at v3.5-rc3 397 lines 12 kB view raw
1#ifndef _LINUX_MM_TYPES_H 2#define _LINUX_MM_TYPES_H 3 4#include <linux/auxvec.h> 5#include <linux/types.h> 6#include <linux/threads.h> 7#include <linux/list.h> 8#include <linux/spinlock.h> 9#include <linux/prio_tree.h> 10#include <linux/rbtree.h> 11#include <linux/rwsem.h> 12#include <linux/completion.h> 13#include <linux/cpumask.h> 14#include <linux/page-debug-flags.h> 15#include <linux/uprobes.h> 16#include <asm/page.h> 17#include <asm/mmu.h> 18 19#ifndef AT_VECTOR_SIZE_ARCH 20#define AT_VECTOR_SIZE_ARCH 0 21#endif 22#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 23 24struct address_space; 25 26#define USE_SPLIT_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS) 27 28/* 29 * Each physical page in the system has a struct page associated with 30 * it to keep track of whatever it is we are using the page for at the 31 * moment. Note that we have no way to track which tasks are using 32 * a page, though if it is a pagecache page, rmap structures can tell us 33 * who is mapping it. 34 * 35 * The objects in struct page are organized in double word blocks in 36 * order to allows us to use atomic double word operations on portions 37 * of struct page. That is currently only used by slub but the arrangement 38 * allows the use of atomic double word operations on the flags/mapping 39 * and lru list pointers also. 40 */ 41struct page { 42 /* First double word block */ 43 unsigned long flags; /* Atomic flags, some possibly 44 * updated asynchronously */ 45 struct address_space *mapping; /* If low bit clear, points to 46 * inode address_space, or NULL. 47 * If page mapped as anonymous 48 * memory, low bit is set, and 49 * it points to anon_vma object: 50 * see PAGE_MAPPING_ANON below. 51 */ 52 /* Second double word */ 53 struct { 54 union { 55 pgoff_t index; /* Our offset within mapping. */ 56 void *freelist; /* slub first free object */ 57 }; 58 59 union { 60 /* Used for cmpxchg_double in slub */ 61 unsigned long counters; 62 63 struct { 64 65 union { 66 /* 67 * Count of ptes mapped in 68 * mms, to show when page is 69 * mapped & limit reverse map 70 * searches. 71 * 72 * Used also for tail pages 73 * refcounting instead of 74 * _count. Tail pages cannot 75 * be mapped and keeping the 76 * tail page _count zero at 77 * all times guarantees 78 * get_page_unless_zero() will 79 * never succeed on tail 80 * pages. 81 */ 82 atomic_t _mapcount; 83 84 struct { 85 unsigned inuse:16; 86 unsigned objects:15; 87 unsigned frozen:1; 88 }; 89 }; 90 atomic_t _count; /* Usage count, see below. */ 91 }; 92 }; 93 }; 94 95 /* Third double word block */ 96 union { 97 struct list_head lru; /* Pageout list, eg. active_list 98 * protected by zone->lru_lock ! 99 */ 100 struct { /* slub per cpu partial pages */ 101 struct page *next; /* Next partial slab */ 102#ifdef CONFIG_64BIT 103 int pages; /* Nr of partial slabs left */ 104 int pobjects; /* Approximate # of objects */ 105#else 106 short int pages; 107 short int pobjects; 108#endif 109 }; 110 }; 111 112 /* Remainder is not double word aligned */ 113 union { 114 unsigned long private; /* Mapping-private opaque data: 115 * usually used for buffer_heads 116 * if PagePrivate set; used for 117 * swp_entry_t if PageSwapCache; 118 * indicates order in the buddy 119 * system if PG_buddy is set. 120 */ 121#if USE_SPLIT_PTLOCKS 122 spinlock_t ptl; 123#endif 124 struct kmem_cache *slab; /* SLUB: Pointer to slab */ 125 struct page *first_page; /* Compound tail pages */ 126 }; 127 128 /* 129 * On machines where all RAM is mapped into kernel address space, 130 * we can simply calculate the virtual address. On machines with 131 * highmem some memory is mapped into kernel virtual memory 132 * dynamically, so we need a place to store that address. 133 * Note that this field could be 16 bits on x86 ... ;) 134 * 135 * Architectures with slow multiplication can define 136 * WANT_PAGE_VIRTUAL in asm/page.h 137 */ 138#if defined(WANT_PAGE_VIRTUAL) 139 void *virtual; /* Kernel virtual address (NULL if 140 not kmapped, ie. highmem) */ 141#endif /* WANT_PAGE_VIRTUAL */ 142#ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS 143 unsigned long debug_flags; /* Use atomic bitops on this */ 144#endif 145 146#ifdef CONFIG_KMEMCHECK 147 /* 148 * kmemcheck wants to track the status of each byte in a page; this 149 * is a pointer to such a status block. NULL if not tracked. 