at v3.5-rc4 2812 lines 84 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4/* 5 * cloning flags: 6 */ 7#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15#define CLONE_THREAD 0x00010000 /* Same thread group? */ 16#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24/* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26#define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27#define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28#define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29#define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30#define CLONE_NEWNET 0x40000000 /* New network namespace */ 31#define CLONE_IO 0x80000000 /* Clone io context */ 32 33/* 34 * Scheduling policies 35 */ 36#define SCHED_NORMAL 0 37#define SCHED_FIFO 1 38#define SCHED_RR 2 39#define SCHED_BATCH 3 40/* SCHED_ISO: reserved but not implemented yet */ 41#define SCHED_IDLE 5 42/* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43#define SCHED_RESET_ON_FORK 0x40000000 44 45#ifdef __KERNEL__ 46 47struct sched_param { 48 int sched_priority; 49}; 50 51#include <asm/param.h> /* for HZ */ 52 53#include <linux/capability.h> 54#include <linux/threads.h> 55#include <linux/kernel.h> 56#include <linux/types.h> 57#include <linux/timex.h> 58#include <linux/jiffies.h> 59#include <linux/rbtree.h> 60#include <linux/thread_info.h> 61#include <linux/cpumask.h> 62#include <linux/errno.h> 63#include <linux/nodemask.h> 64#include <linux/mm_types.h> 65 66#include <asm/page.h> 67#include <asm/ptrace.h> 68#include <asm/cputime.h> 69 70#include <linux/smp.h> 71#include <linux/sem.h> 72#include <linux/signal.h> 73#include <linux/compiler.h> 74#include <linux/completion.h> 75#include <linux/pid.h> 76#include <linux/percpu.h> 77#include <linux/topology.h> 78#include <linux/proportions.h> 79#include <linux/seccomp.h> 80#include <linux/rcupdate.h> 81#include <linux/rculist.h> 82#include <linux/rtmutex.h> 83 84#include <linux/time.h> 85#include <linux/param.h> 86#include <linux/resource.h> 87#include <linux/timer.h> 88#include <linux/hrtimer.h> 89#include <linux/task_io_accounting.h> 90#include <linux/latencytop.h> 91#include <linux/cred.h> 92#include <linux/llist.h> 93#include <linux/uidgid.h> 94 95#include <asm/processor.h> 96 97struct exec_domain; 98struct futex_pi_state; 99struct robust_list_head; 100struct bio_list; 101struct fs_struct; 102struct perf_event_context; 103struct blk_plug; 104 105/* 106 * List of flags we want to share for kernel threads, 107 * if only because they are not used by them anyway. 108 */ 109#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 110 111/* 112 * These are the constant used to fake the fixed-point load-average 113 * counting. Some notes: 114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 115 * a load-average precision of 10 bits integer + 11 bits fractional 116 * - if you want to count load-averages more often, you need more 117 * precision, or rounding will get you. With 2-second counting freq, 118 * the EXP_n values would be 1981, 2034 and 2043 if still using only 119 * 11 bit fractions. 120 */ 121extern unsigned long avenrun[]; /* Load averages */ 122extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 123 124#define FSHIFT 11 /* nr of bits of precision */ 125#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 126#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 127#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 128#define EXP_5 2014 /* 1/exp(5sec/5min) */ 129#define EXP_15 2037 /* 1/exp(5sec/15min) */ 130 131#define CALC_LOAD(load,exp,n) \ 132 load *= exp; \ 133 load += n*(FIXED_1-exp); \ 134 load >>= FSHIFT; 135 136extern unsigned long total_forks; 137extern int nr_threads; 138DECLARE_PER_CPU(unsigned long, process_counts); 139extern int nr_processes(void); 140extern unsigned long nr_running(void); 141extern unsigned long nr_uninterruptible(void); 142extern unsigned long nr_iowait(void); 143extern unsigned long nr_iowait_cpu(int cpu); 144extern unsigned long this_cpu_load(void); 145 146 147extern void calc_global_load(unsigned long ticks); 148extern void update_cpu_load_nohz(void); 149 150extern unsigned long get_parent_ip(unsigned long addr); 151 152struct seq_file; 153struct cfs_rq; 154struct task_group; 155#ifdef CONFIG_SCHED_DEBUG 156extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 157extern void proc_sched_set_task(struct task_struct *p); 158extern void 159print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 160#else 161static inline void 162proc_sched_show_task(struct task_struct *p, struct seq_file *m) 163{ 164} 165static inline void proc_sched_set_task(struct task_struct *p) 166{ 167} 168static inline void 169print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 170{ 171} 172#endif 173 174/* 175 * Task state bitmask. NOTE! These bits are also 176 * encoded in fs/proc/array.c: get_task_state(). 177 * 178 * We have two separate sets of flags: task->state 179 * is about runnability, while task->exit_state are 180 * about the task exiting. Confusing, but this way 181 * modifying one set can't modify the other one by 182 * mistake. 183 */ 184#define TASK_RUNNING 0 185#define TASK_INTERRUPTIBLE 1 186#define TASK_UNINTERRUPTIBLE 2 187#define __TASK_STOPPED 4 188#define __TASK_TRACED 8 189/* in tsk->exit_state */ 190#define EXIT_ZOMBIE 16 191#define EXIT_DEAD 32 192/* in tsk->state again */ 193#define TASK_DEAD 64 194#define TASK_WAKEKILL 128 195#define TASK_WAKING 256 196#define TASK_STATE_MAX 512 197 198#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 199 200extern char ___assert_task_state[1 - 2*!!( 201 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 202 203/* Convenience macros for the sake of set_task_state */ 204#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 205#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 206#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 207 208/* Convenience macros for the sake of wake_up */ 209#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 210#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 211 212/* get_task_state() */ 213#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 214 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 215 __TASK_TRACED) 216 217#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 218#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 219#define task_is_dead(task) ((task)->exit_state != 0) 220#define task_is_stopped_or_traced(task) \ 221 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 222#define task_contributes_to_load(task) \ 223 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 224 (task->flags & PF_FROZEN) == 0) 225 226#define __set_task_state(tsk, state_value) \ 227 do { (tsk)->state = (state_value); } while (0) 228#define set_task_state(tsk, state_value) \ 229 set_mb((tsk)->state, (state_value)) 230 231/* 232 * set_current_state() includes a barrier so that the write of current->state 233 * is correctly serialised wrt the caller's subsequent test of whether to 234 * actually sleep: 235 * 236 * set_current_state(TASK_UNINTERRUPTIBLE); 237 * if (do_i_need_to_sleep()) 238 * schedule(); 239 * 240 * If the caller does not need such serialisation then use __set_current_state() 241 */ 242#define __set_current_state(state_value) \ 243 do { current->state = (state_value); } while (0) 244#define set_current_state(state_value) \ 245 set_mb(current->state, (state_value)) 246 247/* Task command name length */ 248#define TASK_COMM_LEN 16 249 250#include <linux/spinlock.h> 251 252/* 253 * This serializes "schedule()" and also protects 254 * the run-queue from deletions/modifications (but 255 * _adding_ to the beginning of the run-queue has 256 * a separate lock). 257 */ 258extern rwlock_t tasklist_lock; 259extern spinlock_t mmlist_lock; 260 261struct task_struct; 262 263#ifdef CONFIG_PROVE_RCU 264extern int lockdep_tasklist_lock_is_held(void); 265#endif /* #ifdef CONFIG_PROVE_RCU */ 266 267extern void sched_init(void); 268extern void sched_init_smp(void); 269extern asmlinkage void schedule_tail(struct task_struct *prev); 270extern void init_idle(struct task_struct *idle, int cpu); 271extern void init_idle_bootup_task(struct task_struct *idle); 272 273extern int runqueue_is_locked(int cpu); 274 275#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 276extern void select_nohz_load_balancer(int stop_tick); 277extern void set_cpu_sd_state_idle(void); 278extern int get_nohz_timer_target(void); 279#else 280static inline void select_nohz_load_balancer(int stop_tick) { } 281static inline void set_cpu_sd_state_idle(void) { } 282#endif 283 284/* 285 * Only dump TASK_* tasks. (0 for all tasks) 286 */ 287extern void show_state_filter(unsigned long state_filter); 288 289static inline void show_state(void) 290{ 291 show_state_filter(0); 292} 293 294extern void show_regs(struct pt_regs *); 295 296/* 297 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 298 * task), SP is the stack pointer of the first frame that should be shown in the back 299 * trace (or NULL if the entire call-chain of the task should be shown). 300 */ 301extern void show_stack(struct task_struct *task, unsigned long *sp); 302 303void io_schedule(void); 304long io_schedule_timeout(long timeout); 305 306extern void cpu_init (void); 307extern void trap_init(void); 308extern void update_process_times(int user); 309extern void scheduler_tick(void); 310 311extern void sched_show_task(struct task_struct *p); 312 313#ifdef CONFIG_LOCKUP_DETECTOR 314extern void touch_softlockup_watchdog(void); 315extern void touch_softlockup_watchdog_sync(void); 316extern void touch_all_softlockup_watchdogs(void); 317extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 318 void __user *buffer, 319 size_t *lenp, loff_t *ppos); 320extern unsigned int softlockup_panic; 321void lockup_detector_init(void); 322#else 323static inline void touch_softlockup_watchdog(void) 324{ 325} 326static inline void touch_softlockup_watchdog_sync(void) 327{ 328} 329static inline void touch_all_softlockup_watchdogs(void) 330{ 331} 332static inline void lockup_detector_init(void) 333{ 334} 335#endif 336 337#ifdef CONFIG_DETECT_HUNG_TASK 338extern unsigned int sysctl_hung_task_panic; 339extern unsigned long sysctl_hung_task_check_count; 340extern unsigned long sysctl_hung_task_timeout_secs; 341extern unsigned long sysctl_hung_task_warnings; 342extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 343 void __user *buffer, 344 size_t *lenp, loff_t *ppos); 345#else 346/* Avoid need for ifdefs elsewhere in the code */ 347enum { sysctl_hung_task_timeout_secs = 0 }; 348#endif 349 350/* Attach to any functions which should be ignored in wchan output. */ 351#define __sched __attribute__((__section__(".sched.text"))) 352 353/* Linker adds these: start and end of __sched functions */ 354extern char __sched_text_start[], __sched_text_end[]; 355 356/* Is this address in the __sched functions? */ 357extern int in_sched_functions(unsigned long addr); 358 359#define MAX_SCHEDULE_TIMEOUT LONG_MAX 360extern signed long schedule_timeout(signed long timeout); 361extern signed long schedule_timeout_interruptible(signed long timeout); 362extern signed long schedule_timeout_killable(signed long timeout); 363extern signed long schedule_timeout_uninterruptible(signed long timeout); 364asmlinkage void schedule(void); 365extern void schedule_preempt_disabled(void); 366extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 367 368struct nsproxy; 369struct user_namespace; 370 371/* 372 * Default maximum number of active map areas, this limits the number of vmas 373 * per mm struct. Users can overwrite this number by sysctl but there is a 374 * problem. 