310#endif 311#endif 312 cpu = cpumask_next(cpu, &kdata_mask); 313 if (cpu == NR_CPUS) 314 cpu = cpumask_first(&kdata_mask); 315 } 316 return construct_pgprot(PAGE_KERNEL, cpu); 317} 318 319/* 320 * This function sets up how we cache the kernel text. If we have 321 * hash-for-home support, normally that is used instead (see the 322 * kcache_hash boot flag for more information). But if we end up 323 * using a page-based caching technique, this option sets up the 324 * details of that. In addition, the "ktext=nocache" option may 325 * always be used to disable local caching of text pages, if desired. 326 */ 327 328static int __initdata ktext_arg_seen; 329static int __initdata ktext_small; 330static int __initdata ktext_local; 331static int __initdata ktext_all; 332static int __initdata ktext_nondataplane; 333static int __initdata ktext_nocache; 334static struct cpumask __initdata ktext_mask; 335 336static int __init setup_ktext(char *str) 337{ 338 if (str == NULL) 339 return -EINVAL; 340 341 /* If you have a leading "nocache", turn off ktext caching */ 342 if (strncmp(str, "nocache", 7) == 0) { 343 ktext_nocache = 1; 344 pr_info("ktext: disabling local caching of kernel text\n"); 345 str += 7; 346 if (*str == ',') 347 ++str; 348 if (*str == '\0') 349 return 0; 350 } 351 352 ktext_arg_seen = 1; 353 354 /* Default setting on Tile64: use a huge page */ 355 if (strcmp(str, "huge") == 0) 356 pr_info("ktext: using one huge locally cached page\n"); 357 358 /* Pay TLB cost but get no cache benefit: cache small pages locally */ 359 else if (strcmp(str, "local") == 0) { 360 ktext_small = 1; 361 ktext_local = 1; 362 pr_info("ktext: using small pages with local caching\n"); 363 } 364 365 /* Neighborhood cache ktext pages on all cpus. */ 366 else if (strcmp(str, "all") == 0) { 367 ktext_small = 1; 368 ktext_all = 1; 369 pr_info("ktext: using maximal caching neighborhood\n"); 370 } 371 372 373 /* Neighborhood ktext pages on specified mask */ 374 else if (cpulist_parse(str, &ktext_mask) == 0) { 375 char buf[NR_CPUS * 5]; 376 cpulist_scnprintf(buf, sizeof(buf), &ktext_mask); 377 if (cpumask_weight(&ktext_mask) > 1) { 378 ktext_small = 1; 379 pr_info("ktext: using caching neighborhood %s " 380 "with small pages\n", buf); 381 } else { 382 pr_info("ktext: caching on cpu %s with one huge page\n", 383 buf); 384 } 385 } 386 387 else if (*str) 388 return -EINVAL; 389 390 return 0; 391} 392 393early_param("ktext", setup_ktext); 394 395 396static inline pgprot_t ktext_set_nocache(pgprot_t prot) 397{ 398 if (!ktext_nocache) 399 prot = hv_pte_set_nc(prot); 400#if CHIP_HAS_NC_AND_NOALLOC_BITS() 401 else 402 prot = hv_pte_set_no_alloc_l2(prot); 403#endif 404 return prot; 405} 406 407#ifndef __tilegx__ 408static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) 409{ 410 return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va); 411} 412#else 413static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) 414{ 415 pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va); 416 if (pud_none(*pud)) 417 assign_pmd(pud, alloc_pmd()); 418 return pmd_offset(pud, va); 419} 420#endif 421 422/* Temporary page table we use for staging. */ 423static pgd_t pgtables[PTRS_PER_PGD] 424 __attribute__((aligned(HV_PAGE_TABLE_ALIGN))); 425 426/* 427 * This maps the physical memory to kernel virtual address space, a total 428 * of max_low_pfn pages, by creating page tables starting from address 429 * PAGE_OFFSET. 