150 */ 151 void *shadow; 152#endif 153} 154/* 155 * The struct page can be forced to be double word aligned so that atomic ops 156 * on double words work. The SLUB allocator can make use of such a feature. 157 */ 158#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 159 __aligned(2 * sizeof(unsigned long)) 160#endif 161; 162 163struct page_frag { 164 struct page *page; 165#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 166 __u32 offset; 167 __u32 size; 168#else 169 __u16 offset; 170 __u16 size; 171#endif 172}; 173 174typedef unsigned long __nocast vm_flags_t; 175 176/* 177 * A region containing a mapping of a non-memory backed file under NOMMU 178 * conditions. These are held in a global tree and are pinned by the VMAs that 179 * map parts of them. 180 */ 181struct vm_region { 182 struct rb_node vm_rb; /* link in global region tree */ 183 vm_flags_t vm_flags; /* VMA vm_flags */ 184 unsigned long vm_start; /* start address of region */ 185 unsigned long vm_end; /* region initialised to here */ 186 unsigned long vm_top; /* region allocated to here */ 187 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 188 struct file *vm_file; /* the backing file or NULL */ 189 190 int vm_usage; /* region usage count (access under nommu_region_sem) */ 191 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 192 * this region */ 193}; 194 195/* 196 * This struct defines a memory VMM memory area. There is one of these 197 * per VM-area/task. A VM area is any part of the process virtual memory 198 * space that has a special rule for the page-fault handlers (ie a shared 199 * library, the executable area etc). 200 */ 201struct vm_area_struct { 202 struct mm_struct * vm_mm; /* The address space we belong to. */ 203 unsigned long vm_start; /* Our start address within vm_mm. */ 204 unsigned long vm_end; /* The first byte after our end address 205 within vm_mm. */ 206 207 /* linked list of VM areas per task, sorted by address */ 208 struct vm_area_struct *vm_next, *vm_prev; 209 210 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 211 unsigned long vm_flags; /* Flags, see mm.h. */ 212 213 struct rb_node vm_rb; 214 215 /* 216 * For areas with an address space and backing store, 217 * linkage into the address_space->i_mmap prio tree, or 218 * linkage to the list of like vmas hanging off its node, or 219 * linkage of vma in the address_space->i_mmap_nonlinear list. 220 */ 221 union { 222 struct { 223 struct list_head list; 224 void *parent; /* aligns with prio_tree_node parent */ 225 struct vm_area_struct *head; 226 } vm_set; 227 228 struct raw_prio_tree_node prio_tree_node; 229 } shared; 230 231 /* 232 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 233 * list, after a COW of one of the file pages. A MAP_SHARED vma 234 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 235 * or brk vma (with NULL file) can only be in an anon_vma list. 236 */ 237 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 238 * page_table_lock */ 239 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 240 241 /* Function pointers to deal with this struct. */ 242 const struct vm_operations_struct *vm_ops; 243 244 /* Information about our backing store: */ 245 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 246 units, *not* PAGE_CACHE_SIZE */ 247 struct file * vm_file; /* File we map to (can be NULL). */ 248 void * vm_private_data; /* was vm_pte (shared mem) */ 249 250#ifndef CONFIG_MMU 251 struct vm_region *vm_region; /* NOMMU mapping region */ 252#endif 253#ifdef CONFIG_NUMA 254 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 255#endif 256}; 257 258struct core_thread { 259 struct task_struct *task; 260 struct core_thread *next; 261}; 262 263struct core_state { 264 atomic_t nr_threads; 265 struct core_thread dumper; 266 struct completion startup; 267}; 268 