375 * 376 * When a program's coredump is generated as ELF format, a section is created 377 * per a vma. In ELF, the number of sections is represented in unsigned short. 378 * This means the number of sections should be smaller than 65535 at coredump. 379 * Because the kernel adds some informative sections to a image of program at 380 * generating coredump, we need some margin. The number of extra sections is 381 * 1-3 now and depends on arch. We use "5" as safe margin, here. 382 */ 383#define MAPCOUNT_ELF_CORE_MARGIN (5) 384#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 385 386extern int sysctl_max_map_count; 387 388#include <linux/aio.h> 389 390#ifdef CONFIG_MMU 391extern void arch_pick_mmap_layout(struct mm_struct *mm); 392extern unsigned long 393arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 394 unsigned long, unsigned long); 395extern unsigned long 396arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 397 unsigned long len, unsigned long pgoff, 398 unsigned long flags); 399extern void arch_unmap_area(struct mm_struct *, unsigned long); 400extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 401#else 402static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 403#endif 404 405 406extern void set_dumpable(struct mm_struct *mm, int value); 407extern int get_dumpable(struct mm_struct *mm); 408 409/* mm flags */ 410/* dumpable bits */ 411#define MMF_DUMPABLE 0 /* core dump is permitted */ 412#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 413 414#define MMF_DUMPABLE_BITS 2 415#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 416 417/* coredump filter bits */ 418#define MMF_DUMP_ANON_PRIVATE 2 419#define MMF_DUMP_ANON_SHARED 3 420#define MMF_DUMP_MAPPED_PRIVATE 4 421#define MMF_DUMP_MAPPED_SHARED 5 422#define MMF_DUMP_ELF_HEADERS 6 423#define MMF_DUMP_HUGETLB_PRIVATE 7 424#define MMF_DUMP_HUGETLB_SHARED 8 425 426#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 427#define MMF_DUMP_FILTER_BITS 7 428#define MMF_DUMP_FILTER_MASK \ 429 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 430#define MMF_DUMP_FILTER_DEFAULT \ 431 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 432 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 433 434#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 435# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 436#else 437# define MMF_DUMP_MASK_DEFAULT_ELF 0 438#endif 439 /* leave room for more dump flags */ 440#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 441#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 442#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 443 444#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 445 446struct sighand_struct { 447 atomic_t count; 448 struct k_sigaction action[_NSIG]; 449 spinlock_t siglock; 450 wait_queue_head_t signalfd_wqh; 451}; 452 453struct pacct_struct { 454 int ac_flag; 455 long ac_exitcode; 456 unsigned long ac_mem; 457 cputime_t ac_utime, ac_stime; 458 unsigned long ac_minflt, ac_majflt; 459}; 460 461struct cpu_itimer { 462 cputime_t expires; 463 cputime_t incr; 464 u32 error; 465 u32 incr_error; 466}; 467 468/** 469 * struct task_cputime - collected CPU time counts 470 * @utime: time spent in user mode, in &cputime_t units 471 * @stime: time spent in kernel mode, in &cputime_t units 472 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 473 * 474 * This structure groups together three kinds of CPU time that are 475 * tracked for threads and thread groups. Most things considering 476 * CPU time want to group these counts together and treat all three 477 * of them in parallel. 478 */ 479struct task_cputime { 480 cputime_t utime; 481 cputime_t stime; 482 unsigned long long sum_exec_runtime; 483}; 484/* Alternate field names when used to cache expirations. */ 485#define prof_exp stime 486#define virt_exp utime 487#define sched_exp sum_exec_runtime 488 489#define INIT_CPUTIME \ 490 (struct task_cputime) { \ 491 .utime = 0, \ 492 .stime = 0, \ 493 .sum_exec_runtime = 0, \ 494 } 495 496/* 497 * Disable preemption until the scheduler is running. 498 * Reset by start_kernel()->sched_init()->init_idle(). 499 * 500 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 501 * before the scheduler is active -- see should_resched(). 502 */ 503#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 504 505/** 506 * struct thread_group_cputimer - thread group interval timer counts 507 * @cputime: thread group interval timers. 508 * @running: non-zero when there are timers running and 509 * @cputime receives updates. 510 * @lock: lock for fields in this struct. 511 * 512 * This structure contains the version of task_cputime, above, that is 513 * used for thread group CPU timer calculations. 514 */ 515struct thread_group_cputimer { 516 struct task_cputime cputime; 517 int running; 518 raw_spinlock_t lock; 519}; 520 521#include <linux/rwsem.h> 522struct autogroup; 523 524/* 525 * NOTE! "signal_struct" does not have its own 526 * locking, because a shared signal_struct always 527 * implies a shared sighand_struct, so locking 528 * sighand_struct is always a proper superset of 529 * the locking of signal_struct. 530 */ 531struct signal_struct { 532 atomic_t sigcnt; 533 atomic_t live; 534 int nr_threads; 535 536 wait_queue_head_t wait_chldexit; /* for wait4() */ 537 538 /* current thread group signal load-balancing target: */ 539 struct task_struct *curr_target; 540 541 /* shared signal handling: */ 542 struct sigpending shared_pending; 543 544 /* thread group exit support */ 545 int group_exit_code; 546 /* overloaded: 547 * - notify group_exit_task when ->count is equal to notify_count 548 * - everyone except group_exit_task is stopped during signal delivery 549 * of fatal signals, group_exit_task processes the signal. 550 */ 551 int notify_count; 552 struct task_struct *group_exit_task; 553 554 /* thread group stop support, overloads group_exit_code too */ 555 int group_stop_count; 556 unsigned int flags; /* see SIGNAL_* flags below */ 557 558 /* 559 * PR_SET_CHILD_SUBREAPER marks a process, like a service 560 * manager, to re-parent orphan (double-forking) child processes 561 * to this process instead of 'init'. The service manager is 562 * able to receive SIGCHLD signals and is able to investigate 563 * the process until it calls wait(). All children of this 564 * process will inherit a flag if they should look for a 565 * child_subreaper process at exit. 566 */ 567 unsigned int is_child_subreaper:1; 568 unsigned int has_child_subreaper:1; 569 570 /* POSIX.1b Interval Timers */ 571 struct list_head posix_timers; 572 573 /* ITIMER_REAL timer for the process */ 574 struct hrtimer real_timer; 575 struct pid *leader_pid; 576 ktime_t it_real_incr; 577 578 /* 579 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 580 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 581 * values are defined to 0 and 1 respectively 582 */ 583 struct cpu_itimer it[2]; 584 585 /* 586 * Thread group totals for process CPU timers. 587 * See thread_group_cputimer(), et al, for details. 588 */ 589 struct thread_group_cputimer cputimer; 590 591 /* Earliest-expiration cache. */ 592 struct task_cputime cputime_expires; 593 594 struct list_head cpu_timers[3]; 595 596 struct pid *tty_old_pgrp; 597 598 /* boolean value for session group leader */ 599 int leader; 600 601 struct tty_struct *tty; /* NULL if no tty */ 602 603#ifdef CONFIG_SCHED_AUTOGROUP 604 struct autogroup *autogroup; 605#endif 606 /* 607 * Cumulative resource counters for dead threads in the group, 608 * and for reaped dead child processes forked by this group. 609 * Live threads maintain their own counters and add to these 610 * in __exit_signal, except for the group leader. 611 */ 612 cputime_t utime, stime, cutime, cstime; 613 cputime_t gtime; 614 cputime_t cgtime; 615#ifndef CONFIG_VIRT_CPU_ACCOUNTING 616 cputime_t prev_utime, prev_stime; 617#endif 618 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 619 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 620 unsigned long inblock, oublock, cinblock, coublock; 621 unsigned long maxrss, cmaxrss; 622 struct task_io_accounting ioac; 623 624 /* 625 * Cumulative ns of schedule CPU time fo dead threads in the 626 * group, not including a zombie group leader, (This only differs 627 * from jiffies_to_ns(utime + stime) if sched_clock uses something 628 * other than jiffies.) 629 */ 630 unsigned long long sum_sched_runtime; 631 632 /* 633 * We don't bother to synchronize most readers of this at all, 634 * because there is no reader checking a limit that actually needs 635 * to get both rlim_cur and rlim_max atomically, and either one 636 * alone is a single word that can safely be read normally. 637 * getrlimit/setrlimit use task_lock(current->group_leader) to 638 * protect this instead of the siglock, because they really 639 * have no need to disable irqs. 640 */ 641 struct rlimit rlim[RLIM_NLIMITS]; 642 643#ifdef CONFIG_BSD_PROCESS_ACCT 644 struct pacct_struct pacct; /* per-process accounting information */ 645#endif 646#ifdef CONFIG_TASKSTATS 647 struct taskstats *stats; 648#endif 649#ifdef CONFIG_AUDIT 650 unsigned audit_tty; 651 struct tty_audit_buf *tty_audit_buf; 652#endif 653#ifdef CONFIG_CGROUPS 654 /* 655 * group_rwsem prevents new tasks from entering the threadgroup and 656 * member tasks from exiting,a more specifically, setting of 657 * PF_EXITING. fork and exit paths are protected with this rwsem 658 * using threadgroup_change_begin/end(). Users which require 659 * threadgroup to remain stable should use threadgroup_[un]lock() 660 * which also takes care of exec path. Currently, cgroup is the 661 * only user. 662 */ 663 struct rw_semaphore group_rwsem; 664#endif 665 666 int oom_adj; /* OOM kill score adjustment (bit shift) */ 667 int oom_score_adj; /* OOM kill score adjustment */ 668 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 669 * Only settable by CAP_SYS_RESOURCE. */ 670 671 struct mutex cred_guard_mutex; /* guard against foreign influences on 672 * credential calculations 673 * (notably. ptrace) */ 674}; 675 676/* Context switch must be unlocked if interrupts are to be enabled */ 677#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 678# define __ARCH_WANT_UNLOCKED_CTXSW 679#endif 680 681/* 682 * Bits in flags field of signal_struct. 683 */ 684#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 685#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 686#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 687/* 688 * Pending notifications to parent. 