430 * 431 * This routine transitions us from using a set of compiled-in large 432 * pages to using some more precise caching, including removing access 433 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START) 434 * marking read-only data as locally cacheable, striping the remaining 435 * .data and .bss across all the available tiles, and removing access 436 * to pages above the top of RAM (thus ensuring a page fault from a bad 437 * virtual address rather than a hypervisor shoot down for accessing 438 * memory outside the assigned limits). 439 */ 440static void __init kernel_physical_mapping_init(pgd_t *pgd_base) 441{ 442 unsigned long long irqmask; 443 unsigned long address, pfn; 444 pmd_t *pmd; 445 pte_t *pte; 446 int pte_ofs; 447 const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id()); 448 struct cpumask kstripe_mask; 449 int rc, i; 450 451#if CHIP_HAS_CBOX_HOME_MAP() 452 if (ktext_arg_seen && ktext_hash) { 453 pr_warning("warning: \"ktext\" boot argument ignored" 454 " if \"kcache_hash\" sets up text hash-for-home\n"); 455 ktext_small = 0; 456 } 457 458 if (kdata_arg_seen && kdata_hash) { 459 pr_warning("warning: \"kdata\" boot argument ignored" 460 " if \"kcache_hash\" sets up data hash-for-home\n"); 461 } 462 463 if (kdata_huge && !hash_default) { 464 pr_warning("warning: disabling \"kdata=huge\"; requires" 465 " kcache_hash=all or =allbutstack\n"); 466 kdata_huge = 0; 467 } 468#endif 469 470 /* 471 * Set up a mask for cpus to use for kernel striping. 472 * This is normally all cpus, but minus dataplane cpus if any. 473 * If the dataplane covers the whole chip, we stripe over 474 * the whole chip too. 475 */ 476 cpumask_copy(&kstripe_mask, cpu_possible_mask); 477 if (!kdata_arg_seen) 478 kdata_mask = kstripe_mask; 479 480 /* Allocate and fill in L2 page tables */ 481 for (i = 0; i < MAX_NUMNODES; ++i) { 482#ifdef CONFIG_HIGHMEM 483 unsigned long end_pfn = node_lowmem_end_pfn[i]; 484#else 485 unsigned long end_pfn = node_end_pfn[i]; 486#endif 487 unsigned long end_huge_pfn = 0; 488 489 /* Pre-shatter the last huge page to allow per-cpu pages. */ 490 if (kdata_huge) 491 end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT); 492 493 pfn = node_start_pfn[i]; 494 495 /* Allocate enough memory to hold L2 page tables for node. */ 496 init_prealloc_ptes(i, end_pfn - pfn); 497 498 address = (unsigned long) pfn_to_kaddr(pfn); 499 while (pfn < end_pfn) { 500 BUG_ON(address & (HPAGE_SIZE-1)); 501 pmd = get_pmd(pgtables, address); 502 pte = get_prealloc_pte(pfn); 503 if (pfn < end_huge_pfn) { 504 pgprot_t prot = init_pgprot(address); 505 *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot)); 506 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE; 507 pfn++, pte_ofs++, address += PAGE_SIZE) 508 pte[pte_ofs] = pfn_pte(pfn, prot); 509 } else { 510 if (kdata_huge) 511 printk(KERN_DEBUG "pre-shattered huge" 512 " page at %#lx\n", address); 513 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE; 514 pfn++, pte_ofs++, address += PAGE_SIZE) { 515 pgprot_t prot = init_pgprot(address); 516 pte[pte_ofs] = pfn_pte(pfn, prot); 517 } 518 assign_pte(pmd, pte); 519 } 520 } 521 } 522 523 /* 524 * Set or check ktext_map now that we have cpu_possible_mask 525 * and kstripe_mask to work with. 526 */ 527 if (ktext_all) 528 cpumask_copy(&ktext_mask, cpu_possible_mask); 529 else if (ktext_nondataplane) 530 ktext_mask = kstripe_mask; 531 else if (!cpumask_empty(&ktext_mask)) { 532 /* Sanity-check any mask that was requested */ 533 struct cpumask bad; 534 cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask); 535 cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask); 536 if (!cpumask_empty(&bad)) { 537 char buf[NR_CPUS * 5]; 538 cpulist_scnprintf(buf, sizeof(buf), &bad); 539 pr_info("ktext: not using unavailable cpus %s\n", buf); 540 } 541 if (cpumask_empty(&ktext_mask)) { 542 pr_warning("ktext: no valid cpus; caching on %d.