269enum { 270 MM_FILEPAGES, 271 MM_ANONPAGES, 272 MM_SWAPENTS, 273 NR_MM_COUNTERS 274}; 275 276#if USE_SPLIT_PTLOCKS && defined(CONFIG_MMU) 277#define SPLIT_RSS_COUNTING 278/* per-thread cached information, */ 279struct task_rss_stat { 280 int events; /* for synchronization threshold */ 281 int count[NR_MM_COUNTERS]; 282}; 283#endif /* USE_SPLIT_PTLOCKS */ 284 285struct mm_rss_stat { 286 atomic_long_t count[NR_MM_COUNTERS]; 287}; 288 289struct mm_struct { 290 struct vm_area_struct * mmap; /* list of VMAs */ 291 struct rb_root mm_rb; 292 struct vm_area_struct * mmap_cache; /* last find_vma result */ 293#ifdef CONFIG_MMU 294 unsigned long (*get_unmapped_area) (struct file *filp, 295 unsigned long addr, unsigned long len, 296 unsigned long pgoff, unsigned long flags); 297 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 298#endif 299 unsigned long mmap_base; /* base of mmap area */ 300 unsigned long task_size; /* size of task vm space */ 301 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 302 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 303 pgd_t * pgd; 304 atomic_t mm_users; /* How many users with user space? */ 305 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 306 int map_count; /* number of VMAs */ 307 308 spinlock_t page_table_lock; /* Protects page tables and some counters */ 309 struct rw_semaphore mmap_sem; 310 311 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 312 * together off init_mm.mmlist, and are protected 313 * by mmlist_lock 314 */ 315 316 317 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 318 unsigned long hiwater_vm; /* High-water virtual memory usage */ 319 320 unsigned long total_vm; /* Total pages mapped */ 321 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 322 unsigned long pinned_vm; /* Refcount permanently increased */ 323 unsigned long shared_vm; /* Shared pages (files) */ 324 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE */ 325 unsigned long stack_vm; /* VM_GROWSUP/DOWN */ 326 unsigned long reserved_vm; /* VM_RESERVED|VM_IO pages */ 327 unsigned long def_flags; 328 unsigned long nr_ptes; /* Page table pages */ 329 unsigned long start_code, end_code, start_data, end_data; 330 unsigned long start_brk, brk, start_stack; 331 unsigned long arg_start, arg_end, env_start, env_end; 332 333 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 334 335 /* 336 * Special counters, in some configurations protected by the 337 * page_table_lock, in other configurations by being atomic. 338 */ 339 struct mm_rss_stat rss_stat; 340 341 struct linux_binfmt *binfmt; 342 343 cpumask_var_t cpu_vm_mask_var; 344 345 /* Architecture-specific MM context */ 346 mm_context_t context; 347 348 unsigned long flags; /* Must use atomic bitops to access the bits */ 349 350 struct core_state *core_state; /* coredumping support */ 351#ifdef CONFIG_AIO 352 spinlock_t ioctx_lock; 353 struct hlist_head ioctx_list; 354#endif 355#ifdef CONFIG_MM_OWNER 356 /* 357 * "owner" points to a task that is regarded as the canonical 358 * user/owner of this mm. All of the following must be true in 359 * order for it to be changed: 360 * 361 * current == mm->owner 362 * current->mm != mm 363 * new_owner->mm == mm 364 * new_owner->alloc_lock is held 365 */ 366 struct task_struct __rcu *owner; 367#endif 368 369 /* store ref to file /proc/<pid>/exe symlink points to */ 370 struct file *exe_file; 371 unsigned long num_exe_file_vmas; 372#ifdef CONFIG_MMU_NOTIFIER 373 struct mmu_notifier_mm *mmu_notifier_mm; 374#endif 375#ifdef CONFIG_TRANSPARENT_HUGEPAGE 376 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 377#endif 378#ifdef CONFIG_CPUMASK_OFFSTACK 379 struct cpumask cpumask_allocation; 380#endif 381 struct uprobes_state uprobes_state; 382}; 383 384static inline void mm_init_cpumask(struct mm_struct *mm) 385{ 386#ifdef CONFIG_CPUMASK_OFFSTACK 387 mm->cpu_vm_mask_var = &mm->cpumask_allocation; 388#endif 389} 390 391/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 392static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 393{ 394 return mm->cpu_vm_mask_var; 395} 396 397#endif /* _LINUX_MM_TYPES_H */