689 */ 690#define SIGNAL_CLD_STOPPED 0x00000010 691#define SIGNAL_CLD_CONTINUED 0x00000020 692#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 693 694#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 695 696/* If true, all threads except ->group_exit_task have pending SIGKILL */ 697static inline int signal_group_exit(const struct signal_struct *sig) 698{ 699 return (sig->flags & SIGNAL_GROUP_EXIT) || 700 (sig->group_exit_task != NULL); 701} 702 703/* 704 * Some day this will be a full-fledged user tracking system.. 705 */ 706struct user_struct { 707 atomic_t __count; /* reference count */ 708 atomic_t processes; /* How many processes does this user have? */ 709 atomic_t files; /* How many open files does this user have? */ 710 atomic_t sigpending; /* How many pending signals does this user have? */ 711#ifdef CONFIG_INOTIFY_USER 712 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 713 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 714#endif 715#ifdef CONFIG_FANOTIFY 716 atomic_t fanotify_listeners; 717#endif 718#ifdef CONFIG_EPOLL 719 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 720#endif 721#ifdef CONFIG_POSIX_MQUEUE 722 /* protected by mq_lock */ 723 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 724#endif 725 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 726 727#ifdef CONFIG_KEYS 728 struct key *uid_keyring; /* UID specific keyring */ 729 struct key *session_keyring; /* UID's default session keyring */ 730#endif 731 732 /* Hash table maintenance information */ 733 struct hlist_node uidhash_node; 734 kuid_t uid; 735 736#ifdef CONFIG_PERF_EVENTS 737 atomic_long_t locked_vm; 738#endif 739}; 740 741extern int uids_sysfs_init(void); 742 743extern struct user_struct *find_user(kuid_t); 744 745extern struct user_struct root_user; 746#define INIT_USER (&root_user) 747 748 749struct backing_dev_info; 750struct reclaim_state; 751 752#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 753struct sched_info { 754 /* cumulative counters */ 755 unsigned long pcount; /* # of times run on this cpu */ 756 unsigned long long run_delay; /* time spent waiting on a runqueue */ 757 758 /* timestamps */ 759 unsigned long long last_arrival,/* when we last ran on a cpu */ 760 last_queued; /* when we were last queued to run */ 761}; 762#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 763 764#ifdef CONFIG_TASK_DELAY_ACCT 765struct task_delay_info { 766 spinlock_t lock; 767 unsigned int flags; /* Private per-task flags */ 768 769 /* For each stat XXX, add following, aligned appropriately 770 * 771 * struct timespec XXX_start, XXX_end; 772 * u64 XXX_delay; 773 * u32 XXX_count; 774 * 775 * Atomicity of updates to XXX_delay, XXX_count protected by 776 * single lock above (split into XXX_lock if contention is an issue). 777 */ 778 779 /* 780 * XXX_count is incremented on every XXX operation, the delay 781 * associated with the operation is added to XXX_delay. 782 * XXX_delay contains the accumulated delay time in nanoseconds. 783 */ 784 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 785 u64 blkio_delay; /* wait for sync block io completion */ 786 u64 swapin_delay; /* wait for swapin block io completion */ 787 u32 blkio_count; /* total count of the number of sync block */ 788 /* io operations performed */ 789 u32 swapin_count; /* total count of the number of swapin block */ 790 /* io operations performed */ 791 792 struct timespec freepages_start, freepages_end; 793 u64 freepages_delay; /* wait for memory reclaim */ 794 u32 freepages_count; /* total count of memory reclaim */ 795}; 796#endif /* CONFIG_TASK_DELAY_ACCT */ 797 798static inline int sched_info_on(void) 799{ 800#ifdef CONFIG_SCHEDSTATS 801 return 1; 802#elif defined(CONFIG_TASK_DELAY_ACCT) 803 extern int delayacct_on; 804 return delayacct_on; 805#else 806 return 0; 807#endif 808} 809 810enum cpu_idle_type { 811 CPU_IDLE, 812 CPU_NOT_IDLE, 813 CPU_NEWLY_IDLE, 814 CPU_MAX_IDLE_TYPES 815}; 816 817/* 818 * Increase resolution of nice-level calculations for 64-bit architectures. 819 * The extra resolution improves shares distribution and load balancing of 820 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 821 * hierarchies, especially on larger systems. This is not a user-visible change 822 * and does not change the user-interface for setting shares/weights. 823 * 824 * We increase resolution only if we have enough bits to allow this increased 825 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 826 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 827 * increased costs. 828 */ 829#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 830# define SCHED_LOAD_RESOLUTION 10 831# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 832# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 833#else 834# define SCHED_LOAD_RESOLUTION 0 835# define scale_load(w) (w) 836# define scale_load_down(w) (w) 837#endif 838 839#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 840#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 841 842/* 843 * Increase resolution of cpu_power calculations 844 */ 845#define SCHED_POWER_SHIFT 10 846#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 847 848/* 849 * sched-domains (multiprocessor balancing) declarations: 850 */ 851#ifdef CONFIG_SMP 852#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 853#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 854#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 855#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 856#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 857#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 858#define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 859#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 860#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 861#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 862#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 863#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 864#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 865 866extern int __weak arch_sd_sibiling_asym_packing(void); 867 868struct sched_group_power { 869 atomic_t ref; 870 /* 871 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 872 * single CPU. 873 */ 874 unsigned int power, power_orig; 875 unsigned long next_update; 876 /* 877 * Number of busy cpus in this group. 878 */ 879 atomic_t nr_busy_cpus; 880 881 unsigned long cpumask[0]; /* iteration mask */ 882}; 883 884struct sched_group { 885 struct sched_group *next; /* Must be a circular list */ 886 atomic_t ref; 887 888 unsigned int group_weight; 889 struct sched_group_power *sgp; 890 891 /* 892 * The CPUs this group covers. 893 * 894 * NOTE: this field is variable length. (Allocated dynamically 895 * by attaching extra space to the end of the structure, 896 * depending on how many CPUs the kernel has booted up with) 897 */ 898 unsigned long cpumask[0]; 899}; 900 901static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 902{ 903 return to_cpumask(sg->cpumask); 904} 905 906/* 907 * cpumask masking which cpus in the group are allowed to iterate up the domain 908 * tree. 909 */ 910static inline struct cpumask *sched_group_mask(struct sched_group *sg) 911{ 912 return to_cpumask(sg->sgp->cpumask); 913} 914 915/** 916 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 917 * @group: The group whose first cpu is to be returned. 918 */ 919static inline unsigned int group_first_cpu(struct sched_group *group) 920{ 921 return cpumask_first(sched_group_cpus(group)); 922} 923 924struct sched_domain_attr { 925 int relax_domain_level; 926}; 927 928#define SD_ATTR_INIT (struct sched_domain_attr) { \ 929 .relax_domain_level = -1, \ 930} 931 932extern int sched_domain_level_max; 933 934struct sched_domain { 935 /* These fields must be setup */ 936 struct sched_domain *parent; /* top domain must be null terminated */ 937 struct sched_domain *child; /* bottom domain must be null terminated */ 938 struct sched_group *groups; /* the balancing groups of the domain */ 939 unsigned long min_interval; /* Minimum balance interval ms */ 940 unsigned long max_interval; /* Maximum balance interval ms */ 941 unsigned int busy_factor; /* less balancing by factor if busy */ 942 unsigned int imbalance_pct; /* No balance until over watermark */ 943 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 944 unsigned int busy_idx; 945 unsigned int idle_idx; 946 unsigned int newidle_idx; 947 unsigned int wake_idx; 948 unsigned int forkexec_idx; 949 unsigned int smt_gain; 950 int flags; /* See SD_* */ 951 int level; 952 953 /* Runtime fields. */ 954 unsigned long last_balance; /* init to jiffies. units in jiffies */ 955 unsigned int balance_interval; /* initialise to 1. units in ms. */ 956 unsigned int nr_balance_failed; /* initialise to 0 */ 957 958 u64 last_update; 959 960#ifdef CONFIG_SCHEDSTATS 961 /* load_balance() stats */ 962 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 963 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 964 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 965 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 966 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 967 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 968 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 969 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 970 971 /* Active load balancing */ 972 unsigned int alb_count; 973 unsigned int alb_failed; 974 unsigned int alb_pushed; 975 976 /* SD_BALANCE_EXEC stats */ 977 unsigned int sbe_count; 978 unsigned int sbe_balanced; 979 unsigned int sbe_pushed; 980 981 /* SD_BALANCE_FORK stats */ 982 unsigned int sbf_count; 983 unsigned int sbf_balanced; 984 unsigned int sbf_pushed; 985 986 /* try_to_wake_up() stats */ 987 unsigned int ttwu_wake_remote; 988 unsigned int ttwu_move_affine; 989 unsigned int ttwu_move_balance; 990#endif 991#ifdef CONFIG_SCHED_DEBUG 992 char *name; 993#endif 994 union { 995 void *private; /* used during construction */ 996 struct rcu_head rcu; /* used during destruction */ 997 }; 998 999 unsigned int span_weight; 1000 /* 1001 * Span of all CPUs in this domain. 