\n", 543 smp_processor_id()); 544 cpumask_copy(&ktext_mask, 545 cpumask_of(smp_processor_id())); 546 } 547 } 548 549 address = MEM_SV_INTRPT; 550 pmd = get_pmd(pgtables, address); 551 pfn = 0; /* code starts at PA 0 */ 552 if (ktext_small) { 553 /* Allocate an L2 PTE for the kernel text */ 554 int cpu = 0; 555 pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC, 556 PAGE_HOME_IMMUTABLE); 557 558 if (ktext_local) { 559 if (ktext_nocache) 560 prot = hv_pte_set_mode(prot, 561 HV_PTE_MODE_UNCACHED); 562 else 563 prot = hv_pte_set_mode(prot, 564 HV_PTE_MODE_CACHE_NO_L3); 565 } else { 566 prot = hv_pte_set_mode(prot, 567 HV_PTE_MODE_CACHE_TILE_L3); 568 cpu = cpumask_first(&ktext_mask); 569 570 prot = ktext_set_nocache(prot); 571 } 572 573 BUG_ON(address != (unsigned long)_stext); 574 pte = NULL; 575 for (; address < (unsigned long)_einittext; 576 pfn++, address += PAGE_SIZE) { 577 pte_ofs = pte_index(address); 578 if (pte_ofs == 0) { 579 if (pte) 580 assign_pte(pmd++, pte); 581 pte = alloc_pte(); 582 } 583 if (!ktext_local) { 584 prot = set_remote_cache_cpu(prot, cpu); 585 cpu = cpumask_next(cpu, &ktext_mask); 586 if (cpu == NR_CPUS) 587 cpu = cpumask_first(&ktext_mask); 588 } 589 pte[pte_ofs] = pfn_pte(pfn, prot); 590 } 591 if (pte) 592 assign_pte(pmd, pte); 593 } else { 594 pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC); 595 pteval = pte_mkhuge(pteval); 596#if CHIP_HAS_CBOX_HOME_MAP() 597 if (ktext_hash) { 598 pteval = hv_pte_set_mode(pteval, 599 HV_PTE_MODE_CACHE_HASH_L3); 600 pteval = ktext_set_nocache(pteval); 601 } else 602#endif /* CHIP_HAS_CBOX_HOME_MAP() */ 603 if (cpumask_weight(&ktext_mask) == 1) { 604 pteval = set_remote_cache_cpu(pteval, 605 cpumask_first(&ktext_mask)); 606 pteval = hv_pte_set_mode(pteval, 607 HV_PTE_MODE_CACHE_TILE_L3); 608 pteval = ktext_set_nocache(pteval); 609 } else if (ktext_nocache) 610 pteval = hv_pte_set_mode(pteval, 611 HV_PTE_MODE_UNCACHED); 612 else 613 pteval = hv_pte_set_mode(pteval, 614 HV_PTE_MODE_CACHE_NO_L3); 615 for (; address < (unsigned long)_einittext; 616 pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE) 617 *(pte_t *)(pmd++) = pfn_pte(pfn, pteval); 618 } 619 620 /* Set swapper_pgprot here so it is flushed to memory right away. */ 621 swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir); 622 623 /* 624 * Since we may be changing the caching of the stack and page 625 * table itself, we invoke an assembly helper to do the 626 * following steps: 627 * 628 * - flush the cache so we start with an empty slate 629 * - install pgtables[] as the real page table 630 * - flush the TLB so the new page table takes effect 631 */ 632 irqmask = interrupt_mask_save_mask(); 633 interrupt_mask_set_mask(-1ULL); 634 rc = flush_and_install_context(__pa(pgtables), 635 init_pgprot((unsigned long)pgtables), 636 __get_cpu_var(current_asid), 637 cpumask_bits(my_cpu_mask)); 638 interrupt_mask_restore_mask(irqmask); 639 BUG_ON(rc != 0); 640 641 /* Copy the page table back to the normal swapper_pg_dir. */ 642 memcpy(pgd_base, pgtables, sizeof(pgtables)); 643 __install_page_table(pgd_base, __get_cpu_var(current_asid), 644 swapper_pgprot); 645 646 /* 647 * We just read swapper_pgprot and thus brought it into the cache, 648 * with its new home & caching mode. When we start the other CPUs, 649 * they're going to reference swapper_pgprot via their initial fake 650 * VA-is-PA mappings, which cache everything locally. At that 651 * time, if it's in our cache with a conflicting home, the 652 * simulator's coherence checker will complain. So, flush it out 653 * of our cache; we're not going to ever use it again anyway. 654 */ 655 __insn_finv(&swapper_pgprot); 656} 657 658/* 659 * devmem_is_allowed() checks to see if /dev/mem access to a certain address 660 * is valid. The argument is a physical page number. 661 * 662 * On Tile, the only valid things for which we can just hand out unchecked 663 * PTEs are the kernel code and data. Anything else might change its 664 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs. 665 * Note that init_thread_union is released to heap soon after boot, 666 * so we include it in the init data. 667 * 668 * For TILE-Gx, we might want to consider allowing access to PA 669 * regions corresponding to PCI space, etc. 670 */ 671int devmem_is_allowed(unsigned long pagenr) 672{ 673 return pagenr < kaddr_to_pfn(_end) && 674 !(pagenr >= kaddr_to_pfn(&init_thread_union) || 675 pagenr < kaddr_to_pfn(_einitdata)) && 676 !(pagenr >= kaddr_to_pfn(_sinittext) || 677 pagenr <= kaddr_to_pfn(_einittext-1)); 678} 679 680#ifdef CONFIG_HIGHMEM 681static void __init permanent_kmaps_init(pgd_t *pgd_base) 682{ 683 pgd_t *pgd; 684 pud_t *pud; 685 pmd_t *pmd; 686 pte_t *pte; 687 unsigned long vaddr; 688 689 vaddr = PKMAP_BASE; 690 page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base); 691 692 pgd = swapper_pg_dir + pgd_index(vaddr); 693 pud = pud_offset(pgd, vaddr); 694 pmd = pmd_offset(pud, vaddr); 695 pte = pte_offset_kernel(pmd, vaddr); 696 pkmap_page_table = pte; 697} 698#endif /* CONFIG_HIGHMEM */ 699 700 701#ifndef CONFIG_64BIT 702static void __init init_free_pfn_range(unsigned long start, unsigned long end) 703{ 704 unsigned long pfn; 705 struct page *page = pfn_to_page(start); 706 707 for (pfn = start; pfn < end; ) { 708 /* Optimize by freeing pages in large batches */ 709 int order = __ffs(pfn); 710 int count, i; 711 struct page *p; 712 713 if (order >= MAX_ORDER) 714 order = MAX_ORDER-1; 715 count = 1 << order; 716 while (pfn + count > end) { 717 count >>= 1; 718 --order; 719 } 720 for (p = page, i = 0; i < count; ++i, ++p) { 721 __ClearPageReserved(p); 722 /* 723 * Hacky direct set to avoid unnecessary 724 * lock take/release for EVERY page here. 725 */ 726 p->_count.counter = 0; 727 p->_mapcount.counter = -1; 728 } 729 init_page_count(page); 730 __free_pages(page, order); 731 totalram_pages += count; 732 733 page += count; 734 pfn += count; 735 } 736} 737 738static void __init set_non_bootmem_pages_init(void) 739{ 740 struct zone *z; 741 for_each_zone(z) { 742 unsigned long start, end; 743 int nid = z->zone_pgdat->node_id; 744 int idx = zone_idx(z); 745 746 start = z->zone_start_pfn; 747 if (start == 0) 748 continue; /* bootmem */ 749 end = start + z->spanned_pages; 750 if (idx == ZONE_NORMAL) { 751 BUG_ON(start != node_start_pfn[nid]); 752 start = node_free_pfn[nid]; 753 } 754#ifdef