1002 * 1003 * NOTE: this field is variable length. (Allocated dynamically 1004 * by attaching extra space to the end of the structure, 1005 * depending on how many CPUs the kernel has booted up with) 1006 */ 1007 unsigned long span[0]; 1008}; 1009 1010static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1011{ 1012 return to_cpumask(sd->span); 1013} 1014 1015extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1016 struct sched_domain_attr *dattr_new); 1017 1018/* Allocate an array of sched domains, for partition_sched_domains(). */ 1019cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1020void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1021 1022/* Test a flag in parent sched domain */ 1023static inline int test_sd_parent(struct sched_domain *sd, int flag) 1024{ 1025 if (sd->parent && (sd->parent->flags & flag)) 1026 return 1; 1027 1028 return 0; 1029} 1030 1031unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1032unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1033 1034bool cpus_share_cache(int this_cpu, int that_cpu); 1035 1036#else /* CONFIG_SMP */ 1037 1038struct sched_domain_attr; 1039 1040static inline void 1041partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1042 struct sched_domain_attr *dattr_new) 1043{ 1044} 1045 1046static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1047{ 1048 return true; 1049} 1050 1051#endif /* !CONFIG_SMP */ 1052 1053 1054struct io_context; /* See blkdev.h */ 1055 1056 1057#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1058extern void prefetch_stack(struct task_struct *t); 1059#else 1060static inline void prefetch_stack(struct task_struct *t) { } 1061#endif 1062 1063struct audit_context; /* See audit.c */ 1064struct mempolicy; 1065struct pipe_inode_info; 1066struct uts_namespace; 1067 1068struct rq; 1069struct sched_domain; 1070 1071/* 1072 * wake flags 1073 */ 1074#define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1075#define WF_FORK 0x02 /* child wakeup after fork */ 1076#define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1077 1078#define ENQUEUE_WAKEUP 1 1079#define ENQUEUE_HEAD 2 1080#ifdef CONFIG_SMP 1081#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1082#else 1083#define ENQUEUE_WAKING 0 1084#endif 1085 1086#define DEQUEUE_SLEEP 1 1087 1088struct sched_class { 1089 const struct sched_class *next; 1090 1091 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1092 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1093 void (*yield_task) (struct rq *rq); 1094 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1095 1096 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1097 1098 struct task_struct * (*pick_next_task) (struct rq *rq); 1099 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1100 1101#ifdef CONFIG_SMP 1102 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1103 1104 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1105 void (*post_schedule) (struct rq *this_rq); 1106 void (*task_waking) (struct task_struct *task); 1107 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1108 1109 void (*set_cpus_allowed)(struct task_struct *p, 1110 const struct cpumask *newmask); 1111 1112 void (*rq_online)(struct rq *rq); 1113 void (*rq_offline)(struct rq *rq); 1114#endif 1115 1116 void (*set_curr_task) (struct rq *rq); 1117 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1118 void (*task_fork) (struct task_struct *p); 1119 1120 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1121 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1122 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1123 int oldprio); 1124 1125 unsigned int (*get_rr_interval) (struct rq *rq, 1126 struct task_struct *task); 1127 1128#ifdef CONFIG_FAIR_GROUP_SCHED 1129 void (*task_move_group) (struct task_struct *p, int on_rq); 1130#endif 1131}; 1132 1133struct load_weight { 1134 unsigned long weight, inv_weight; 1135}; 1136 1137#ifdef CONFIG_SCHEDSTATS 1138struct sched_statistics { 1139 u64 wait_start; 1140 u64 wait_max; 1141 u64 wait_count; 1142 u64 wait_sum; 1143 u64 iowait_count; 1144 u64 iowait_sum; 1145 1146 u64 sleep_start; 1147 u64 sleep_max; 1148 s64 sum_sleep_runtime; 1149 1150 u64 block_start; 1151 u64 block_max; 1152 u64 exec_max; 1153 u64 slice_max; 1154 1155 u64 nr_migrations_cold; 1156 u64 nr_failed_migrations_affine; 1157 u64 nr_failed_migrations_running; 1158 u64 nr_failed_migrations_hot; 1159 u64 nr_forced_migrations; 1160 1161 u64 nr_wakeups; 1162 u64 nr_wakeups_sync; 1163 u64 nr_wakeups_migrate; 1164 u64 nr_wakeups_local; 1165 u64 nr_wakeups_remote; 1166 u64 nr_wakeups_affine; 1167 u64 nr_wakeups_affine_attempts; 1168 u64 nr_wakeups_passive; 1169 u64 nr_wakeups_idle; 1170}; 1171#endif 1172 1173struct sched_entity { 1174 struct load_weight load; /* for load-balancing */ 1175 struct rb_node run_node; 1176 struct list_head group_node; 1177 unsigned int on_rq; 1178 1179 u64 exec_start; 1180 u64 sum_exec_runtime; 1181 u64 vruntime; 1182 u64 prev_sum_exec_runtime; 1183 1184 u64 nr_migrations; 1185 1186#ifdef CONFIG_SCHEDSTATS 1187 struct sched_statistics statistics; 1188#endif 1189 1190#ifdef CONFIG_FAIR_GROUP_SCHED 1191 struct sched_entity *parent; 1192 /* rq on which this entity is (to be) queued: */ 1193 struct cfs_rq *cfs_rq; 1194 /* rq "owned" by this entity/group: */ 1195 struct cfs_rq *my_q; 1196#endif 1197}; 1198 1199struct sched_rt_entity { 1200 struct list_head run_list; 1201 unsigned long timeout; 1202 unsigned int time_slice; 1203 1204 struct sched_rt_entity *back; 1205#ifdef CONFIG_RT_GROUP_SCHED 1206 struct sched_rt_entity *parent; 1207 /* rq on which this entity is (to be) queued: */ 1208 struct rt_rq *rt_rq; 1209 /* rq "owned" by this entity/group: */ 1210 struct rt_rq *my_q; 1211#endif 1212}; 1213 1214/* 1215 * default timeslice is 100 msecs (used only for SCHED_RR tasks). 1216 * Timeslices get refilled after they expire. 1217 */ 1218#define RR_TIMESLICE (100 * HZ / 1000) 1219 1220struct rcu_node; 1221 1222enum perf_event_task_context { 1223 perf_invalid_context = -1, 1224 perf_hw_context = 0, 1225 perf_sw_context, 1226 perf_nr_task_contexts, 1227}; 1228 1229struct task_struct { 1230 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1231 void *stack; 1232 atomic_t usage; 1233 unsigned int flags; /* per process flags, defined below */ 1234 unsigned int ptrace; 1235 1236#ifdef CONFIG_SMP 1237 struct llist_node wake_entry; 1238 int on_cpu; 1239#endif 1240 int on_rq; 1241 1242 int prio, static_prio, normal_prio; 1243 unsigned int rt_priority; 1244 const struct sched_class *sched_class; 1245 struct sched_entity se; 1246 struct sched_rt_entity rt; 1247 1248#ifdef CONFIG_PREEMPT_NOTIFIERS 1249 /* list of struct preempt_notifier: */ 1250 struct hlist_head preempt_notifiers; 1251#endif 1252 1253 /* 1254 * fpu_counter contains the number of consecutive context switches 1255 * that the FPU is used. If this is over a threshold, the lazy fpu 1256 * saving becomes unlazy to save the trap. This is an unsigned char 1257 * so that after 256 times the counter wraps and the behavior turns 1258 * lazy again; this to deal with bursty apps that only use FPU for 1259 * a short time 1260 */ 1261 unsigned char fpu_counter; 1262#ifdef CONFIG_BLK_DEV_IO_TRACE 1263 unsigned int btrace_seq; 1264#endif 1265 1266 unsigned int policy; 1267 int nr_cpus_allowed; 1268 cpumask_t cpus_allowed; 1269 1270#ifdef CONFIG_PREEMPT_RCU 1271 int rcu_read_lock_nesting; 1272 char rcu_read_unlock_special; 1273 struct list_head rcu_node_entry; 1274#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1275#ifdef CONFIG_TREE_PREEMPT_RCU 1276 struct rcu_node *rcu_blocked_node; 1277#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1278#ifdef CONFIG_RCU_BOOST 1279 struct rt_mutex *rcu_boost_mutex; 1280#endif /* #ifdef CONFIG_RCU_BOOST */ 1281 1282#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1283 struct sched_info sched_info; 1284#endif 1285 1286 struct list_head tasks; 1287#ifdef CONFIG_SMP 1288 struct plist_node pushable_tasks; 1289#endif 1290 1291 struct mm_struct *mm, *active_mm; 1292#ifdef CONFIG_COMPAT_BRK 1293 unsigned brk_randomized:1; 1294#endif 1295#if defined(SPLIT_RSS_COUNTING) 1296 struct task_rss_stat rss_stat; 1297#endif 1298/* task state */ 1299 int exit_state; 1300 int exit_code, exit_signal; 1301 int pdeath_signal; /* The signal sent when the parent dies */ 1302 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1303 /* ??? */ 1304 unsigned int personality; 1305 unsigned did_exec:1; 1306 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1307 * execve */ 1308 unsigned in_iowait:1; 1309 1310 /* task may not gain privileges */ 1311 unsigned no_new_privs:1; 1312 1313 /* Revert to default priority/policy when forking */ 1314 unsigned sched_reset_on_fork:1; 1315 unsigned sched_contributes_to_load:1; 1316 1317 pid_t pid; 1318 pid_t tgid; 1319 1320#ifdef CONFIG_CC_STACKPROTECTOR 1321 /* Canary value for the -fstack-protector gcc feature */ 1322 unsigned long stack_canary; 1323#endif 1324 /* 1325 * pointers to (original) parent process, youngest child, younger sibling, 1326 * older sibling, respectively. (p->father can be replaced with 1327 * p->real_parent->pid) 1328 */ 1329 struct task_struct __rcu *real_parent; /* real parent process */ 1330 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1331 /* 1332 * children/sibling forms the list of my natural children 1333 */ 1334 struct list_head children; /* list of my children */ 1335 struct list_head sibling; /* linkage in my parent's children list */ 1336 struct task_struct *group_leader; /* threadgroup leader */ 1337 1338 /* 1339 * ptraced is the list of tasks this task is using ptrace on. 1340 * This includes both natural children and PTRACE_ATTACH targets. 1341 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1342 */ 1343 struct list_head ptraced; 1344 struct list_head ptrace_entry; 1345 1346 /* PID/PID hash table linkage. */ 1347 struct pid_link pids[PIDTYPE_MAX]; 1348 struct list_head thread_group; 1349 1350 struct completion *vfork_done; /* for vfork() */ 1351 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1352 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1353 1354 cputime_t utime, stime, utimescaled, stimescaled; 1355 cputime_t gtime; 1356#ifndef CONFIG_VIRT_CPU_ACCOUNTING 1357 cputime_t prev_utime, prev_stime; 1358#endif 1359 unsigned long nvcsw, nivcsw; /* context switch counts */ 1360 struct timespec start_time; /* monotonic time */ 1361 struct timespec real_start_time; /* boot based time */ 1362/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1363 unsigned long min_flt, maj_flt; 1364 1365 struct task_cputime cputime_expires; 1366 struct list_head cpu_timers[3]; 1367 1368/* process credentials */ 1369 const struct cred __rcu *real_cred; /* objective and real subjective task 1370 * credentials (COW) */ 1371 const struct cred __rcu *cred; /* effective (overridable) subjective task 1372 * credentials (COW) */ 1373 char comm[TASK_COMM_LEN]; /* executable name excluding path 1374 - access with [gs]et_task_comm (which lock 1375 it with task_lock()) 1376 - initialized normally by setup_new_exec */ 1377/* file system info */ 1378 int link_count, total_link_count; 1379#ifdef CONFIG_SYSVIPC 1380/* ipc stuff */ 1381 struct sysv_sem sysvsem; 1382#endif 1383#ifdef CONFIG_DETECT_HUNG_TASK 1384/* hung task detection */ 1385 unsigned long last_switch_count; 1386#endif 1387/* CPU-specific state of this task */ 1388 struct thread_struct thread; 1389/* filesystem information */ 1390 struct fs_struct *fs; 1391/* open file information */ 1392 struct files_struct *files; 1393/* namespaces */ 1394 struct nsproxy *nsproxy; 1395/* signal handlers */ 1396 struct signal_struct *signal; 1397 struct sighand_struct *sighand; 1398 1399 sigset_t blocked, real_blocked; 1400 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1401 struct sigpending pending; 1402 1403 unsigned long sas_ss_sp; 1404 size_t sas_ss_size; 1405 int (*notifier)(void *priv); 1406 void *notifier_data; 1407 sigset_t *notifier_mask; 1408 struct hlist_head task_works; 1409 1410 struct audit_context *audit_context; 1411#ifdef CONFIG_AUDITSYSCALL 1412 uid_t loginuid; 1413 unsigned int sessionid; 1414#endif 1415 struct seccomp seccomp; 1416 1417/* Thread group tracking */ 1418 u32 parent_exec_id; 1419 u32 self_exec_id; 1420/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1421 * mempolicy */ 1422 spinlock_t alloc_lock; 1423 1424 /* Protection of the PI data structures: */ 1425 raw_spinlock_t pi_lock; 1426 1427#ifdef CONFIG_RT_MUTEXES 1428 /* PI waiters blocked on a rt_mutex held by this task */ 1429 struct plist_head pi_waiters; 1430 /* Deadlock detection and priority inheritance handling */ 1431 struct rt_mutex_waiter *pi_blocked_on; 1432#endif 1433 1434#ifdef CONFIG_DEBUG_MUTEXES 1435 /* mutex deadlock detection */ 1436 struct mutex_waiter *blocked_on; 1437#endif 1438#ifdef CONFIG_TRACE_IRQFLAGS 1439 unsigned int irq_events; 1440 unsigned long hardirq_enable_ip; 1441 unsigned long hardirq_disable_ip; 1442 unsigned int hardirq_enable_event; 1443 unsigned int hardirq_disable_event; 1444 int hardirqs_enabled; 1445 int hardirq_context; 1446 unsigned long softirq_disable_ip; 1447 unsigned long softirq_enable_ip; 1448 unsigned int softirq_disable_event; 1449 unsigned int softirq_enable_event; 1450 int softirqs_enabled; 1451 int softirq_context; 1452#endif 1453#ifdef CONFIG_LOCKDEP 1454# define MAX_LOCK_DEPTH 48UL 1455 u64 curr_chain_key; 1456 int lockdep_depth; 1457 unsigned int lockdep_recursion; 1458 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1459 gfp_t lockdep_reclaim_gfp; 1460#endif 1461 1462/* journalling filesystem info */ 1463 void *journal_info; 1464 1465/* stacked block device info */ 1466 struct bio_list *bio_list; 1467 1468#ifdef CONFIG_BLOCK 1469/* stack plugging */ 1470 struct blk_plug *plug; 1471#endif 1472 1473/* VM state */ 1474 struct reclaim_state *reclaim_state; 1475 1476 struct backing_dev_info *backing_dev_info; 1477 1478 struct io_context *io_context; 1479 1480 unsigned long ptrace_message; 1481 siginfo_t *last_siginfo; /* For ptrace use. */ 1482 struct task_io_accounting ioac; 1483#if defined(CONFIG_TASK_XACCT) 1484 u64 acct_rss_mem1; /* accumulated rss usage */ 1485 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1486 cputime_t acct_timexpd; /* stime + utime since last update */ 1487#endif 1488#ifdef CONFIG_CPUSETS 1489 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1490 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1491 int cpuset_mem_spread_rotor; 1492 int cpuset_slab_spread_rotor; 1493#endif 1494#ifdef CONFIG_CGROUPS 1495 /* Control Group info protected by css_set_lock */ 1496 struct css_set __rcu *cgroups; 1497 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1498 struct list_head cg_list; 1499#endif 1500#ifdef CONFIG_FUTEX 1501 struct robust_list_head __user *robust_list; 1502#ifdef CONFIG_COMPAT 1503 struct compat_robust_list_head __user *compat_robust_list; 1504#endif 1505 struct list_head pi_state_list; 1506 struct futex_pi_state *pi_state_cache; 1507#endif 1508#ifdef CONFIG_PERF_EVENTS 1509 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1510 struct mutex perf_event_mutex; 1511 struct list_head perf_event_list; 1512#endif 1513#ifdef CONFIG_NUMA 1514 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1515 short il_next; 1516 short pref_node_fork; 1517#endif 1518 struct rcu_head rcu; 1519 1520 /* 1521 * cache last used pipe for splice 1522 */ 1523 struct pipe_inode_info *splice_pipe; 1524#ifdef CONFIG_TASK_DELAY_ACCT 1525 struct task_delay_info *delays; 1526#endif 1527#ifdef CONFIG_FAULT_INJECTION 1528 int make_it_fail; 1529#endif 1530 /* 1531 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1532 * balance_dirty_pages() for some dirty throttling pause 1533 */ 1534 int nr_dirtied; 1535 int nr_dirtied_pause; 1536 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1537 1538#ifdef CONFIG_LATENCYTOP 1539 int latency_record_count; 1540 struct latency_record latency_record[LT_SAVECOUNT]; 1541#endif 1542 /* 1543 * time slack values; these are used to round up poll() and 1544 * select() etc timeout values. These are in nanoseconds. 1545 */ 1546 unsigned long timer_slack_ns; 1547 unsigned long default_timer_slack_ns; 1548 1549 struct list_head *scm_work_list; 1550#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1551 /* Index of current stored address in ret_stack */ 1552 int curr_ret_stack; 1553 /* Stack of return addresses for return function tracing */ 1554 struct ftrace_ret_stack *ret_stack; 1555 /* time stamp for last schedule */ 1556 unsigned long long ftrace_timestamp; 1557 /* 1558 * Number of functions that haven't been traced 1559 * because of depth overrun. 1560 */ 1561 atomic_t trace_overrun; 1562 /* Pause for the tracing */ 1563 atomic_t tracing_graph_pause; 1564#endif 1565#ifdef CONFIG_TRACING 1566 /* state flags for use by tracers */ 1567 unsigned long trace; 1568 /* bitmask and counter of trace recursion */ 1569 unsigned long trace_recursion; 1570#endif /* CONFIG_TRACING */ 1571#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ 1572 struct memcg_batch_info { 1573 int do_batch; /* incremented when batch uncharge started */ 1574 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1575 unsigned long nr_pages; /* uncharged usage */ 1576 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1577 } memcg_batch; 1578#endif 1579#ifdef CONFIG_HAVE_HW_BREAKPOINT 1580 atomic_t ptrace_bp_refcnt; 1581#endif 1582#ifdef CONFIG_UPROBES 1583 struct uprobe_task *utask; 1584 int uprobe_srcu_id; 1585#endif 1586}; 1587 1588/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1589#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1590 1591/* 1592 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1593 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1594 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1595 * values are inverted: lower p->prio value means higher priority. 1596 * 1597 * The MAX_USER_RT_PRIO value allows the actual maximum 1598 * RT priority to be separate from the value exported to 1599 * user-space. This allows kernel threads to set their 1600 * priority to a value higher than any user task. Note: 1601 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1602 */ 1603 1604#define MAX_USER_RT_PRIO 100 1605#define MAX_RT_PRIO MAX_USER_RT_PRIO 1606 1607#define MAX_PRIO (MAX_RT_PRIO + 40) 1608#define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1609 1610static inline int rt_prio(int prio) 1611{ 1612 if (unlikely(prio < MAX_RT_PRIO)) 1613 return 1; 1614 return 0; 1615} 1616 1617static inline int rt_task(struct task_struct *p) 1618{ 1619 return rt_prio(p->prio); 1620} 1621 1622static inline struct pid *task_pid(struct task_struct *task) 1623{ 1624 return task->pids[PIDTYPE_PID].pid; 1625} 1626 1627static inline struct pid *task_tgid(struct task_struct *task) 1628{ 1629 return task->group_leader->pids[PIDTYPE_PID].pid; 1630} 1631 1632/* 1633 * Without tasklist or rcu lock it is not safe to dereference 1634 * the result of task_pgrp/task_session even if task == current, 1635 * we can race with another thread doing sys_setsid/sys_setpgid. 1636 */ 1637static inline struct pid *task_pgrp(struct task_struct *task) 1638{ 1639 return task->group_leader->pids[PIDTYPE_PGID].pid; 1640} 1641 1642static inline struct pid *task_session(struct task_struct *task) 1643{ 1644 return task->group_leader->pids[PIDTYPE_SID].pid; 1645} 1646 1647struct pid_namespace; 1648 1649/* 1650 * the helpers to get the task's different pids as they are seen 1651 * from various namespaces 1652 * 1653 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1654 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1655 * current. 1656 * task_xid_nr_ns() : id seen from the ns specified; 1657 * 1658 * set_task_vxid() : assigns a virtual id to a task; 1659 * 1660 * see also pid_nr() etc in include/linux/pid.h 1661 */ 1662pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1663 struct pid_namespace *ns); 1664 1665static inline pid_t task_pid_nr(struct task_struct *tsk) 1666{ 1667 return tsk->pid; 1668} 1669 1670static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1671 struct pid_namespace *ns) 1672{ 1673 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1674} 1675 1676static inline pid_t task_pid_vnr(struct task_struct *tsk) 1677{ 1678 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1679} 1680 1681 1682static inline pid_t task_tgid_nr(struct task_struct *tsk) 1683{ 1684 return tsk->tgid; 1685} 1686 1687pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1688 1689static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1690{ 1691 return pid_vnr(task_tgid(tsk)); 1692} 1693 1694 1695static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1696 struct pid_namespace *ns) 1697{ 1698 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1699} 1700 1701static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1702{ 1703 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1704} 1705 1706 1707static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1708 struct pid_namespace *ns) 1709{ 1710 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1711} 1712 1713static inline pid_t task_session_vnr(struct task_struct *tsk) 1714{ 1715 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1716} 1717 1718/* obsolete, do not use */ 1719static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1720{ 1721 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1722} 1723 1724/** 1725 * pid_alive - check that a task structure is not stale 1726 * @p: Task structure to be checked. 1727 * 1728 * Test if a process is not yet dead (at most zombie state) 1729 * If pid_alive fails, then pointers within the task structure 1730 * can be stale and must not be dereferenced. 1731 */ 1732static inline int pid_alive(struct task_struct *p) 1733{ 1734 return p->pids[PIDTYPE_PID].pid != NULL; 1735} 1736 1737/** 1738 * is_global_init - check if a task structure is init 1739 * @tsk: Task structure to be checked. 1740 * 1741 * Check if a task structure is the first user space task the kernel created. 1742 */ 1743static inline int is_global_init(struct task_struct *tsk) 1744{ 1745 return tsk->pid == 1; 1746} 1747 1748/* 1749 * is_container_init: 1750 * check whether in the task is init in its own pid namespace. 