CONFIG_HIGHMEM 755 if (idx == ZONE_HIGHMEM) 756 totalhigh_pages += z->spanned_pages; 757#endif 758 if (kdata_huge) { 759 unsigned long percpu_pfn = node_percpu_pfn[nid]; 760 if (start < percpu_pfn && end > percpu_pfn) 761 end = percpu_pfn; 762 } 763#ifdef CONFIG_PCI 764 if (start <= pci_reserve_start_pfn && 765 end > pci_reserve_start_pfn) { 766 if (end > pci_reserve_end_pfn) 767 init_free_pfn_range(pci_reserve_end_pfn, end); 768 end = pci_reserve_start_pfn; 769 } 770#endif 771 init_free_pfn_range(start, end); 772 } 773} 774#endif 775 776/* 777 * paging_init() sets up the page tables - note that all of lowmem is 778 * already mapped by head.S. 779 */ 780void __init paging_init(void) 781{ 782#ifdef CONFIG_HIGHMEM 783 unsigned long vaddr, end; 784#endif 785#ifdef __tilegx__ 786 pud_t *pud; 787#endif 788 pgd_t *pgd_base = swapper_pg_dir; 789 790 kernel_physical_mapping_init(pgd_base); 791 792#ifdef CONFIG_HIGHMEM 793 /* 794 * Fixed mappings, only the page table structure has to be 795 * created - mappings will be set by set_fixmap(): 796 */ 797 vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK; 798 end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK; 799 page_table_range_init(vaddr, end, pgd_base); 800 permanent_kmaps_init(pgd_base); 801#endif 802 803#ifdef __tilegx__ 804 /* 805 * Since GX allocates just one pmd_t array worth of vmalloc space, 806 * we go ahead and allocate it statically here, then share it 807 * globally. As a result we don't have to worry about any task 808 * changing init_mm once we get up and running, and there's no 809 * need for e.g. vmalloc_sync_all(). 810 */ 811 BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1)); 812 pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START); 813 assign_pmd(pud, alloc_pmd()); 814#endif 815} 816 817 818/* 819 * Walk the kernel page tables and derive the page_home() from 820 * the PTEs, so that set_pte() can properly validate the caching 821 * of all PTEs it sees. 822 */ 823void __init set_page_homes(void) 824{ 825} 826 827static void __init set_max_mapnr_init(void) 828{ 829#ifdef CONFIG_FLATMEM 830 max_mapnr = max_low_pfn; 831#endif 832} 833 834void __init mem_init(void) 835{ 836 int codesize, datasize, initsize; 837 int i; 838#ifndef __tilegx__ 839 void *last; 840#endif 841 842#ifdef CONFIG_FLATMEM 843 BUG_ON(!mem_map); 844#endif 845 846#ifdef CONFIG_HIGHMEM 847 /* check that fixmap and pkmap do not overlap */ 848 if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) { 849 pr_err("fixmap and kmap areas overlap" 850 " - this will crash\n"); 851 pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n", 852 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1), 853 FIXADDR_START); 854 BUG(); 855 } 856#endif 857 858 set_max_mapnr_init(); 859 860 /* this will put all bootmem onto the freelists */ 861 totalram_pages += free_all_bootmem(); 862 863#ifndef CONFIG_64BIT 864 /* count all remaining LOWMEM and give all HIGHMEM to page allocator */ 865 set_non_bootmem_pages_init(); 866#endif 867 868 codesize = (unsigned long)&_etext - (unsigned long)&_text; 869 datasize = (unsigned long)&_end - (unsigned long)&_sdata; 870 initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext; 871 initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata; 872 873 pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n", 874 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), 875 num_physpages << (PAGE_SHIFT-10), 876 codesize >> 10, 877 datasize >> 10, 878 initsize >> 10, 879 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)) 880 ); 881 882 /* 883 * In debug mode, dump some interesting memory mappings. 