1751 */ 1752extern int is_container_init(struct task_struct *tsk); 1753 1754extern struct pid *cad_pid; 1755 1756extern void free_task(struct task_struct *tsk); 1757#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1758 1759extern void __put_task_struct(struct task_struct *t); 1760 1761static inline void put_task_struct(struct task_struct *t) 1762{ 1763 if (atomic_dec_and_test(&t->usage)) 1764 __put_task_struct(t); 1765} 1766 1767extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1768extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1769 1770/* 1771 * Per process flags 1772 */ 1773#define PF_EXITING 0x00000004 /* getting shut down */ 1774#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1775#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1776#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1777#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1778#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1779#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1780#define PF_DUMPCORE 0x00000200 /* dumped core */ 1781#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1782#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1783#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1784#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1785#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1786#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1787#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1788#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1789#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1790#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1791#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1792#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1793#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1794#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1795#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1796#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1797#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1798#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1799#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1800 1801/* 1802 * Only the _current_ task can read/write to tsk->flags, but other 1803 * tasks can access tsk->flags in readonly mode for example 1804 * with tsk_used_math (like during threaded core dumping). 1805 * There is however an exception to this rule during ptrace 1806 * or during fork: the ptracer task is allowed to write to the 1807 * child->flags of its traced child (same goes for fork, the parent 1808 * can write to the child->flags), because we're guaranteed the 1809 * child is not running and in turn not changing child->flags 1810 * at the same time the parent does it. 1811 */ 1812#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1813#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1814#define clear_used_math() clear_stopped_child_used_math(current) 1815#define set_used_math() set_stopped_child_used_math(current) 1816#define conditional_stopped_child_used_math(condition, child) \ 1817 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1818#define conditional_used_math(condition) \ 1819 conditional_stopped_child_used_math(condition, current) 1820#define copy_to_stopped_child_used_math(child) \ 1821 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1822/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1823#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1824#define used_math() tsk_used_math(current) 1825 1826/* 1827 * task->jobctl flags 1828 */ 1829#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1830 1831#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1832#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1833#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1834#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1835#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1836#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1837#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1838 1839#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1840#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1841#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1842#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1843#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1844#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1845#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1846 1847#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1848#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1849 1850extern bool task_set_jobctl_pending(struct task_struct *task, 1851 unsigned int mask); 1852extern void task_clear_jobctl_trapping(struct task_struct *task); 1853extern void task_clear_jobctl_pending(struct task_struct *task, 1854 unsigned int mask); 1855 1856#ifdef CONFIG_PREEMPT_RCU 1857 1858#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1859#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1860 1861static inline void rcu_copy_process(struct task_struct *p) 1862{ 1863 p->rcu_read_lock_nesting = 0; 1864 p->rcu_read_unlock_special = 0; 1865#ifdef CONFIG_TREE_PREEMPT_RCU 1866 p->rcu_blocked_node = NULL; 1867#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1868#ifdef CONFIG_RCU_BOOST 1869 p->rcu_boost_mutex = NULL; 1870#endif /* #ifdef CONFIG_RCU_BOOST */ 1871 INIT_LIST_HEAD(&p->rcu_node_entry); 1872} 1873 1874static inline void rcu_switch_from(struct task_struct *prev) 1875{ 1876 if (prev->rcu_read_lock_nesting != 0) 1877 rcu_preempt_note_context_switch(); 1878} 1879 1880#else 1881 1882static inline void rcu_copy_process(struct task_struct *p) 1883{ 1884} 1885 1886static inline void rcu_switch_from(struct task_struct *prev) 1887{ 1888} 1889 1890#endif 1891 1892#ifdef CONFIG_SMP 1893extern void do_set_cpus_allowed(struct task_struct *p, 1894 const struct cpumask *new_mask); 1895 1896extern int set_cpus_allowed_ptr(struct task_struct *p, 1897 const struct cpumask *new_mask); 1898#else 1899static inline void do_set_cpus_allowed(struct task_struct *p, 1900 const struct cpumask *new_mask) 1901{ 1902} 1903static inline int set_cpus_allowed_ptr(struct task_struct *p, 1904 const struct cpumask *new_mask) 1905{ 1906 if (!cpumask_test_cpu(0, new_mask)) 1907 return -EINVAL; 1908 return 0; 1909} 1910#endif 1911 1912#ifndef CONFIG_CPUMASK_OFFSTACK 1913static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1914{ 1915 return set_cpus_allowed_ptr(p, &new_mask); 1916} 1917#endif 1918 1919/* 1920 * Do not use outside of architecture code which knows its limitations. 1921 * 1922 * sched_clock() has no promise of monotonicity or bounded drift between 1923 * CPUs, use (which you should not) requires disabling IRQs. 1924 * 1925 * Please use one of the three interfaces below. 1926 */ 1927extern unsigned long long notrace sched_clock(void); 1928/* 1929 * See the comment in kernel/sched/clock.c 1930 */ 1931extern u64 cpu_clock(int cpu); 1932extern u64 local_clock(void); 1933extern u64 sched_clock_cpu(int cpu); 1934 1935 1936extern void sched_clock_init(void); 1937 1938#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1939static inline void sched_clock_tick(void) 1940{ 1941} 1942 1943static inline void sched_clock_idle_sleep_event(void) 1944{ 1945} 1946 1947static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1948{ 1949} 1950#else 1951/* 1952 * Architectures can set this to 1 if they have specified 1953 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1954 * but then during bootup it turns out that sched_clock() 1955 * is reliable after all: 1956 */ 1957extern int sched_clock_stable; 1958 1959extern void sched_clock_tick(void); 1960extern void sched_clock_idle_sleep_event(void); 1961extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1962#endif 1963 1964#ifdef CONFIG_IRQ_TIME_ACCOUNTING 1965/* 1966 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1967 * The reason for this explicit opt-in is not to have perf penalty with 1968 * slow sched_clocks. 1969 */ 1970extern void enable_sched_clock_irqtime(void); 1971extern void disable_sched_clock_irqtime(void); 1972#else 1973static inline void enable_sched_clock_irqtime(void) {} 1974static inline void disable_sched_clock_irqtime(void) {} 1975#endif 1976 1977extern unsigned long long 1978task_sched_runtime(struct task_struct *task); 1979 1980/* sched_exec is called by processes performing an exec */ 1981#ifdef CONFIG_SMP 1982extern void sched_exec(void); 1983#else 1984#define sched_exec() {} 1985#endif 1986 1987extern void sched_clock_idle_sleep_event(void); 1988extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1989 1990#ifdef CONFIG_HOTPLUG_CPU 1991extern void idle_task_exit(void); 1992#else 1993static inline void idle_task_exit(void) {} 1994#endif 1995 1996#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1997extern void wake_up_idle_cpu(int cpu); 1998#else 1999static inline void wake_up_idle_cpu(int cpu) { } 2000#endif 2001 2002extern unsigned int sysctl_sched_latency; 2003extern unsigned int sysctl_sched_min_granularity; 2004extern unsigned int sysctl_sched_wakeup_granularity; 2005extern unsigned int sysctl_sched_child_runs_first; 2006 2007enum sched_tunable_scaling { 2008 SCHED_TUNABLESCALING_NONE, 2009 SCHED_TUNABLESCALING_LOG, 2010 SCHED_TUNABLESCALING_LINEAR, 2011 SCHED_TUNABLESCALING_END, 2012}; 2013extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 2014 2015#ifdef CONFIG_SCHED_DEBUG 2016extern unsigned int sysctl_sched_migration_cost; 2017extern unsigned int sysctl_sched_nr_migrate; 2018extern unsigned int sysctl_sched_time_avg; 2019extern unsigned int sysctl_timer_migration; 2020extern unsigned int sysctl_sched_shares_window; 2021 2022int sched_proc_update_handler(struct ctl_table *table, int write, 2023 void __user *buffer, size_t *length, 2024 loff_t *ppos); 2025#endif 2026#ifdef CONFIG_SCHED_DEBUG 2027static inline unsigned int get_sysctl_timer_migration(void) 2028{ 2029 return sysctl_timer_migration; 2030} 2031#else 2032static inline unsigned int get_sysctl_timer_migration(void) 2033{ 2034 return 1; 2035} 2036#endif 2037extern unsigned int sysctl_sched_rt_period; 2038extern int sysctl_sched_rt_runtime; 2039 2040int sched_rt_handler(struct ctl_table *table, int write, 2041 void __user *buffer, size_t *lenp, 2042 loff_t *ppos); 2043 2044#ifdef CONFIG_SCHED_AUTOGROUP 2045extern unsigned int sysctl_sched_autogroup_enabled; 2046 2047extern void sched_autogroup_create_attach(struct task_struct *p); 2048extern void sched_autogroup_detach(struct task_struct *p); 2049extern void sched_autogroup_fork(struct signal_struct *sig); 2050extern void sched_autogroup_exit(struct signal_struct *sig); 2051#ifdef CONFIG_PROC_FS 2052extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2053extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2054#endif 2055#else 2056static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2057static inline void sched_autogroup_detach(struct task_struct *p) { } 2058static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2059static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2060#endif 2061 2062#ifdef CONFIG_CFS_BANDWIDTH 2063extern unsigned int sysctl_sched_cfs_bandwidth_slice; 2064#endif 2065 2066#ifdef CONFIG_RT_MUTEXES 2067extern int rt_mutex_getprio(struct task_struct *p); 2068extern void rt_mutex_setprio(struct task_struct *p, int prio); 2069extern void rt_mutex_adjust_pi(struct task_struct *p); 2070static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2071{ 2072 return tsk->pi_blocked_on != NULL; 2073} 2074#else 2075static inline int rt_mutex_getprio(struct task_struct *p) 2076{ 2077 return p->normal_prio; 2078} 2079# define rt_mutex_adjust_pi(p) do { } while (0) 2080static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2081{ 2082 return false; 2083} 2084#endif 2085 2086extern bool yield_to(struct task_struct *p, bool preempt); 2087extern void set_user_nice(struct task_struct *p, long nice); 2088extern int task_prio(const struct task_struct *p); 2089extern int task_nice(const struct task_struct *p); 2090extern int can_nice(const struct task_struct *p, const int nice); 2091extern int task_curr(const struct task_struct *p); 2092extern int idle_cpu(int cpu); 2093extern int sched_setscheduler(struct task_struct *, int, 2094 const struct sched_param *); 2095extern int sched_setscheduler_nocheck(struct task_struct *, int, 2096 const struct sched_param *); 2097extern struct task_struct *idle_task(int cpu); 2098/** 2099 * is_idle_task - is the specified task an idle task? 2100 * @p: the task in question. 2101 */ 2102static inline bool is_idle_task(const struct task_struct *p) 2103{ 2104 return p->pid == 0; 2105} 2106extern struct task_struct *curr_task(int cpu); 2107extern void set_curr_task(int cpu, struct task_struct *p); 2108 2109void yield(void); 2110 2111/* 2112 * The default (Linux) execution domain. 2113 */ 2114extern struct exec_domain default_exec_domain; 2115 2116union thread_union { 2117 struct thread_info thread_info; 2118 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2119}; 2120 2121#ifndef __HAVE_ARCH_KSTACK_END 2122static inline int kstack_end(void *addr) 2123{ 2124 /* Reliable end of stack detection: 2125 * Some APM bios versions misalign the stack 2126 */ 2127 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2128} 2129#endif 2130 2131extern union thread_union init_thread_union; 2132extern struct task_struct init_task; 2133 2134extern struct mm_struct init_mm; 2135 2136extern struct pid_namespace init_pid_ns; 2137 2138/* 2139 * find a task by one of its numerical ids 2140 * 2141 * find_task_by_pid_ns(): 2142 * finds a task by its pid in the specified namespace 2143 * find_task_by_vpid(): 2144 * finds a task by its virtual pid 2145 * 2146 * see also find_vpid() etc in include/linux/pid.h 2147 */ 2148 2149extern struct task_struct *find_task_by_vpid(pid_t nr); 2150extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2151 struct pid_namespace *ns); 2152 2153extern void __set_special_pids(struct pid *pid); 2154 2155/* per-UID process charging. */ 2156extern struct user_struct * alloc_uid(kuid_t); 2157static inline struct user_struct *get_uid(struct user_struct *u) 2158{ 2159 atomic_inc(&u->__count); 2160 return u; 2161} 2162extern void free_uid(struct user_struct *); 2163 2164#include <asm/current.h> 2165 2166extern void xtime_update(unsigned long ticks); 2167 2168extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2169extern int wake_up_process(struct task_struct *tsk); 2170extern void wake_up_new_task(struct task_struct *tsk); 2171#ifdef CONFIG_SMP 2172 extern void kick_process(struct task_struct *tsk); 2173#else 2174 static inline void kick_process(struct task_struct *tsk) { } 2175#endif 2176extern void sched_fork(struct task_struct *p); 2177extern void sched_dead(struct task_struct *p); 2178 2179extern void proc_caches_init(void); 2180extern void flush_signals(struct task_struct *); 2181extern void __flush_signals(struct task_struct *); 2182extern void ignore_signals(struct task_struct *); 2183extern void flush_signal_handlers(struct task_struct *, int force_default); 2184extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2185 2186static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2187{ 2188 unsigned long flags; 2189 int ret; 2190 2191 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2192 ret = dequeue_signal(tsk, mask, info); 2193 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2194 2195 return ret; 2196} 2197 2198extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2199 sigset_t *mask); 2200extern void unblock_all_signals(void); 2201extern void release_task(struct task_struct * p); 2202extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2203extern int force_sigsegv(int, struct task_struct *); 2204extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2205extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2206extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2207extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2208 const struct cred *, u32); 2209extern int kill_pgrp(struct pid *pid, int sig, int priv); 2210extern int kill_pid(struct pid *pid, int sig, int priv); 2211extern int kill_proc_info(int, struct siginfo *, pid_t); 2212extern __must_check bool do_notify_parent(struct task_struct *, int); 2213extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2214extern void force_sig(int, struct task_struct *); 2215extern int send_sig(int, struct task_struct *, int); 2216extern int zap_other_threads(struct task_struct *p); 2217extern struct sigqueue *sigqueue_alloc(void); 2218extern void sigqueue_free(struct sigqueue *); 2219extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2220extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2221extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2222 2223static inline void restore_saved_sigmask(void) 2224{ 2225 if (test_and_clear_restore_sigmask()) 2226 __set_current_blocked(&current->saved_sigmask); 2227} 2228 2229static inline sigset_t *sigmask_to_save(void) 2230{ 2231 sigset_t *res = &current->blocked; 2232 if (unlikely(test_restore_sigmask())) 2233 res = &current->saved_sigmask; 2234 return res; 2235} 2236 2237static inline int kill_cad_pid(int sig, int priv) 2238{ 2239 return kill_pid(cad_pid, sig, priv); 2240} 2241 2242/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2243#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2244#define SEND_SIG_PRIV ((struct siginfo *) 1) 2245#define SEND_SIG_FORCED ((struct siginfo *) 2) 2246 2247/* 2248 * True if we are on the alternate signal stack. 2249 */ 2250static inline int on_sig_stack(unsigned long sp) 2251{ 2252#ifdef CONFIG_STACK_GROWSUP 2253 return sp >= current->sas_ss_sp && 2254 sp - current->sas_ss_sp < current->sas_ss_size; 2255#else 2256 return sp > current->sas_ss_sp && 2257 sp - current->sas_ss_sp <= current->sas_ss_size; 2258#endif 2259} 2260 2261static inline int sas_ss_flags(unsigned long sp) 2262{ 2263 return (current->sas_ss_size == 0 ? SS_DISABLE 2264 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2265} 2266 2267/* 2268 * Routines for handling mm_structs 2269 */ 2270extern struct mm_struct * mm_alloc(void); 2271 2272/* mmdrop drops the mm and the page tables */ 2273extern void __mmdrop(struct mm_struct *); 2274static inline void mmdrop(struct mm_struct * mm) 2275{ 2276 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2277 __mmdrop(mm); 2278} 2279 2280/* mmput gets rid of the mappings and all user-space */ 2281extern void mmput(struct mm_struct *); 2282/* Grab a reference to a task's mm, if it is not already going away */ 2283extern struct mm_struct *get_task_mm(struct task_struct *task); 2284/* 2285 * Grab a reference to a task's mm, if it is not already going away 2286 * and ptrace_may_access with the mode parameter passed to it 2287 * succeeds. 2288 */ 2289extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2290/* Remove the current tasks stale references to the old mm_struct */ 2291extern void mm_release(struct task_struct *, struct mm_struct *); 2292/* Allocate a new mm structure and copy contents from tsk->mm */ 2293extern struct mm_struct *dup_mm(struct task_struct *tsk); 2294 2295extern int copy_thread(unsigned long, unsigned long, unsigned long, 2296 struct task_struct *, struct pt_regs *); 2297extern void flush_thread(void); 2298extern void exit_thread(void); 2299 2300extern void exit_files(struct task_struct *); 2301extern void __cleanup_sighand(struct sighand_struct *); 2302 2303extern void exit_itimers(struct signal_struct *); 2304extern void flush_itimer_signals(void); 2305 2306extern void do_group_exit(int); 2307 2308extern void daemonize(const char *, ...); 2309extern int allow_signal(int); 2310extern int disallow_signal(int); 2311 2312extern int do_execve(const char *, 2313 const char __user * const __user *, 2314 const char __user * const __user *, struct pt_regs *); 2315extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2316struct task_struct *fork_idle(int); 2317 2318extern void set_task_comm(struct task_struct *tsk, char *from); 2319extern char *get_task_comm(char *to, struct task_struct *tsk); 2320 2321#ifdef CONFIG_SMP 2322void scheduler_ipi(void); 2323extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2324#else 2325static inline void scheduler_ipi(void) { } 2326static inline unsigned long wait_task_inactive(struct task_struct *p, 2327 long match_state) 2328{ 2329 return 1; 2330} 2331#endif 2332 2333#define next_task(p) \ 2334 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2335 2336#define for_each_process(p) \ 2337 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2338 2339extern bool current_is_single_threaded(void); 2340 2341/* 2342 * Careful: do_each_thread/while_each_thread is a double loop so 2343 * 'break' will not work as expected - use goto instead. 2344 */ 2345#define do_each_thread(g, t) \ 2346 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2347 2348#define while_each_thread(g, t) \ 2349 while ((t = next_thread(t)) != g) 2350 2351static inline int get_nr_threads(struct task_struct *tsk) 2352{ 2353 return tsk->signal->nr_threads; 2354} 2355 2356static inline bool thread_group_leader(struct task_struct *p) 2357{ 2358 return p->exit_signal >= 0; 2359} 2360 2361/* Do to the insanities of de_thread it is possible for a process 2362 * to have the pid of the thread group leader without actually being 2363 * the thread group leader. For iteration through the pids in proc 2364 * all we care about is that we have a task with the appropriate 2365 * pid, we don't actually care if we have the right task. 2366 */ 2367static inline int has_group_leader_pid(struct task_struct *p) 2368{ 2369 return p->pid == p->tgid; 2370} 2371 2372static inline 2373int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2374{ 2375 return p1->tgid == p2->tgid; 2376} 2377 2378static inline struct task_struct *next_thread(const struct task_struct *p) 2379{ 2380 return list_entry_rcu(p->thread_group.next, 2381 struct task_struct, thread_group); 2382} 2383 2384static inline int thread_group_empty(struct task_struct *p) 2385{ 2386 return list_empty(&p->thread_group); 2387} 2388 2389#define delay_group_leader(p) \ 2390 (thread_group_leader(p) && !thread_group_empty(p)) 2391 2392/* 2393 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2394 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2395 * pins the final release of task.io_context. Also protects ->cpuset and 2396 * ->cgroup.subsys[]. And ->vfork_done. 2397 * 2398 * Nests both inside and outside of read_lock(&tasklist_lock). 2399 * It must not be nested with write_lock_irq(&tasklist_lock), 2400 * neither inside nor outside. 