884 */ 885#ifdef CONFIG_HIGHMEM 886 printk(KERN_DEBUG " KMAP %#lx - %#lx\n", 887 FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1); 888 printk(KERN_DEBUG " PKMAP %#lx - %#lx\n", 889 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1); 890#endif 891#ifdef CONFIG_HUGEVMAP 892 printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n", 893 HUGE_VMAP_BASE, HUGE_VMAP_END - 1); 894#endif 895 printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n", 896 _VMALLOC_START, _VMALLOC_END - 1); 897#ifdef __tilegx__ 898 for (i = MAX_NUMNODES-1; i >= 0; --i) { 899 struct pglist_data *node = &node_data[i]; 900 if (node->node_present_pages) { 901 unsigned long start = (unsigned long) 902 pfn_to_kaddr(node->node_start_pfn); 903 unsigned long end = start + 904 (node->node_present_pages << PAGE_SHIFT); 905 printk(KERN_DEBUG " MEM%d %#lx - %#lx\n", 906 i, start, end - 1); 907 } 908 } 909#else 910 last = high_memory; 911 for (i = MAX_NUMNODES-1; i >= 0; --i) { 912 if ((unsigned long)vbase_map[i] != -1UL) { 913 printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n", 914 i, (unsigned long) (vbase_map[i]), 915 (unsigned long) (last-1)); 916 last = vbase_map[i]; 917 } 918 } 919#endif 920 921#ifndef __tilegx__ 922 /* 923 * Convert from using one lock for all atomic operations to 924 * one per cpu. 925 */ 926 __init_atomic_per_cpu(); 927#endif 928} 929 930/* 931 * this is for the non-NUMA, single node SMP system case. 932 * Specifically, in the case of x86, we will always add 933 * memory to the highmem for now. 934 */ 935#ifndef CONFIG_NEED_MULTIPLE_NODES 936int arch_add_memory(u64 start, u64 size) 937{ 938 struct pglist_data *pgdata = &contig_page_data; 939 struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1; 940 unsigned long start_pfn = start >> PAGE_SHIFT; 941 unsigned long nr_pages = size >> PAGE_SHIFT; 942 943 return __add_pages(zone, start_pfn, nr_pages); 944} 945 946int remove_memory(u64 start, u64 size) 947{ 948 return -EINVAL; 949} 950#endif 951 952struct kmem_cache *pgd_cache; 953 954void __init pgtable_cache_init(void) 955{ 956 pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL); 957 if (!pgd_cache) 958 panic("pgtable_cache_init(): Cannot create pgd cache"); 959} 960 961#if !CHIP_HAS_COHERENT_LOCAL_CACHE() 962/* 963 * The __w1data area holds data that is only written during initialization, 964 * and is read-only and thus freely cacheable thereafter. Fix the page 965 * table entries that cover that region accordingly. 966 */ 967static void mark_w1data_ro(void) 968{ 969 /* Loop over page table entries */ 970 unsigned long addr = (unsigned long)__w1data_begin; 971 BUG_ON((addr & (PAGE_SIZE-1)) != 0); 972 for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) { 973 unsigned long pfn = kaddr_to_pfn((void *)addr); 974 pte_t *ptep = virt_to_pte(NULL, addr); 975 BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */ 976 set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO)); 977 } 978} 979#endif 980 981#ifdef CONFIG_DEBUG_PAGEALLOC 982static long __write_once initfree; 983#else 984static long __write_once initfree = 1; 985#endif 986 987/* Select whether to free (1) or mark unusable (0) the __init pages. */ 988static int __init set_initfree(char *str) 989{ 990 long val; 991 if (strict_strtol(str, 0, &val) == 0) { 992 initfree = val; 993 pr_info("initfree: %s free init pages\n", 994 initfree ? "will" : "won't"); 995 } 996 return 1; 997} 998__setup("initfree=", set_initfree); 999 1000static void free_init_pages(char *what, unsigned long begin, unsigned long end) 1001{ 1002 unsigned long addr = (unsigned long) begin; 1003 1004 if (kdata_huge && !initfree) { 1005 pr_warning("Warning: ignoring initfree=0:" 1006 " incompatible with kdata=huge\n"); 1007 initfree = 1; 1008 } 1009 end = (end + PAGE_SIZE - 1) & PAGE_MASK; 1010 local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin); 1011 for (addr = begin; addr < end; addr += PAGE_SIZE) { 1012 /* 1013 * Note we just reset the home here directly in the 1014 * page table. We know this is safe because our caller 1015 * just flushed the caches on all the other cpus, 1016 * and they won't be touching any of these pages. 1017 */ 1018 int pfn = kaddr_to_pfn((void *)addr); 1019 struct page *page = pfn_to_page(pfn); 1020 pte_t *ptep = virt_to_pte(NULL, addr); 1021 if (!initfree) { 1022 /* 1023 * If debugging page accesses then do not free 1024 * this memory but mark them not present - any 1025 * buggy init-section access will create a 1026 * kernel page fault: 1027 */ 1028 pte_clear(&init_mm, addr, ptep); 1029 continue; 1030 } 1031 __ClearPageReserved(page); 1032 init_page_count(page); 1033 if (pte_huge(*ptep)) 1034 BUG_ON(!kdata_huge); 1035 else 1036 set_pte_at(&init_mm, addr, ptep, 1037 pfn_pte(pfn, PAGE_KERNEL)); 1038 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 1039 free_page(addr); 1040 totalram_pages++; 1041 } 1042 pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10); 1043} 1044 1045void free_initmem(void) 1046{ 1047 const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET; 1048 1049 /* 1050 * Evict the dirty initdata on the boot cpu, evict the w1data 1051 * wherever it's homed, and evict all the init code everywhere. 1052 * We are guaranteed that no one will touch the init pages any 1053 * more, and although other cpus may be touching the w1data, 1054 * we only actually change the caching on tile64, which won't 1055 * be keeping local copies in the other tiles' caches anyway. 1056 */ 1057 homecache_evict(&cpu_cacheable_map); 1058 1059 /* Free the data pages that we won't use again after init. */ 1060 free_init_pages("unused kernel data", 1061 (unsigned long)_sinitdata, 1062 (unsigned long)_einitdata); 1063 1064 /* 1065 * Free the pages mapped from 0xc0000000 that correspond to code 1066 * pages from MEM_SV_INTRPT that we won't use again after init. 1067 */ 1068 free_init_pages("unused kernel text", 1069 (unsigned long)_sinittext - text_delta, 1070 (unsigned long)_einittext - text_delta); 1071 1072#if !CHIP_HAS_COHERENT_LOCAL_CACHE() 1073 /* 1074 * Upgrade the .w1data section to globally cached. 1075 * We don't do this on tilepro, since the cache architecture 1076 * pretty much makes it irrelevant, and in any case we end 1077 * up having racing issues with other tiles that may touch 1078 * the data after we flush the cache but before we update 1079 * the PTEs and flush the TLBs, causing sharer shootdowns 1080 * later. Even though this is to clean data, it seems like 1081 * an unnecessary complication. 1082 */ 1083 mark_w1data_ro(); 1084#endif 1085 1086 /* Do a global TLB flush so everyone sees the changes. */ 1087 flush_tlb_all(); 1088}