2401 */ 2402static inline void task_lock(struct task_struct *p) 2403{ 2404 spin_lock(&p->alloc_lock); 2405} 2406 2407static inline void task_unlock(struct task_struct *p) 2408{ 2409 spin_unlock(&p->alloc_lock); 2410} 2411 2412extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2413 unsigned long *flags); 2414 2415static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2416 unsigned long *flags) 2417{ 2418 struct sighand_struct *ret; 2419 2420 ret = __lock_task_sighand(tsk, flags); 2421 (void)__cond_lock(&tsk->sighand->siglock, ret); 2422 return ret; 2423} 2424 2425static inline void unlock_task_sighand(struct task_struct *tsk, 2426 unsigned long *flags) 2427{ 2428 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2429} 2430 2431#ifdef CONFIG_CGROUPS 2432static inline void threadgroup_change_begin(struct task_struct *tsk) 2433{ 2434 down_read(&tsk->signal->group_rwsem); 2435} 2436static inline void threadgroup_change_end(struct task_struct *tsk) 2437{ 2438 up_read(&tsk->signal->group_rwsem); 2439} 2440 2441/** 2442 * threadgroup_lock - lock threadgroup 2443 * @tsk: member task of the threadgroup to lock 2444 * 2445 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2446 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2447 * perform exec. This is useful for cases where the threadgroup needs to 2448 * stay stable across blockable operations. 2449 * 2450 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2451 * synchronization. While held, no new task will be added to threadgroup 2452 * and no existing live task will have its PF_EXITING set. 2453 * 2454 * During exec, a task goes and puts its thread group through unusual 2455 * changes. After de-threading, exclusive access is assumed to resources 2456 * which are usually shared by tasks in the same group - e.g. sighand may 2457 * be replaced with a new one. Also, the exec'ing task takes over group 2458 * leader role including its pid. Exclude these changes while locked by 2459 * grabbing cred_guard_mutex which is used to synchronize exec path. 2460 */ 2461static inline void threadgroup_lock(struct task_struct *tsk) 2462{ 2463 /* 2464 * exec uses exit for de-threading nesting group_rwsem inside 2465 * cred_guard_mutex. Grab cred_guard_mutex first. 2466 */ 2467 mutex_lock(&tsk->signal->cred_guard_mutex); 2468 down_write(&tsk->signal->group_rwsem); 2469} 2470 2471/** 2472 * threadgroup_unlock - unlock threadgroup 2473 * @tsk: member task of the threadgroup to unlock 2474 * 2475 * Reverse threadgroup_lock(). 2476 */ 2477static inline void threadgroup_unlock(struct task_struct *tsk) 2478{ 2479 up_write(&tsk->signal->group_rwsem); 2480 mutex_unlock(&tsk->signal->cred_guard_mutex); 2481} 2482#else 2483static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2484static inline void threadgroup_change_end(struct task_struct *tsk) {} 2485static inline void threadgroup_lock(struct task_struct *tsk) {} 2486static inline void threadgroup_unlock(struct task_struct *tsk) {} 2487#endif 2488 2489#ifndef __HAVE_THREAD_FUNCTIONS 2490 2491#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2492#define task_stack_page(task) ((task)->stack) 2493 2494static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2495{ 2496 *task_thread_info(p) = *task_thread_info(org); 2497 task_thread_info(p)->task = p; 2498} 2499 2500static inline unsigned long *end_of_stack(struct task_struct *p) 2501{ 2502 return (unsigned long *)(task_thread_info(p) + 1); 2503} 2504 2505#endif 2506 2507static inline int object_is_on_stack(void *obj) 2508{ 2509 void *stack = task_stack_page(current); 2510 2511 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2512} 2513 2514extern void thread_info_cache_init(void); 2515 2516#ifdef CONFIG_DEBUG_STACK_USAGE 2517static inline unsigned long stack_not_used(struct task_struct *p) 2518{ 2519 unsigned long *n = end_of_stack(p); 2520 2521 do { /* Skip over canary */ 2522 n++; 2523 } while (!*n); 2524 2525 return (unsigned long)n - (unsigned long)end_of_stack(p); 2526} 2527#endif 2528 2529/* set thread flags in other task's structures 2530 * - see asm/thread_info.h for TIF_xxxx flags available 2531 */ 2532static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2533{ 2534 set_ti_thread_flag(task_thread_info(tsk), flag); 2535} 2536 2537static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2538{ 2539 clear_ti_thread_flag(task_thread_info(tsk), flag); 2540} 2541 2542static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2543{ 2544 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2545} 2546 2547static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2548{ 2549 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2550} 2551 2552static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2553{ 2554 return test_ti_thread_flag(task_thread_info(tsk), flag); 2555} 2556 2557static inline void set_tsk_need_resched(struct task_struct *tsk) 2558{ 2559 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2560} 2561 2562static inline void clear_tsk_need_resched(struct task_struct *tsk) 2563{ 2564 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2565} 2566 2567static inline int test_tsk_need_resched(struct task_struct *tsk) 2568{ 2569 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2570} 2571 2572static inline int restart_syscall(void) 2573{ 2574 set_tsk_thread_flag(current, TIF_SIGPENDING); 2575 return -ERESTARTNOINTR; 2576} 2577 2578static inline int signal_pending(struct task_struct *p) 2579{ 2580 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2581} 2582 2583static inline int __fatal_signal_pending(struct task_struct *p) 2584{ 2585 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2586} 2587 2588static inline int fatal_signal_pending(struct task_struct *p) 2589{ 2590 return signal_pending(p) && __fatal_signal_pending(p); 2591} 2592 2593static inline int signal_pending_state(long state, struct task_struct *p) 2594{ 2595 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2596 return 0; 2597 if (!signal_pending(p)) 2598 return 0; 2599 2600 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2601} 2602 2603static inline int need_resched(void) 2604{ 2605 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2606} 2607 2608/* 2609 * cond_resched() and cond_resched_lock(): latency reduction via 2610 * explicit rescheduling in places that are safe. The return 2611 * value indicates whether a reschedule was done in fact. 2612 * cond_resched_lock() will drop the spinlock before scheduling, 2613 * cond_resched_softirq() will enable bhs before scheduling. 2614 */ 2615extern int _cond_resched(void); 2616 2617#define cond_resched() ({ \ 2618 __might_sleep(__FILE__, __LINE__, 0); \ 2619 _cond_resched(); \ 2620}) 2621 2622extern int __cond_resched_lock(spinlock_t *lock); 2623 2624#ifdef CONFIG_PREEMPT_COUNT 2625#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2626#else 2627#define PREEMPT_LOCK_OFFSET 0 2628#endif 2629 2630#define cond_resched_lock(lock) ({ \ 2631 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2632 __cond_resched_lock(lock); \ 2633}) 2634 2635extern int __cond_resched_softirq(void); 2636 2637#define cond_resched_softirq() ({ \ 2638 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2639 __cond_resched_softirq(); \ 2640}) 2641 2642/* 2643 * Does a critical section need to be broken due to another 2644 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2645 * but a general need for low latency) 2646 */ 2647static inline int spin_needbreak(spinlock_t *lock) 2648{ 2649#ifdef CONFIG_PREEMPT 2650 return spin_is_contended(lock); 2651#else 2652 return 0; 2653#endif 2654} 2655 2656/* 2657 * Thread group CPU time accounting. 2658 */ 2659void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2660void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2661 2662static inline void thread_group_cputime_init(struct signal_struct *sig) 2663{ 2664 raw_spin_lock_init(&sig->cputimer.lock); 2665} 2666 2667/* 2668 * Reevaluate whether the task has signals pending delivery. 2669 * Wake the task if so. 2670 * This is required every time the blocked sigset_t changes. 2671 * callers must hold sighand->siglock. 2672 */ 2673extern void recalc_sigpending_and_wake(struct task_struct *t); 2674extern void recalc_sigpending(void); 2675 2676extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2677 2678/* 2679 * Wrappers for p->thread_info->cpu access. No-op on UP. 2680 */ 2681#ifdef CONFIG_SMP 2682 2683static inline unsigned int task_cpu(const struct task_struct *p) 2684{ 2685 return task_thread_info(p)->cpu; 2686} 2687 2688extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2689 2690#else 2691 2692static inline unsigned int task_cpu(const struct task_struct *p) 2693{ 2694 return 0; 2695} 2696 2697static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2698{ 2699} 2700 2701#endif /* CONFIG_SMP */ 2702 2703extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2704extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2705 2706extern void normalize_rt_tasks(void); 2707 2708#ifdef CONFIG_CGROUP_SCHED 2709 2710extern struct task_group root_task_group; 2711 2712extern struct task_group *sched_create_group(struct task_group *parent); 2713extern void sched_destroy_group(struct task_group *tg); 2714extern void sched_move_task(struct task_struct *tsk); 2715#ifdef CONFIG_FAIR_GROUP_SCHED 2716extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2717extern unsigned long sched_group_shares(struct task_group *tg); 2718#endif 2719#ifdef CONFIG_RT_GROUP_SCHED 2720extern int sched_group_set_rt_runtime(struct task_group *tg, 2721 long rt_runtime_us); 2722extern long sched_group_rt_runtime(struct task_group *tg); 2723extern int sched_group_set_rt_period(struct task_group *tg, 2724 long rt_period_us); 2725extern long sched_group_rt_period(struct task_group *tg); 2726extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2727#endif 2728#endif 2729 2730extern int task_can_switch_user(struct user_struct *up, 2731 struct task_struct *tsk); 2732 2733#ifdef CONFIG_TASK_XACCT 2734static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2735{ 2736 tsk->ioac.rchar += amt; 2737} 2738 2739static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2740{ 2741 tsk->ioac.wchar += amt; 2742} 2743 2744static inline void inc_syscr(struct task_struct *tsk) 2745{ 2746 tsk->ioac.syscr++; 2747} 2748 2749static inline void inc_syscw(struct task_struct *tsk) 2750{ 2751 tsk->ioac.syscw++; 2752} 2753#else 2754static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2755{ 2756} 2757 2758static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2759{ 2760} 2761 2762static inline void inc_syscr(struct task_struct *tsk) 2763{ 2764} 2765 2766static inline void inc_syscw(struct task_struct *tsk) 2767{ 2768} 2769#endif 2770 2771#ifndef TASK_SIZE_OF 2772#define TASK_SIZE_OF(tsk) TASK_SIZE 2773#endif 2774 2775#ifdef CONFIG_MM_OWNER 2776extern void mm_update_next_owner(struct mm_struct *mm); 2777extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2778#else 2779static inline void mm_update_next_owner(struct mm_struct *mm) 2780{ 2781} 2782 2783static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2784{ 2785} 2786#endif /* CONFIG_MM_OWNER */ 2787 2788static inline unsigned long task_rlimit(const struct task_struct *tsk, 2789 unsigned int limit) 2790{ 2791 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2792} 2793 2794static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2795 unsigned int limit) 2796{ 2797 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2798} 2799 2800static inline unsigned long rlimit(unsigned int limit) 2801{ 2802 return task_rlimit(current, limit); 2803} 2804 2805static inline unsigned long rlimit_max(unsigned int limit) 2806{ 2807 return task_rlimit_max(current, limit); 2808} 2809 2810#endif /* __KERNEL__ */ 2811 2812#endif